
Combining Global Code and Data Compaction�
Bjorn De Sutter
Bruno De Bus

Koen De Bosschere
Ghent University, Belgium

brdsutte@elis.rug.ac.be

Saumya Debray
The University Of Arizona

debray@cs.arizona.edu

ABSTRACTMore and more omputers are being inorporated in devieswhere the available amount of memory is limited. As a resultresearh is inreasingly fousing on the automated redutionof program size. Most if not all of the literature in this areaeither fouses on ode ompation or on the removal of deaddata. They are however losely related as ode addressesare nothing but data. The main ontribution of this paperis to show how ombined ode and data ompation anbe ahieved using a link-time ode ompation system thatworks by reasoning about the use of both ode and dataaddresses. The analyses proposed are built on fundamentalproperties of linked ode and therefor generally appliable.The ombined ode and data ompation is evaluated onSPEC2000 and MediaBenh programs, resulting in binaryprogram size redutions of 24.0%{45.8%. This ompationinvolves no speed trade-o�, as the ompated programs areon average about 5% faster.
1. INTRODUCTIONComputers are inreasingly being inorporated in devieswhere the available amount of memory is limited, suh asPDAs, set-top boxes, wearables, mobile and embedded sys-tems in general. The limitations on memory size result fromonsiderations suh as spae, weight, power onsumptionand prodution ost. At the same time, there is a desireto exeute inreasingly sophistiated appliations, suh asenryption and speeh reognition, on suh devies. Thisleads to inreasingly large programs, both beause of theadditional funtionality that they provide, and beause ofthe use of modern software engineering tehniques that aimat the use of omponents or ode libraries. These buildingbloks are primarily developed with reusability and general-ity in mind. An appliation developer often uses only partof a omponent or a library, and beause of the omplexstruture of these building bloks, the linker often links alot of useless ode and data into the appliation. This prob-lem an be onsidered as one of the big hurdles to be takenbefore modern software engineering tehniques an be usedto develop mobile or embedded appliations.For these reasons, reent years have seen growing interestin researh on ode and data ompation, i.e., the transfor-mation of programs to redue their memory footprint whileretaining the property that they an be exeuted diretly�The work of B. De Sutter, K. De Bosshere and B. DeBus was supported by the Fund for Sienti� Researh {Flanders under grant 3G001998. The work of S. Debray wassupported in part by the National Siene Foundation undergrants CCR-0073394, EIA-0080123, and ASC-9720738.

without requiring any deompression. Most of the literatureon ompation fouses on either ode or data ompation.Data ompation researh is limited to simple literal addressremoval from objet �les [15℄ or the removal of dead datamembers in OO-languages, where the analysis is applied onsoure ode, thus foring onservative assumptions aboutlibrary ode [16℄. Work on ode ompation has generallyfoused on identifying repeated instrution sequenes withina program and abstrating them into funtions [3, 9℄.In all of this work, data and ode ompation have beenarried out independently of eah other. It is not diÆultto see, however, that there are signi�ant dependenes be-tween the ode and data omponents of an exeutable pro-gram. For example, unused library ode that is uselesslybeing linked with a program will often be aompanied byuseless data (empirial evidene indiates that 5{10% of thelibrary ode linked with a program is unreahable [14, 13℄).Code optimizations suh as dead and unreahable ode elim-ination an ause data to beome unreahable as well, bygetting rid of ode referring to that data. Conversely, theelimination of unused data that ontains pointers to ode,suh as jump tables and virtual funtion tables, an auseode to beome unreahable, and potentially eliminable, aswell. The elimination of a word of storage from the dataarea of a program yields exatly the same overall bene�t, interms of memory footprint redution, as the elimination ofa word of storage from the ode area of the program. In-deed, the two optimizations are synergisti: the eliminationof data an enable additional elimination of ode, whih anenable the elimination of even more data, and so on.The main ontribution of this paper is to develop a whole-program analysis that treats data and ode elimination uni-formly and simultaneously. We show how this an be doneusing a link-time ode ompation system that reasons aboutboth ode and data addresses. Coneptually, the idea is verysimple: use onstant propagation to determine the values ofaddresses in ode and data areas, and based on this reason-ing identify ode and data values that are not used and anbe eliminated. The resulting system ahieves size redutionsthat are signi�antly better than have been reported in thepast: for example, on the SPECint-2000 benhmark suite,we ahieve redutions of about 35%{40%, on the average,in the number of program instrutions, and 27%{32% inthe total program size (instrutions+data). Our ideas relyonly on general properties of ompiled ode and so is notrestrited to a partiular implementation ontext. For sim-pliity of exposition the disussion below will fous on load-store arhitetures, where arithmeti operations involve onlyregisters, and memory is aessed only via load and storeinstrutions; however, the ideas presented here are not lim-

ited to suh arhitetures, and an be readily adapted toarhitetures supporting more omplex addressing modes.
2. STRUCTURE OF COMPILED CODEThe objet module generated by a ompiler from a souremodule typially onsists of several ode and data setions;examples of suh setions inlude the ode setion, the on-stant data setion, the zero-initialized data setion, the lit-eral address setion, et. The linker ombines a numberof suh objet modules into an exeutable program: in theproess, it puts all the setions in their �nal order and lo-ation. The setions of the same type oming from di�erentobjet modules are typially ombined into a single setionof that type in the �nal exeutable. To avoid onfusion, inthe remainder of this paper the original setions in the ob-jet �les will be alled ode and data bloks, or bloks forshort. A setion in an exeutable �le is thus a juxtapositionof bloks from the objet modules from whih the exeutablewas onstruted.To aess a memory loation, the address of that loationhas to be loaded or omputed into a register (possibly im-pliitly, as a displaement of a base address). This registeris then used as a soure operand to aess that loation.Now onsider the loations that an address omputed inthis way ould possibly refer to. In general, when generat-ing the bloks in one objet module, the ompiler does nothave any information about the bloks in other objet mod-ules, suh as their size or the order in whih they will belinked together. It therefore annot make any assumptionsabout the eventual loations of these bloks in the �nal exe-utable. This means that in the objet ode, omputationson an address pointing to some blok an never yield anaddress pointing to some other blok in the objet �le, be-ause the displaement between the two bloks is not knownat ompile time. This property holds for all the bloks inthe �nal exeutable program. This means that the data ina blok is dead unless there is a pointer to that blok foundin some other blok (e.g., a pointer to a data blok from aode blok, or vie versa) or expliitly programmed in theode.1 If there are suh pointers, but they are not used forstores, the data is read-only.This property is fundamental to the analyses desribedlater in this paper, in Setions 3 and 4. Both analyses areable to detet dead and read-only memory areas, and eahalgorithm has its strengths and weaknesses. In Setion 5,they are ombined to retain their strengths and overometheir weaknesses.Table 1 gives some insight in the distribution of the sizeof the bloks ontaining non-zero-initialized data for theSPECint2000 benhmark suite. Note that about one �fthof the statially alloated data ontains ode or data ad-dresses, of whih more than 85% is loated in read-only datasetions. Note how many of the data bloks ontain at mostone or two addresses. In bloks that are 16 bytes large, the1It is possible, in priniple, for a program to ommuniatesuh pointers from one point in a program to another in non-standard ways, e.g., by writing it out to a �le at one programpoint and reading it bak in at another. The disussion hereapplies even in suh situations. For example, in order towrite out an address, we have to �rst put the address into aregister, so we an detet that the address is taken; at theother end, ode that attempts to dereferene a value thatis read in will be onsidered to be able to aess any blokwhere an address is taken, whih will inlude the loationwhose address was passed to it.

