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1 IntroductionSingle assignment languages, such as pure functional and logic programming languages, do not haveany notion of updatable variables: the value of a variable or structure, once de�ned, does not changeduring execution. Updates to the value of a variable or structure have to be e�ected, instead, bycreating new copies. While this is semantically very clean, and simpli�es many aspects of reasoningabout and manipulating programs. it can lead to an undesirable degradation of performance. Byanalyzing the program at compile time it is possible to replace the ine�cient copying with an e�cientdestructive update of the old data structure if it can be assured that the old structure will never bereferenced again. We call this structure reuse. In a good optimizing compiler structure reuse wouldmake it possible to improve the performance of important classes of programs to a level where itwould be comparable with the performance of optimized C.Because an update to an element of an aggregate structure, such as an array, requires copying (atleast part of) the array in a single assignment language, direct implementations of such structureshave been widely viewed as being too expensive to be practical in such languages. The usualapproach proposed to address this problem is to use some sort of compile-time liveness analysisto discover opportunities where updates can be implemented destructively, and numerous analysismethods along these lines have been proposed in the literature. In practice, however, we are notaware of any system that employs structure reuse based on global analysis. There are two importantreasons for this. The �rst is that the proposed analysis methods have been very general, and as aresult have been rather complex and have su�ered from performance problems. On the theoreticalside, for example, liveness analysis using the Prop domain, or any domain of comparable precision,is EXPTIME-complete [8]; on the practical side, the system described by Mulkers et al. requiresover 8 seconds to analyze the four-clause naive-reverse program [19]. The second reason is thatin practice, global data ow analyses|especially the complex alias analyses required for structurereuse|often turn out to be very \fragile": small and apparently minor changes to a program textcan have profound e�ects on analysis results and the performance of the resulting code, often in away that is di�cult for the ordinary programmer to anticipate.At this point, therefore, the choices available seem to be the following:1. One can stay with structures like lists or trees. The behavior of such structures is simpleand predictable, but they incur nontrivial overheads and can adversely a�ect the asymptoticcomplexity of a program.12. One can use arrays and rely on compiler analyses to eliminate the copying overheads. Thedisadvantage here is that the analyses are complex and potentially expensive. Moreover, theanalysis results tend to be fragile, and the performance characteristics of the resulting codecan be di�cult for programmers to predict.3. One can resort to special-purpose programming constructs, such as monads [3, 24, 25], or\uniqueness" declarations [22]. This can work well if one is writing fresh code in a newlanguage, but it is not straightforward to integrate this with pre-existing code (the \dustydecks" problem). Unfortunately, it is not always straightforward or practical to rewrite a largevolume of existing code.What we need, in fact, is a mechanism that (i) is simple enough to give programmers a simple androbust performance model for their programs, so that they can determine, without undue e�ort, howexpensive the use of arrays in a program is likely to be; (ii) is e�ective enough to eliminate (mostof) the copying overhead for array updates for most commonly encountered programs; and (iii)does not rely on any special language features. This paper presents a simple approach to structurereuse that, we believe, meets these criteria. The approach is presented in a logic programmingcontext, but works for any single assignment language, either logic or functional, as long as call1Recent work by Winsborough on compile-time reuse of list cells [27] reduces some of the costs of using lists, butdoes not alter the asymptotic time costs they incur. 1



sequences can be precisely predicted (i.e., for functional programs with higher order constructs orcall/cc constructs, additional work is necessary, just as it is for logic programs with call/1 orassert/retract primitives: this should not come as a surprise, since this additional work wouldtypically be necessary for most analyses and transformations of such programs in any case). The word\predicate" is thus used in the same sense as \function" in a functional language, or \procedure" inother languages.2 PreliminariesFor our purposes, an array of size N is simply an abstract data type that can be viewed as anaggregate indexed by the set f1; : : : ; Ng. In other words, we make no assumptions about the low-level realization of the array, e.g., as a vector or a tree. Arrays may be nested, and we will usually notdistinguish between nested and multidimensional arrays. In the rest of the paper we will assume thatthe language is equipped with the following primitive for (nondestructively) updating a (possiblymulti-dimensional) array:update(Array,Cell,Val,NewArray) where NewArray is a new array with the same contents as thearray Array except that the value in cell Cell is replaced with Val . Cell is a list [X,Y,Z...]of coordinates.We will also assume that the following two operations exist, although they might preferably behidden from the programmer:copy(Array,ArrayCopy) Allocates a new array ArrayCopy with the same size as Array , and copiesthe contents of the