
Goal-Directed Value Profiling

Scott Watterson Saumya Debray

Department of Computer Science
University of Arizona

Tucson, AZ 85721fsaw, debrayg@cs.arizona.edu
Abstract. Compilers can exploit knowledge that a variable has a fixed known
value at a program point for optimizations such as code specialization and con-
stant folding. Recent work has shown that it is possible to take advantage of such
optimizations, and thereby obtain significant performanceimprovements, even if
a variable cannot be statically guaranteed to have a fixed constant value. To do
this profitably, however, it is necessary to take into account information about
the runtime distribution of values taken on by variables. This information can
be obtained though value profiling. Unfortunately, existing approaches to value
profiling incur high overheads, primarily because profilingis carried out without
consideration for the way in which the resulting information will be used. In this
paper, we describe an approach to reduce the cost of value profiling by making
the value profiler aware of the utility of the value profiles being gathered. This al-
lows our profiler to avoid wasting resources where the profilecan be guaranteed
to not be useful for optimization. This results in significant reductions in both the
time and space requirements for value profiling. Our approach, implemented in
the context of thealto link-time optimizer, is an order of magnitude faster, and
uses about 5% of the space, of a straightforward implementation.

1 Introduction

Compilers can exploit knowledge that an expression in a program can be guaranteed
to evaluate to some particular constant at compile time via the optimization known as
constant folding [14]. This is an “all-or-nothing” transformation, however, in the sense
that unless the compiler is able to guarantee that the expression under consideration
evaluates to a compile-time constant, the transformation cannot be applied. In practice,
it is often the case that an expression at a point in a program takes on a particular value
“most of the time” [5]. As an example, in the SPEC-95 benchmark perl, the function
memmoveis called close to 24 million times: in almost every case, theargument giving
the size of the memory region to be processed has the value 1; we can take advantage of
this fact to direct such calls to an optimized version of the function that is significantly
simpler and faster. As another example, in the SPEC-95 benchmarkli , a very frequently
called function,livecar, contains aswitch statement where one of the case labels,
corresponding to the typeLIST, occurs over 80% of the time; knowledge of this fact
allows the code to be restructured so that this common case can be tested separately
first, and so does not have to go through the jump table, which is relatively expensive.
As these examples suggest, if we know that certain values occur very frequently at
certain program points, we may be able to take advantage of this information to improve
the performance of the program. This information is given bya value profile, which is



a (partial) probability distribution on the values taken onby a variable when control
reaches the program point under consideration at runtime. Our experience with value-
profile-based optimizations indicate that they can producesignificant speedups for non-
trivial programs [15].

Unfortunately, existing approaches to obtaining value profiles tend to be very expen-
sive, both in time and space. For example, in an implementation of “straightforward”
value profiling by Calderet al., executables instrumented for value profiling are more
than 30 times slower, on the average, than the uninstrumented executables. The reason
for this is that their profiling decisions are made without any knowledge of the potential
utility of the profiles, i.e., the ways in which the profiles will be used for optimization.
Our experiments indicate that of all the variables and program points that are candidates
for value profiling in a program, typically only a tiny fraction actually yield value pro-
files that lead to profitable optimizations.1 This means that in value profilers based on
existing techniques, much of the overhead incurred in the course of profiling represents
wasted work.

instrumented/
optimized
executable

control flow

graph

input executable

basic block profile
+

value
profiler

optimizer

estimation
cost/benefit

end
front

instrumented
program

optimized 
program

back
end

Fig. 1. Alto system structure

In this paper, we describe a system that avoids these problems by tightly integrating
the value profiler with the optimizer that uses the results ofvalue profiling (see Figure
1). This gives the value profiler a mechanism for estimating the utility of a value profile
at a given program point, and allows it to identify profiling candidates—i.e., variables
(memory locations, registers) at particular program points—that are clearly not worth
profiling, i.e., that can be guaranteed to not yield optimization opportunities. This is
done both during the instrumentation phase, when the profiler decides where to insert
instrumentation code for value profiling, and during the actual profiling itself, when the
instrumentation code so inserted can determine whether it is worth continuing to pro-

1 A significant reason for this is that, as discussed in Section4, code optimized to exploit runtime
value distributions must be guarded by a test, and the cost ofthis runtime test must be taken
into account when weighing the profitability of the optimization.



file a particular profiling candidate. By being able to use thecost-benefit considerations
guiding the optimizer, the profiler is able to identify and prune value profiling candi-
dates that have no possibility of contributing to any optimization. The resulting system
is highly selective: typically, fewer than 1% of all possible profiling candidates are cho-
sen for actual profiling. This selectivity leads to significant improvements in profiling
performance, yielding order-of-magnitude improvements in both the space and time
requirements for profiling, while retaining all of the optimization opportunities.

