Goal-Directed Value Profiling

Scott Watterson Saumya Debray

Department of Computer Science
University of Arizona
Tucson, AZ 85721
{saw, debray}@s. ari zona. edu

Abstract. Compilers can exploit knowledge that a variable has a fixemivkn
value at a program point for optimizations such as code afization and con-
stant folding. Recent work has shown that it is possible ke tdvantage of such
optimizations, and thereby obtain significant performanggrovements, even if
a variable cannot be statically guaranteed to have a fixestaonvalue. To do
this profitably, however, it is necessary to take into actooformation about
the runtime distribution of values taken on by variablesisTihformation can
be obtained though value profiling. Unfortunately, exigtapproaches to value
profiling incur high overheads, primarily because profilisgarried out without
consideration for the way in which the resulting informatisill be used. In this
paper, we describe an approach to reduce the cost of valfiengrdy making
the value profiler aware of the utility of the value profilesrtgegathered. This al-
lows our profiler to avoid wasting resources where the profile be guaranteed
to not be useful for optimization. This results in signifitegductions in both the
time and space requirements for value profiling. Our apgromeplemented in
the context of thalto link-time optimizer, is an order of magnitude faster, and
uses about 5% of the space, of a straightforward implementat

1 Introduction

Compilers can exploit knowledge that an expression in anamagcan be guaranteed
to evaluate to some particular constant at compile timehaaofptimization known as
constant folding [14]. This is an “all-or-nothing” transfoation, however, in the sense
that unless the compiler is able to guarantee that the esipresinder consideration
evaluates to a compile-time constant, the transformatiomat be applied. In practice,
it is often the case that an expression at a point in a proga&eston a particular value
“most of the time” [5]. As an example, in the SPEC-95 benchaparl, the function
memmovés called close to 24 million times: in almost every case d@tgaiment giving
the size of the memory region to be processed has the value damtake advantage of
this fact to direct such calls to an optimized version of tinection that is significantly
simpler and faster. As another example, in the SPEC-95 lpeaudtii, a very frequently
called function livecar, contains aswi t ch statement where one of the case labels,
corresponding to the typel ST, occurs over 80% of the time; knowledge of this fact
allows the code to be restructured so that this common casbedested separately
first, and so does not have to go through the jump table, wiicblatively expensive.
As these examples suggest, if we know that certain valuesro@ry frequently at
certain program points, we may be able to take advantagésahtbrmation to improve
the performance of the program. This information is giveralwalue profile which is

a (partial) probability distribution on the values takenlmna variable when control
reaches the program point under consideration at runtiraeegperience with value-
profile-based optimizations indicate that they can prodigificant speedups for non-
trivial programs [15].

Unfortunately, existing approaches to obtaining valudila®tend to be very expen-
sive, both in time and space. For example, in an implememtatf “straightforward”
value profiling by Caldeet al., executables instrumented for value profiling are more
than 30 times slower, on the average, than the uninstrumiencutables. The reason
for this is that their profiling decisions are made without Enowledge of the potential
utility of the profiles, i.e., the ways in which the profileslMie used for optimization.
Our experiments indicate that of all the variables and mogpoints that are candidates
for value profiling in a program, typically only a tiny fraoti actually yield value pro-
files that lead to profitable optimizatiohslhis means that in value profilers based on
existing techniques, much of the overhead incurred in theseoof profiling represents
wasted work.

instrumented
program

value
profiler

input (ixecutable cost | benefit back :)nstggir;ee;ted/
basic block profil estimation, end p
asic block prolile executable
! optimized
control flow r?rogram

graph
Fig. 1. Alto system structure

In this paper, we describe a system that avoids these prslilgtightly integrating
the value profiler with the optimizer that uses the resultgaddie profiling (see Figure
1). This gives the value profiler a mechanism for estimatireguitility of a value profile
at a given program point, and allows it to identify profilingnziidates—i.e., variables
(memory locations, registers) at particular program peirthat are clearly not worth
profiling, i.e., that can be guaranteed to not yield optimdraopportunities. This is
done both during the instrumentation phase, when the praofleides where to insert
instrumentation code for value profiling, and during thauatprofiling itself, when the
instrumentation code so inserted can determine whethemibith continuing to pro-

1 A significant reason for this is that, as discussed in Sedtjoode optimized to exploit runtime
value distributions must be guarded by a test, and the cdsiofuntime test must be taken
into account when weighing the profitability of the optintina.

file a particular profiling candidate. By being able to usedbst-benefit considerations
guiding the optimizer, the profiler is able to identify andipe value profiling candi-
dates that have no possibility of contributing to any optiation. The resulting system
is highly selective: typically, fewer than 1% of all posgigrofiling candidates are cho-
sen for actual profiling. This selectivity leads to signifitamprovements in profiling
performance, yielding order-of-magnitude improvementd®aoth the space and time
requirements for profiling, while retaining all of the optiration opportunities.