non-zero initialized data 2552912 bytesnon-zero intialized read-only data 1115392 bytesreloatable data 473580 bytesread-only reloatable data 405412 bytesblok size = 8 bytes 32184 bloksblok size = 16 bytes 3603 bloks16 bytes < blok size � 64 bytes 738 bloks64 bytes < blok size � 256 bytes 882 bloks256 bytes < blok size � 1KB 487 bloks1KB < blok size � 4KB 257 bloks4KB < blok size � 16KB 116 bloks16KB < blok size � 64KB 22 bloksTable 1: Some numbers on statially alloated non-zero-initialized data and addresses summed for thewhole SPECint2000 benhmark suite.last 8 bytes are very often padding and so ontain no realdata or addresses. It is lear that most of the bloks aresmall enough to put severe restritions on the possible usesof the data addresses.
3. GLOBALLY UNIFORM

CONSTANT PROPAGATIONAs shown in [4℄, aggressive global optimization tehniques,suh as onstant propagation, ahieve good results for odeompation. One of the reasons for this suess is that atlink-time address alulations are andidates for optimiza-tion as well. Indiret data aesses and indiret ontrol owtransfers an often be transformed into diret data aessesand diret ontrol ow transfers. The behavior of the pro-gram then beomes more expliit, thereby reating otherode optimization and ompation possibilities. As a sidebene�t, the addresses stored in memory for the indiret dataaesses and ontrol ow transfers often beome dead be-ause they are no longer loaded after this transformation.As onstant propagation (of addresses) is the driving forebehind these transformations and ode ompation, we ex-tend onstant propagation to ahieve the following goals:{ Detetion of read-only data, whih helps us re�ne theontrol ow graph of the program by allowing us to re-solve the possible targets of indiret ontrol transfers.{ Detetion of dead data that an be removed from theprogram. A potential side bene�t is that the removal ofsuh data an result in fewer possible indiret ontroltransfer targets and less indiret aessible data.{ Resolution of the possible targets of indiret ontroltransfers on the y, i.e., during the analysis itself, sinethis generally yields better results than doing it in aseparate phase. This is omparable to onditional on-stant propagation, whih basially performs on-the-yunreahable ode elimination and performs better thanseparate simple onstant propagation and unreahableode elimination [2℄.
3.1 Basic Constant PropagationFigure 1 shows the pseudo-ode for a basi onstant prop-agation algorithm (the reader interested in a deeper treat-ment of onstant propagation is referred to standard textson optimizing ompilers, e.g., [17℄). Here i denotes an in-strution, r a register and m a memory loation or address.

BasiConstantPropagation():Init()Fixpoint()Init():for all i; r : InsMap[i; r℄ = >for all r : InsMap[program entry point; r℄ = ?MarkIns[program entry point℄ = TRUEFixpoint():while(9i : MarkIns[i℄ == TRUE)for all i with MarkIns[i℄ == TRUE :MarkIns[i℄ = FALSEPropagate(i; Evaluate(i))Meet(x; y):return x u yEvaluate(i):swith (type(i))ase Op :return SymbExe(i)ase Load :let the address being loaded from be m;if (m is a onstant address ^Blok[m℄ in onstant setion)return SymbExe(i)elsereturn InsMap[i℄ with destination register set to ?ase Store :return InsMap[i℄Propagate(i; tmp):for all suessors j of i :if (Meet(tmp; InsMap[j℄) 6= InsMap[j℄)InsMap[j℄ = Meet(tmp; InsMap[j℄)MarkIns[j℄ = TRUEFigure 1: A simpli�ed basi onstant propagationalgorithm.InsMap[i; r℄ is the lattie element mapped to register r atthe program point of instrution i. InsMap[i℄ is the arrayof all register value mappings at that point. MarkIns[i℄ isa boolean indiating whether the �x-point algorithm shouldre-evaluate the instrution. SymbExe(i) returns the registerontent mappings after symboli exeution of the instru-tion on its mapping. Blok[m℄ is the data blok ontainingthe memory loation m.The lattie this �x-point algorithm uses is depited in Fig-ure 2. InsMap[i; r℄ is mapped to > if register r has not beende�ned at program point i; it is mapped to Ci if the registerholds that onstant; and to ? when it (possibly) does nothold a onstant value. The onstant propagation algorithmswe use are optimisti: before the �x-point alulations allregister ontents at all program loations are assumed topossibly be onstants, exept for the values at the programentry point.The basi onstant propagation shown in Figure 1 is keptas simple as possible for the sake of larity. Our implemen-tation uses an aggressive ontext-sensitive interproeduralonstant propagator. It works on a low-level intermediaterepresentation of exeutable programs and so it is limited to