There has been a great deal of work on profiling techniques [2,3, 13] and profile-
guided code optimization [6, 7, 17]. However, to the best of our knowledge this is the
first work that aims to make the profilergoal-directed, i.e., aware of the potential utility
of the profiling information that it is gathering, and able tomodify its profiling actions
based on this awareness, in order to reduce profiling overheads.

2 System Overview

The work described here has been implemented in the context of alto, a link-time op-
timizer we have constructed for the Compaq Alpha architecture [16].Alto can be used
to rewrite executable files, either to instrument them for profiling, or to carry out code
optimization. If profiling is carried out, a command line option can be used to control
whether basic block profiles, edge profiles, or value profilesare gathered.

This paper focuses on value profiling. The gathering of valueprofiles is a two-
stage process. We first usealto to instrument the input program—say,a.out—for basic
block profiling. This yields an instrumented executablea.bblprof.outthat is then exe-
cuted using representative “training inputs” to obtain a basic block profile. Using this
basic block profile, the original executablea.out is instrumented again, this time to
gather value profiles. This yields a second instrumented executablea.valprof.out. Fi-
nally, a.valprof.outis executed with the training input to obtain a value profile.

For subsequent optimization, the basic block and value profiles so gathered are fed
back toalto, which uses them to apply various code transformations on the input pro-
grama.out.

3 Mechanics of Value Profiling

Our value profiling technique is inspired by (and largely based upon) work by Calder
et al.[5]. We keep track of the top N values occurring in a given registerr at a given
program pointp. In addition to the top N values, we include a field that countsthe
number of values that are not recorded in the table; we label this theotherfield. Table
1 shows an example of a value profile, where N = 6. The field labelled other refers to
values other than 1, 9, 20, 23, 100, or 0.

Each time execution reachesp, we profile the value contained in registerr. If the
value is in the table, we increment the count of that value. Ifthe value contained in r
is not already in the table, then we attempt to insert it. If there is no room in the table
for the new value, we increment the count of theother field. In the above example
table, if registerr contains the value 100, the count of 100 in the table would simply be
incremented. Ifr contained the value 2, then the count ofotherwould be incremented,
since there is no room in the table to insert 2.



Value Count

1 2635
9 1093

20 1395
23 244

100 140
0 410

other 4698

Table 1.Example Value Profile Table

The number of entries in the value profiling table has a significant impact on the
running time of the value profiler. The table must be large enough that the most frequent
entry will be in the table, but as the table grows, the profilermust look at more entries
each time it reaches a profiling point. In this paper, we chosea value profiling table with
6 entries, plus theotherfield. This table size was the smallest size that captured most
optimization opportunities. Further analysis of table sizes can be found in [10].

In some cases, the most frequently occurring value overall is not one of the first
N distinct values. We would still like to capture this value during value profiling. We
provide a mechanism for allowing later values into the tableby periodically cleaning
the lower half of the table. This means that the values are sorted based on their counts,
and the N/2 least frequently occurring values are evicted (their counts are added to
the other count). Though cleaning is a fairly heavy process, it happens infrequently.
Our experiments indicate that, except for very small valuesof the cleaning interval,
the actual cleaning frequency does not significantly affecteither speed or quality of
profiling. Given this insensitivity, we chose—in part to simplify comparison of results—
the same cleaning interval as Calderet al. [5], namely, 1000. In other words, the table
is cleaned after the execution has reachedp 1000 times. After a table has been cleaned
once, we must make sure that a new value can enter the steady part of the table before
we clean again. We set the new value of the cleaning interval to 1000 + the count of the
last entry in the steady part. This means that if a new value occurs almost exclusively
between cleanings, its count should be higher than the last entry in the steady part
of the table. It will then be moved into the steady part, evicting the least frequently
encountered value.

Each program point selected for profiling incurs both an execution and a space cost.
Profiling every register at every program point is obviouslywasteful, so we must be
more selective. Calderet. al instrumented every load instruction. We consider this the
baseline approach, and discuss it in more detail in Section 5.1. Section 4 describes our
approach.

4 Goal-Directed Value Profiling

To minimize the amount of wasted work during value profiling,we attempt to detect,
as early as possible, those profiling candidates whose valueprofiles can be guaranteed



to not yield useful optimizations. There are two possibilities for the detection of such
unprofitable profiling candidates:(i) We may be able to tell, based on the basic block execution profile of the program,

that specializing the program based on the values of a variable at a given program
point will not yield an improvement in performance, regardless of the value profile
for the variable at that program point. In this case, we can avoid profiling this can-
didate altogether. Section 4.1 describes a cost model for value-profile-based code
specialization, and Section 4.3 discusses how this model can be used for a cost-
benefit analysis that allows us to avoid profiling unprofitable candidates.(ii) Even if we cannot eliminate a profiling candidate ahead of time as discussed above,
we may find, as profiling progresses, that the value profile fora particular profiling
candidate is simply not “good enough” to yield any profitableoptimization, regard-
less of the values that may be encountered for that candidateduring the remainder
of the computation. When this happens, we can discontinue profiling this candidate.
A natural place to do this is at the point where a value profile table is cleaned, since
cleaning requires us to examine the table in any case. The details of how we deter-
mine whether it is worth continuing to profile a particular candidate are discussed
in Section 4.4.