There has been a great deal of work on profiling technique 18] and profile-
guided code optimization [6, 7, 17]. However, to the bestwf knowledge this is the
first work that aims to make the profilgoal-directedi.e., aware of the potential utility
of the profiling information that it is gathering, and ablemadify its profiling actions
based on this awareness, in order to reduce profiling ovdshea

2 System Overview

The work described here has been implemented in the corftetop a link-time op-
timizer we have constructed for the Compaq Alpha architedtl6]. Alto can be used
to rewrite executable files, either to instrument them farfipng, or to carry out code
optimization. If profiling is carried out, a command line iot can be used to control
whether basic block profiles, edge profiles, or value proéilesgathered.

This paper focuses on value profiling. The gathering of vagtafiles is a two-
stage process. We first uako to instrument the input program—sayput—for basic
block profiling. This yields an instrumented executadleblprof.outthat is then exe-
cuted using representative “training inputs” to obtain aib&lock profile. Using this
basic block profile, the original executaldeoutis instrumented again, this time to
gather value profiles. This yields a second instrumentedutablea.valprof.out Fi-
nally, a.valprof.outis executed with the training input to obtain a value profile.

For subsequent optimization, the basic block and valuelpsadb gathered are fed
back toalto, which uses them to apply various code transformations erngut pro-
grama.out

3 Mechanics of Value Profiling

Our value profiling technique is inspired by (and largelydzhapon) work by Calder
et al]5]. We keep track of the top N values occurring in a given stggir at a given
program pointp. In addition to the top N values, we include a field that couhts
number of values that are not recorded in the table; we |&lietheotherfield. Table
1 shows an example of a value profile, where N = 6. The field lethetherrefers to
values other than 1, 9, 20, 23, 100, or 0.

Each time execution reachpswe profile the value contained in registeif the
value is in the table, we increment the count of that valu¢héfvalue contained in r
is not already in the table, then we attempt to insert it. &réhis no room in the table
for the new value, we increment the count of thther field. In the above example
table, if register contains the value 100, the count of 100 in the table woulgbkirne
incremented. If contained the value 2, then the counbtiierwould be incremented,
since there is no room in the table to insert 2.

| Value | Count |

1 2635

9 1093

20 1395
23 244
100 140
0 410
other 4698

Table 1. Example Value Profile Table

The number of entries in the value profiling table has a sicguifi impact on the
running time of the value profiler. The table must be largesgindhat the most frequent
entry will be in the table, but as the table grows, the profifeist look at more entries
each time it reaches a profiling point. In this paper, we claossdue profiling table with
6 entries, plus thetherfield. This table size was the smallest size that captured mos
optimization opportunities. Further analysis of tablesizan be found in [10].

In some cases, the most frequently occurring value ovesaibt one of the first
N distinct values. We would still like to capture this valugrithg value profiling. We
provide a mechanism for allowing later values into the tdhyleoeriodically cleaning
the lower half of the table. This means that the values ateddrased on their counts,
and the N/2 least frequently occurring values are evicthdir(tcounts are added to
the other count). Though cleaning is a fairly heavy process, it happefrequently.
Our experiments indicate that, except for very small valolethe cleaning interval,
the actual cleaning frequency does not significantly aféttter speed or quality of
profiling. Given this insensitivity, we chose—in part to gilify comparison of results—
the same cleaning interval as Cal@eml. [5], namely, 1000. In other words, the table
is cleaned after the execution has reach&@00 times. After a table has been cleaned
once, we must make sure that a new value can enter the stedaf e table before
we clean again. We set the new value of the cleaning intesvEHDOO0 + the count of the
last entry in the steady part. This means that if a new valeeirgcalmost exclusively
between cleanings, its count should be higher than the fasy & the steady part
of the table. It will then be moved into the steady part, enigtthe least frequently
encountered value.