the propagation of register ontents. No data is propagatedthrough memory loations, exept for data in onstant datasetions: if they are loaded by instrutions with onstantsoure operands, the data is propagated into the program.When possible, a onditional branh based on the value ofa register r propagates information about r into the sues-sor bloks: for example, an instrution `beq r, : : : ,' whihbranhes if register r is 0, propagates the information that rhas the value 0 into its true-branh. If the register tested bya onditional branh evaluates to a onstant value (i.e., theorresponding test has a �xed known outome), the ontrolow edge that is not taken is disarded.
3.2 Globally Uniform Constant PropagationGiven our assumption that values stored in memory anonly be aessed via load instrutions, it an be seen, fromthe pseudo-ode for load instrutions (in Evaluate()) inFigure 1, that only data values from onstant data setionswill be propagated into the program. It is also lear that thispropagation does not give information about the liveness orread-only harater of the data in writable data setions. Toaddress these shortomings, we extend the basi onstantpropagator in four ways:1. all statially alloated global data is assumed onstantand dead at the start of the �x-point algorithm,2. statially alloated global data that is aessed some-where during onstant propagation is marked as live,3. statially alloated global data that is written some-where during onstant propagation is marked as writable,4. onditional onstant propagation is extended to indi-ret ontrol ow transfers.To formalize this, we need a lattie for the memory loations.This lattie has the same struture as that shown in Figure2, but the lattie elements now have di�erent meanings. Ifa memory loation is mapped to >, this means that theloation is dead, i.e., it annot be used by the program andwe don't are what it ontains. Mapping a loation m toa value Ci denotes that m ontains the value Ci and mmay be read by the program, i.e., m is live. If a loationis mapped to ?, this denotes that the program may writeto this loation, so for the rest of the propagation we don'tknow what value is stored there.This lattie explains why the extended propagator is alledthe Globally Uniform Constant Propagator. Statially allo-ated global memory loations are onsidered to have a on-stant value throughout the exeution of the whole programor are onsidered non-onstant. This resembles the uniformdivision used in simple o�-line partial evaluators [10℄. Notethat the same lattie is used for two di�erent things: formapping register ontents and for mapping memory loa-tions.The extended algorithm is given in pseudo-ode in Fig-ure 3. New or hanged lines are indiated with a `�' in theleft margin. In this ode MemMap[m℄ is the lattie elementmapped to memory loation m. MemRefSet[m℄ is the setof instrutions that during onstant propagation loaded thedata at loation m.Initially, all data loations are onsidered to be dead bythe algorithm (mapped to > in line 4 of Init), and no loadsof data are onsidered to have oured (line 5 of Init). Thealgorithm then iteratively identi�es loations that may belive. When a load instrution is evaluated, if the soure

>
?Ci Ci+1Ci�1 ?u Ci = ?>u Ci = CiCi u Cj = ? i� i 6= jCi u Cj = Ci i� i = jFigure 2: The lattie used for CP and the meet rulesoperand is a onstant address and the orresponding mem-ory loation is not mapped to ?, the statially alloatedvalue at that address is loaded and propagated into the pro-gram. Beause it may later turn out that this value an-not be guaranteed to be a onstant, we add the instru-tion to the set of instrutions that loaded from this memoryloation (MemRefSet[m℄). This happens in the Load asein Evaluate. This is fundamentally di�erent from the ba-si onstant propagator, sine the edges of the ontrol owgraph are no longer the only links that ontrol whih in-strutions should be re-evaluated after lowering a registermapping at some program point.If we disover a store to some onstant loation in Evaluate,WriteMem sets the mapping of that loation to ?. Thismeans that we assume worst-ase behavior for this mem-ory loation: there an be loads and stores from and to it.There might be loads in the program from that address thatwe will not evaluate. Therefore, if the statially alloatedvalue at that loation is a data address itself, we have toassume that this address may be used for loads and storesas well. In the algorithm, the reursive all to WriteMemtakes are of this. Note that a statially alloated value inmemory is an address if and only if it is reloatable. Ourimplementation uses reloation information to distinguishbetween ordinary data and addresses.At all times during the propagation, if a onstant addressis being propagated and at some point during the analysiswe lose trak of exatly whih address we are working with(e.g., due to address arithmeti where one of the operandsmay not be known), we make the worst-ase assumptionthat the program will write in the whole blok ontainingthat address: WriteMem is exeuted on the whole blok. Wehave to make this assumption beause we don't trak theuse of this address any longer, and so must make worst-aseassumptions about the ways in whih it ould be used. Theworst-ase assumption is stated in:� Meet(x; y): if a propagated address meets another valueor? and thereby is no longer propagated as a onstant.� Propagate(i): if the suessors of an indiret ontroltransfer annot be resolved at some program point,this is modeled with a speial suessor node Unknownin the ontrol ow graph. This node is assumed tohave worst-ase behavior: it reads from and writes toall registers and all memory loations whose addressesare propagated into it; in partiular, all registers aremapped to the lattie element ? at Unknown. Com-puting the meet of the propagated values with ? atthis node assures that Meet takes are of unknown su-essors.

� Evaluate(i): if a onstant address is stored, we don'ttrak the use of that stored value, sine our propagatornotes only that the memory loation is writable (bymapping it to ?), and as a result will not load theontents of that address later in the analysis.Note that stores where no onstant addresses are involved|e.g., a store to an address that is loaded from a memoryloation whose ontents annot be predited statially|donot have to be treated speially. This is beause the onlyreason the address being stored to is unknown is that welost trak of the possible addresses that ould reah the storeinstrution during propagation. As disussed above, whenwe lose trak of an address we make worst-ase assumptionsabout what may happen, so suh stores are onservativelyhandled by one of the three ases above.The fundamental reason why this algorithm works is theorganization of memory into bloks, as disussed in Setion2. For a blok B to be live, a pointer to that blok mustbe loaded somewhere in the program. If we detet suh apointer, two things an happen: either we �nd all its usesand have an aurate piture of its use, or we lose trak ofthe pointer somewhere and assume the worst-ase senario:the whole blok an be written. If we don't detet a pointerto the blok in the ode, there are two possible reasons:either B is dead or it an only be aessed through data insome blok B0 but we don't know the ontents of B0. Inthe latter ase B0 must have been written to at some pointin the program or somewhere we had to make worst-aseassumptions about the use of data in B0, and the reursiveall in WriteMem at that point handles this.At the end of the onstant propagation, all onstants (in-luding addresses) that are found are propagated into theprogram and dead bloks are marked for removal. Furtheroptimization of the program may �nd that it is more eÆ-ient to ompute some loaded values instead of loading theminto a register (e.g., see [15℄). Some data an additionallybeome dead if this happens, and an be removed from theprogram.The fourth extension, namely the generalization of on-ditional onstant propagation to indiret ontrol transfers,permits on-the-y resolution of indiret ontrol ow trans-fers where possible. Reall that for onditional onstantpropagation, information at a onditional branh node inthe ontrol ow graph is propagated over only one outgoingedge if the ondition of the branh evaluates to a onstant.This yields better results than simple onstant propagationfollowed by a separate pass of unreahable ode elimina-tion. The same holds for indiret ontrol ow. Suppose thatprior to onstant propagation we don't know the target ofan indiret branh at some program point: as mentioned

