
Flow Analysis of Dynamic Logic Programs†

Saumya K. Debray

Abstract: Research on flow analysis and optimization of logic programs typically assumes that the pro-

grams being analyzed are static, i.e. any code that can be executed at runtime is available for analysis at

compile time. This assumption may not hold for ‘‘real’’ programs, which can contain dynamic goals of

the form call(X), where X is a variable at compile time, or where predicates may be modified via features

like assert and retract. In such contexts, a compiler must be able to take the effects of such dynamic con-

structs into account in order to perform nontrivial flow analyses that can be guaranteed to be sound. This

paper outlines how this may be done for certain kinds of dynamic programs. Our techniques allow

analysis and optimization techniques that have been developed for static programs to be extended to a

large class of ‘‘well-behaved’’ dynamic programs.

Address for correspondence and proofs:

Saumya K. Debray

Department of Computer Science

The University of Arizona

Tucson, AZ 85721

Running Title: Flow Analysis of Dynamic Logic Programs

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

† A preliminary version of parts of this paper appeared in Proceedings of the Fourth IEEE Symposium on Log-

ic Programming, San Fransisco, Sept. 1987.

1

1. Introduction

There has been a considerable amount of research on static analysis of logic programs (e.g. see [1, 2, 5-

7, 9-11]). All of this research, however, has concerned itself with programs that are static, i.e. where the

entire program is available for inspection at compile time. It has been assumed that programs fragments

are not created ‘‘on the fly’’ and executed. While such an assumption is adequate for a large class of

logic programs, there are many cases where program fragments are created and executed dynamically.

There are two ways in which this can happen: a goal may be constructed dynamically and executed, e.g.

via literals of the form call(X) or not(X), where X is a variable in the program; or, the program itself may

be modified dynamically, e.g. through language features like Prolog’s assert. Researchers investigating

flow analyses of logic programs have typically assumed that programs do not display this sort of dynamic

behavior. As a result, analyses that have been proposed to date either fail to be sound for a large class of

programs, or fail to give any meaningful information about their runtime behavior.

This seems an undesirable state of affairs, because very often, the effects of dynamic program

modifications, e.g. via assert, tend to be quite localized. It should be possible, at the very least, to isolate

portions of the program that may be affected by dynamic constructs. The remainder of the program can

then be analyzed and optimized as before. This paper takes a first step in this direction by outlining how

some dynamic logic programs can be analyzed statically to isolate ‘‘well-behaved’’ portions, for which

static analyses using conventional flow analysis techniques can be guaranteed to be sound even in the

presence of dynamic program constructs.

It is assumed that the reader is acquainted with the basic concepts of logic programming. The

remainder of this paper is organized as follows: Section 2 discusses preliminary concepts, and introduces

some of the terminology used in the paper. Section 3 discusses conditions under which predicates can be

guaranteed to be unaffected by dynamic program updates. Section 4 considers a class of programs, called

simple programs, where the effects of runtime program modifications can be estimated in a relatively

straightforward way. Section 5 discusses another class of programs, called stable programs, where

independence of runtime modifications can be used to characterize the changes possible at runtime. Sec-

tion 6 outlines how some of the restrictions on programs assumed earlier in the paper may be relaxed.

Section 7 concludes with a summary.

2. Preliminaries

2.1. The Language

The language we consider is essentially that of Horn clauses, augmented with three primitives, assert/1,

retract/1, and call/1. A predicate definition in such a language consists of a finite multiset (possibly

ordered) of clauses. Each clause is a finite multiset (possibly ordered) of literals, which are either atomic

goals or negations of atomic goals. Clauses are generally constrained to be definite Horn, i.e. have

exactly one positive literal. The positive literal is called the head of the clause, and the remaining literals,

if any, constitute the body of the clause; a clause with only negative literals is referred to as a goal. The

meaning of each clause is the disjunction of its literals, that of the program being the conjunction of the

clauses. We adhere to the syntax of Edinburgh Prolog [3] and write clauses in the form

p :− q1, . . ., qn.

which can be read as ‘‘p if q1 and . . . and qn’’, where the conjunction of literals in the body of the clause

is represented using the connective ‘,’. The names of variables begin with upper case letters, while the

names of function and predicate symbols begin with lower case letters. A program consists of a finite set

of predicate definitions. We assume throughout this paper that with each program is associated a class of

queries that may be asked of it; this essentially specifies what the exported predicates are, and how they

may be called. It is assumed that the only calls arising in a program are those resulting from the execu-

tion of queries from this class.

It is assumed that the only primitives that can modify a program at runtime are assert and retract.

When a goal

assert(C)

is executed, the term that C is instantiated to, interpreted as a clause, is added to the clauses of the pro-

gram. The position of the added clause relative to the other clauses is not specified. When a goal

retract(C)

is executed, one of the clauses in the program that matches C is deleted from the program. In each case,

the argument C must be instantiated to a nonvariable term that can be interpreted as a clause, i.e. the

predicate symbol of each literal must be defined. Finally, when a goal

call(G)

is executed, the term that G is instantiated to, interpreted as a goal, is executed.

It is easy to apply our ideas to programs that also contain features such as not, cut, and

metalanguage features such as var/1 and nonvar/1. However, we specifically exclude programs contain-

ing features such as univ (Prolog’s ‘=..’/2) and name/2. The reason for this restriction is that without it,

the static determination of what sorts of clauses might be asserted or retracted becomes difficult. The

presence of name makes it possible to construct an unbounded number of new constants at runtime. This,

together with univ, makes it possible to create an unbounded number of different function symbols at run-

time which were not present in the program at compile time. As a result, the task of reliable flow analysis

becomes difficult. Despite these restrictions, however, the procedure described enables logic program

analyzers to handle a larger class of programs, under more realistic assumptions, than most others that

have been proposed in the literature. Section 6 of this paper discusses situations under which these res-

trictions can be relaxed.

For the sake of simplicity, we assume the control regime of Prolog, with its textual ordering on

clauses and literals, in the rest of this paper. However, this control strategy is not in any way intrinsic to

the analysis procedure outlined here, and the analysis may be carried out for other control strategies as

well, as long as that control strategy is specified to the compiler beforehand.

2

2.2. ‘‘Green’’ Asserts

A common use of assert is in the recording of lemmas that have been proved. Intuitively, if we can prove

G in a program, then adding G to the program database does not really change anything, except to make

the proving of G more efficient in the future. We refer to such uses of assert, where the meaning of the

program is not affected, as ‘‘green’’ asserts.

The act of adding a clause C to the program via assert causes a change in the quantification of vari-

ables in C, from existential (before the assert) to universal (in the asserted version of C). It is not

difficult to show that this does not pose a problem in green asserts. Consider a clause of the form

p :− . . ., call(G), . . ., assert(G), . . .

where G is an atom whose principal functor q is a predicate symbol defined in the program (so that q can-

not be, for example, ‘:−’/2). At runtime, suppose that the instance of G that is called is G1, and that it

succeeds with substitution θ, such that θ(G1) ≡ G2. If G2 is ground then it is clear that asserting G" does

not affect the success or finite failure sets of the program. Assume G2 is not ground, and consider any

SLD-derivation for it. For any variable v in G2, and any ground term t, the substitution σ : {v → t} can

be systematically applied to each step of the SLD-derivation, yielding an SLD-derivation for σ(G2).

Since this argument applies to each variable appearing in G2, the universal closure of G2 is true in the pro-

gram, so asserting it (or any instance of it) does not change the success or finite failure set of the program.

Whether or not a particular literal ‘‘assert(G)’’ in a program is green or not is clearly undecidable.

However, sufficient conditions can be given for greenness: it is easy to see that if a clause is of the form

p(Td) :− Lits1, call(G), Lits2, assert(G), Lits3.

then the literal ‘‘assert(G)’’ is green, and the clause is equivalent to

p(Td) :− Lits1, call(G), Lits2, Lits3.

Green asserts can therefore be ignored during static analyses of programs without affecting soundness.

To simplify the discussion that follows, the remainder of this paper assumes that programs being analysed

are preprocessed, and any asserts that are identifiable as green are deleted for the purposes of analysis.