Each program point selected for profiling incurs both an efien and a space cost.
Profiling every register at every program point is obviousBsteful, so we must be
more selective. Caldeat. alinstrumented every load instruction. We consider this the
baseline approach, and discuss it in more detail in SectibnSgction 4 describes our
approach.

4 Goal-Directed Value Profiling

To minimize the amount of wasted work during value profiliagg attempt to detect,
as early as possible, those profiling candidates whose pabfites can be guaranteed

to not yield useful optimizations. There are two possileiitfor the detection of such
unprofitable profiling candidates:

(i) We may be able to tell, based on the basic block execution@mffthe program,
that specializing the program based on the values of a \lar&ta given program
point will not yield an improvement in performance, regasdi of the value profile
for the variable at that program point. In this case, we candaprofiling this can-
didate altogether. Section 4.1 describes a cost model foeyarofile-based code
specialization, and Section 4.3 discusses how this modebeaused for a cost-
benefit analysis that allows us to avoid profiling unprofigatdndidates.

Even if we cannot eliminate a profiling candidate ahead of taim discussed above,
we may find, as profiling progresses, that the value profilafoarticular profiling
candidate is simply not “good enough” to yield any profitatyimization, regard-
less of the values that may be encountered for that candildaibeg the remainder
of the computation. When this happens, we can discontimfdipg this candidate.
A natural place to do this is at the point where a value prdditéet is cleaned, since
cleaning requires us to examine the table in any case. Thdslet how we deter-
mine whether it is worth continuing to profile a particulandaate are discussed
in Section 4.4.

(i

~—

Calderet. alnote that instructions other than loads may be highly imrdii4]. For
example, consider the following code:

rl <« load 0(r18)
r2 + andrl, Oxf

In this sequence, thend instruction may always produce the same result (if all of the
loads have the same low 4 bits) despite the load instrucggamoading the same value
twice.

This discovery makes value profiling potentially much moosverful. The opti-
mizer can consider many potentially useful program poittgiothan load instructions
for specialization. These may include function argumeptsf{led at function entry),
switch statement selectors, and other such values. Cagerts that full profiling for
all load instructions results in a 32x slowdown. Since treeemany program points,
our cost-benefit analysis is of critical importance in radgahe amount of time and
space used for profiling. We consider all registers at alypam points candidates, and
use the cost-benefit analysis as discussed in Sec 4.3 toectiose candidates that may
yield useful optimizations.

Our system focuses on code specialization, since that @atiion is implemented
in al t o. If we change the optimizations usedaht o, for instance to reduce indirect
function call overhead [18, 19], we need not change the profiince the optimizer
shares the cost-benefit decisions with the profiler, thelprafiould simply select dif-
ferent program points, based on the expected benefit.

4.1 A Cost Model for Value-Profile-Based Code Specializatio

Our approach uses value profiles primarily for value-bagettialization. By this we
mean the elimination of computations whose result can bleatex statically. Suppose

we have a code fragme@that we wish to specialize for a particular valuef a register

(or variable)r . Conceptually, value-profile-based specialization tiwmss the code to
have the structuré (r == v) then (C),_y elseC where(C),_, represents the residual
code ofC after it has been specialized to the valu@f r . The testif (r == v) ..."is
needed because the valuera$ not a compile-time constant, i.e., we cannot guarantee
thatr will not take on any value other tharat that program point.

Notice that, while the specialized co(f&),_, may be more efficient than the origi-
nal codeC, the overall transformed code will actually be less effitiban the original
code for values of other tharv because of the runtime test that has been introduced.
There is thus a tradeoff associated with the transformatfahe optimized code is
not executed sufficiently frequently, then the cost of perfiog the runtime test will
outweigh the benefit of performing the value-based optitiona.

This optimization therefore requires a cost-benefit anglis determine when to
specialize a program. Our analysis attempts to assign dibesiae to each instruction.
The benefit computation assigns a value {p@gram point, registeipair. The benefit
is an estimate of the savings from specializing code basdahowing the value of the
register at the program poirp. This benefit computation has two components:

(i) For each instruction that uses the value afavailable atp, there may be some
benefit to knowing this value. The magnitude of this benefit depend on the
type ofl, and is denoted b§avings(l,r).

