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Abstract. Web-based mechanisms, often mediated by malicious JavaScript
code, play an important role in malware delivery today, making defenses
against web-borne malware crucial for system security. This paper ex-
plores weaknesses in existing approaches to the detection of malicious
JavaScript code. These approaches generally fall into two categories:
lightweight techniques focusing on syntactic features such as string ob-
fuscation and dynamic code generation; and heavier-weight approaches
that look for deeper semantic characteristics such as the presence of
shellcode-like strings or execution of exploit code. We show that each
of these approaches has its weaknesses, and that state-of-the-art detec-
tors using these techniques can be defeated using cloaking techniques
that combine emulation with dynamic anti-analysis checks. Our goal is
to promote a discussion in the research community focusing on robust
defensive techniques rather than ad-hoc solutions.

1 Introduction

The growing importance of the Internet in recent years has been accompanied
by a corresponding increase in web-based malware delivery, e.g., via “drive-by
downloads” [11, 12, 10]. Such attacks are often carried out via scripts written in
JavaScript, a language commonly used in client-side web applications.

Thwarting such attacks requires the ability to detect malicious JavaScript
code. However, this is not easy: attackers generally use a variety of techniques,
such as dynamic code generation and server-side polymorphism, to create code
that is highly obfuscated and inscrutable. Existing techniques for detecting ma-
licious JavaScript, discussed in Section 2, typically focus on handling current
obfuscation techniques. A natural question to ask, therefore, is: what are the
weaknesses of current detection techniques, what sorts of cloaking techniques
might malware use to exploit those weaknesses, and what might tomorrow’s
malware look like? This paper explores this question by analysing existing de-
tection techniques for JavaScript malware to examine their assumptions and
study how these assumptions can be broken. Further, as a proof-of-concept,
we present a combination of obfuscation and anti-analysis techniques, targeting
static and dynamic approaches respectively, against state-of-the-art detectors.
Our experiments show that these techniques are effective in circumventing ex-
isting detection techniques.



2 JavaScript Malware

Howard catalogs various obfuscation techniques currently used by JavaScript
malware to avoid detection [6]. In JavaScript, several methods are provided for
executing a string dynamically, for example, eval() and document.write(). This
process of introducing new code at runtime is called code unfolding. JavaScript
malware found in the wild often adopt a combination of the techniques discussed
above, with multiple levels of code unfolding and redirection, which makes it dif-
ficult to determine its intent from a static examination of the program text. It
should be noted, however, that code obfuscation is also used for legitimate pur-
poses, e.g., intellectual property protection and code compression. Obfuscation
is therefore not, in itself, an indicator of malicious code.

Several authors have discussed the use of machine-learning-based classifiers
trained to recognize malicious code [2–4, 14]. These approaches are generally
lightweight and so are suitable for online or large-scale detection. A drawback
of such approaches is that the classifiers learn to recognize current obfusca-
tion techniques but have difficulty handling code that does not resemble current
obfuscated malware. Additionally, purely-static approaches cannot handle ob-
fuscations involving dynamic code generation via unfolding.

To address the issues arising from dynamic code unfolding, some researchers
have proposed using execution monitoring, typically in a sandboxed environ-
ment, to observe runtime behaviors [3, 14]. Different approaches usually focus
on different aspects of execution, such as memory objects, suspicious function
invocations and sequence of actions. Some researchers have also proposed using
static and/or dynamic techniques for detecting shellcode-like strings [5, 13, 18].
While dynamic analysis makes it possible to examine any code that may be cre-
ated as the program executes, it usually suffers significant execution overheads
resulting from monitoring and limited code coverage. Various multi-path explo-
ration techniques also have been proposed to increase code coverage of above
detection techniques [1, 9, 7]. Some recent proposals are lightweight enough to
be practical for online analysis on a large scale [7].