2.3. Dynamic Logic Programs

Most researchers investigating the static analysis of logic programs have assumed that the programs being

considered are ‘‘pure’’; in some cases, a limited degree of impurity, in the form of operational features

like Prolog’s cut or metalanguage features like var/1 and nonvar/1, is tolerated. However, as far as we

know, all proposals for the analysis of logic programs to date have assumed that the programs are static,

i.e. that anything that can be executed at runtime is available for analysis at compile time. This assump-

tion is not always satisfied for ‘‘real’’ programs, which sometimes construct and execute goals dynami-

cally through call/1, or undergo limited amounts of change at runtime through assert/1 or retract/1. As

things stand, since such programs are not static, analysis algorithms proposed in the literature are not

applicable, and the prospects for the global optimization of such programs seem fairly limited. In most

3

cases, however, such programs, even though they may be dynamic, tend to be largely unaffected by the

dynamic constructs, which tend to be ‘‘well-behaved’’ and localized. As an example, consider the fol-

lowing predicate defining a compiler:

compile(InFile, OutFile) :−
getclauses(InFile, Clauses0),

preprocess(Clauses0, Clauses1),

code_gen(Clauses1, AsmList),

assemble(AsmList, OutFile).

where the predicates have their intuitive meanings. The predicate code_gen/2 might need to generate

new integers, e.g. for numbering variables as it is processing them, or for creating new labels. One possi-

bility is to obtain these integers through a gensym utility:

gensym(N) :−
$gensymcount(M),

N is M + 1,

retract($gensymcount(M)),

assert($gensymcount(N)).

The only predicate being asserted into is $gensymcount/1. Suppose that neither preprocess/2 nor any of

the predicates it calls ever refers to $gensymcount/1. Then, it is clear that whether or not any clauses are

asserted for $gensymcount/1 cannot affect the success or failure of any call to any of the predicates called

by preprocess/2.

It is desirable, in such cases, to isolate those portions of the program that are unaffected by dynamic

constructs, and proceed with the analysis and optimization of these portions as before. This paper consid-

ers some simple classes of ‘‘well-behaved’’ dynamic logic programs, and describe procedures for identi-

fying portions of such programs that are not affected by runtime changes. The following terminology is

convenient in the discussion that follows:

Definition [occurrence]: A predicate p occurs positively in a goal G if either G is of the form ‘‘q1, ..., qk,

..., qn’’ where the predicate symbol of the literal qk is p, or if G is of the form ‘‘q1, ..., not(G ¢), ..., qn’’

and p occurs negatively in G ¢.

A predicate p occurs negatively in a goal G if G is of the form ‘‘q1, ..., not(G ¢), ..., qn’’ and p

occurs positively in G ¢. g

Note that a predicate may occur both positively and negatively in the same goal.

Definition [dependence]: A predicate p is s-dependent on a predicate q in a program if q occurs posi-

tively in the body of a clause for p; p is f-dependent on q if q occurs negatively in the body of a clause for

p. If a predicate p is s-dependent or f-dependent on a predicate q, then p is dependent on q. g

4

If a predicate p is s-dependent on a predicate q, then the success of p depends on the success of q; if p is

f-dependent on q, then the success of p depends on the failure of q. In general, it is possible for a predi-

cate to be both s-dependent and f-dependent on another predicate, as is evident from the following:

p :− . . ., q, . . .

p :− . . ., not(q), . . .

Definition [reachability]: A predicate q is s-reachable from a predicate p if either (i) p is s-dependent on

q; or (ii) there is a predicate r such that p is s-dependent on r and q is s-reachable from r; or (iii) there is a

predicate r such that p is f-dependent on r and q is f-reachable from r.

A predicate q is f-reachable from a predicate p in a program if either (i) p is f-dependent on q; or

(ii) there is a predicate r such that p is f-dependent on r and q is s-reachable from r; or (iii) there is a

predicate r such that p is s-dependent on r and q is f-reachable from r.

If a predicate p is s-reachable or f-reachable from a predicate q, then p is reachable from q. g

Thus, ‘‘reachability’’ can be thought of as a sort of transitive closure of ‘‘dependence’’. If a predicate q

is s-reachable from a predicate p, then the success of p depends on the success of q; if q is f-reachable

from p, then the success of p depends on the failure of q. As in the case of dependence, a predicate may

be both s-reachable and f-reachable from another predicate.

Definition: A predicate is said to be assertive if assert is reachable from it, and retractive if retract is

reachable from it. If an assertive predicate only asserts facts, it is said to be unit-assertive.

A predicate that is assertive or retractive is also said to be modifying. g

If the predicate symbol of a clause being asserted (retracted) is p, then p is said to be asserted into

(retracted from).

Definition: A predicate is assertable if it can be asserted into, and retractable if it can be retracted from.

A predicate that is assertable or retractable is also said to be modifiable. g

3. Static Predicates

Conceptually, there are two components to the analysis of a dynamic program. In the presence of

dynamic constructs, it is necessary to determine, first, what goals can be executed at runtime; and second,

what the effects of such executions can be on the program. Accordingly, the analysis consists of two rela-

tively independent phases: the program is first examined to determine which predicates may be called

from dynamic goals, asserted into, or retracted from. After this, the program is examined to determine

how far the effects of such dynamic constructs may extend. Especially important, in this context, is the

estimation of the effects of dynamic program updates via assert/1 and retract/1. The kind of analysis

5

necessary for the first phase depends on what kinds of clauses may be asserted, and is discussed in much

of the remainder of this paper. This section assumes that the sets of assertable and retractable predicates

are known, and considers the second phase. First, to specify which predicates might ‘‘see’’ the dynamic

updates effected by a given predicate, we define the notion of one predicate being ‘‘downstream’’ from

another. Let ∼> denote the reflexive closure of the reachability relation between predicates, i.e. p ∼> q if and

only if either q = p or q is reachable from p. Then, we have the following:

Definition [downstream]: A predicate q is downstream from a predicate p in a program if

(1) there is a clause in the program of the form

Head :− . . ., p1(...), . . ., q1(...), . . .

such that p1 ∼> p and q1 ∼> q; or

(2) for some predicate r in the program, there are two clauses

r(...) :− . . ., p1(...), . . .

. . .

r(...) :− . . ., q1(...), . . .

where the first clause precedes the second in the clause evaluation order, such that p1 ∼> p and q1 ∼> q.

g

Intuitively, q is downstream from p if a call to q can arise after a call to p has been executed. A

predicate is said to be static in a program if it can be guaranteed not to be affected by runtime changes to

the program. We have the following result:

Theorem 3.1: A predicate p in a program is static if

(i) p is not downstream from any modifiable predicate; and

(ii) neither p nor any predicate reachable from p is modifiable in the program.

Proof: There are two ways in which runtime modifications can affect a predicate p: (i) the ways in which

p can be called may change; and (ii) the ways in which a call to p can succeed may change. In the first

case, p must be downstream from a modifiable predicate; in the second case, either p or some predicate

reachable from p must be modifiable. Thus, if p is neither downstream from a modifiable predicate, and

neither p nor any predicate reachable from p is modifiable, then no runtime modification to the program

will ever be ‘‘visible’’ to p, i.e. p is static. |_
_

|

A better estimate of the static predicates in a program may be obtained if more is known about the kinds

of program properties we are interested in. In general, asserts affect universally quantified statements

about properties of execution paths, e.g. predicate modes [5, 10], types [1, 11], etc, while retracts affect

6

existentially quantified statements about properties of execution paths, e.g. the success or possible termi-

nation of a goal. Statements about both calling properties (properties at the point of calls to predicates,

e.g. modes) and success properties (properties that hold at returns from calls, e.g. success types) may be

affected for predicates that are downstream from a modifiable predicate. However, if a predicate is not

downstream from a modifiable predicate but is modifiable or can reach a modifiable predicate, then only

its success properties may be affected by runtime changes to the program.

Thus, in the general case it is necessary to identify only (i) predicates that are downstream from a

modifiable predicate; and (ii) predicates that are modifiable or can reach modifiable predicates. When

more is known about the program properties of interest, the analysis may be sharpened further. For

example, if only calling properties are sought, then it is necessary only to exclude those predicates that

are downstream from modifiable predicates.

The remainder of the paper discusses how the sets of assertable and retractable predicates may be

identified. First we consider a class of programs, called simple programs, where the arguments to assert,

retract, call, etc., are fully determined. Later we relax this requirement and consider a class of programs

called stable programs, where dynamic updates are required to satisfy an independence criterion.