cells of Array to the cells of ArrayCopy .2 From a declarative point ofview, Array and ArrayCopy will be the same array.destr update(Array,Cell,Val) The value in cell Cell of Array is destructively replaced withVal . Cell is a list [X,Y,Z...] of coordinates.We will use the syntax A[X,Y,Z...] for the value of the cell speci�ed by coordinates X,Y,Z...in the array A.We assume that programs are moded, i.e., it is known which arguments of a procedure are inputarguments and which are outputs. The input arguments in a call are assumed to be ground at thetime the call is made. There is an extensive body of literature on compile-time inference of modes,and we do not pursue this further here except to note that mode (and, in general, groundness) infor-mation is of independent interest for a variety of other optimizations. To simplify the presentation,in the discussion that follows, the �rst and last argument positions of each predicate are assumedto have mode input and output respectively. Obviously, in real programs the array can be passeddown and up from the iteration predicate in any argument positions of the iterative predicate aslong as it is done consistently.3 The Basic IdeaThe basic intuition behind our approach is very simple. The only reason an arbitrary array updateoperation cannot be implemented destructively is that in general, the \old" version may be referencedsubsequently, i.e., may have pointers to it. Now in most programs that use arrays, updates occurin loops, and typically, more than one element is updated: for example, as part of a Gaussianelimination routine, we may multiply each element of a row of a matrix by some number. So, if we�rst create a copy of the array and pass this copy into the loop that e�ects the updates, the copy willnot have any pointers to it (the pointers to the \old" array will continue to point to that version,2Observe that unlike the copy term/2 predicate of Prolog, the structures making up the contents of the cells arenot copied and no new free variables are created. 2



not to the copy that has been made) and will therefore be amenable to destructive updates. Theresulting program will be no worse in performance than the original program without destructiveupdates if at least one update takes place, and will be de�nitely better than the original program ifmore than one update takes place (which is what we expect).There are, of course, various subtleties that have to be addressed in order to realize this ideain practice, and these are discussed in the remainder of this paper. First, however, we illustratethe approach with a simple example. The program in Fig. 1(a) iterates over an array of integersincrementing each cell by one.q(A, NewA) :-inc_elems(A, 1, 20, NewA).inc_elems(A , I, U, A) :-I > U.inc_elems(A , I, U, NewA) :-I =< U,update(A, [I], A[I]+1, TempA),inc_elems(TempA, I+1, U, NewA).(a) A simple iteration over an array.
q(A, NewA) :-copy(A, ACopy),inc_elems(ACopy, 1, 20, NewA).inc_elems(A , I, U, A) :-I > U.inc_elems(A , I, U, NewA) :-I =< U,destr_update(A, [I], A[I]+1),inc_elems(A, I+1, U, NewA).(b) The program of Fig. 1(a) with arraycopying moved out of the loop.Figure 1: A Simple example.Instead of making a potentially complex check that the original array is indeed not going to beused after the call we enforce this criterion. Updating a cell of the array can conceptually be dividedin two operations: �rst copying the array, and then making a destructive change in the cell of thecopy. The copy operation can then be moved, or \pushed", out of the loop to the point just beforethe predicate implementing the iteration is called. Copying the array before the iteration begins is,in e�ect, a way to enforce the possibility of a destructive update inside the loop.The resulting program can be found in Fig. 1(b) in e�ect, copying of the array in each iterationhas been replaced by a single copy operation before the iteration starts, followed by a series ofdestructive updates, and resulting in a program with linear time complexity.Before we go on to present this optimization in more detail it might be in order to make someremarks on what it does and does not try to accomplish. It is a local and simple optimization thatdoes not require any global analysis. It should therefore be cheap to include in a compiler. Theambition of the proposed optimization is not to remove all array copying from the program. Insteadit is targeted at iteration like structures where array copying during updating is likely to be bothcostly and unnecessary. Also, it should be worth noting that the optimization does not solve thegeneral problem of structure reuse for recursive data structures such as lists and trees [27].3.1 The Transformation and its CorrectnessIn this section, we describe the conceptual steps involved in the transformation that forms the heartof our approach. This serves to illustrate the thinking behind the transformation, and makes iteasier to adapt the transformation to situations not explicitly discussed here. It also makes clear thepreconditions necessary for each step of the transformation to be carried out, thereby developingthe conditions under which the transformation is correct.The basic pattern of programs similar to the one in Fig. 1(a) is given in Fig. 2(a), where everything3



q(A, ..., NewA) :-p(A, ..., NewA).p(A, Xbc, A) :- Bbc.p(A0, Xh, A2) :- B0,update(A0, Xu, A1), B1,p(A1, Xr, A2), B2.(a) Original program. q(A, ..., NewA) :-p(A, ..., NewA).p(A, Xbc, A) :- Bbc.p(A0, Xh, A2) :- B0,copy(A0, A1),destr_update(A1, Xu), B1,p(A1, Xr, A2), B2.(b) First the update operation issplit in two operations,.. . .q(A, ..., NewA) :-p(A, ..., NewA).p(A, Xbc, A) :- Bbc.p(A0, Xh, A2) :-copy(A0, A1), B0,destr_update(A1, Xu), B1,p(A1, Xr, A2), B2.(c) then the copy is moved �rst inthe clause,.. . .