3 Thwarting Analysis

This section considers how the limitations of existing detection techniques for
JavaScript malware can be exploited to allow malicious code to evade detection.
As the discussion in the previous section suggests, obfuscations aimed at evad-
ing existing detectors should satisfy three properties. First, the obfuscated code
should look, at least syntactically, like ordinary unobfuscated JavaScript code.
Second, the malware should avoid exposing its malicious behaviors if its exe-
cution is being monitored. Finally, to thwart multi-path exploration, it should
avoid using conditional jumps to implement the control flow logic that activates
the malicious code if no execution monitoring is detected.

One way to accomplish these goals is using a code obfuscation technique
called emulation-based obfuscation [15, 16] together with anti-analysis defenses
and a technique we call implicit conditionals. These techniques are not specific



to JavaScript, and emulation and anti-analysis techniques have been encoun-
tered in native-code malware. However, what makes them especially relevant to
web-delivered malware is a combination of circumstances. First, the routine use
of browsers, together with the proliferation of resource-limited devices such as
smartphones, means that malware detection has to be cheap, lightweight, and
online (i.e., has to occur as web pages or documents are opened for viewing). This
requirement, combined with the increased code complexity resulting from tech-
nologies such as HTML5, limits the computational effort detectors can devote
to code analysis. The remainder of this section explores how this observation
can be exploited by constructing obfuscations that allow for a high degree of
code diversity and require significant computational effort to penetrate, thereby
rendering them likely to be able to escape detection.

3.1 Emulation-Based Obfuscation

Emulation-based obfuscation transforms the original JavaScript program P into
a pair (BP , IP ), where BP is a bytecode representation of P and IP is an inter-
preter written in JavaScript whose sole purpose is to execute the program BP .
While we do not know of existing JavaScript malware using this approach to ob-
fuscation, the idea itself is not new to security researchers and similar techniques
have already been adopted by native malware writers.

From an attacker’s perspective, emulation-based obfuscation offers the ad-
vantage that the payload logic is not exposed: examining the executed code
only reveals the structure and logic of the bytecode interpreter; the underlying
logic of the program being executed is encoded in the form of bytecode as data.
Moreover, details of the bytecode encoding and corresponding interpreter can
be perturbed randomly, which means successful reverse engineering of one ob-
fuscated program may not give us much help for analyzing programs obfuscated
by the same obfuscator. Finally, emulation-based obfuscation has the significant
advantage that the code looks syntactically similar to ordinary unobfuscated
JavaScript code, making it harder to detect using machine-learning approaches.

In addition to concealing the logic of the malicious code, emulation can also
be used to hide other components of the program, such as shellcode strings, that
detectors often look for. This can be done by applying existing string obfusca-
tion techniques to the shellcode strings, but instead of implementing the string
decoding routine in JavaScript directly (which itself is suspicious and can be
identified by existing detectors), transforming the decoding logic into bytecode
as well. This makes it possible to conceal both the shellcode strings and the
decoder from a static examination of the program.

3.2 Anti-Analysis Defense

Anti-analysis defenses, which are also encountered in native malware, involve
detecting runtime monitoring/tracing system; if the program determines that its
execution is being monitored, it can then alter its execution to avoid revealing
any malicious behavior.



Ideally, a detection system should be indistinguishable from a true victim.
This very often does not hold true in practice, however, because dynamic analyses
are typically performed within sandboxed environments, which are susceptible
to detection. One reason is that complete behavior emulation of web browser, in-
cluding DOM, ActiveX controls and various plug-ins, can be quite difficult. Also,
sandboxed detectors incur significant execution overhead. Our experiments indi-
cate, for example, that sandboxed execution monitoring systems for JavaScript
are 1–2 orders of magnitude slower than modern browsers. This dramatic differ-
ence in overheads between monitored and non-monitored execution environments
suggests that measurements of execution speed may be used to detect runtime
execution monitoring. We note, however, that timing tests to detect monitor-
ing are not infallible, and sometimes there may not be a clear line between fast
monitors and slow clients. This means that anti-analysis defenses evade detec-
tion at the possible cost of reduced exploitation success rate. On the other hand,
overhead variation due to different browsers is usually not a problem, since each
exploit typically targets vulnerability in a web-browser of specific version and/or
brand.