4. Simple Programs

As mentioned earlier, the essence of our approach is to determine which predicates may be modified in a

program, and how far the effects of such modifications might extend. In some systems, e.g. Quintus Pro-

log [12], compiled predicates that are modifiable have to be declared by the user as ‘‘dynamic’’. This can

provide a crude approximation to the sets of assertable and retractable predicates, and has the merit that it

involves practically no analysis of the program. However, it can be overly conservative, because not

every dynamic predicate need necessarily be both assertable and retractable. As noted in the previous

section, it may be possible to ignore the modifiability of some predicates depending on the kinds of

analysis that are of interest. However, it is not possible to distinguish between assertable and retractable

predicates using only dynamic declarations. Moreover, some systems, e.g. SB-Prolog [4], do not require

modifiable compiled predicates to be so declared beforehand by the user, and for such systems it is not

possible to rely on dynamic declarations to estimate the set of modifiable predicates. It is possible that a

more fine-grained system of declarations could aid, and possibly replace, the type of analysis described

here; however, it seems neither reasonable nor desirable to require programmers to produce and maintain

declarations that are both sound and precise, especially for nontrivial programs.

In the simplest case, for every literal ‘‘assert(T)’’ and ‘‘retract(T)’’ occurring in the program, the

predicate symbol of each literal in T (interpreted as a clause) can be determined simply by inspection,

without further analysis. Such programs are referred to as simple:

Definition [fully determined]: A term t is fully determined if

7

(1) it is of the form q(Td), and q is not :−/2; or

(2) it is of the form ‘q0(Td0) :− q1(Td1), . . ., qn(Tdn)’, i.e. each of the symbols qi, 0 ≤ i ≤ n, is determined;

and if any of the qj, 1 ≤ j ≤ n, is assert, retract, not or call, then the corresponding argument Tdj is

fully determined.

Definition [simple]: A program is simple if, for every literal ‘assert(T)’, ‘retract(T)’, ‘not(T)’ and

‘call(T)’ occurring in the program, T is fully determined. g

Example: The program

p(X, Y) :− assert((q(Z) :− r(Z, X))).

r(V, g(V)) :− retract(q(V)).

is simple. However, the program

p(X, Y) :− assert((q(Z) :− r(Z, X))).

r(V, g(V)) :− X = q(V), retract(X).

is not, because the argument to retract in the clause for r/2 is not fully determined. g

For simple programs, the determination of static predicates is straightforward. Consider a program P.

First, the modifiable predicates in P are obtained, as follows: If there is a clause

p(...) :− . . ., assert(q0(...)), . . .

or

p(...) :− . . ., assert((q0(...) :− Body)), . . .

in P, then q0 is assertable; and similarly for retract. If, for any literal for assert, call or not in P, any

literal in the body of its argument has the predicate symbol assert, retract, not or call, then its arguments

are processed recursively as described above.

Next, the program P is used to compute an augmented program P*, whose purpose is to allow the estima-

tion of the reachability and ‘‘downstream from’’ relations between predicates that can exist at runtime, in

the presence of dynamic program changes. P* is obtained as follows: initially, P* is the same as P. The

following rules are then applied until there is no change to P*:

(1) If there is a clause C in P* of the form

p(Td) :− Lits1, assert((q(Udd) :− Body)), Lits2

then delete C from P* and add the clauses

p(Td) :− Lits1, Lits2.

q(Udd) :− Body.

Let the new clause for q be Cq. Copies of Cq are made as necessary, so that for each clause C ¢q for q

8

(including C ¢q = Cq), Cq precedes C ¢q , and C ¢q precedes Cq, in the clause evaluation order. This is

necessary because we do not know the relative position, within the clauses for q, where the asserted

clause may be added. Notice that only two copies of Cq need be added: one that precedes all the

other clauses for q, and one that is preceded by all the others. The case Cq = C ¢q is included because

the literal for assert in the clause C may be called more than once at runtime, resulting in multiple

instances of Cq being asserted.

(2) If there is a clause C in P* of the form

p(Td) :− Lits1, call(CallLits), Lits2

then delete C from P* and add the clause

p(Td) :− Lits1, CallLits, Lits2.

(3) If there is a clause C in P* of the form

p(Td) :− Lits1, not(NegLits), Lits2

then delete C from P* and add the clause

p(Td) :− Lits1, NegLits, Lits2.

That the augmented program can always be computed follows from the fact that the arguments to assert,

call and not are fully determined in a simple program. Since the total number of occurrences of assert,

call and not decreases by at least one at each application of these rules, the rewriting of P* is guaranteed

to terminate. The reachability relations that can exist between predicates at runtime, in the presence of

dynamic updates, is captured by reachability relations computed from P*:

Proposition 4.1: Let P be a simple program. If p is reachable from q during the execution of P, then p is

reachable from q in P*. If p is downstream from q during the execution of P, then p is downstream from

q in P*. |_
_

|

It should be emphasized that the augmented program P* is used only to estimate the reachability and

downstream relations that might exist at runtime because of dynamic updates: no dataflow analysis is per-

formed on P* itself. This accounts for the treatment of not in rule (3) above. It also explains why asserts

are taken into account but retracts are not.

Example: Consider the program P, consisting of the clauses

p(X, Y) :− s(X, Z), not(assert((q(Z) :− call(not(assert(r(Z, X) :− q(X))))))).

q(a).

The augmented program P* is computed as follows: let the clauses in P* at iteration i be written as Pi*.

9

Then, we have the following:

P0*: p(X, Y) :− s(X, Z), assert((q(Z) :− call(not(assert(r(Z, X) :− q(X)))))).

q(a).

P1*: p(X, Y) :− s(X, Z).

q(Z) :− call(not(assert(r(Z, X) :− q(X)))).

q(a).

q(Z) :− call(not(assert(r(Z, X) :− q(X)))).

P2*: p(X, Y) :− s(X, Z).

q(Z) :− not(assert(r(Z, X) :− q(X))).

q(a).

q(Z) :− not(assert(r(Z, X) :− q(X))).

P3*: p(X, Y) :− s(X, Z).

q(Z) :− assert(r(Z, X) :− q(X)).

q(a).

q(Z) :− assert(r(Z, X) :− q(X)).

P4*: p(X, Y) :− s(X, Z).

q(Z).

q(a).

q(Z).

r(Z, X) :− q(X).

r(Z, X) :− q(X).

P4* is the final augmented program. g

Once the program has been processed as above, and the sets of assertable and retractable predicates,

together with the reachability and downstream relations in the augmented program P* have been deter-

mined, the static predicates in the program can be identified in a straightforward way using Theorem 3.1.

Returning to the example from Section 2, consider the predicate

compile(InFile, OutFile) :−
getclauses(InFile, Clauses0),

preprocess(Clauses0, Clauses1),

code_gen(Clauses1, AsmList),

assemble(AsmList, OutFile).

where the only modifiable predicate is $gensymcount/1, which is reachable only from code_gen/2. The

only calls to assert/1 and retract/1 are from the gensym predicate, defined as

gensym(N) :−

10

$gensymcount(M),

N is M + 1,

retract($gensymcount(M)),

assert($gensymcount(N)).

It can be seen that the arguments to assert/1 and retract/1 are fully defined, so that the program is simple.

Assume that none of the program predicates reachable from preprocess/2 are also reachable from

code_ gen/2 or assemble/2. Then, the predicate preprocess/2, and all the predicates reachable from it, are

static.

5. Stable Programs

In general, programs may not always be simple, and the straightforward treatment described in the

previous section may not apply. This section considers the problem of flow analysis for programs where

dynamic updates satisfy an independence criterion. Such programs are referred to as ‘‘stable’’. First, the

notion of stability is defined and a simple syntactic sufficient condition given for it. This is followed by a

discussion of how such programs may be analyzed at compile time. Initially we consider stable programs

that are unit-assertive, i.e. assert only facts; this restriction is later relaxed. When considering this class of

programs, it is assumed that if a program contains the read predicate, then no function symbol in any

term read in matches any of the predicate symbols in the program. If the implementation does not pro-

vide some sort of module facility, this restriction must be enforced by the user.

5.1. Stability

The task of predicting, at compile time, the behavior of programs that can assert or retract arbitrary

clauses can be extremely difficult. It is therefore necessary to make some assumptions regarding the

‘‘well-behavedness’’ of dynamic programs. The issue is whether or not a call to assert or retract at run-

time can modify a program in a way that creates opportunities for further calls to assert or retract, and

thereby further changes to the program, that had been absent earlier: in other words, whether or not a

change to a program is dependent on another change. Programs where changes are independent are said

to be stable.

Consider a call ‘p(Xdd)’ in a program P0: if this call returns (with either success or failure), then the

set of clauses P1 comprising the program at the return from the call may be different from the original

program P0, i.e. the call may have modified the program, by adding clauses through assert or deleting

them through retract. Such a change to a program can be described as a pair /
\add(A), delete(D)\

/ where A

and D are sets of clauses, with A ∩ D = ∅ . Such a pair is referred to as a modification.