(ii) 1t may happen that knowing the value of an operand registen afstruction allows
us to determine the value computedibin this casel is said to beevaluablegiven
r. If 1 is evaluable givem, the benefit obtained from specializing other instructions
that use the value computed byare also credited to knowing the valuercét p.
The indirect benefits so obtained from knowing the value wf instruction! are
denoted byindirBenefit(l,r).

The savings obtained from knowing the operand values fondividual instruction is
essentially the latency of that instruction, if knowing tygerand values allows us to
determine the value computed by that instruction, and Hyeediminate that instruc-
tion entirely? (our implementation uses latency figures for various cke$eperations
based on data from the Alpha 21164 hardware reference manual

Savings(l,r) = if Evaluable(l,r) then Latency(l) elseO.

Let Uses(p,r) denote the set of all instructions that use the value of tegisthat is
available at program poirp. Then the benefit of knowing the value of a registext
program pointp is given by the following:

Benefit(p,r) = Z (ExecutionFreq(l) x Savings(l,r) + IndirBenefit(l,r))
1eUses(p,r)

IndirBenefit(l,r) = if Evaluable(l,r) then Benefit(p’,ResultRef])) elseO.

2 The benefit estimation can be improved to take into accounfabt that for some instruc-
tions, knowing some of the operands of the instruction méywals to strength-reduce the
instruction to something cheaper even if its computatiomotbe eliminated entirely. While
our implementation uses such information in its benefinestion, we don't pursue the details
here due to space constraints.

Here p' is the program point immediately aftér and ResultRef]) the register into
which| computes its result.

The equations for computing benefits propagate informditam the uses of a reg-
ister to its definitions. These equations may be recursivgeimeral, since there may
be cycles in the use-definition chaad.t o computes an approximation of the solution
to the benefit equations. This estimate is usedlim o to select program points for
value-based optimizations.

We use a simple decision function for estimating when thdagéfit due to special-
ization for a given value profile is high enough to justify sjgdization for a particular
valuev:

Benefit(p,r) x prob(v) — TestCost(r,v) x ExecutionFreq(p) > @, (1)

whereprob(Vv) is the probability of occurrence of the valueTestCost(r,v) denotes the
cost of testing whether a registehas a value, 2 andgis an empirically chosen thresh-
old. This means that we will choose program pgirand and registarfor optimization

if the benefit is high enough. Note that the cost of testingliervaluev is taken into
account by subtracting it from the benefit.

This benefit computation is somewhat limited. It does notstber different pos-
sible values when computing the benefit for knowing the tesiln instruction. In
some cases (such as if the value is always zero), this meagsmputation may miss
some opportunities to greatly simplify the code. Using ipatar values, however, re-
sults in very high overhead for the cost-benefit computatiur computation also does
not attempt to precisely model the cache behavior of theialmed code. We consid-
ered several alternative computations, but most wererditifgractical or too costly to
compute. Our benefit computation, while imprecise in sorspeets can be computed
quickly, and produces noticeable speedup on significarthmaarks (see Figure 6).

4.2 Expression Profiling

The idea of value profiling can be generalized to thaexbression profilingwhere
we profile the distribution of values for an arbitrary exmies, not just a variable or
register, at a given program point. Examples include aritfierexpressions, such as “the
difference between the contents of registgrandr,” and boolean expressions such as
“the value of register; is different from that of registan,” In general, the expressions
profiled may not even occur in the program, either at the sbarexecutable level.
Expression profiles are not simply summaries of value pofieg., given value
profiles for registers, andrp, we cannot in general reconstruct how often the boolean
expressiorr, == ry holds. Expression profiles are important for two reasonst,Fi
they conceptually generalize the notion of value profileslbywing us to capture the
distribution of relationships between different programtitees. Second, an expression
profile may have a skewed distribution, and therefore enafiienizations, even if the
value profiles for the constituents of the expression praifike not very skewed: for

3 The cost of the test varies, depending on the value. ddsually, this test requires at least
two instructions, a compare and a branch. If no registerd$raeg the test cost is higher. The
cheapest value to test against is zero, since that requitgs.@onditional instruction.

example, a boolean expression# r, may be true almost all of the time even if the
values inry andry, do not have a very skewed distribution.

