
Visualizing the Behavior of Dynamically Modifiable Code∗

Bradley Dux Anand Iyer Saumya Debray David Forrester Stephen Kobourov
Department of Computer Science

The University of Arizona
Tucson, AZ 85721, USA

Email: {dux, anand, debray, forrestd, kobourov}@cs.arizona.edu

Abstract

Recent years have seen an increased recognition of
some of the advantages offered by dynamically modifi-
able code, i.e., code that changes during the execution
of the program. In its full generality, it can be very dif-
ficult to understand the behavior of such self-modifiable
code. This paper describes a system that graphically
displays the execution behavior of dynamic code, focus-
ing on code modifications and their effect on the struc-
ture of the program, i.e., the call graph and control flow
graphs of functions. This can help users visualize the
structure of runtime code modifications and understand
the behavior of dynamically modifiable programs.

1 Introduction

Dynamically modifiable software refers to software
whose executable code changes as the program executes.
These changes may involve a change in the set of mem-
ory addresses containing executable instructions (i.e.,
when new code is generated during the program’s execu-
tion) and/or a change in the contents of one or more lo-
cations within the program’s executable code space (i.e.,
when an existing instruction is modified to a different
instruction). Sometimes referred to as “self-modifying
code,” dynamically modifiable programs have long been
deprecated for being difficult to write, understand, and
maintain. In recent years, however, there has been an in-
creased awareness of the advantages dynamically mod-
ifiable software can offer under certain situations. Ap-
plications of runtime code generation and modification
include just-in-time compilation [1], dynamic code spe-
cialization and optimization [2, 8, 12], dynamic decom-
pression of compressed code [4], and security enhance-
ment [7, 16]. Indeed, several authors have proposed

∗This work was supported by the National Science Foundation un-
der grants CCR-0073394, EIA-0080123, and CCR-0113633.

programming language extensions to facilitate the writ-
ing of dynamically modifiable code [5, 13], while others
have looked at extending tools to cope with runtime code
modifications [9].

A significant problem with dynamically modified
programs is that their behavior can be complex and diffi-
cult to understand. The reason for this is that our conven-
tional models of software structure are static. The be-
havior of a program is understood in terms of the behav-
iors of the functions comprising the program and their
interactions; the behavior of each function is understood
in terms of its constituent instruction sequence, which
is generally taken to be fixed. Such static models break
down when code can change at runtime. This introduces
an additional dimension of complexity into the program
analysis process: for example, program analyses dealing
with a function call to some address can no longer sim-
ply use a precomputed summary of the behavior of the
function at that address.

The difficulty of understanding, debugging, and
maintaining dynamically modifiable software suggests
the need for tools to help users understand the behavior
of such code. This paper describes a first step we have
taken in this direction. Our tool uses a replay mecha-
nism to graphically display the effects of runtime code
modification on the program’s call graph as well as the
control flow graphs of individual functions.

The remainder of this paper is organized as follows.
Section 2 provides a simple model for dynamically mod-
ifiable code that forms the basis for our visualization
tool. Section 3 describes salient aspects of this tool. Sec-
tion 4 describes related work, and Section 5 concludes.

2 Modelling Dynamically Modifiable Code

This section presents a simple conceptual model for
dynamically modifiable code.

There are two different kinds of entities we are con-
cerned with:memory locationsandfunctions. Memory



locations are the entities that are actually modified dur-
ing program execution, while functions are the entities
that programmers base their understanding of programs
on. Given a functionf in a program, letlocs(f) denote
the set of memory locations occupied by functionf . Dy-
namic code modification of a program changes the con-
tents of one or more code locations during execution. In
general, when the contents of a code location changes,
the instruction at that location changes, and therefore
has a different runtime behavior. This means that the
function containing that location also has a different run-
time behavior. Semantically, therefore, the function as-
sociated with that memory location is now a (mathe-
matically) different function than what it was before the
change. To understand dynamically changing code, we
have to map runtime changes to memory locations to
corresponding changes to functions. To this end, we de-
fine a relation∼ between pairs of functions that captures
the intuition of “sharing a memory location:”

f ∼ g iff locs(f) ∩ locs(g) 6= ∅.

The relation∼ is reflexive and symmetric, but need not
be transitive. Let∼⋆ denote the transitive closure of∼:
this is an equivalence relation, and partitions the func-
tions in a program into clusters. These clusters have the
property that the functions in each cluster “directly or
indirectly share locations,” in the sense thatf andg are
in the same cluster, i.e.,f∼⋆g, if and only if there is a
chainf1, . . . , fn of location-sharing functions:

f ∼ f1 ∧ f1 ∼ f2 ∧ · · · ∧ fn ∼ g.

This means that at runtime, whenever there is a change
to a program’s code for some functionf , the new func-
tion g that results from this change must satisfyf∼⋆g,
i.e., be in the same cluster asf . Such clusters of
location-sharing functions form the basis for our ap-
proach to visualization of dynamically modified code,
described in the next section.