Definition [modifiability]: Let C be a call, and M a modification /
\add(A), delete(D)\

/. A program P0 is

/
\C, M\

/-modifiable to a program P1 (written "P0 →C , M P1") if, when the call C is executed in the program

P0, the program that results at the return from the call is P1, and P1 = P0 ∪ A − D. g

11

Independence of program modifications is captured by the notion of stability:

Definition [stability]: A program P0 is stable if, whenever there are calls C0, C1, modifications M0, M1

and programs P1, P2 such that P0 →C 0,M0
P1 and P1 →C 1,M1

P2, there exists a program P ¢1 such that P0

→C 1,M1
P ¢1 and P ¢1 →C 0,M0

P2. g

The requirement for program stability may be represented pictorially as in Figure 1. Modifications are

independent in a stable program, in the following sense: if a call C0 in a program P0 can result in

modification M0 and yield a program P1, such that another call C1 in P1 can result in modification M1 and

yield the program P2, then the call C1 in P0 would also result in modification M1; and if the resulting pro-

gram were P ¢1, then the call C0 in P ¢1 would still result in modification M0 and yield the program P2. In

this case, it is clear that the modification M1 does not depend on the modification M0.

Example: Consider the program P0, defined by the clauses

p(X, Y) :− r(Y), assert((q(X) :− retract(Y))).

r(r(_)).

The call ‘p(U, V)’, with U and V uninstantiated, succeeds in P0 and yields the program P1:

P0

P2

P1 P 1¢

C0, M0 C1, M1

C1, M1 C0, M0

Figure 1 : Stability of Programs

12

p(X, Y) :− r(Y), assert((q(X) :− retract(Y))).

q(V) :− retract(r(W)).

r(r(_)).

Now consider the call ‘q(0)’: it succeeds in P1 and results in the deletion of the clause ‘r(r(_))’. How-

ever, it fails immediately in P0. The program P0 is therefore not stable. g

If an assertive predicate in a program can assert a clause whose body contains a literal p(...), and p

is a modifying predicate, then the program is said to be fluid. An obvious situation where a program is

unstable is when it is fluid, as in the above example. Our experience indicates, however, that fluid pro-

grams are rare in practice.

There is another situation where a modification to the program at runtime can open up avenues for

further changes to the program. Consider, for example, the following program:

p(X) :− assert(r(0, X)).

q(X) :− r(X, Y), assert(q(X)), assert(Y).

This program is certainly not fluid, and none of the calls to assert are especially intimidating. Initially,

calls to q/1 fail because there are no clauses for r/1. However, as soon as p/1 is called, a clause is asserted

for r/1. Subsequent calls to q/1 may now succeed, resulting in further changes to the program. In this

case, the problem arises because there is an assertable predicate r that is s-reachable from a modifying

predicate q. An analogous situation may arise involving retract and negation, as the following program

illustrates:

p(X) :− retract(r(0)).

q(X) :− not(r(0)), assert(q(X)), assert(s(f(X))).

r(0).

Initially, calls to q/1 fail because of the negated goal in the body of its clause. However, as soon as p/1 is

called, the clause for r/1 is retracted. Subsequent calls to q/1 may now succeed, resulting in further

changes to the program. In this case, the problem arises because there is a retractable predicate r that is

f-reachable from a modifying predicate q.

If the criterion for the well-behavedness of programs is that runtime program modifications be

independent, i.e. that no runtime modification should open up new avenues for further changes to the pro-

gram via assert or retract, then it suffices to exclude the above cases:

Theorem 5.1: A program is stable if

(i) it is not fluid;

(ii) there is no assertable predicate in the program that is s-reachable from a modifying predicate; and

(iii) there is no retractable predicate in the program that is f-reachable from a modifying predicate.

Proof: We sketch the outline for the proof. There are basically two ways in which program modifications

can fail to be independent: (i) an asserted clause can contain, in its body, a literal that, when called,

13

eventually calls assert or retract; and (ii) the asserted or retracted clause permits another call ‘p(Td)’ to

succeed that would have failed otherwise, and that then results in a call to assert or retract. In the first

case, the program is fluid. In the second case, let the predicate asserted into or retracted from be q. Then,

there are two possibilities: the call ‘p(Td)’ can succeed after the modification to the program either because

a call to q now succeeds that had failed earlier, or because a call to q now fails that had succeeded earlier.

In the first case, it must be that q is s-reachable from p and was asserted into, while in the second case it

must be that q is f-reachable from p and was retracted from (assuming the usual finite failure semantics

for negation). Thus, if these cases are excluded then the program must be stable. |_
_

|

This theorem can be strengthened somewhat, since from the argument above, if an assertable predi-

cate p in a program is s-reachable from a modifying predicate q, then in order that the program be

unstable, it is necessary that assert or retract be downstream from p, and similarly for the retractable case.

For example, the program

p(X) :− assert(r(0)).

q(X) :− r(X), assert(q(X)), assert(r(f(X))).

is unstable, but the program

p(X) :− assert(r(0)).

q(X) :− assert(q(X)), assert(r(f(X))), r(X).

is not.

It should be pointed out that programs can be stable but not simple (if the argument of an assert or

retract is not fully determined). Similarly, programs can be simple but not stable (e.g. if it is fluid).

Thus, the two classes of programs are not directly comparable.

The reason for considering stable programs is that, when analyzing the program to estimate the

effects of dynamic program modifications through assert and retract, it is necessary to guarantee that

every execution path that can exist at runtime has been taken into account during analysis. This can be

difficult if a runtime modification can open up execution paths that can then cause further modifications

that would not have been possible earlier, i.e. if the program is not stable. For example, if a predicate is

undefined in a program at the time of analysis, flow information cannot be usefully propagated across

literals for it. In order that the analysis be sound, it is necessary to guarantee, therefore, that execution

cannot succeed past such literals at runtime either, e.g. by having the predicate become defined via assert.

It is for this reason that we impose additional restrictions on the reachability relation between predicates

and require programs to be stable.

5.2. Analysis of Unit-Assertive Stable Programs

We first restrict our attention to unit-assertive stable programs, i.e. stable programs that assert only

facts (this restriction is relaxed later). A unit-assertive program cannot be fluid, so it suffices to enforce

the second and third constraints from Theorem 5.1. To simplify the discussion that follows, we also

assume that if the program contains literals for call/1 and not/1, then the arguments to such literals are

14

fully determined. This restriction is relaxed in Section 6.

5.2.1. The Analysis Procedure

Given the restriction that arguments of call/1 and not are fully determined, it is easy to determine

which predicates in the program are modifying. The analysis proceeds as follows: first, the sets of terms

each assert and retract in the program can be called with are determined. From this, the sets of

modifiable predicates are determined, and also whether or not the program is unit-assertive. The stability

of the program is ascertained by determining the reachability of assertable and retractable predicates from

modifying predicates. Finally, reachability and downstream relations are used to identify the static predi-

cates in the program.

The key to the analysis lies in being able to obtain a sound approximation to the set of terms that

may be asserted or retracted when the program under analysis is executed. In other words, it is necessary

to obtain the calling types of the primitives assert and retract in that program, where the calling type of a

predicate describes the terms it can be called with. For simplicity of exposition, a very simple (and

crude) algorithm for the inference of calling types is outlined below; more sophisticated and precise type

inference algorithms can be used to improve the precision of the analysis.

The analysis tries to determine the principal functors of terms that can be asserted or retracted.

Since only unit-assertive programs are being considered, this gives the sets of assertable and retractable

predicates. To this end, we define the notion of functor sets:

Definition [functor set]: Let Φ be the set of function symbols appearing in a program, then the functor

set FSΦ(t) of a term t is defined as follows:

(1) if t is a variable, then FSΦ(t) = Φ;

(2) if t is a term of the form (t1, t2), then FSΦ(t) = FSΦ(t1) ∪ FSΦ(t2);

(3) if t is a term of the form not(t1) or call(t1), then FSΦ(t) = FSΦ(t1);

(4) otherwise, t must be a nonvariable term whose principal functor is not ‘,’/2 not/1, or call/1, and

FSΦ(t) = {functor(t)}.

The function functor(t) yields the principal functor of t if t is a nonvariable term, and is undefined if t is a

variable. The intent, in clause (2) of the definition, is to represent the body of a clause by the set of prin-

cipal functors of the literals in it, where for simplicity we only consider the connective ‘,’ (the idea

extends in a straightforward way to other connectives). Clauses (2) and (3) of this definition are not really

necessary for our purposes at this point, but will be useful when we extend the analysis scheme to con-

sider non-unit-assertive programs later. For any given program, the set of function symbols Φ is finite.