3.3 Implicit Conditionals

It may be possible to bypass the anti-analysis defenses described in the previ-
ous section by combining dynamic analyses with multi-path exploration tech-
niques [1, 9, 7]. Existing multi-path exploration techniques focus on conditional
branches in the code: whereas a vanilla program execution will take any one
branch of a conditional branch, multi-path exploration involves exploring both
branches. From an analysis perspective, conditional branches have the advantage
that straightforward code inspection allows us to determine, for any given con-
ditional branch, the expression that is evaluated and the code addresses where
execution continues depending on whether the branch is taken or not.

We can make multi-path exploration more difficult by replacing conditional
branches with calculation of parameters used by the interpreter (discussed in
Section 3.1) in a way that makes the selection of execution paths transparent.
We refer to this approach as implicit conditionals. The intuitive idea here is
that given an explicit conditional C ≡ if e then C0, we replace C by a code
fragment C′ that has the following properties:

1. C′ does not contain an explicit test on e.
2. If e holds, the effect of executing C′ is identical to that of executing C0;

otherwise, executing C′ has no or meaningless effect.

Since the execution of C′ is not predicated on e, it is executed in all cases,
but this is set up in such a way that the parameters used by the interpreter
(i.e. instruction-pointer, entry-point, etc.) have the correct values if and only if e
holds. This can be done in various different ways using a function fe that satisfies
the following properties: (i) fe computes some appropriate desired value if and
only if the condition e holds; and (ii) the computation of fe does not involve
conditionals. We list below some ways of using such conditional-free functions.



Entry point generation. The idea here is that the initial value of the in-
terpreter’s instruction pointer, i.e., the offset in the byte-code array where the
execution of the byte code program begins, is determined by a conditional-free
function fe that takes as input an environment profile (i.e., a collection of values
describing the program’s execution environment) and returns the correct value
only if the condition e holds. This can be done in many different ways; here we
present an example based on the anti-analysis defense discussed in Section 3.2.
In this case, the environment profile p is the time required to execute some given
fragment of code. Suppose that we have determined that the p should be less
than 100 (ms) in target browser, and the bytecode offset of the entry point for
the malicious code is entrym = 20, then fe might be implemented as:

fe(p) = ⌈
p+ 1

100
⌉ × 20

In this case, fe(p) ≡ entrym (i.e. 20) if and only if p ∈ [0, 99], which ensures the
attack runs normally; for p ≥ 100, fe(p) ≥ 40, and the execution ends up with
unpredictable behavior.

However, unpredictable behavior may not be guaranteed to be non-suspicious.
For example, even if the value returned by fe is not the correct value entry

m
,

it may nevertheless expose some components of an attack, e.g., a heap spray or
construction of a shellcode string, that can cause the attack to be recognized,
or the program might crash, which itself can be considered suspicious. One way
to deal with this using a more elaborate computation for the function fe such
that, if the condition e does not hold, returns a value that is out of bounds in
the bytecode array. Or a better approach is to construct bytecode sequence de-
liberately, such that, while only the correct value leads to malicious behavior, all
the other entry-point values calculated from possible inputs are corresponding
to valid and harmless bytecode execution without crash.

Figure 1 shows an example of applying entry point generation for implicit
conditional. Detailed discussion of Figure 1 will be presented in Section 3.4.

Instruction pointer increment generation. In this case, the amount by
which the interpreter’s instruction pointer is incremented after each instruction
is determined by a conditional-free function that returns the correct value only
if e holds. Typically, the instructions of (non-branching) bytecode are laid out
contiguously in memory and the instruction pointer is incremented by the size of
a single instruction each time an instruction is executed. Such contiguous layout
is not essential, however: for example, each real instruction can be separated
by one or more “chaff instructions” such that proper execution requires that
the instruction pointer be incremented by some multiple of the size of a single
instruction. The value of this increment can then be set using an implicit condi-
tional, similarly to the entry point generation described above. More generally,
the amount by which the instruction pointer is incremented after each instruc-
tion need not be a constant: for example, it can be a sequence of pseudo-random
numbers, each in some range [min ,max ]: all we need is a predictable sequence of
values such that bytecode instructions can be placed at the correct offsets. The



Fig. 1. General structure of a program combining emulated-obfuscation, anti-analysis
defense and implicit conditionals implemented by entry point generation.

function fe can then be used to set the seed for the pseudo-random sequence to
the right value if and only if e holds.