The expressions that we choose to profile are determinedrsidgrations of the
optimizations that they might enable. Our implementatiarrently targets two opti-
mizations:loop unrollingandload avoidanceMore detailed discussion of expression
profiling can be found in [15].

4.3 Static Elimination of Unprofitable Candidates

When determining whether to profile a particular profilinghdate, we consider
whether the net benefit from any specialization for that @ated would be high enough

in the best possible case. For this we assumepttodi(v) = 1 (i.e.,v is the only value
encountered at runtime), afidstCost(r, V) is the cheapest possible, i.e., we test against
the value 0. If, despite these optimistic assumptions, #reefit of performing opti-
mization is outweighed by the cost of performing the tesg vhariable is eliminated as

a candidate for profiling. In other words, a program pointstg pair(p,r) is selected

for profiling if and only if,

Benefit(p,r) > TestCost(r,0) x ExecutionFreq(p) + @, (2)

Using this selection algorithm has the additional prop#réyt profiling will tend to
be inserted in the less frequently executed portions of tte cinserting tests in the
middle of a frequently executed loop is unlikely to resulspeedups, and using a cost
benefit model accurately predicts that profiling such amirsion would be a waste of
resources.

This elimination of candidates is conservative, in the sg¢hat no matter what dis-
tribution of values is observed at runtime, the compilet nélver choose this candidate
for specialization. This means that profiling these ingstams would be a waste of re-
sources. This elimination of candidates is also very effectAs shown in Table 2,
fewer than 1% of possible program points are selected fdilimgp This results in a
reduction in execution time of 74% on average (see Figure 2).

Program No. of Program Points

Total | Baseline| Static| Dynamic
compress 16749 3302 71 17
gcc 271899 32910 6459 871
go 65328 14710 1273 262
ijpeg 49650 11728, 189 31
li 32221 5404 152 33
m88ksim 40867 7535 211 54
perl 82462 16500, 430 160
vortex | 113236 23499 242 36

Table 2. Program Points Profiled Using Different Techniques

4.4 Dynamic Elimination of Unprofitable Candidates

Given the cost-benefit computatiaht o uses for selecting optimization opportunities,
we can determine before value profiling how frequently thesinfieequent value must
appear in order to perform specialization. This frequerazylee used to turn off profil-
ing when it becomes unprofitable (i.e. the compiler will netfprm the optimization).
The cutoff threshold is computed by taking equation 1 andisglfor prob(v).

TestCost(r,0) x ExecutionFreq(p)

>
prob(v) > @+ Benefit(p,r)

©)

This gives a lower bound on the probability the most freqwatie must have in order
for the optimizer to perform specialization. Since we knbe execution frequency of
p from our basic block profile, we can substitute that into thj@ation forprob(v) ,
yielding the following:

count(V) > o+ TestCost(r,0) xExecutionFreq(p)
ExecutionFreq(p) = ¢ Benefit(p,r)

If we solve this formula forcount(v) , we can compute the minimum count that the
most frequently occurring value must have for the optimtagrerform specialization.
We then compute our threshold by subtracting this minimuomtéom the execution
frequency ofp. We know that if the count of thetherfield ever exceeds this threshold,
then the optimizer can not select this value for speciafinafsincecount(v) can not
be high enough) This means, that if thetherthreshold is exceeded, we should stop
profiling this point, since it will no longer be selected fgatnization.

The cutoff threshold is thus computed as followsy the same empirically chosen
threshold as in equation 1):

Threshold= (1— ¢+ TestCost(r,0) x ExecutionFreq(p)

Benefit(p,)) X ExecutionFreq(p).

Each profiling table has a boolean flag added, which deteswimen value profiling
takes place. If the flag is true, normal value profiling takieeg, if not, the value pro-
filing is skipped, and execution is returned to the originade. This boolean flag is
checked at every execution of the original profiling point.

The boolean flag is set to true before profiling begins. Eanbk the value profiling
table is cleaned, the table is inspected to see if profilimykhcontinue. The count of
theotherfield is compared to the threshold cutoff value, and if theshold is exceeded,
the boolean flag is set to false. Thereafter, value profililgnet be performed at this
program point.

Use of the cutoff threshold as computed above results in ditiadal 25% reduc-
tion in execution time beyond static elimination (see FgA). Again, this threshold
is a conservative choice, since the compiler would nevepsédhis instruction for
optimization after exceeding the threshold as computesgieabo

4 Strictly speaking, profiling could stop when the sum of dlésentries other than the most fre-
quent value exceed the threshold. For reasons of efficiamtyianplicity of implementation,
we consider the more conservative criterion given above.