q(A, ..., NewA) :-copy(A, ACopy),p(ACopy, ..., NewA).p(A, Xbc, A) :- Bbc.p(A1, Xh, A2) :- B00,destr_update(A1, Xu), B1,copy(A1, Ac1),p(Ac1, Xr, A2), B2.(d) then the copy operation ismoved to before calls to p/2,. . .q(A, ..., NewA) :-copy(A, ACopy),p(ACopy, ..., NewA).p(A, Xbc, A) :- Bbc.p(A1, Xh, A2) :- B00,destr_update(A1, Xu), B1,p(A1, Xr, A2), B2.(e) then the copy operation in therecursive clause is removed.
q(A, ..., NewA) :-copy(A, ACopy),p(ACopy, ...),NewA = ACopy.p(A, Xbc) :- Bbc.p(A1, Xh) :- B00,destr_update(A1, Xu), B1,p(A1, Xr), B02.(f) Finally, the returning of the ar-ray in a separate argument is omit-ted.Figure 2: The transformation illustrated on a simpli�ed program.4



in the bodies of the clauses not involving the array have been replaced with meta variables Bbc, B0,B1 and B2, representing any goals, and the heads, the update operations and the recursive callshave been abbreviated such that all arguments except the array arguments have been replaced withmeta variables Xh, Xbc, Xu, Xr . We assume that A0, A1, A1, A and NewA are all distinct variables.Also, to make the argument simpler, will assume that any occurrence in Xu of a reference to a cell inA0 has been replaced with a new variable N and a uni�cation statement N = A0[...] in B0 beforethe transformation begins. This simpli�ed form of programs will be used in the rest of the paper.Fig. 2 will be used in an argument to determine under what criteria the transformation is correct.As mentioned earlier, the update operation can be divided into two operations: a copy of the array,and a destructive update of the copy. However, this is permissible only if we can guarantee thatthe resulting array, A1, is the one that is created by the copy operation, i.e., that A1 is not analready-de�ned array that is uni�ed with the result of the update. The resulting program is shownin Fig. 2(b).The following criterion is su�cient to ensure correctness:Criterion 1 A1 does not occur in B0 or Xh.We next move the copy operation �rst in the clause which yields the program in Fig. 2(c). Thisis OK due to Crit. 1.Next, we observe that A0 is an input parameter of p, which implies that A0 is ground when p iscalled. Since A1 is a copy of A0, the value of A0 is identical to that of A1: in other words, the resultof the computation will not be a�ected if we move the copy operation outside p and pass A1 intop instead of A0. Once this has been done, since the input argument A1 is a copy of A0, we knowthere are no aliases for it: any existing pointers to A0 must continue to point to A0, not to A1. Atthis point, therefore, if A0 is not referenced in the body of p after the update, i.e. does not occurin B1, B2, Xr or Xu, then A1 is dead after the update and can therefore be updated destructively(the array A0 may be accessed in B0, but since A1 is a copy of A0 and, from Criterion 1 that A1 doesnot already occur in B0, these accesses to A0 can be replaced by accesses to A1; in theory we canalso replace occurrences of A0 in Xu, but we will instead assume that it does not occur there. Thisresults in the program of Fig. 2(d), where B00 denotes the result of replacing occurrences of A0 by A1in B0. Due to the destructive update, A1 holds the value of the original array in B0 and the value ofthe updated array in the rest of the clause. The reason there is a copy operation in the body, justbefore the recursive call to p, is that a copy of the argument is being passed into the call, just as inthe case for the call to p from q. The correctness criterion can now be re�ned to:Criterion 2 A0 does not occur in B1, B2, Xu, Xr or XhWe have now assured that the array A1 passed in the �rst argument position to p has no otherreferences when it enters the clause. Given that we know that no new aliases for A1 are produced inB00 (i.e., no new aliases for A0 are produced in B0) or B1 and A1 does not occur in Xu, 3 A1 will holdthe only live reference to the array in the clause when A1 is subsequently copied into Ac1. Since thesole reason for copying is to ensure that we have a unique reference to the array, it is obvious thatthis copy operation is unnecessary provided that the value of A1 is not needed Xr or in B2 i.e., A1does not occur in Xr or in B2. Removing this copy gives us the program in Fig. 2(e) and the newcorrectness criterion:Criterion 3 No new aliases for A0 are produced in B0, andNo new aliases for A1 are produced in B1 or Xu, andA1 does not occur in B2 or Xr.3Actually, at this point it is only necessary that no new aliases A0 for are produced in Xu. But, since this can onlyhappen when the update is a predicate call, which can be the case in Sec. 4.2, occurrence in Xu is in fact the samething. 5