GloballyUniformConstantPropagation():Init()Fixpoint()Init():for all i; r : InsMap[i; r℄ = >for all r : InsMap[program entry point; r℄ = ?MarkIns[program entry point℄ = TRUE� for all m : MemMap[m℄ = >� for all m : MemRefSet[m℄ = �Fixpoint():while(9i : MarkIns[i℄ == TRUE)for all i with MarkIns[i℄ == TRUE :MarkIns[i℄ = FALSEPropagate(i; Evaluate(i))Evaluate(i):swith (type(i))ase Op :return SymbExe(i)ase Load :let the address being loaded from be m� if (onstant address m ^� (MemMap[m℄ 6= ?_Blok[m℄ in onstant setion))� MemRefSet[m℄ = MemRefSet[m℄ [fig� MemMap[m℄ = Meet(MemMap[m℄; loaded value)return SymbExe(i)elsereturn InsMap[i℄ with destination register set to ?ase Store :� if (onstant address m is stored)� for all n in Blok[m℄ :� WriteMem(n)� if (x is stored at onstant destination m)� WriteMem(m)return InsMap[i℄Propagate(i; tmp):for all suessors j of i :if (Meet(tmp; InsMap[j℄) 6= InsMap[j℄)InsMap[j℄ = Meet(tmp; InsMap[j℄)MarkIns[j℄ = TRUEMeet(m; n):� if (m is a onstant address ^ (m u n 6= m))� for all o in Blok[m℄ :� WriteMem(o)� if (n is a onstant address ^ (m u n 6= n))� for all o in Blok[n℄ :� WriteMem(o)return x u yWriteMem(m):� if (MemMap[m℄ is a onstant address)� WriteMem(MemMap[m℄)� MemMap[m℄ = Meet(MemMap[m℄;?)� for all i in MemRefSet[m℄ :� MarkIns[i℄ = TRUE� MemRefSet[m℄ = �Figure 3: The Globally Uniform Constant Propaga-tor algorithm.

earlier, this is modeled with the speial suessor node Un-known that enfores worst-ase behavior. Now suppose thatat some point during the �x-point iteration in the analysis,a target address A (i.e. the address of a possible suessor)is loaded from a loation A0 that is still onsidered read-only. It seems likely that if the target address A reahesthe indiret branh instrution, then so will the address A0from whih it was loaded. However, if we simply propagatethe register values to Unknown, the assumptions regardingits worst-ase behavior|spei�ally, that it may write to alladdresses propagated into it|will ause A0 to be mappedto ?. The result would be that the instrution loading thetarget address has to be re-evaluated, now with the blokontaining A0 marked writable. The e�et of this is thatwe an no longer infer that the target address loaded is A,and so lose the ability to resolve the target of the indiretbranh.The solution is to optimistially propagate the registerlattie mappings to the suessor at address A. If it turnsout, during the rest of the �x-point omputation, that theontents of blok B (where the target address A was loadedfrom) annot be overwritten on that path, then we have su-eeded in resolving the target A of the indiret branh. If thetarget address is overwritten at some point in the omputa-tion, the instrution loading the target address will be re-evaluated with the blok ontaining A0 marked as writable,and we will orretly infer that A is not the only possiblesuessor of the indiret branh.It should be emphasized that the analysis presented abovemodels only the ode (InsMap) and the statially alloateddata (MemMap) in the program, not the entire spae of ad-dressable memory. For this reason, the memory require-ments of the analysis are quite reasonable. The spae re-quired for MemMap[m℄ for a loation m onsists of a word forthe Ci values and an additional byte for the possibilities >and ?. In our urrent implementation, on a 64-bit arhite-ture, this inurs only 12% more spae than the amount ofstatially alloated data in the program.
3.3 DiscussionAs we put forward some goals for this algorithm, it isuseful to evaluate its performane. It turns out that theperformane of the algorithm is quite poor. The problemis the Meet operation. Suppose that m and n are onstantaddresses and m 6= n, then Meet(m;n) will be omputed as?: this properly aptures one aspet of the omputation|that the result is not a �xed onstant address|but at atremendous ost in preision, sine the lattie element ?for memory addresses is interpreted as a omplete lak ofinformation: that is, the bloks ontaining m and n areonsidered to possibly be read from or written to during ex-eution. The problem with this is that it loses informationabout memory bloks that are read-only, whih in turn hasa signi�ant adverse e�et on the preision of the overallanalysis. In pratie, almost all onstant addresses propa-gated through the program somewhere meet other onstantsor non-onstants in Meet. Assuming the worst-ase senariofor suh addresses, that there will be loads from and storesto their whole blok, is muh too onservative: it is often thease that there are only loads using many of these addresses.Basially, the onstant propagator desribed here is om-parable to monovariant partial evaluation. It is well knownthat polyvariant partial evaluation performs muh better.It is also muh harder to implement beause of eÆienyand termination issues. In our ase, fortunately, it is not

neessary to fully partially evaluate a program, sine we areonly interested in what happens with the addresses. Fur-thermore, we know that alulations on addresses an onlyresult in a �xed number of other addresses: they are alwayslimited to the blok the original address points to. Thissolves a possible termination problem.
4. PARTIAL EVALUATION OF ADDRESS

CALCULATIONSThe goal of partial evaluation of address alulations is,again, the detetion of dead and read-only memory loa-tions, avoiding the weak point of the onstant propagator,i.e. the overly onservative Meet. As desribed below, eahonstant address that is produed is propagated separatelyby our partial evaluator: this makes it diÆult to inor-porate the resolution of indiret ontrol transfers into thisanalysis. Beause of this, we do not attempt to resolve indi-ret ontrol transfers here, but instead rely on the resultsobtained from the onstant propagation desribed in theprevious setion (the preision problem with Meet in theonstant propagator notwithstanding).Our partial evaluator works in three phases, as disussedbelow. The same memory lattie is used as in the onstantpropagation for memory loations and all memory loationsare again initialized to >.Phase 1. Detetion of Loads/Stores at Constant Ad-dresses.During the �rst phase, the program is sanned for instru-tions that load or store from or to onstant addresses. Theseare the instrutions for whih the onstant propagator hasfound onstant address arguments. The memory lattiemappings are adjusted aordingly: if there is a load froma onstant address A, then if the onstant propagator in-diates that loation A ontains a onstant C then A ismapped to C, otherwise it is mapped to ?; if there is astore to address A, then A is mapped to ?.Phase 2. Detetion of Uses of Non-Constant Ad-dresses.In the seond phase, the program is sanned for instrutionsthat produe onstant addresses. This is a subset of theinstrutions that are found by the onstant propagator tohave onstant operands. In partiular, we want to identifyomputations where a onstant address A0 is used to om-pute other addresses A1; : : : ; An. For eah of the addressesso omputed, we want to keep trak of the fat that theywere derived from A0.To do this, we arry out a mono-variant binding-time anal-ysis for eah instrution I that produes a onstant result,starting at I with its result as a stati value. The spei�notions of stati and dynami variables in partial evalua-tion theory will in the remainder of this setion be alled`onstant' and `non-onstant,' for onsisteny with the on-stant propagation algorithm disussed in the previous se-tion. The lattie used here is the same as that for onstantpropagation of register values, i.e., > means that the regis-ter's value if unde�ned, a value Ci means that the registeris guaranteed to ontain the value Ci, and ? means that thevalue of the register may not be a �xed onstant. The onlydi�erene is that register values at program points are ini-tialized to onstants (if the onstant propagator has foundthem to be onstant) or ? if they are not onstant aordingto the onstant propagator.To identify addresses that are derived from other addresses,