The set of all functor sets FSΦΦ for a program with function symbols Φ, which is just the powerset 2Φ, is

therefore also finite. Define the ordering ii
i
J on functor sets as follows: given S1 and S2 in FSΦΦ, S1 ii

i
J S2 if

15

and only if S1 ⊆ S2. FSΦΦ forms a complete lattice under ii
i
J with ∅ and Φ as the bottom and top elements

respectively. The meet operation on functor sets, denoted by |
_

| , corresponds to set intersection. The

ordering ii
i
J on FSΦΦ extends elementwise to tuples of functor sets.

For the sake of simplicity in the description of the algorithm, we assume that each clause in the pro-

gram is transformed to a normal form where each argument of each literal (except for those whose predi-

cate symbol is =/2) is a distinct variable, and explicit unifications have been introduced via =/2. For

example, the clause

p(X, f(X, g(Y))) :− q(h(Z), X), r(f(X, Z), Y, Y).

would be transformed to the normal form representation

p(X, V1) :−
V1 = f(X, g(Y)), V2 = h(Z), q(V2, X), V3 = f(X, Z), V4 = Y, r(V3, V4, Y).

With every point in a clause (i.e. point between two literals) is associated an abstract state A, which maps

the variables of the clause to elements of FSΦΦ. The functor set of a variable V at any point in a clause is

given by A(V), where A is the abstract state at that point. The mapping A extends to arbitrary terms and

tuples of terms, as follows: if t is a nonvariable term, then A(t) = FSΦ(t); if t is a tuple /
\t1, . . ., tn

\
/ then A(t)

= /
\A(t1, . . ., A(tn)\

/.

The tuple of functor sets for the arguments of a literal at the point of a call is referred to as the cal-

ling pattern for that literal, while the tuple of functor sets at the return from that call are referred to as a

success pattern for that literal. The set of calling patterns of a predicate p in a program is the set of cal-

ling patterns for all literals with predicate symbol p over all possible executions of that program; the set

of success patterns for a predicate is defined similarly. Let ↓ be the selection operator on tuples: /
\x1, ...,

xn
\
/↓ k = xk if 1 ≤ k ≤ n, and is undefined otherwise. Then, given an n-tuple of distinct variables Vdd, an n-

tuple of functor sets τd and an abstract state A, the updated abstract state A[Vdd ← τd] is defined to be the

following:

A [Vdd ← τd](v) =

I
J
K
J
L A (v)

τd ↓ k

otherwise

if v = Vdd ↓ k , 1 ≤ k ≤ n

We first define the treatment of unification, via the predicate ‘=’/2, in the analysis. Consider a literal

T1 = T2

in a clause, and let A be the abstract state just before it. Suppose a variable X occurs in either term (possi-

bly both). If X is in fact the term T1 (the case where X is T2 is symmetric), then after unification its func-

tor set is given by

A(T 1) |
_

| A(T 2).

On the other hand, if X occurs as a proper subterm of T1, then since functor sets contain information only

16

about the possible principal functors for a term, nothing can be said about what X might become instan-

tiated to due to this unification; it is obvious, however, that it is still safe to give the functor set of X after

unification as A(X) in this case. This can be summarized by defining a function a_ unify that, given a

abstract state and two terms to be unified via ‘=’/2, returns the abstract state describing the functor sets of

variables resulting from the unification:

Definition: Given terms T1 and T2 to be unified in an abstract state A, the resulting abstract state A ¢=

a_ unify(A, T1, T2) is defined as follows: for each variable v that A is defined on,

A ¢(v) = if (v ≡ T1 or v ≡ T2) then A(T1) |
_

| A(T2) else A(v).

g

Given a class of queries that the user may ask of a program, not all the different calling patterns that are

possible for a predicate are in fact encountered during computations. During static analysis, therefore, not

all calling patterns for a predicate are ‘‘admissible’’. Similarly, given a calling pattern for a predicate,

only certain success patterns actually correspond to computations for that predicate starting with a call

described by that calling pattern. With each n-ary predicate p in a program, therefore, is associated a set

CALLPAT(p) ⊆ FSΦ
n
, the set of admissible calling patterns, and a relation SUCCPAT(p) ⊆ FSΦ

n
× FSΦ

n
, asso-

ciating calling patterns with admissible success patterns. Define the initial abstract state of a clause to be

the abstract state that maps each variable in the clause to the top element Φ of the lattice of functor sets.

The admissible calling and success pattern sets are defined to be the least sets satisfying the following:

g If p is an exported predicate and I is a calling pattern for p in the class of queries specified by the

user, then I is in CALLPAT(p).

g Let q0 be a predicate in the program, Ic ∈ CALLPAT(q0), and let there be a clause in the program of

the form

q0(Xdd0) :− q 1(Xdd1), ..., qn (Xddn).

Let the abstract state at the point immediately after the literal qk (Xddk), 0 ≤ k ≤ n, be Ak, and let Ainit

be the initial abstract state of the clause. Then, A0 = Ainit[Xdd0 ← Ic]. For 1 ≤ k ≤ n, if the predicate

symbol qk is not ‘=’/2, then the calling pattern for that literal is cpk = Ak −1(Xddk), and cpk is in

CALLPAT(qk); and if /
\cpk, spk

\
/ is in SUCCPAT(qk), then the abstract state just after that literal is

Ak = Ak −1[Xddk ← spk].

If qk(Tdk) is ‘T1 = T2’ then the abstract state after the unification is given by

Ak = a_ unify(Ak −1, T1, T2).

The success pattern for the clause is given by Is = An (Xdd0), and /
\Ic, Is

\
/ is in SUCCPAT(q 0). g

17

The analysis begins with the calling patterns specified by the user for the exported predicates. Given an

admissible calling pattern for a predicate, abstract states are propagated across each clause for that predi-

cate as described above: first, the abstract state resulting from unification of the arguments in the call with

those in the head of the clause is determined. This is used to determine the calling pattern for the first

literal in the body. This predicate is processed similarly, and a success pattern corresponding to its cal-

ling pattern is determined. This is used to update the previous abstract state and obtain the abstract state

immediately after that literal, whence the calling pattern for the second literal is determined, and so on.

Since arguments to call/1 and not/1 are assumed to be fully determined, they can be processed in the

obvious way without difficulty. When all the literals in the body have been processed the success pattern

for that clause is obtained by determining the instantiation of the arguments in the head in the abstract

state after the last literal in the body. This is repeated until no new calling or success patterns can be

obtained for any predicate, at which point the analysis terminates.

In order to avoid repeatedly computing the success patterns of a predicate for a given calling pat-

tern, an extension table can be used [8, 13]. This is a memo structure that maintains, for each predicate, a

set of pairs /
\Call, RetVals\

/ where Call is a tuple of arguments in a call and RetVals is a list of solutions

that have been found for that (or a more general) call to that predicate. At the time of a call, the extension

table is first consulted to see if any solutions have already been computed for it: if any such solutions are

found, these are returned directly instead of repeating the computation. If the extension table indicates

that the call has been made earlier but no solutions have been returned, then the second call is suspended

until solutions are returned for the first one. This can in many cases yield solutions where a more naive

evaluation strategy such as Prolog’s would have looped. The extension table idea can be modified in a

straightforward way to deal with calling and success patterns rather than actual calls and returns. In this

way, once a success pattern has been computed for a given calling pattern for a predicate, success patterns

for future invocations of that predicate with the same calling pattern can be obtained in O(1) time on the

average by hashing on the calling pattern. That the sets of calling and success patterns for the predicates

in the program can be computed in finite time follows from the fact that both the program and the set of

functor sets FSΦΦ is finite, which implies that the space of possible calling and success patterns for any

predicate is also finite, and the monotonicity of the functions used in the analysis. Since each element of

FSΦΦ is closed under instantiation, aliasing does not pose a problem, and for most programs the time com-

plexity of the algorithm is O(N) for a program of size N [6]. The reader is also referred to [5], which con-

siders the propagation of abstract states in more detail, and in addition discusses several issues relating to

efficiency of inference for a related algorithm for mode analysis.

The following establishes the soundness of the analysis described above:

Theorem 5.2: Consider a program with function symbols Φ, no occurrences of name or univ, and where

the arguments to call/1 and not/1 are fully determined. For any predicate p in the program,

(1) if p can be called with arguments /
\t1, ..., tn

\
/, then there is a tuple /

\S1, ..., Sn
\
/ in CALLPAT(p) such that

FSΦ(ti) ii
i
J Si, 1 ≤ i ≤ n.