Finally, we see that as long as the array is being updated it is passed \downwards" in the recursionof p and it is not until the iteration stops in the �rst clause of p that the array is uni�ed with thelast argument of p which passes the �nal version back up again. Since we now have removed allcopying operations from the looping predicate we know that this �nal array will in fact be present asthe value of the variable ACopy in the clause of q containing the initial call to the iteration predicatep. It is therefore no longer necessary to have an extra argument of the looping predicate passing thearray back up. Instead, the �nal value of the array can be obtained in the clause of the initial call tothe iteration by unifying with ACopy after the iteration. We know that A1 will hold the same valueas A2 in B2 so if we remove A2 as an argument to p we can just replace any occurrence of A2 in B2with A1. In B00, B1, Xu and Xr we don't have another variable that contains the value of A2 so thisonly works if A2 does not occur there. As A2 occurs in B00 i� it occurs in B0 we get the criterionCriterion 4 A2 does not occur in B0, B1, Xu or Xr.This leaves us with the program in Fig. 2(f), where B02 = B2(A2=A1).The �nal step of removing the returning of the resulting array in a separate argument hasthe obvious gain of avoiding the extra time and space it would require to handle. There is alsoanother important advantage which we will exploit in Sec. 4.2: It turns the iterative predicate pinto a predicate that in e�ect makes a destructive update of the array and can as such replacedestr update in the transformation scheme. For this to be OK we need to know that no new aliasesfor the array has been produced during the update. We thus need to add the following criteria:Criterion 5 No new aliases for A2 are produced in B2, andA2 does not occur in Xh, andNo new aliases for A are produced in Bbc, andA does not occur in Xbc.To sum up, the criteria 1{5 for preserving correctness when transforming the program in Fig. 2(a)to the program in Fig. 2(f) can be stated as:Criterion 6 No new aliases for Ai are produced in Bi, andAi does not occur in Bj , when i 6= j, andAi does not occur in Xh, Xu or Xr, andNo new aliases for A are produced in Bbc, andA does not occur in Xbc.This criterion expresses an intuition that is very similar to \single threadedness" (see, for example,[23]).3.2 ApplicabilityTo �nd opportunities for applying the transformation the clauses in of recursive predicates|i.e., inthe strong components of the call graph|are searched for array updates. For each such predicatethe analysis required to �gure out whether it adheres to the criteria is then essentially local to itsclauses.Part of Crit. 6 (Sec. 3.1) requires that Ai is not aliased in Bi, i.e. Ai does not in Bi pass its valueon to some other variable or into a data structure. Making a general check for this is di�cult andmust be approximated. Checking that Ai does not occur at all in Bi is much simpler and obviouslysu�cient. This criterion is unnecessarily restrictive and is easily extended by allowing Ai to occurin primitive operations such as extraction of cell contents etc., which does not involve any risk foraliasing.There are, however, some programs that would be amenable to the transformation only if thearray of Ai would be allowed to be passed down as an argument in a predicate call inBi. For example,a straightforward implementation of Dijkstra's shortest paths algorithm (the dijkstra program in6