eah register is also tagged with one of the elements D or ND,denoting, respetively, derived or not-derived from the initialaddress from whih the binding-time analysis was initiated.They form a lattie with only two simple meeting rules:ND u x = xD u x = DPartial evaluation proeeds as desribed below. Reall thatat the beginning of partial evaluation, all addresses are mappedto >, i.e., marked as dead. Some loations then have theirmappings hanged to a non-> value in Phase 1. Phase 2then updates the mappings of yet more loations. Whenhanging the mapping of an address during this proess, wealways set it to the meet of the old and new mappings forthat address. Thus, if the old mapping of a loation is xand we want to update it to a value y, the mapping of thatloation is set to x u y. Sine u is assoiative and ommu-tative, this means that the order in whih the updates arearried out does not a�et the �nal result. To redue rep-etition and simplify the presentation, the disussion belowdoes not expliitly refer to this aspet of updating the lattiemappings.� The same symboli exeution of evaluable instrutionsas in onstant propagation is used.� The value (onstant or ?) produed by an instru-tion is tagged with D or ND depending on the type ofinstrution and the tags of the instrution operands.For example, an Add instrution adding some value toa (onstant or non-onstant) value tagged D will resultin a tag D, as this means that some value is added toan address derived from the original address, whihresults again in an address derived from the originaladdress. A Compare instrution omparing a D-taggedvalue to something else produes an ND mapping, sinethe result of a omparison is not an address.� In addition to the previous rule, the result of an in-strution for whih the onstant propagator has foundthe produed value to be a onstant, is tagged ND. Ifthe produed value is an address, it will be propagatedin a separate binding-time analysis. This is preiselyhow we avoid the problems of the Meet proedure dur-ing onstant propagation.� If at some program-point during partial evaluation, noregisters are mapped to D, evaluation along that pathstops, sine there an be no more uses of the addressor its derivatives along that path.� If at some program-point, a register mapped to a on-stant address Ci is used as an address for a load orstore, the lattie mapping of the memory loation atthat onstant address is updated aordingly. In thisase, however, even if the value that is loaded an bedetermined to be a onstant address, it is not on-sidered to be a derivative of the original address andtherefore loaded as a non-onstant.� If at some program-point a onstant address A is it-self stored in memory, the whole blok ontaining theaddress A has its mapping hanged to ?. In e�et, weassume that sine A is being stored into memory, theprogram may subsequently load the ontents of thismemory loation and use it in ways that we annotantiipate, so we make worst-ase assumptions.

� Suppose that, during partial evaluation starting witha onstant address A, at some program point we en-ounter a load from a non-onstant address taggedwith D. This means that there is a load from some ad-dress (whose exat value we don't know) derived fromA. Based on our earlier assumptions (see Setion 2),an address derived from A must refer to a loation inthe same blok as A, we onlude from this that everyloation in the blok ontaining A is live. The par-tial evaluator therefore maps eah suh address to themapping for that address omputed by the onstantpropagator (i.e., either a onstant Ci or ?).� If at some program-point, a non-onstant tagged withD is used in a store instrution, the whole blok on-taining the original address is mapped to ?. As thisis the worst ase, partial evaluation is �nished.The reason why this algorithm performs better on someplaes than our onstant propagator is beause the mono-variant partial evaluation is performed separately for eahinstrution produing a onstant address. By performingmultiple mono-variant partial evaluations, we approximatethe result of a poly-variant partial evaluation and we avoidmost of the meeting between onstant addresses and othervalues or non-onstants in the Meet proedure of the Glob-ally Uniform Constant Propagator.Phase 3. Fix-point Detetion of Aessible Data.The �nal phase onsists of a �x-point omputation for thedetetion of aessible data. If a memory loations A islive and it holds an address A0, then A0 is assumed to beaessible as well. This is repeated until no new loationsare found to be aessible.
5. COMBINING THE TWO ANALYSESBasially, both analysis result in a onservative approxi-mation of the sets of data that are aessible or read-only.The result of the Globally Uniform Constant Propagationwas hampered by the overly onservative Meet proedure,while the partial evaluation su�ered from indiret ontrolow transfers that it had to treat very onservatively. How-ever, eah analysis is sound: that is, every memory loationthat an be aessed is identi�ed as aessible by eah ofthe analyses; onversely, if either analysis identi�es a loa-tion as being dead, then that loation is de�nitely dead. Toimprove preision, therefore, we take the intersetion of thetwo sets of aessible data: this results in a muh smallerset of data that is inferred to be aessible. Analogously,taking the union of the two sets of dead data bloks resultsin a larger set of bloks being inferred as dead.The two analyses are ombined as follows:� Eah update of the memory lattie mappings duringthe onstant propagation has as a lower bound themapping found by the partial evaluation. Thus, ifthe partial evaluation maps a memory loation A toa value x and the onstant propagator wishes to up-date the mapping of A to y, then A is mapped to thevalue x t y.� The onstant propagation and partial evaluation areexeuted several times, on an interleaved basis: �rstthe onstant propagation, then the partial evaluation.� Before the �rst onstant propagation phase, the map-pings that have not yet been omputed by the partial