18

(2) if this call can succeed with its arguments instantiated to /
\t 1¢, ..., tn ¢\

/, then there is a pair /
\Ic, Is

\
/ in

SUCCPAT(p) such that

Ic = /
\S1, ..., Sn

\
/ and FSΦ(ti) ii

i
J Si, 1 ≤ i ≤ n; and

Is = /
\T1, ..., Tn

\
/ and FSΦ(ti ¢) ii

i
J Ti, 1 ≤ i ≤ n.

Proof: By induction on the number of steps in the computation. |_
_

|

Corollary [soundness]: Consider a program with function symbols Φ, with no occurrences of name or

univ, and where the arguments to call/1 and not are fully determined. If C is a clause that can be asserted

in the program, then there is a calling pattern /
\Ic

\
/ in CALLPAT(assert) such that FSΦ(C) ii

i
J Ic, and similarly

for retract. |_
_

|

Example: Consider the following normalized program:

p(X) :− q(X), r(X).

q(Y) :− Y = a.

q(Y) :− Y = f(b).

q(Y) :− Y = g(a, f(a)).

r(Z) :− Z = a.

r(Z) :− Z = b.

r(Z) :− Z = f(c).

?− p(W).

The set Φ is {a/0, b/0, c/0, f/1, g/2}. Starting from the query, the initial calling pattern for p/1 is /
\Φ\

/. The

abstract state in the clause for p/1 just after the head is therefore {X → Φ}, and the calling pattern

induced for q/1 is also /
\Φ\

/. The reader may verify that the success pattern for q/1 is /
\ {a/0, f/1, g/2} \

/, so

that the abstract state in the clause for p/1, between the literals for q/1 and r/1, is {X → {a/0, f/1, g/2}, and

the calling pattern for r/1 is /
\ {a/0, f/1, g/2} \

/. The success pattern for the first clause for r/1 for this calling

pattern is /
\ {a/0} \

/, that for the second clause is /
\ ∅ \

/, and for the third clause is /
\ {f/1} \

/. The success pattern

for r/1 (and hence for p/1) is therefore /
\ {a/0, f/1} \

/. g

5.2.2. Verifying Unit-Assertivity and Stability

Given a procedure to determine the calling types of predicates, it is a simple matter to determine whether

a program is unit-assertive: if the calling type of the predicate assert in a program does not contain ‘:−’/2,

the program is unit-assertive. From the definition of calling types, the predicates that are assertable are

given by the calling type of assert, while those that are retractable are given by the calling type of retract.

Once the sets of assertable and retractable predicates in the program have been determined, and the

program has been confirmed to be unit-assertive, it is necessary to verify that it is stable. From Section 3,

this requires that (a) no assertable predicate in the program be s-reachable from any modifying predicate;

19

and (b) no retractable predicate be f-reachable from any modifying predicate. Since the arguments of

call/1 and not/1 are fully determined, the determination of the modifying predicates in the program is

straightforward. It is therefore a simple matter to analyze reachability relationships between predicates

and ascertain that the conditions for stability are satisfied.

Example: Consider the (unnormalized) program

p(X) :− q(X, Z), assert(Z).

q(a, g(b)).

q(X, h(X, Y)) :− r(f(X), g(Y)).

r(X, Y) :− assert(X), retract(Y).

f(a).

f(U) :− g(U), h(U, V), f(V).

?− p(a).

The set Φ is {a/0, b/0, f/1, g/1, h/2}. The calling type of p/1 is /
\{a/1}\

/. The success pattern for the first

clause for q/2 is /
\{a/0}, {g/1}\

/, while that for the second clause for q/2 is /
\Φ, {h/2}\

/, so that the success

type for q/2 in the clause for p/1 is /
\Φ, {g/1, h/2}\

/, and the calling pattern for assert resulting from this is
/
\{g/1, h/2}\

/. Also, the call to r/2 in the second clause for q/2 gives a calling pattern of /
\{f/1}\

/ for assert

and /
\{g/1}\

/ for retract. Thus, the calling type of assert is {f/1, g/1, h/2}, while that of retract is {g/1}. It

is evident that the program is unit-assertive, and that it satisfies the conditions for stability. g

The discussion above assumes, however, that the set of function symbols that appear in the program

at compile time are the only ones that need to be considered during the analysis. In the absence of univ

and name, the program will not be able to create new function symbols dynamically. However, it is still

possible for new function symbols to be introduced at runtime, that did not appear in the program at com-

pile time, if the program contains the predicate read. In this case, it is necessary to assume that no func-

tion symbol in any term that is read in will match any predicate symbol in the program. It can be seen

that if this condition holds, reachability relations from the predicates exported by the program will not be

disturbed. For example, even if a goal of the form

. . ., read(X), assert(X), . . .

is encountered, the asserted predicate will not be any of the predicates in the program, and moreover will

not be reachable from any predicate in the program. Any code so asserted will thus never be executed by

any of the predicates being analyzed. Ignoring this and performing the analysis as if the read were absent

will therefore not affect the soundness of the algorithm.

5.3. Analysis of Non-Unit-Assertive Stable Programs

If the calling type of assert or retract is found to contain the function symbol ‘:−’/2 in the analysis

above, the program may assert rules, and hence may not be unit-assertive. In this case, further analysis is

necessary to determine the static predicates in the program. For this, a different abstraction for terms,

20

called extended functor sets, is considered:

Definition [extended functor sets]: Let Φ be the set of function symbols appearing in a program. Then,

the extended functor set EFSΦ(t) of a term in the program is defined as follows:

g if t is a variable, then EFSΦ(t) = /
\Φ, Φ\

/;

g if t is a term ‘Head :− Body’, then EFSΦ(t) = /
\FSΦ(Head), FSΦ(Body)\

/;

g if t is a nonvariable term whose principal functor is not ‘:−’/2, then EFSΦ(t) = /
\ FSΦ(t), ∅ \

/. g

Example: Let t0 be the term ‘p(X, Y)’. Then EFSΦ(t0) = /
\{p/2}, ∅ \

/.

Let t1 be the term ‘p(X, Z) :− q(X, Y), not(r(Y, Z))’. Then EFSΦ(t1) = /
\{p/2}, {q/2, r/2}\

/.

Let t2 be the term ‘p(X, Z) :− q(X, Y), Z’. Then, EFSΦ(t2) = /
\{p/2}, Φ\

/.

Let t3 be the term ‘W :− q(X, Y), r(Y, Z)’. Then EFSΦ(t3) = /
\Φ, {q/2, r/2}\

/. g

Analogously as with functor sets, an ordering ii
i
J can be defined on extended functor sets, as follows:

given two extended functor sets S1 = /
\S11, S12

\
/ and S2 = /

\S21, S22
\
/, S1 ii

i
J S2 if and only if S11 ⊆ S21 and S12 ⊆

S22. The set of extended functor sets for a program, EFSΦΦ, forms a complete lattice under this ordering,

with top element /
\Φ, Φ\

/ and bottom element /
\∅ , ∅ \

/. The meet operation on extended functor sets, denoted

by |
_

| , is defined in terms of elementwise set intersection in the obvious way.

The extended functor set of a term t is an abstraction of the interpretation of t as a clause, represent-

ing the predicate symbols that can occur in the head and in the body:

Proposition 5.3: For any term t, let θ be a substitution such that θ(t) is a fully determined term which,

when interpreted as a clause, contains no literal for assert or retract in the body. If EFSΦ(t) = /
\S0, S1

\
/,

then,

(1) if θ(t) represents a unit clause with predicate symbol p, then p ∈ S0.

(2) if θ(t) represents a non-unit clause ‘p(Td) :− q1(Td1), . . ., qn(Tdn)’, then p ∈ S0 and {q1, . . ., qn} ⊆ S1.

Proof: The proposition follows directly from the definitions above if t is fully determined. Suppose t is

not fully determined. We have the following cases:

(1) If t is a variable, then EFSΦ(t) = /
\Φ, Φ\

/, and the proposition follows trivially.