3.4 Implementation

Figure 1 shows the general structure of a program combining all the proposed
techniques discussed in this paper, namely, emulated-obfuscation, anti-analysis
defense and implicit conditionals. As we can see from the high-level structure
shown in Figure 1, anti-analysis defense, alone with other environmental fin-
gerprinting code are located at the beginning of the program. Their result –
environment profile p is then passed to the implicit conditional. In this ex-
ample, implicit conditional is implemented by entry point generation alone as
discussed in Section 3.3, and the instruction pointer increment is 1. Further-
more, the conditional-free function fe(p) is designed to return 20 if and only
if p shows the intended condition holds and returns 20 ∗ i where i >= 2 and
i ∈ integer otherwise. fe(p) is then used to set the entry point of the byte-
code program. Finally, the bytecode is arranged such that bytecode instructions
bytecode[20], bytecode[21], . . . , bytecode[38], bytecode[39] (corresponding to dark
slots in the array), when executed in this order, will lead to malicious behav-
ior, execution starts with other possible entry points (e.g. 40, 60, 80, . . .) would
cause the emulation to behave harmlessly (one simple way to implement this is
to assign bytecode nop-slide in light-colored slots).

As the proof-of-concept implementation, we have applied all proposed anti-
analysis techniques on existing malware and benign programs by manual trans-
formation. For example, all the samples discussed in Section 4 are implemented
by hand using an arbitrarily chosen, stack-based instruction set; and the anti-
analysis defense and implicit conditionals are both implemented in their basic
forms (i.e. single loop for anti-analysis defense, and simple instruction-pointer
and entry-point generation as shown in Section 3.3).

4 Experimental Evaluation

To evaluate if the proposed techniques are effective against existing detectors,
we selected 7 real malware samples, named M1 to M7, including 6 scripts in



Sample File Type CVE Number OSVDB ID

M1 HTML - 64839

M2 HTML CVE-2006-3730 27110

M3 HTML - 80662

M4 HTML CVE-2007-3071 38803

M5 HTML CVE-2007-3703 37707

M6 HTML - 61964

M7 PDF CVE-2008-2992 49520

Table 1. Description of malware samples

Malware Existing Obfuscation New Obfuscation
Sample VirusTotal Wepawet Zozzle VirusTotal Wepawet Zozzle

M1 5 / 40
√

× 0 / 42 × ×
M2 4 / 41

√
× 0 / 42 × ×

M3 5 / 42
√ √

0 / 42 × ×
M4 5 / 42

√ √
0 / 42 × ×

M5 5 / 42
√

× 0 / 42 × ×
M6 5 / 42

√
× 0 / 42 × ×

M7 10 / 42
√

n/a 2 / 42 × n/a

√
: detected ×: undetected

Table 2. Detection Results of obfuscated malware samples from existing detectors.
For fractions present in columns “VirusTotal”, the denominator is the number of anti-
virus software available on VirusTotal, and the numerator is the number of anti-virus
software that identify corresponding sample as malicious.

HTML pages and one in a PDF file (see Table 1, where OSVDB ID is the
identification number used by the open source vulnerability database [17]). All
the samples use heap-spray for payload delivery. Next we created two sets of
obfuscated programs from these. Programs in the first set had two different
obfuscators applied to them, each of them using existing techniques such as
string obfuscation and unfolding. Those in the second set were obfuscated using
the techniques proposed here as described at the end of the previous section. It
should be noted that applying proposed obfuscation doesn’t affect the reliability
of malware, which was tested by running obfuscated exploit in browser with
targeted plugins installed.