language ompilerC Compaq C V6.1-011C g version 2.95.2 19991024C++ Compaq C++ V6.2-024Fortran 77 DIGITAL Fortran 77 v5.0Fortran 77 g77 version 2.95.2 19991024(front end version 0.5.25)Fortran 90 DIGITAL Fortran 90 v5.0Table 2: Compilers used for generating binaries.evaluation are set to the worst-ase values, i.e., all lo-ations are writable.This interleaved exeution of both analysis poses no prob-lem for our ode and data ompation needs, as the originalonstant propagation was already performed several times,interleaved with various other optimizations and analysis,suh as useless ode elimination, inlining, opy propagation,et. The optimizations are repeated beause they reateoptimization possibilities for eah other that annot be ex-ploited by a single run over the optimizations.
6. CODE COMPACTION INTERACTIONSApart from the spae bene�ts of dead data elimination,the primary e�et of analyses desribed above is in the im-provement of ontrol ow analyses in the program. Thereare two soures for suh improvements: �rst, these analysesallow us to resolve indiret ontrol transfers more aurately,whih in turn makes the ontrol ow graph more preise andthereby improves the e�ets of dataow analysis; and se-ond, the elimination of pointers into the ode from the dataarea, e.g., from within jump tables and virtual funtion ta-bles, allows more ode to be identi�ed as unreahable anddisarded. Both of these, in turn, have a bene�ial e�et ondata elimination: improvements in the preision of the on-trol ow graph lead to better onstant propagation, whileelimination of unreahable ode eliminates load instrutionsthat aess memory, and thereby allow more data to be iden-ti�ed as dead and eliminated. Spae onstraints prelude amore detailed disussion of these interations, but the inter-ested reader is referred to [4℄.
7. EXPERIMENTAL RESULTSFor evaluating these algorithms, we have implementedthem in Squeeze [4℄, a binary-rewriting tool that ompatsbinaries for the Alpha arhiteture. Squeeze ahieves odeompation by two means. On the one hand it aggressivelyapplies some well known interproedural optimizations suhas interproedural onstant propagation, ontext-sensitiveliveness analyses, load-store avoidane, dead ode elimina-tion, unreahable ode elimination, et. On the other hand,Squeeze fators out ode sequenes that our more thanone in a program. Squeeze is based on Alto [13℄, a link-time optimizer oriented at speeding up programs.The benhmark programs we used for evaluating our al-gorithms onsist of all C-programs from the SPECint2000benhmark suite, 252.eon, a C++ program from theSPECint2000 benhmark suite, �ve smaller C-programs fromthe MediaBenh that are typial for embedded appliations,and �nally some programs of the SPECfp2000 benhmarksuite: 168.wupwise, a Fortran 77 program, and 178.galgel, aFortran90 program.

base ode ompated ode and data ompationprogram text binary text binary text binary164.gzip 59412 327760 35792 (60.2%) 254032 (77.5%) 34848 (58.7%) 237360 (72.4%)175.vpr 107000 637056 72624 (67.9%) 514176 (80.7%) 71264 (66.6%) 483456 (75.9%)176.g 434744 2262816 312688 (71.9%) 1795872 (79.4%) 312048 (71.7%) 1699264 (71.1%)181.mf 64072 345216 40192 (62.7%) 271488 (78.6%) 39024 (60.9%) 242400 (70.2%)186.rafty 112684 635696 79600 (70.6%) 521008 (82.0%) 79280 (70.4%) 482784 (76.0%)197.parser 92156 493232 59344 (64.4%) 378544 (76.7%) 58224 (61.2%) 347168 (70.4%)253.perlbmk 221928 1144512 153616 (69.2%) 882368 (77.1%) 153280 (69.1%) 828192 (72.4%)254.gap 216984 1025616 151200 (69.7%) 779856 (76.0%) 150176 (69.2%) 755136 (73.6%)255.vortex 211320 1289600 126304 (59.7%) 961920 (74.6%) 125344 (59.3%) 895808 (69.5%)256.bzip2 55288 311472 33424 (60.5%) 245936 (79.0%) 32432 (58.7%) 229376 (73.6%)300.twolf 134556 736080 93872 (69.8%) 588624 (80.0%) 92720 (68.9%) 521712 (70.9%)MEAN 66.1% 78.3% 65.0% 72.4%adpm 44560 257424 25328 (56.8%) 191888 (74.5%) 24272 (54.5%) 183520 (71.3%)epi 71432 388960 44608 (62.5%) 298848 (76.8%) 43408 (60.8%) 277104 (71.2%)gsm 63828 351712 38400 (60.2%) 269762 (76.7%) 37360 (58.5%) 249024 (70.8%)mpeg2de 68384 384976 43424 (63.5%) 303056 (78.8%) 42320 (61.9%) 281920 (73.2%)mpeg2en 85236 475168 57616 (67.6%) 376864 (79.3%) 56416 (66.2%) 347088 (73.0%)MEAN 62.1% 77.2% 60.4% 71.9%252.eon 178608 961136 91648 (51.3%) 625264 (65.1%) 86192 (48.3%) 520880 (54.2%)168.wupwise 161440 824400 95376 (59.1%) 578640 (70.2%) 87664 (54.3%) 481952 (58.5%)178.galgel 209868 1035424 133648 (63.7%) 748704 (72.3%) 125872 (60.0%) 658576 (63.6%)Table 3: Number of instrutions and binary program size (bytes) for the benhmarks generated by theCompaq ompilers (base), after ode ompation and after ombined ode and data ompation. The ratio'sgiven are all ompared to the base binaries.The ompilers we used to generate the binaries are givenin Table 2. These ompilers use di�erent libraries, whih isuseful to show the generality of our tehniques. All binarieswere ompiled with the -O2 ags, resulting in base binariesthat are optimized for spae and time. For linking, Com-paq's ld was used with ags -r -d -z -m -non shared. Thisway statially linked exeutables are produed, ontainingsymbol and reloation information. The -m ag makes thelinker dump a map indiating where the bloks of the objet�les are loated in the �nal binary. It is this map we use todivide the data setion into bloks.The overall ode and program size redutions using ourombined analyses are given in Tables 3 and 4 for bina-ries generated by Compaq and Gnu ompilers. The averageprogram size redutions for the SPECint2000 benhmarksare 27.6% and 32.1%, depending on the ompilers used andtherefore on the libraries linked with the program. Com-pared to the numbers for ode ompation only, they are5.9% and 5.5% higher. This results largely from the removalof dead data and less from additional elimination of ode, asthe gain in ode size redution is muh smaller. The resultsfor the MediaBenh programs are similar.The results for the C++ program, 252.eon, are quite re-markable. More than half of the instrutions is removedfrom the program, whih, together with the removal of deaddata, results in a program ompation of 46.8%. The re-sult is that the statially linked, ompated binary is 5.1%smaller than the dynamially linked one! The reason is thedynamially linked program onsists for a large part of adynami string and symbol table.The results obtained for 168.wupwise and 178.galgel showthat also for sienti� appliations program ompation yieldsgood results. Note that, despite the fat that the g77-ompiled binary for 168.wupwise is more than a fator 2smaller than the f77-ompiled one (whih is due to the useof muh smaller libraries), the relative ompation resultsfor both binaries do not di�er that muh. On the one hand,this on�rms our believe that the size of a program is not