3 Visualizing Dynamically Modified Code

We have built a prototype tool, based on the ideas de-
scribed in the previous section, for visualizing dynamic
software modifications. Our tool, written in Java, is
based on thegraphael system[6], with some modi-
fications to deal with the scale issues we encountered
when dealing with self-modifying programs.

The motivation for this tool arose from some work
being done within our group on using runtime code mu-
tation for code obfuscation purposes [10]; however, the
ideas are general, and are applicable to other dynami-
cally modifiable programs as well. The visualization is

organized in terms oftime-slices, where each time-slice
corresponds to a set of related changes to the code of
a single function (and may not necessarily correlate di-
rectly with elapsed runtime). The visualizer uses a log
file of code modifications to organize the initial organi-
zation of the program’s graphical representation, and to
then display the effects of code modifications.

The GUI. Our program visualization tool currently
provides a simple graphical user interface. The visu-
alization is controlled using three buttons,play/pause,
next, andback, together with aspeedparameter, all of
which appear below the main window. Theplay button
displays the changing graph step by step, like an anima-
tion, with the time-slice number being displayed on the
bottom. When the animation is playing, theplay button
becomes thepausebutton, which enables the user to stop
the display at any time. When paused, thepausebutton
becomes theplaybutton. Thenextandbackbuttons en-
able the user to go forward or back, respectively, by a
single time-slice, every time the button is pressed. Af-
ter moving backward or forward as desired using these
buttons. the user can resume the animation by pressing
the play button. Thespeedvalue determines how fast
the animation is played i.e time for which a single time-
slice is displayed. The user can right-click on a cluster
node to view the control flow graph of the function in
that cluster. Double clicking on a given node displays
the name of the function currently in that cluster.

Cluster Call Graphs. As mentioned earlier, our tool
uses a fixed precomputed vertex layout for all the ver-
tices that will be encountered during the evolution of
the program. The initial cluster call graph for the pro-
gram is then drawn based on this layout. Note that since
the vertex layout may contain some vertices that do not
come into existence until after some number of code mu-
tations, the initial cluster call graph may not include all
of the vertices used in the initial layout determination.
The vertex layout remains fixed through the duration of
the program’s execution, and changes to the cluster call
graph are reflected in changes to the edges in the graph
displayed.

In general, not all functions in a program will be sub-
jected to code modifications. Since we focus primarily
on visualizing the effect of dynamic code changes to the
structure of the program, we want to relegate such static
functions to the background as much as possible (they
cannot and should not be eliminated entirely, since they
can and do influence the behavior of dynamic code). To
this end, we classify the edges in the cluster call graph
into two kinds: “cluster edges,” i.e., edges where at least
one endpoint is a cluster that is modified at runtime;



A B

(a) The call graph before a code modification step; (b) The call graph after a code modification step.

Figure 1. Visualizing the effects of a code modification step on the call graph of a program.
Cluster edges are dark/blue, non-cluster edges are light/g ray. The labels ‘ A’, ‘B’ do not occur
in the actual image, but have been added for expository purpo ses.

and “non-cluster edges,” where each endpoint is a static
function that is never modified during program execu-
tion. Our tool displays non-cluster edges in light gray,
while cluster edges are displayed in dark blue. This lets
cluster edges stand out conspicuously while non-cluster
edges are visible, but are not obtrusive.

Figure 1 shows the cluster call graph for a program,
as drawn by our visualization tool, at the beginning and
end of a single time-slice, i.e., before and after a sin-
gle code modification. The cluster that is “active” at
the beginning of the time-slice, i.e., about to undergo
a code modification, is labelled ‘A’ in Figure 1(a), while
the cluster that is active at the end of this time-slice is
labelled ‘B’ in Figure1(b). Notice that the code modi-
fication to clusterA during this time-slice changes the
call graph edges. At the beginning of the time-slice, the
function in clusterA does not call any other function,
nor is it called by other functions. HenceA is not con-
nected by any edges to any other vertices. In the next
step the function in clusterB changes. The three edges
that connected clusterB in the previous time-slice dis-
appear, and a new edge connect it to clusterA. This is
representative of the changes that occur to the call graph
as the functions in the clusters are modified at runtime.

Not all runtime code modifications result in changes
to the (cluster) call graph of the program. Our tool uses
the color of a vertex to indicate whether or not the corre-
sponding cluster is having its code modified at any given
time-slice:1 The vertex that is being modified at a given

1We assume that exactly one vertex is being modified at any given
time-slice. Concurrent independent modifications to multiple vertices

time-slice is shown as a large red circle. This serves to
indicate where the actual changes are occurring. The
other cluster vertices are shown as medium-sized black
circles.