1 Straightforward profiling Dynamic profiling
o 300, T Static profiling mmmm No profiling

g - Bbl profiling
= 25.0
S

3 20.0
Q

3 15.0
3

N 10.0
[

E 5.0
(=]

4

compress gcc go ijpeg i m88ksim perl vortex average

Fig. 2. Impact of Value Profiling on Execution Time (Relative to N@fling)

5 Performance

We implemented our value profiling approach within #ilet o link-time optimizer.
The programs used were the eight SPEC-95 integer benchnfdr&gprograms were
compiled with the vendor supplied C compiler at maximummjgtation (cc -O4) with
additional flags to produce statically linked executables.

Our tests used the training input for all benchmarks. Tineg®rted represent the
average of ten runs, with the fastest and slowest timesreditad.

5.1 Baseline

Calderet al.instrument the register result of every load instructign T obtain a base-
line for our results, we implemented this approachliri 0. Table 2 shows the number
of load instructions profiled using this approach. We impeated this straightforward
approach only for comparison purposes.

In many cases such a straightforward approach will wastefgignt time and space.
Most of the instructions being profiled will never be chosgrte optimizer for value-
based optimizations. Profiling these points is a waste afurees, since the optimizer
does not make use of the information obtained by the profleawing how the op-
timizer will make use of the profiles allows us to focus ourfiieo on those program
points that may be chosen for value-based optimization.

5.2 Experimental Results

Figure 2 shows the performance results, where No profilipgesents the running time
of the original executable. The Straightforward profilesfed the result of every load
instruction, as discussed in section 5.1. The Static prafged static elimination of un-
profitable candidates, as discussed in section 4.3. TherBigraofiler added dynamic
elimination of candidates as discussed in section 4.4.

Our baseline implementation profiled the result of everglwestruction. This was
quite costly, both in time and space, with a slowdown of 1ai2@s the original code.
After eliminating candidates unsuitable for profiling, #ast of profiling was reduced
to 2.4-5x of the original execution. Space overhead was silgoificantly reduced,

Profiling SpacéBytes)
Program Straightforward Optimized |Siz&traightforward SiZ&pt
compress 343408 7384 0.0215
gcc 3422640 671736 0.1960
go 1529840 132392 0.0865
ijpeg 1219712 19656 0.0161
li 583632 15808 0.0270
m88ksim 783640 21944 0.0280
perl 1716000 44720 0.0260
vortex 2443896 25168 0.0102
|average | 1231447| 134115 | 0.0516 |

Table 3. Space Requirements for Profiling

on average our approach uses 5% of the space of the straigattbapproach. After
adding the threshold optimization, the cost of value pmaditivas reduced to 1.5-4.5x
of the original execution time. Table 3 shows the space aattof value profiling.

The last column for Figure 2 shows the geometric mean of padace for each
implementation. Above each bar we also show the runtimehaaet of gathering basic
block profiles, since we use this information to select vagltefiling opportunities. It
can be seen that this additional overhead of basic blocklipgpfs very small. This
information would be gathered for optimization purposesatter which implementa-
tion of value profiling is used.

5.3 Low Level Characteristics

We examined the performance of our profiling code using hardwerformance coun-
ters. Unsurprisingly, we found that the Straightforwardfider used many more cycles
than either the Static or Dynamic profilers. This is due terimaenting many more pro-
gram points than the other two approaches, which resultsnngh higher instruction

count for the Straightforward profiler. Figure 3 shows theley for the original code,

as well as the three profilers.

Adding the profiling cutoff threshold to the Static profilesulted in a significant
drop cycles and instructions. This is due to the Dynamic |gmofibandoning program
points when they would no longer be selected by the optimizigure 4 shows the
number of loads executed, and Figure 5 shows the number oélbiastructions exe-
cuted.

For some benchmarks, such as compress, the profiling cimef$hold was ex-
tremely effective. Many of the program points profiled weither extremely unpre-
dictable (resulting in the cutoff being invoked quickly)ettremely predictable (result-
ing in the most frequent value being the initial table entBgr other benchmarks, the
cutoff was less useful. This is largely due to the cleaningckhonly considering the
otherfield when turning on or off profiling. If the value table has &lues that each
happen 33% of the time, then the cutoff will not be invokedwidwer, the flag is still
checked every time the value profiling is invoked.