only orrelated to the funtionality needed by the program-mer, but also highly depends on the libraries used. On theother hand the size of the ompated binaries shows thatthere is muh room for progression, as the f77-ompiled andompated binary is still more than a fator 1.8 larger thanthe g77-ompiled and ompated one. The number of in-strutions in both binaries even di�ers with more than afator of 2.Table 5 ompares the exeution times for the base pro-grams, the base programs with pro�le-direted ode layoutadded, and the programs resulting from Squeeze. The ex-periments were run on a 500 MHz Compaq Alpha 21164EV56 proessor with a split primary diret mapped ahe (8KB eah of instrution and data ahe), 96 KB of on-hipseondary ahe, 8 MB of o�-hip bakup ahe, and 512Mbytes of main memory, running Tru64 Unix 5.0a. It anbe seen that the ompation of ode and data typially doesnot ome at the ost of speed: e.g., for the SPECint-2000benhmarks the ompated programs are, on the average,about 5% faster than the original programs.Table 6 shows the total memory footprint (i.e. the largestamount of memory an appliation takes during its exeu-tion) for the MediaBenh programs. The average ompationis 17.2%. This is not only due to the ode and data om-pation, but also to the removal of unneessary stak-spillsby Squeeze.
8. RELATED WORKThere is a onsiderable body of work on ode ompres-sion, but muh of this fouses on ompressing exeutable�les as muh as possible in order to redue storage or trans-mission osts [5, 6, 7, 8, 11, 12℄. These approahes gen-erally produe ompressed representables that are smallerthan those obtained using our approah, but have the draw-bak that they must either be deompressed to their originalsize before they an be exeuted [5, 6, 7, 8℄|whih an beproblemati for limited-memory devies|or require speial

base ode ompated ode and data ompationprogram text binary text binary text binary164.gzip 57592 318592 30464 (52.8%) 228480 (71.7%) 29472 (51.2%) 211888 (66.5%)175.vpr 100108 542544 62912 (62.8%) 411472 (75.8%) 61584 (61.5%) 380336 (70.1%)176.g 434376 2139184 281040 (64.7%) 1557552 (72.8%) 280416 (64.6%) 1445952 (67.6%)181.mf 60252 326848 37040 (61.5%) 253120 (77.4%) 35872 (59.5%) 232400 (71.1%)186.rafty 106204 574224 71008 (66.9%) 451344 (78.6%) 69872 (65.8%) 413008 (71.9%)197.parser 86904 456608 53408 (61.5%) 341920 (74.9%) 52032 (59.9%) 310496 (68.0%)253.perlbmk 210244 1085136 130816 (62.2%) 790224 (72.8%) 130912 (62.3%) 719344 (66.2%)254.gap 186188 876944 115216 (61.9%) 614800 (70.1%) 114176 (61.3%) 590064 (67.3%)255.vortex 213876 1112144 116400 (54.4%) 735312 (66.1%) 115280 (53.9%) 672160 (60.4%)256.bzip2 49932 284528 28400 (56.9%) 210800 (74.1%) 27408 (54.9%) 202432 (71.1%)300.twolf 123856 631984 77248 (62.4%) 459952 (72.8%) 76160 (61.5%) 420880 (66.6%)MEAN 60.7% 73.4% 59.7% 67.9%adpm 41208 240848 22704 (55.1%) 183552 (76.2%) 21600 (52.4%) 166944 (69.3%)epi 67196 368496 41040 (61.1%) 278384 (75.5%) 39888 (59.4%) 264752 (71.8%)gsm 59180 328432 32800 (55.4%) 246512 (75.1%) 31680 (53.5%) 229888 (70.0%)mpeg2de 63064 363104 37424 (59.4%) 272992 (75.2%) 36288 (57.5%) 251664 (69.3%)mpeg2en 81420 444640 52800 (64.8%) 346336 (77.9%) 51584 (63.4%) 316576 (71.2%)MEAN 59.2% 76.0% 57.2% 70.3%168.wupwise 69784 395216 41024 (58.8%) 305104 (77.2%) 39008 (55.9%) 258416 (65.4%)Table 4: Number of instrutions and binary program size in bytes for the benhmarks generated by the GNUompilers (base), after ode ompation and after ombined ode and data ompation. The ratio's given areall ompared to the base binaries.hardware support for exeuting the ompressed ode diretly[11, 12℄. By ontrast, programs ompated using our teh-niques an be exeuted diretly without any deompressionor speial hardware support.Most of the previous work on ode ompation to yieldsmaller exeutables treats an exeutable program as a sim-ple linear sequene of instrutions [1, 3, 9, 18℄. They usesuÆx trees to identify repeated instrutions in the programand abstrat them out into funtions. None of these worksaddress the issue of reduing the size of the data setionwithin a program. The size redutions they report are mod-est, averaging about 4{7%. We have reently showed thatan alternative approah, using the onventional ontrol owgraph representation of a program and based by and large onaggressive inter-proedural ompiler optimizations aimed ateliminating ode, an ahieve signi�ant redutions in odesize, averaging around 30% [4℄. However, this work does nottake into aount the removal of dead data, and the syner-gisti e�et this has on the removal of unneessary ode.The work we have reported in this paper yields overall sizeredutions that are about 5-6% higher than that reported inour earlier work [4℄, this improvement oming mainly fromthe removal of dead data.The elimination of unused data from a program has beenonsidered by Srivastava and Wall [15℄ and Sweeney and Tip[16℄. Srivastava and Wall, desribing a link-time optimiza-tion tehnique for improving the ode for subroutine alls inAlpha exeutables, observe that the optimization allows theelimination of most of the global address table entries in theexeutables. However, their fous is primarily on improvingexeution speed, and they do not investigate the eliminationof data areas other than the global address table. The workof Sweeney and Tip is restrited to eliminating dead datamembers in C++ programs, and so is not appliable to non-objet-oriented programs; by ontrast, our approah, whihworks on exeutable programs, an be applied to programswritten in any language. Neither of these works addressesthe lose relationship between the elimination of data andthe elimination of ode. Sweeney reports a size redutionof 4.4% on the average; by onsidering the elimination of

both ode and data, by ontrast, we ahieve size redutionsof 27{32% overall.
9. CONCLUSIONS AND FUTURE WORKBeause of the growing deployment of mobile and embed-ded proessors with a limited amount of available memory,tehniques that redue the memory footprint of programsare beoming inreasingly important. Previous work onthis topi has typially foused either on the redution ofdata areas or on redution of ode areas, but not on both,even though there are obvious dependenes and synergiesbetween the two. This paper desribes a low-level analy-sis that reasons about the use of ode and data addresseswithin programs, and thereby is able to exploit these depen-denes and synergies. Experimental results indiate that theresulting system ahieves signi�antly better memory foot-print redutions than previous work.The algorithms proposed in this paper an be re�ned in anumber of ways: a more preise analysis of stak behavioran lower the number of program points at whih worst-aseassumptions have to be made. Instead of not following theuse of a stak-saved address, it will then be possible to followits use from the plaes where the address is reloaded fromthe stak. Using a poly-variant partial evaluation for eahprodued address will produe better results as well.Another way to inrease the performane of these algo-rithms is to split the data bloks in smaller ones. At link-time, interval analysis ould be a useful algorithm to headin this diretion.Compilers ould assist this proess as well, e.g. by in-diating borders in the data setions of objet �les thatare not rossed by address omputations. They might evenprodue multiple objet �les for eah soure ode �le. Allstatially delared objets that have no overlap with otherobjets in memory an be put in another objet �le. Thismight oasionally result in less eÆient objet ode beausethe ompiler does not know the relation between the ad-dresses of those objets. Link-time optimizers suh as Altoor Squeeze will easily remove these ine�eienties though.