While experimenting with our tool, we found that
sometimes, specific sequences of code modifications
would repeat over and over again. For example, a func-
tion f might be edited to a functiong, which might be
edited to another functionh, which might then be edited
back tof to start the edit sequence over again. When a
group ofN contiguous repetitions of a sequence of code
modificationsw is found, instead of repeatedly display-
ing the effects of the sequencew on the program, we
display the effect ofw once, together with a tag indicat-
ing that this effect is repeatedN times. Identifying such
repeated edit sequences and tagging them as such in the
image of the call graph displayed by the tool turns out
to be very useful, both from the perspective of under-
standing the behavior of the program, and also from an
efficiency perspective.

Control Flow Graphs. The cluster call graph dis-
cussed above gives the user a high-level view, in terms
of procedure clusters, of where code edits occur as the
program executes. This view can then be refined, as de-
sired by the user, by clicking on a vertex in the cluster
call graph. This results in the call graph for the currently
executing function within that cluster to be displayed, as
shown in Figure 2.

can be handled by serializing them arbitrarily.



Figure 2. Displaying the control flow graph
of a function.

4 Related Work

We are not aware of any other work on visualizing
the effects of dynamic code modification on code struc-
ture. There has been a significant amount of research, in
recent years, on code that is created or modified at run-
time [1, 2, 4, 7, 8, 12], and a number of researchers have
proposed programming language extensions to facilitate
the writing of dynamically modifiable code [5, 13] or
manipulate such code [9]. However, none of this work
addresses the issues of visualizing or understanding the
effects of runtime modifications. to the code of a pro-
gram. There is a large body of work on software visual-
ization tools [3, 11, 14, 15], but none are concerned with
self-modifying code.

5 Conclusions

Recent years have seen growing interest in software
system where the code that is executed is not a fixed,
static body of machine instructions, but can be changed
at runtime, e.g., by generating new instructions or mod-
ifying existing instructions. Understanding the behavior
of programs where the code changes during execution
can be quite nontrivial. This paper describes a prototype
tool that allows users to visualize the effects of runtime
code changes on the structure of the program.

References

[1] A.-R. Adl-Tabatabaiet al. Fast, effective code genera-
tion in a just-in-time Java compiler. InProc. PLDI-98,

pages 280–290, June 1998.
[2] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo:

A transparent dynamic optimization system. InProc.
PLDI-2000, pages 1–12, June 2000.

[3] C. Collberg, S. G. Kobourov, J. Nagra, J. Pitts, and
K. Wampler. A system for graph-based visualization of
the evolution of software. InProc. SoftVis-03, pages 77–
86, 2003.

[4] S. K. Debray and W. Evans. Profile-guided code com-
pression. InProc. PLDI-02, pages 95–105, June 2002.

[5] D. R. Engler and T. A. Proebsting. DCG: An efficient,
retargetable dynamic code generation system. InProc.
ASPLOS-VI, pages 263–271, 1994.

[6] C. Erten, P. J. Harding, S. G. Kobourov, K. Wampler,
and G. Yee. GraphAEL: Graph animations with evolving
layouts. In11th Symposium on Graph Drawing, pages
98–110, 2003.

[7] Y. Kanzaki, A. Monden, M. Nakamura, and K. Mat-
sumoto. Exploiting self-modification mechanism for
program protection. InProc. COMPSAC-2003, pages
170–181, Nov. 2003.

[8] M. Leone and P. Lee. A declarative approach to run-
time code generation. InProc. Workshop on Compiler
Support for System Software (WCSSS), Feb. 1996.

[9] J. Maebe and K. De Bosschere. Instrumenting self-
modifying code. InProc. AADEBUG-2003, pages 103–
113, Sept. 2003.

[10] P. Moseley and S. K. Debray. Software protection via
dynamic code mutation. Technical report, Dept. of Com-
puter Science, University of Arizona, 2004.

[11] B. A. Myers. Taxonomies of visual programming and
program visualization.Journal of Visual Languages and
Computing, 1(1):97–123, Mar. 1990.

[12] F. Noël, L. Hornof, C. Consel, and J. L. Lawall. Au-
tomatic, template-based run-time specialization: Imple-
mentation and experimental study. InProc. ICCL-98,
pages 132–142, 1998.

[13] M. Polettoet al. ’C and tcc: A language and compiler for
dynamic code generation.ACM TOPLAS, 21(2):324–
369, Nov. 1999.

[14] B. A. Price, I. S. Small, and R. M. Baecker. A taxonomy
of software visualization. InProc. 25th Hawaii Int. Conf.
System Sciences, 1992.

[15] G.-C. Roman and K. C. Cox. A taxonomy of program
visualization systems.IEEE Computer, 26(12):11–24,
1993.

[16] D. D. Zovi. Security applications of dynamic binary
translation, Dec. 2002. Bachelor of Science Thesis,
Dept. of Computer Science, University of New Mexico.