Sec. 5) contains a nested loop in which one array is updated in the inner loop and another in theouter loop. The array updated in the outer loop is used in the inner loop and therefore must bepassed as an argument in the call to the inner loop. To allow this requires a non-local analysis whichcan ensure that the array is not aliased in the clauses of the predicate where it is passed. This is,in general, expensive to check, but we believe the following scheme covers most cases occurring inpractice and is also easy to understand and check by a programmer:Trace the array \downwards" and make sure it is never put into another data structure, andnever passed back up from any predicate it enters. This can be checked in a single pass over therelevant portion of the program and does not need to involve other program variables than thoseholding the array, so it should still be cheap to check in most cases, even though it is not, strictlyspeaking, a local analysis. To keep the check cheap in all cases, one can always give up, and assumethat it might be aliased, in case the check takes too much time.It should be noted that the check described above, as well as the criteria discussed in the previoussection, are all straightforward to check: most involve only simple intra-clause syntactic checks, withthe most complicated requirement|the only non-local one|requiring a single pass over part of theprogram. Because of this, we expect that it should not be di�cult for a programmer to forma reasonably robust mental performance model indicating the expected performance of programsusing arrays.4 Extending the SchemeFor this transformation to be useful, it needs to be extended in several ways. Here we will describesome of the possible extensions. Some will just be mentioned and some will be described in moredetail.4.1 More ClausesThe extensions needed to cater for more clauses in the iteration predicate, including base case clausescontaining updates and recursive clauses not containing updates, are trivial and will not be discussedin any length here. It su�ces to note that in a logic programming setting backtracking might causea problem since destructive updates might have to be trailed. Even if value trailing is necessary,however, it is likely to be considerably less expensive than array copying. It should also be notedthat if some of the clauses do not contain update operations we get a \speculative" copying behavior.Solutions to this are discussed in Sec. 4.4.It should also be evident from the correctness discussion in Sec. 3.1 that it is trivial to extendthe scheme to allow several updates and recursive calls in the same clause, as long as the array is\threaded" between them.4.2 Nested IterationsMany common algorithms use nested iterations i.e., a loop within another loop. In a declarative ?language this is achieved using two recursive predicates as illustrated in Fig. 3(a). The inner loopof this program can trivially be transformed using the basic scheme of Fig. 2 yielding the programin Fig. 3(b). It is now not di�cult to see that the inner loop predicate p inner/1 of Fig. 3(b)essentially implements a destructive update of the array, and thus the two lines marked (*) in theprogram in Fig. 3(b) implements a non-destructive update of the array A0 producing the new arrayACopy.Assuming that the conditions for transformation are ful�lled for p outer after removing theexplicit uni�cation A1=ACopy (by replacing all occurrences of ACopy with A1 which is OK if A1 doesnot occur in G0, which it won't if criterion 1 is ful�lled) in Fig. 3(c) the transformation can nowbe applied pushing the copy operation out another level yielding the �nal copy free iteration inFig. 3(d). 7



q(A, NewA) :-p_outer(A, NewA).p_outer(A, A).p_outer(A0, A2) :- G0,p_inner(A0, A1), G1,p_outer(A1, A2), G2.p_inner(A, A).p_inner(A0, A2) :- B0,update(A0, A1), B1,p_inner(A1, A2), B2.(a) A two level iteration.
q(A, NewA) :-p_outer(A, NewA).p_outer(A, A).p_outer(A0, A2) :- G0,copy(A0, ACopy), % (*)p_inner(ACopy), % (*)A1 = ACopy, G1,p_outer(A1, A2), G2.p_inner(A).p_inner(A1) :- B00,destr_update(A1), B1,p_inner(A1), B2.(b) Inner loop transformed.. .q(A, NewA) :-p_outer(A, NewA).p_outer(A, A).p_outer(A0, A2) :- G0,copy(A0, A1),p_inner(A1), G1,p_outer(A1, A2), G2.p_inner(A).p_inner(A1) :- B00,destr_update(A1), B1,p_inner(A1), B2.(c) . . . and, after removingthe explicit uni�cation . . .