Normalized Loads Normalized Cycles

Normalized Branchops

30.0 5
25.0
20.04
15.0
10.04

o
o
L

30.0
25.0
20.0
15.0
10.0

5.0

60.0 +

40.0

20.0

1 Straightforward profiling Dynamic profiling

=3 Static profiling

mmmmm No profiling

compress gcc go ijpeg li m88ksim

Fig. 3. Cycles used in benchmarks

perl

1 Straightforward profiling Dynamic profiling

=3 Static profiling mmmmm No profiling

compress gcc go ijpeg) li m88ksim

Fig. 4. Load Instructions Executed

perl

—— Straightforward profiling Dynamic profiling

=3 Static profiling mmmmm No profiling

compress gcc go ijpeg li m88ksim

Fig. 5. Branch Instructions Executed

perl

vortex

vortex

vortex

5.4 Specialization Performance

This paper is focused on improving the performance of vatoélimg. Our system au-
tomates both the selection of profiling points for profilingdathe selection of value
profiles for specialization. Figure 6 shows the speedupesgecialized program over
runningal t o with all optimizations other than specialization. As Fig&rshows, spe-
cialization yeilds speedups of up to 14.1% on significangpams such as the SPEC95
integer benchmarks. See [15] for further discussion of igization performance in
alto.

15.0 —
IS
[
£ 10.0
Q
>
<
(=%
£ 5.0 —— Ti
1<
8 00 = _ B m |
&
compress gcce go ijpeg li m88ksim perl vortex

Fig. 6. Specialization Performance

6 Related Work

This work is closely related to the value profiling work of Gatet al[5]. Their im-
plementation supports profiling of both memory locationd aggisters. They report
performance numbers for profiling the register result ofgl@ad instruction. Our cur-
rent implementation profiles only registers. The mechamsesl in our implementation
are very similar to what Caldet al. refer to as “full” profiling.

Calderet al. also use convergent profiling to reduce the overhead of profih
their system. Convergent profiling uses an invariance bibgito determine if profiling
is needed for a particular load instruction. This invar@waariable is updated each time
the load instruction is reached. If the table is not changprgfiling will be turned
off for a while, and later turned back on for more profiling. Anportant invariant
for us was that the count of a value in the value profile was atdwound on the
number of times the value actually appeared at run time. Astime time, we would
like the count to be as close to accurate as possible. Theehtbk frequency of a
value, the more benefit that will accrue for that program paimen it is considered for
optimization. Convergent profiling loses information tffatl” profiling retains. Calder
et al. report an average slowdown of 10x for convergent profiling. &ose to use a
cost-benefit analysis to reduce the number of program ppiafded, rather than lose

information through convergent profiling. Despite usingl'fprofiling, our overheads
are considerably lower than those reported by Caddat.

Also related is work on runtime code specialization, whigesia semi-invariant
variable, along with its value to simplify the the code in tt@mmon case. Exist-
ing techniques require the programmer to annotate the eoukentify candidates for
code specialization [1, 8, 9] Value profiling can then be usedktermine which of the
programmer-specified variables exhibit predictable bitnat runtime. Our implemen-
tation automates this process, identifying candidatepfofiling, and then choosing
among these candidates for optimization.

There is a large body of work relating to value prediction apéculation, e.g.,
see [11,12] . This involves using a combination of compikmerated information and
runtime information. For example, a load instruction wilem load the same value as
it loaded the previous time it was executed. Predictabletingons such as these can
be speculatively executed, and then checked at a later tinmake sure that execution
was correct. If the execution was incorrect, then recovedeanust be executed.

Value profiling can help to classify predictable instrunidor speculative execu-
tion. Value profiling could also indicate which of severakgictors will best suit a
particular instruction, increasing prediction accuracy.

7 Conclusion

Value-based optimizations are becoming increasingly mgmd for modern compil-
ers [9] [8]. Performing these optimizations relies on imfiation gathered at runtime.
Knowledge of how the optimizer will use this information caxake the profiler much
more efficient. This paper describes our techniques foraiediuthe cost of gathering
value profiles, both in time and space, by tightly integratime value profiler with the
optimizer that uses the value profiles.