Compaq ompilers GNU ompilersprogram base pro�led ompated base ompated164.gzip 1152 1111 (96.4%) 1155 (100.3%) 1180 1110 (94.3%)175.vpr 919 897 (97.6%) 767 (83.5%) 1012 830 (82.0%)176.g 865 813 (94.0%) 837 (96.8%) 874 874 (100.1%)181.mf 1463 1455 (99.5%) 1485 (101.5%) 1493 1476 (98.6%)186.rafty 660 610 (92.4%) 577 (87.4%) 632 644 (102.6%)197.parser 1800 1663 (92.4%) 1740 (96.7%) 1795 1724 (96.3%)253.perlbmk 942 904 (96.0%) 872 (92.6%) 969 889 (92.3%)254.gap 1008 956 (94.8%) 1053 (104.5%) 902 875 (97.0%)255.vortex 1299 1202 (92.5%) 1023 (78.8%) 1603 1186 (74.4%)256.bzip2 1139 1089 (95.6%) 1086 (95.3%) 1205 1023 (84.1%)300.twolf 1657 1827 (110.3%) 1560 (94.1%) 1921 1750 (91.6%)GEOM. MEAN 1173 1139 (97.1%) 1105 (94.2%) 1235 1126 (91.1%)adpm 11.5 11.7 (101.7%) 12.3 (107.0%) 15.1 15.2 (100.7%)epi 11.6 11.3 (97.4%) 12.0 (103.4%) 14.1 16.7 (118.4%)gsm 11.9 12.9 (108.4%) 11.8 (99.2%) 14.3 12.8 (89.5%)mpeg2de 11.5 10.8 (93.9%) 14.2 (123.5%) 21.2 19.3 (91.0%)mpeg2en 11.7 9.2 (78.6%) 11.5 (98.3%) 17.3 16.1 (93.1%)GEOM. MEAN 11.6 11.2 (96.5%) 12.4 (106.2%) 16.4 16.0 (97.7%)252.eon 780 792 (101.5%) 848 (108.7%) - -168.wupwise 1082 1114 (103.0%) 1013 (93.6%) 1255 1213 (96.7%)178.galgel 2697 2827 (104.8%) 2728 (101.1%) - -Table 5: Exeution times for the base binaries, the pro�le-feedbak generated binaries and the ode and dataompated binaries.program base ompatedadpm 312 K 208 K (66.7%)gsm 456 K 344 K (75.4%)epi 1.70 M 1.58 M (92.9%)mpeg2de 888 K 768 K (86.5%)mpeg2en 1.88 M 1.74 M (92.6%)MEAN 82.8%Table 6: Total Memory Footprint for the Media-Benh programs.
10. REFERENCES[1℄ B. S. Baker and U. Manber. Deduing similarities inJava soures from byteodes. In Pro. USENIXAnnual Tehnial Conferene, pages 179{190,Berkeley, CA, June 1998. Usenix.[2℄ C. Clik and K. Cooper. Combining analyses,ombining optimizations. ACM TOPLAS,17(2):181{196, Marh 1995.[3℄ K. Cooper and N. MIntosh. Enhaned odeompression for embedded RISC proessors. In Pro.PLDI, pages 139{149, May 1999.[4℄ S. Debray, W. Evans, R. Muth, and B. De Sutter.Compiler tehniques for ode ompression. ACMTOPLAS, 22(2):378{415, Marh 2000.[5℄ J. Ernst, W. Evans, C. Fraser, S. Luo, andT. Proebsting. Code ompression. In Pro. PLDI,pages 358{365, June 1997.[6℄ M. Franz. Adaptive ompression of syntax trees anditerative dynami ode optimization: Two basitehnologies for mobile-objet systems. In J. Vitekand C. Tshudin, editors, Mobile Objet Systems:Towards the Programmable Internet, number 1222 inLNCS, pages 263{276. Springer, Feb. 1997.[7℄ M. Franz and T. Kistler. Slim binaries. Commun.ACM, 40(12):87{94, De. 1997.[8℄ C. Fraser. Automati inferene of models forstatistial ode ompression. In Pro. PLDI, pages

242{246, May 1999.[9℄ C. Fraser, E. Myers, and A. Wendt. Analyzing andompressing assembly ode. In Pro. ACM SIGPLANSymposium on Compiler Constrution, volume 19,pages 117{121, June 1984.[10℄ N. Jones, C. Gomard, and P. Sestoft. PartialEvaluation and Automati Program Generation.Prentie-Hall International, 1993.[11℄ T. M. Kemp, R. M. Montoye, J. D. Harper, J. D.Palmer, and D. J. Auerbah. A deompression ore forpowerp. IBM J. Researh and Development, 42(6),November 1998.[12℄ K. D. Kissell. Mips16: High-density mips for theembedded market. In Pro. Real Time Systems '97(RTS97), 1997.[13℄ R. Muth, S. Debray, S. Watterson, andK. De Bosshere. alto : A link-time optimizer for theompaq alpha. Software Pratie and Experiene,2001. (to appear).[14℄ A. Srivastava. Unreahable proedures inobjet-oriented programming. ACM Letters onProgramming Languages and Systems, 1(4):355{364,Deember 1992.[15℄ A. Srivastava and W. Wall. Link-time optimization ofaddress alulation on a 64-bit arhiteture. In Pro.PLDI, pages 49{60, June 1994.[16℄ P. Sweeney. and F. Tip. A study of dead datamembers in C++ appliations. In Pro. PLDI, pages324{323, June 1998.[17℄ M. Wegman and F. Zadek. Constant propagationwith onditional branhes. ACM TOPLAS,13(2):181{210, April 1991.[18℄ M. J. Zastre. Compating objet ode viaparameterized proedural abstration. Master's thesis,Dept. of Computing Siene, Univ. of Vitoria, 1993.