q(A, NewA) :-copy(A, ACopy),p_outer(ACopy),NewA = ACopy.p_outer(A).p_outer(A1) :- G00,p_inner(A1), G1,p_outer(A1), G02.p_inner(A).p_inner(A1) :- B00,destr_update(A1), B1,p_inner(A1), B02.(d) . . . the outer loop can betransformed.Figure 3: Two level iteration.8



How the remaining copy operation, just before the iteration takes o�, can be avoided is discussedin Sec. 4.4.4.3 Other ExtensionsThere are several other ways in which the basic transformation scheme can be extended. For instance,if the array should be updated only in some iterations one can implement this in two ways. (1) Byhaving several recursive clauses where some update the array, and some don't. (2) By having justone recursive clause that calls another non-recursive predicate that implements the \if-statement"that determines whether the array should be updated or not. In a bubble sort program this couldbe a swap maybe predicate that determines if the contents of two cells should be swapped.Only case (1) is covered by the basic transformation, but case (2) is easily included by regardingthe updating predicate called from the looping predicate as an inner loop without any recursiveclauses.Also, the transformation as formulated does not handle mutual recursion. It seems, however,that this should not be di�cult to include.4.4 Avoiding Speculative CopyingIf some of the clauses of the iteration predicate do not contain updates of the array the transformationis \speculative" in the sense that the number of array copy operations avoided in the iteration mightbe zero, but they are always replaced with one copy operation before the iteration starts. Thus,it is possible that the transformed program might actually end up doing more copying than theuntransformed.There are two approaches to this problem. One can try to re�ne the transformation in variousways to avoid this problem. This is done in the remainder of this section. Or, one can say that thisdoes not really matter that much. The possibility of avoiding large amounts of copying is worth theprice of making one copy, even if that sometimes means it is done unnecessarily.If it could be determined that, at the point just before the call to the iteration predicate, thereis only one reference to the array (note that references to individual elements of an array count asreferences to the array), then also this initial copy could be omitted. One possibility is to fall backon a global data ow analysis to infer this information. Alternatively, if we want to avoid a globaldata ow analysis we can still handle cases such as when the array was created just before the call,or was returned from another, just transformed, iteration. Nevertheless, even if we decide to foregoa global analysis and as a result are unable to remove this one copy operation, we have succeeded inreducing the total number of copy operations considerably: thus, in a program where each element ofan n-element vector is updated, our transformation results in a single copy operation on the vector,followed by n destructive updates, with an overall amortized time complexity of O(1) per update.However, if we cannot establish that the initial copying can be trivially omitted, we can delaythe initial copying until it is known that at least one update of the array will take place. This canbe achieved by dividing the loop in two parts, one that takes care of the iteration before the �rstupdate, and the other one after. This is illustrated in Fig. 4.This technique does, however, only work for one level iterations. If the initial copy of a programsuch as the one in Fig. 3 is to be avoided we need some additional machinery. The inner loop has to\tell" the outer loop that a copy has indeed occurred. A conceptually simple way to accomplishedthis is to add an argument to the inner loop predicate that passes back a ag that says whetherthe array was copied or not. The outer loop predicate can then, based on this ag, decide if theiteration should continue checking whether a copy will occur, or if it is safe to just do destructiveupdates. This is illustrated in Fig. 5.If several arrays are updated in di�erent ways and by di�erent clauses in the same loop, and wehave not been able to remove the initial copying for any of them, then we need lots of versions ofthe looping predicates. If there are n arrays, the transformation will have to produce 2n versionsof the looping predicates: note, however, that determining which of these 2n versions to use can be9