Our optimizer makes use of a careful cost-benefit analysthtmse optimization
opportunities. We use this same analysis to select onlethpsogram point, register
pairs for profiling that could be selected for optimizatidiis results in less than 1%
of all program points being instrumented. Our profiler alsakes use of this knowl-
edge to modify its behavior while running, stopping profjlifor program points that
are no longer profitable. Our profiler will usually not instrant an instruction in the
middle of a heavily executed loop, since the cost-benefilyaizacan predict that such
an instruction will not be chosen for optimization.

Our techniques result in a slowdown of 1.5-4.5x over theinalcode, down from
a 10-28x slowdown for a straightforward approach. We alslmice the space require-
ments for a value profile to an average of 5% of that requirea Isyraightforward
approach.

References

1. J. Auslander, M Philipose, C. Chambers, S. Eggers, an&Bhad. Fast, effectvie dynamic
compilation. InSIGPLAN '96 Conference on Programming Language Design amulé-
mentation pages 149-159, May 1996.

2. T.Balland J. R. Larus, “Optimally Profiling and TracingpBrams”,Proc. 19th. Symposium
on Principles of Programming Languagelan. 1992.

H w

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

T. Ball and J. R. Larus, “Efficient Path Profiling?roc. MICRO-29 Dec. 1996.
B. Calder, P. Feller, and A. Eustace. Value profiling30th Annual International Symposium
on Microarchitecture pages 259-269, December 1997.

. B. Calder, P. Feller, and A. Eustace. Value profiling antihoigation. InJournal of Instruc-

tion Level Parallelism1999.

. P. P. Chang, S. A. Mahlke, W. Y. Chen, and W. W. Hwu, “Profiléeded automatic inline

expansion for C programs'Software Practice and Experiens®@l. 22 no. 5, May 1992,
pp. 349-369.

. R. Cohn and P. G. Lowney, “Hot Cold Optimization of Largendbws/NT Applications”,

Proc. MICRO29 Dec. 1996.

. C. Consel and F. Noel. A general approach to run-time afieafion and its application to c.

In 23rd Annual ACM Symposium on Principles of Programming luziggs pages 145146,
Jan 1996.

. D. Engler, W. Hsieh, and M. Kaashoek. ‘c: A language fohHigvel, efficient, and machine-

independent dynamic code generation.2Brd Annual ACM Symposium on Principles of
Programming Languagepages 131-144, Jan 1996.

P. Feller. Value profling for instructions and memoryalians. Master’s thesis, UCSD,
1998.

C. Fu, M. Jennings, S. Larin, and T. Conte. Software-ealye speculation scheduling.
Technical report, Department of Electrical and Computegiiering, North Carolina State
University, June 1998.

F. Gabbay and A. Mendelson. Can program profiling supg@due prediction? IfProceed-
ings of the 30 th Annual ACM/IEEE International Symposiunmvidcroarchitecture pages
270-280, Dec 1997.

A. J. Goldberg, “Reducing Overhead in Counter-Based@i@n Profiling”, Technical Re-
port CSL-TR-91-495, Computer Systems Lab., Stanford Usitye Oct. 1991.

S. S. MuchnickAdvanced Compiler Design and Implementatibtorgan Kaufman, 1997.
Robert Muth, Scott Watterson, and Saumya Debray. Caatgadjzation using value profiles.
In Static Analysis Symposiyuduly 2000, pp. 340-359.

R. Muth, S. K. Debray, S. Watterson, and K. De Bosscheie, b : A Link-Time Optimizer
for the Compagq Alpha’Software—Practice and Experiene®l. 31 no. 1, Jan 2001, pp. 67-
101.

K. Pettis and R. C. Hansen, “Profile-Guided Code PositginProc. SIGPLAN '90 Confer-
ence on Programming Language Design and Implementaliome 1990, pp. 16-27.

B. Calder and D. Grunwald, “Reducing Indirect Functiall©verhead in C++ Programs”,
Proc. 21st ACM Symposium on Principles of Programming Lagge Jan. 1994, pp. 397—
408.

U. Hdlzle and D. Ungar, “Optimizing Dynamically-Didphed Calls with Run-Time Type
Feedback”’Proc. SIGPLAN '94 Conference on Programming Language Deaigl Imple-
mentation (PLDI), June 1994, pp. 326—336.