We used three malware detectors, covering a wide spectrum of detection tech-
nologies, for our experiments: VirusTotal [19] is an online portal to a collection
of anti-virus software with up-to-date exploit databases that exemplifies current
commercial malware detection technology; Zozzle [4] is a machine learning based
static detector (we used the same trained classifier as evaluated in [4] for our
experiment); and Wepawet [20], a hybrid detection system based on JSAND [3],
that represents a state-of-the-art combination of static and dynamic analyses.
We believe these three detectors, range from traditional signature matching to
state-of-the-art static and dynamic analyses, represent the current state of detec-
tion techniques. Therefore it allows us to have a comprehensive evaluation on the
effectiveness of proposed obfuscation techniques against different approaches.



Fig. 2. Comparison of average running time between current obfuscation and emulation

Table 2 shows the detection rates for these three malware detectors. There
is no result for neither version of M7 from Zozzle, since Zozzle is designed for
detecting web-based JavaScript malware. It can be seen that, while the malware
samples obfuscated by existing techniques were identified as malicious with 100%
detection rates by both VirusTotal and Wepawet, and with 33% detection rate
by Zozzle, another group of malware samples, protected by new obfuscation
techniques, were able to bypass all the targeting detectors, with the exception of
M7, which was detected by two of the anti-virus software on VirusTotal. It turns
out, however, that this has nothing to do with any malicious content: the only
reason the PDF file M7 is identified as malicious is that it contains JavaScript
code. We confirmed this with a PDF file containing just a Fibonacci number
program written in JavaScript, which is identified as malicious by the same two
anti-virus software with identical exploit names.

We also compared the relative performance of emulator-based obfuscation
with current approaches to obfuscation using code unfolding on several different
browsers, result is shown in Figure 2. We used the same testcases as discussed
above, but with anti-analysis defense removed from emulated samples (since it
is not limited to emulated code). We can see that the running times for the
two different obfuscation techniques are comparable, even for older browsers.
The samples obfuscated using emulation are slightly slower than code-unfolding
based samples, but the differences are not very large. This suggests that such
obfuscation techniques could realistically be deployed using current technology.

5 Discussion

Space constraints preclude a detailed discussion of attack models against the
propose approach; the interested reader is referred to the full version of this
paper [8]. Here we give a brief sketch of the difficulties an adversary would have
in attacking this scheme.

The key point to note is that the proposed scheme does not have to be
impossible to break—all that is needed for our approach to be effective is that
the analyses necessary to break it should be sufficiently expensive that they are
unsuitable for routine use in online detectors. As observed earlier, the use of



emulation allows us to avoid string-based obfuscation of program text, resulting
in ordinary-looking JavaScript code. The structure of the interpreter structure
can be masked by merging additional nodes and edges into the control flow graph
of the interpreter so as to camouflage its structure. Data used in exploits, e.g.,
shellcode strings, can be kept in encoded form and decoded at runtime. Together,
these imply that simple static analysis will not be enough to distinguish malicious
emulated code from other ordinary JavaScript code; rather, dynamic analysis
will be necessary. However, such dynamic checks necessarily incur an additional
cost, which can be detected via anti-analysis checks, allowing the program to
take an execution path that does not expose any malicious content. Finally, the
analysis of alternative execution paths is made more difficult by using implicit
conditionals.

While these obstacles against detection can all be overcome, we believe that
the analyses powerful enough to do this will necessarily incur enough computa-
tional cost as to be impractical for routine use in online detectors.

6 Conclusion

In recent years, malware delivered through infected web pages has become an im-
portant delivery mechanism for malware. Very often this is done using JavaScript
code, making the detection of malicious JavaScript code an important problem.
Current proposals in the research literature for detecting JavaScript malware,
although proved to be effective, are closely tied to existing malware and obfusca-
tions. In this paper we discuss the limitations of existing detection techniques and
describe ways in which such detectors can be evaded. Experiments show that the
proposed techniques can hide existing JavaScript malware from state-of-the-art
detectors. Our goal is not to suggest that this particular approach to obfusca-
tion is the only possible—or even the most important, effective, or likely—way
around current defenses; rather, it is to show current ad-hoc detection methods
can be easily defeated, and promote a deeper discussion in the research commu-
nity about the assumptions underlying current detection techniques and possible
approaches for defending future attacks regardless of obfuscation.
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