p(A, A).p(A, NewA) :-update(A, TempA),p(TempA, NewA)p(A, NewA) :-p(A, NewA).(a) A program.. . p(A, A).p(A, NewA) :-update(A, TempA),p'(TempA),NewA = TempA.p(A, NewA) :-p(A, NewA). p'(A).p'(A) :-destr_update(A),p'(A).p'(A) :-p'(A).(b) . . . transformedFigure 4: A program with two recursive clauses where one updates the array and one does not.e�ected with n tests using a decision tree. It may be possible to reduce the number of specializedpredicates using techniques based on automata minimization techniques [20, 26].However, on a lower level than can be expressed directly in a declarative language the same e�ectcan be achieved more e�ciently. This idea is illustrated in Fig. 6 adding some low level instructionsinto the program. We pass out from the inner loop not a ag saying whether a copy has occurredor not, but instead the address of where to continue after the initial call to p inner. This requiresthat p' outer behaves exactly like p outer as far as stack frames, variables and backtracking goes.The only di�erence should be that it calls p' inner instead of p inner.It is also easy to see that if p inner is tail recursive, it is not necessary to pass the continuation outthrough an argument and do an explicit goto when the inner loop is done. Instead the continuationregister can be updated immediately, and only at the point in p inner where the update is madesince it will initially hold the address of lbl1.If we have several calls to p inner from p outer this does not work. It could be �xed by passingthe alternative address as an argument to p inner. However, if there are several arrays beingupdated in the inner loop this still does not solve the problem. In this case the previously describedtechnique with returned \ags" must be used.5 Evaluation Program Size Before After Factordijkstra 300 3587.6 398.3 9.0shortestp 20� 20 377.7 33.3 11.3bubblesort 200 593.9 22.1 26.9insertsort 200 593.2 20.6 28.8quicksort 500 10470.0 180.0 58.2Table 1: Speedups after transformation (times in ms).Neither the analysis or the transformation has been implemented. To investigate the viability ofthe approach a few programs were implemented and compiled with the jc compiler [11] (with theoptimize switch `-O') which supports arrays. The intermediate C code for these programs were thentransformed by hand and recompiled. The resulting improvements in execution time is shown inTab. 1. The system used for the timings was a Sun SPARCstation 20 612MP with two 60MHzSuperSPARC processors (only one was used) and 128MB memory, running Solaris 2.5.1. Timingsinclude runtime garbage collection. 10



p_outer(A, A).p_outer(A, NewA) :-p_inner(A, TempA),p_outer(TempA, NewA).p_inner(A, A).p_inner(A, NewA) :-update(A, TempA),p_inner(TempA, NewA).p_inner(A, NewA) :-p_inner(A, NewA).(a)p_outer(A, A).p_outer(A, NewA) :-p_inner(A, TempA, C),( C = not_copied-> p_outer(TempA, NewA); C = copied-> p'_outer(TempA),NewA = TempA ).p_inner(A, A, not_copied).p_inner(A, NewA, copied) :-update(A, TempA),p'_inner(TempA),NewA = TempA.p_inner(A, NewA, C) :-p_inner(A, NewA, C).
p'_outer(A).p'_outer(A) :-p'_inner(A),p'_outer(A).p'_inner(A).p'_inner(A) :-destr_update(A),p'_inner(A).p'_inner(A) :-p'_inner(A).(b)Figure 5: The inner loop \tells" the outer loop whether an update has taken place or not.
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p_outer(A, A).p_outer(A, NewA) :-p_inner(A, TempA, Cont),goto( Cont),lbl1:p_outer(TempA, NewA).p_inner(A, A, Cont) :-Cont = lbl1.p_inner(A, NewA, Cont) :-Cont = lbl2,update(A, TempA),p'_inner(TempA),NewA = TempA.p_inner(A, NewA, Cont) :-p_inner(A, NewA, Cont).