(2) If t is not a variable, then its principal functor p has been determined. If p is not ‘:−’/2, then t

represents a unit clause with predicate symbol p. In this case, it follows from the definition of EFSΦ

that S0 = {p}, so the proposition holds. If p is ‘:−’/2, then, since t is not fully determined, t is of the

form

21

t0 :− t1, . . ., tn

where one or more of the ti, 0 ≤ i ≤ n, is a variable. From the definition of FSΦ, if t0 is a variable

then S0 = Φ; and if any of the tj, 1 ≤ j ≤ n, is a variable, then S1 = Φ. Since Φ is the set of all func-

tion symbols appearing in the program, it is easy to see that the proposition holds in each case. g

5.3.1. The Analysis Procedure

The analysis procedure in this case is very similar to that described earlier for the unit-assertive

case, with minor modifications to deal with extended functor sets. An abstract state A at a point in a

clause now maps each program variable in that clause to an extended functor set, and extends to arbitrary

terms and tuples of terms as follows: if t is a nonvariable term, then A(t) = EFSΦ(t); if t is a tuple /
\t1, . . .,

tn
\
/ then A(t) = /

\A(t1), . . ., A(tn)\
/. Given an abstract state A, an n-tuple of distinct variables Vdd and an n-tuple

of extended functor sets τd, the updated abstract state A[Vdd ← τd] is defined exactly as before:

A [Vdd ← τd](v) =

I
J
K
J
L A (v)

τd ↓ k

otherwise

if v = Vdd ↓ k , 1 ≤ k ≤ n

Reasoning as before, ‘‘abstract unification’’ for extended functor sets, given by the function ea_ unify (for

‘‘extended a_ unify’’) is defined as follows:

Definition: Given terms T1 and T2 to be unified in an abstract state A, the resulting abstract state A ¢=

ea_ unify(A, T1, T2) is defined as follows: for each variable v that A is defined on,

A ¢(v) = if (v ≡ T1 or v ≡ T2) then A(T1) |
_

| A(T2) else A(v).

g

Abstract states are propagated across clauses, and sets of admissible calling and success patterns CALLPAT

and SUCCPAT computed, as before: consider a clause

q 0(Xdd0) :− q 1(Xdd1), ..., qn (Xddn).

At the entry to a clause, the initial abstract state Ainit maps every variable in that clause to the top element

/
\Φ, Φ\

/ in the lattice of extended functor sets. Given a calling pattern τd0, the abstract state A0 at the point

in the clause just after unification has succeeded through the head is given by A0 = Ainit[Xdd0 ← τd0]. Let

the abstract state at the program point just before the literal qk (Xddk) be Ak −1. If the predicate symbol qk is

not ‘=’/2, then the calling pattern for that literal is cpk = Ak −1(Xddk), and cpk is in CALLPAT(qk); and if /
\cpk,

spk
\
/ is in SUCCPAT(qk), then the abstract state just after that literal is

Ak = Ak −1[Xddk ← spk].

If qk(Tdk) is ‘T1 = T2’ then the abstract state after the unification is given by

22

Ak = ea_ unify(Ak −1, T1, T2).

Let An be the abstract state just after the last literal in the body of the clause, qn: then, the success pattern

for the clause, is An(Xdd0). The algorithm begins by considering user-specified calling patterns for the

predicates exported by the program, and iteratively propagates abstract states across clauses in the pro-

gram until no new calling and success pattern can be found. As before, since arguments to call/1 and

not/1 are assumed to be fully determined, they can be processed in the obvious way without difficulty.

A soundness result exactly analogous to that for the analysis for the unit-assertive case, given in

Theorem 5.2, can be proved by induction on the number of steps in the computation:

Theorem 5.4: Consider a program with function symbols Φ, with no occurrences of name or univ, and

where the arguments to call/1 and not/1 are fully determined. For any predicate p in the program,

(1) if p can be called with arguments /
\t1, ..., tn

\
/, then there is a tuple /

\S1, ..., Sn
\
/ in CALLPAT(p) such that

EFSΦ(ti) ii
i
J Si, 1 ≤ i ≤ n.

(2) if this call can succeed with its arguments instantiated to /
\t 1¢, ..., tn ¢\

/, then there is a pair /
\Ic, Is

\
/ in

SUCCPAT(p) such that

Ic = /
\S1, ..., Sn

\
/ and EFSΦ(ti) ii

i
J Si, 1 ≤ i ≤ n; and

Is = /
\T1, ..., Tn

\
/ and EFSΦ(ti ¢) ii

i
J Ti, 1 ≤ i ≤ n.

|_
_

|

Corollary [soundness]: Consider a program with function symbols Φ, with no occurrences of name or

univ, and where the arguments to call/1 and not are fully determined. If C is a clause that can be asserted

in the program, then there is a calling pattern /
\Ic

\
/ in CALLPAT(assert) such that EFSΦ(C) ii

i
J Ic, and simi-

larly for retract. |_
_

|

It is not difficult to see that extended functor sets are closed under substitution, i.e. for any term t and sub-

stitution θ, if EFSΦ(t) = /
\S0, S1

\
/ and EFSΦ(θ(t)) = /

\S 0¢, S 1¢\
/, then S 0¢ ⊆ S0 and S 1¢ ⊆ S1. It follows, from

the results of [6], that for most programs commonly encountered in practice, the analysis can be carried

out in time proportional to the size of the program.

5.3.2. Verifying Program Stability

Once the sets of calling patterns for assert and retract have been determined, the sets of assertable

and retractable predicates are first determined as follows: if an extended functor set /
\S0, S1

\
/ is in

CALLPAT(assert), then every predicate symbol p in S0 is an assertable predicate. S1 is checked to ensure

that it does not contain call/1, name, univ or not/1, nor assert, retract, or any modifying predicate: this

ensures that the program is not fluid. The treatment of retract is analogous.

23

After this, an augmented program P* is constructed from the given program P. As in the case for

simple programs, the idea is that the reachability and downstream relations in the augmented program

cover any such relationships that can occur in the program at runtime because of dynamic updates. Ini-

tially, P* is the same as P. P* is then augmented as follows: for each extended functor set /
\S0, S1

\
/ in

CALLPAT(assert), let Ŝ 1 be any enumeration of S1; then, for every p in S0, and every permutation Body of

the elements of S1, the clause

p(Xdd) :− Body, Ŝ 1

is added to P*, with copies made as necessary so that this clause precedes all other clauses for p, and is

also preceded by all clauses for p (including itself). The reason Ŝ 1 is appended to Body is that there may

be more than one literal with the same predicate symbol in the body of the asserted clause: this would not

be reflected in the extended functor set, but must be taken into account when estimating the reachability

and downstream relations that can exist at runtime. It should be emphasized that the augmented program

P* is constructed solely to estimate reachability and downstream relations that can exist at runtime: no

dataflow analysis is performed on the augmented program, so the values of the arguments to literals in the

clauses added during this augmentation are really immaterial. As before, notice that only two copies of

each clause need be added: one preceding every other clause for p, and one preceded by every other

clause. However, since all permutations of literals in the body have to be taken into account, the number

of clauses that have to be added grows quickly with the size of the extended functor sets.

It is certainly very conservative to consider all permutations of the literals in the body when com-

puting the reachability and downstream relations in the augmented program. The precision of the

analysis can be improved significantly by modifying the definition of extended functor sets to maintain

sequences of function symbols in the body (notice that in this case, it is necessary to bound the number of

times any symbol can appear in these sequences, in order to guarantee termination), rather than unordered

sets as we have considered, so that more information regarding the relative order of literals in the bodies

of asserted clauses is available. The tradeoff in this case is that the analysis of the program to compute

the sets CALLPAT and SUCCPAT now becomes more expensive (though, given the fact that each such

sequence is closed under substitution, the asymptotic complexity of the analysis is still linear in the size

of the program [6]).

Once the augmented program P* has been computed, the reachability and downstream relations

between predicates can be computed in a straightforward way, and static predicates identified using

Theorem 3.1.

The augmented program construction described above is given primarily for expository reasons.

Since its only purpose is to extend the reachability and downstream relations between predicates, in prac-

tice it would suffice − and be significantly more efficient − to augment the reachability and downstream

relations directly, instead of going through the intermediate step of constructing an augmented program.

24

Example: Consider the program

p(X) :− q(X), r(Y), s(X, Y, Z), assert(Z).

q(r(X)).

r(a).

r(b).

s(U, V, W) :− W = ‘:−’(U, V).

?- p(Z).

Given that the only exported predicate is p, and that the calling pattern for it is /
\
/
\Φ, Φ\

/
\
/, the calling pattern

for q is obtained as /
\
/
\Φ, Φ\

/
\
/, and the corresponding success pattern is /

\
/
\{r/1}, ∅ \

/
\
/. The calling pattern for r

is also /
\
/
\Φ, Φ\

/
\
/, and the success pattern is /

\
/
\{a/0, b/0}, ∅ \

/
\
/. The calling pattern for s is therefore obtained as

/
\
/
\{r/1}, ∅ \

/, /
\{a/0, b/0}, ∅ \

/, /
\Φ, Φ\

/
\
/.