p'_outer(A,_).p'_outer(A,_) :-p'_inner(A),lbl2:p'_outer(A,_).p'_inner(A).p'_inner(A) :-destr_update(A),p'_inner(A).p'_inner(A) :-p'_inner(A).Figure 6: The inner loop returns a continuation address which depends on whether an update hastaken place.The speedup factor is, of course, not constant but a function of the problem size since thecomplexity is reduced. This is the reason for the big factor for the quicksort program comparedto the other sorting algorithms (quicksort with an array of size 200 gets a speedup factor of only14.4).The program dijkstra implements Dijkstra's algorithm for �nding the shortest path from onenode to all other nodes in a directed graph [1]. It is a two level nested loop where one array isupdated in the inner loop and one in the outer. The array updated in the outer loop is, however,used in the inner loop, which means that the transformation w.r.t. this array relies on the checkdescribed in Sec. 3.2.The program shortestp �nds the shortest path from every node to every node of a graph withn nodes using the algorithm as described by, for instance, Baase [2]. It is a three level nested loopiterating over an n�n array. The transformation is straight forward and only needs the basic schemeof Sec. 3.1. Since jc only supports one dimensional arrays, the n � n was implemented as a onedimensional array of size n2.bubblesort, insertsort and quicksort implement the standard sorting algorithms. bubblesortis a two level nested loop where the inner loop (sometimes) swaps the contents of two cells. bubblesortdoes not update an already sorted array and would therefore need the techniques of Sec. 4.4 to elim-inate the initial copy.The program insertsort is a three level nested loop where the middle loop searches for thelocation where an element should be inserted and the inner loop shifts all elements after this locationone step.The program quicksort is interesting in that it is an inherently recursive algorithm that doesnot really have a purely \iterative" form, since it contains two recursive calls in the same clause. Asnoted in Sec. 4.1, the transformation scheme is easily extended to handle this.6 Previous WorkA number of authors have considered the optimization of programs in single-assignment languagesto incorporate destructive updates, e.g., see [4, 14, 13, 15, 16, 17] in the context of functional12



programming languages, and [6, 5, 10, 18, 19, 23] in the context of logic programming languages.The work of Bruynooghe [6, 5], Foster and Winsborough [10], Hudak and Bloss [4, 15, 16], Mulkerset al. [19], and Sastry et al. [23] focus on compile-time reference counting schemes to determinewhen a data structure being updated has at most one reference to it, and can therefore be safelyupdated in place. The work of Draghicescu and Purushothaman [9], Gopalakrishnan and Srivas[12], and Sastry and Clinger [21], is aimed at determining an evaluation order for expressions in afunctional program so that uses of a structure can be evaluated before updates to the structure,allowing updates to be carried out in place wherever possible. All of these involve compiler analysesof di�erent degrees of complexity and precision, with the drawbacks discussed in Section 1. Therelated problem of how best to reuse structures, given that we know which structures to reuse, isconsidered by Debray [7] and Winsborough [27].A very di�erent approach to the aggregate update problem involves the development of languageconstructs aimed speci�cally at supporting a style of programming that allows the compiler todetermine, without excessive e�ort, updates that can be implemented destructively. The work onmonads [3, 24, 25] falls into this category, as does the \unique" declarations of Mercury [22]. Asmentioned in Section 1, this can work well if one is writing fresh code in a new language, but it isnot straightforward to integrate this with pre-existing code (the \dusty decks" problem).7 ConclusionsCompile-time analyses aimed at implementing array updates in single-assignment languages viadestructive assignment have been the subject of a great deal of research in the last decade. Mostapproaches that have been proposed either involve complex and potentially fragile compiler analyses,or require special language constructs that may not be available in pre-existing code. In this paper,we propose another approach that is able, we believe, to avoid the drawbacks of either of theseapproaches: it is conceptually very simple to understand and straightforward to implement, anddoes not require any special language support. Preliminary experimental results indicate that itleads to promising performance improvements.References[1] Alfred V. Aho, John E. Hopcroft, and Je�rey D. Ullman. The Design and Analysis of ComputerAlgorithms. Addison-Wesley, 1947.[2] Sara Baase. Computer Algorithms, Introduction to Design and Analysis. Addison-Wesley, secondedition, 1988.[3] Y. Bekkers and P. Tarau, \Monadic Constructs for Logic Programming", Proc. International Symposiumon Logic Programming, 1995. The MIT Press.[4] A. Bloss. Path Analysis and Optimization of Non-strict FunctionalLanguages. PhD thesis, Dept. ofComputer Science, Yale University, 1989.[5] M. Bruynooghe, A. Mulkers, and K. Musumbu. Compile-time garbage collection for prolog. Technicalreport, Dept. of Computer Science, Katholieke Universiteit Leuven, Belgium, 1988.[6] Maurice Bruynooghe. Compile time garbage collection or how to transform programs in an assignment-free language into code with assignments. In IFIP TC 2 Working Conference on Program Speci�cationand Transformation, Bad T�olz, F.R. Germany, 1986.[7] S. K. Debray, \On Copy Avoidance in Single Assignment Languages", Proc. Tenth International Con-ference on Logic Programming, Budapest, Hungary, June 1993, pp. 393{407.[8] S. K. Debray, \On the Complexity of Dataow Analysis of Logic Programs", ACM Transactions onProgramming Languages and Systems vol. 17 no. 2, March 1995, pp. 331{365.[9] M. Draghicescu and S. Purushothaman. An uniform treatment of order of evaluation and aggregateupdate. Theoretical Computer Science. To appear.13
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