From the definition of extended functor sets, it follows that the success pattern of s is

/
\
/
\{r/1}, ∅ \

/, /
\{a/0, b/0}, ∅ \

/, /
\{r/1}, {a/0, b/0}\

/
\
/.

so that the calling pattern of assert is obtained as /
\
/
\{r/1}, {a/0, b/0}\

/
\
/. As the reader may easily verify, this

is the only tuple in CALLPAT(assert).

The augmented program P* is now computed as follows: the clauses added are

r(X) :− a, b, a, b.

and

r(X) :− b, a, a, b.

It suffices to add two copies of each of these clauses, so that the augmented program is obtained as

p(X) :− q(X), r(Y), s(X, Y, Z), assert(Z).

q(r(X)).

r(X) :− b, a, a, b.

r(X) :− a, b, a, b.

r(a).

r(b).

r(X) :− a, b, a, b.

r(X) :− b, a, a, b.

s(U, V, W) :− W = ‘:−’(U, V).

When the reachability and downstream relations are computed from this augmented program, it can be

seen that the only static predicate is q/1. g

25

6. Relaxing Some Restrictions

This section outlines how several of the restrictions on programs, assumed in previous sections, may

be relaxed.

First, during the analysis of stable programs it was assumed that literals for call/1 and not/1 were

fully determined. This restriction is not really essential: if the program contains literals for call/1 or not/1

whose arguments are not fully determined, it is possible to proceed with the analysis, as before, and

obtain the calling patterns for the call and not literals. The functor sets so obtained gives the sets of

predicates that can be called from such literals. A conservative analysis for the program can then be car-

ried out, as follows: first, not knowing anything about the instantiations of the arguments to the predicates

called via call and not, we have to be pessimistic and assume that they can be called with every possible

argument. Then, when determining reachability and downstream relations, it is necessary to consider

every permutation of the predicates accessed via call and not, and take into account the possibility of

repeated literals, as discussed in Section 5.3.2. This is in fact pertinent even for static programs: research-

ers investigating static analyses of logic programs have typically assumed either that literals for call and

not do not appear in programs, or that their arguments are fully determined, i.e. that the programs are sim-

ple. Clearly, this may not always be the case even if the program does not contain asserts or retracts. If

the program contains literals of the form ‘call(X)’, then an analysis such as the one described in this paper

is necessary to guarantee that the static analysis is sound. As far as we know, this issue has not been

addressed elsewhere in the literature.

Another restriction that can be relaxed is that on the presence of literals for name and univ in the

program. The reason for this restriction was that calls to these predicates could make it possible to con-

struct, dynamically, function symbols that had not been present in the program at compile time, thereby

making it very difficult to certify that the functor sets computed statically were sound. However, it is

easy to see that this problem cannot arise if name and univ are guaranteed to be called with the proper

modes (i.e., given the usual usage for these predicates, with the first argument always ground). Thus, the

presence of literals for name and univ can be tolerated provided that (i) a mode analysis of the program,

ignoring assert and retract, indicates that name and univ have modes that guarantee that no new function

symbols are constructed dynamically; and (ii) the extended functor set analysis guarantees that name and

univ are not reachable via call or not, or from any predicate that is not static in the program.

In some cases, a limited amount of static analysis may be carried out even for predicates that are not

static by the criteria discussed in this paper. As noted, for example, if we want to know only about cer-

tain calling properties of predicates, then it is sufficient to exclude those predicates that are downstream

from modifiable predicates. However, consider a predicate p in a program such that p is downstream

from a modifiable predicate, but neither p nor any predicate reachable from p is modifiable. Further,

assume that none of the predicates that p depends on are depended on by any other predicate. Then, we

can analyze the predicates reachable from p under the most conservative assumptions regarding the terms

that p may be called with. For example, if we are doing mode inference, then we can assume that nothing

is known about the instantiation of any of the arguments for p. This is illustrated by the following

26

example:

Example: Consider mode analysis of the program

p(X) :− assert(q(X)), q(Y), r(X, Y).

r(U, V) :− s(U, N, W), t(W, V).

s([], 0, []).

s([X | L1], f(N), [f(N) | L2]) :− s(L1, N, L2).

t([], []).

t([H | L1], [g(H) | L2]) :− t(L1, L2).

Assume that the only predicate that depends on s/3 or t/2 is r/2. The predicate r/2 is downstream from the

modifiable predicate q/1, and hence is not static. However, we can assume that nothing is known about

the instantiation of the arguments to r/2, and still infer that t/2 is always called with its first argument

ground, and further that r/2 succeeds binding its second argument to a ground term. Information about

the success pattern of r/2 can now be used to improve mode analysis in other parts of the program. g

7. Conclusions

The focus of research on static analysis and optimization of logic programs has been primarily on

static programs, where code is never created and executed ‘‘on the fly’’. It has been felt that if a program

uses dynamic constructs, then the program being executed may not be the same as the program analyzed

at compile time, and hence that results of static analysis may not be valid at runtime.

While this is true in general, it can be overly conservative. It is often the case that runtime changes

are localized to one part of the program, and do not interact with other parts. It is desirable, in such cases,

to be able to identify those portions of the program that are unaffected by such changes, so that these por-

tions can be analyzed and optimized using static analysis techniques already developed for static pro-

grams. This paper takes a first step in this direction by considering how certain kinds of dynamic pro-

grams can be analyzed for static program fragments. The restrictions are intended principally to ensure

that runtime modifications to the program are reasonably well-behaved, so that a sound approximation to

the kinds of changes that can occur at runtime can be obtained via static analysis. Our approach enables

compilers for logic programming languages to apply static optimization techniques to some dynamic pro-

grams as well.

The reader should not infer from this that the author endorses or encourages in any way the use of

asserts and retracts in logic programs.

Acknowledgements

The author is grateful to David S. Warren for many very helpful comments on an earlier draft of this

paper, and to John C. Peterson for pointing out a technical problem in an earlier version of the paper.

Detailed comments by the referees were also very helpful in improving the content and presentation of

the paper.

27

References

1. M. Bruynooghe, B. Demoen, A. Callebaut and G. Janssens, Abstract Interpretation: Towards the

Global Optimization of Prolog Programs, in Proc. Fourth IEEE Symposium on Logic

Programming, San Francisco, CA, Sep. 1987.

2. J. Chang, A. M. Despain and D. DeGroot, AND-Parallelism of Logic Programs Based on A Static

Data Dependency Analysis, in Digest of Papers, Compcon 85, IEEE Computer Society, Feb. 1985.

3. W. F. Clocksin and C. S. Mellish, Programming in Prolog, Springer-Verlag, New York, 1981.

4. S. K. Debray, The SB-Prolog System, Version 2.3.2: A User Manual, Tech. Rep. 87-15,

Department of Computer Science, University of Arizona, Tucson, AZ, Dec. 1987. (Revised March

1988).

5. S. K. Debray and D. S. Warren, Automatic Mode Inference for Logic Programs, J. Logic

Programming 5, 3 (Sep. 1988), pp. 207-229.

6. S. K. Debray, Efficient Dataflow Analysis of Logic Programs, in Proc. Fifteenth Annual ACM

Symposium on Principles of Programming Languages, San Diego, CA, Jan. 1988.

7. S. K. Debray and D. S. Warren, Functional Computations in Logic Programs, ACM Transactions

on Programming Languages and Systems 11, 3 (July 1989), pp. 451-481.

8. S. W. Dietrich, Extension Tables: Memo Relations in Logic Programming, in Proc. Fourth IEEE

Symposium on Logic Programming, San Francisco, CA, Sep. 1987, pp. 264-272.

9. H. Mannila and E. Ukkonen, Flow Analysis of Prolog Programs, in Proc. Fourth IEEE Symposium

on Logic Programming, San Francisco, CA, Sep. 1987.

10. C. S. Mellish, Some Global Optimizations for a Prolog Compiler, J. Logic Programming 2, 1 (Apr.

1985), 43-66.

11. P. Mishra, Towards a theory of types in Prolog, in Proc. 1984 Int. Symposium on Logic

Programming, IEEE Computer Society, Atlantic City, New Jersey, Feb. 1984, pp. 289-298.

12. Quintus Prolog Reference Manual, Quintus Computer Systems, Inc., Mountain View, CA, Apr.

1986.

13. H. Tamaki and T. Sato, OLD-Resolution with Tabulation, in Proc. 3rd. International Conference

on Logic Programming, London, July 1986, 84-98. Springer-Verlag LNCS vol. 225.

28