Calderet. alnote that instructions other than loads may be highly invariant [4]. For
example, consider the following code:

r1 load 0(r18)
r2 and r1, 0xf

In this sequence, theand instruction may always produce the same result (if all of the
loads have the same low 4 bits) despite the load instruction never loading the same value
twice.

This discovery makes value profiling potentially much more powerful. The opti-
mizer can consider many potentially useful program points other than load instructions
for specialization. These may include function arguments (profiled at function entry),
switch statement selectors, and other such values. Calder reports that full profiling for
all load instructions results in a 32x slowdown. Since thereare many program points,
our cost-benefit analysis is of critical importance in reducing the amount of time and
space used for profiling. We consider all registers at all program points candidates, and
use the cost-benefit analysis as discussed in Sec 4.3 to choose those candidates that may
yield useful optimizations.

Our system focuses on code specialization, since that optimization is implemented
in alto. If we change the optimizations used inalto, for instance to reduce indirect
function call overhead [18, 19], we need not change the profiler. Since the optimizer
shares the cost-benefit decisions with the profiler, the profiler would simply select dif-
ferent program points, based on the expected benefit.

4.1 A Cost Model for Value-Profile-Based Code Specialization

Our approach uses value profiles primarily for value-based specialization. By this we
mean the elimination of computations whose result can be evaluated statically. Suppose



we have a code fragmentC that we wish to specialize for a particular valuevof a register
(or variable)r. Conceptually, value-profile-based specialization transforms the code to
have the structureif (r == v) then hCir=v elseC wherehCir=v represents the residual
code ofC after it has been specialized to the valuev of r. The test ‘if (r == v) . . . ’ is
needed because the value ofr is not a compile-time constant, i.e., we cannot guarantee
thatr will not take on any value other thanv at that program point.

Notice that, while the specialized codehCir=v may be more efficient than the origi-
nal codeC, the overall transformed code will actually be less efficient than the original
code for values ofr other thanv because of the runtime test that has been introduced.
There is thus a tradeoff associated with the transformation: if the optimized code is
not executed sufficiently frequently, then the cost of performing the runtime test will
outweigh the benefit of performing the value-based optimizations.

This optimization therefore requires a cost-benefit analysis to determine when to
specialize a program. Our analysis attempts to assign a benefit value to each instruction.
The benefit computation assigns a value to ahprogram point, registeri pair. The benefit
is an estimate of the savings from specializing code based onknowing the value of the
registerr at the program pointp. This benefit computation has two components:(i) For each instructionI that uses the value ofr available atp, there may be some

benefit to knowing this value. The magnitude of this benefit will depend on the
type ofI , and is denoted bySavings(I ; r).(ii) It may happen that knowing the value of an operand register ofan instruction allows
us to determine the value computed byI . In this case,I is said to beevaluablegiven
r. If I is evaluable givenr, the benefit obtained from specializing other instructions
that use the value computed byI are also credited to knowing the value ofr at p.
The indirect benefits so obtained from knowing the value ofr in instructionI are
denoted byIndirBene�t(I ; r).

The savings obtained from knowing the operand values for an individual instruction is
essentially the latency of that instruction, if knowing theoperand values allows us to
determine the value computed by that instruction, and thereby eliminate that instruc-
tion entirely2 (our implementation uses latency figures for various classes of operations
based on data from the Alpha 21164 hardware reference manual):Savings(I ; r) = if Evaluable(I ; r) then Laten
y(I) else0.

Let Uses(p; r) denote the set of all instructions that use the value of register r that is
available at program pointp. Then the benefit of knowing the value of a registerr at
program pointp is given by the following:Bene�t(p; r) = ∑

I2Uses(p; r)(Exe
utionFreq(I)�Savings(I ; r)+ IndirBene�t(I ; r))IndirBene�t(I ; r) = if Evaluable(I ; r) then Bene�t(p0;ResultReg(I)) else0.
2 The benefit estimation can be improved to take into account the fact that for some instruc-

tions, knowing some of the operands of the instruction may allow us to strength-reduce the
instruction to something cheaper even if its computation cannot be eliminated entirely. While
our implementation uses such information in its benefit estimation, we don’t pursue the details
here due to space constraints.



Here p0 is the program point immediately afterI , andResultReg(I) the register into
which I computes its result.

The equations for computing benefits propagate informationfrom the uses of a reg-
ister to its definitions. These equations may be recursive ingeneral, since there may
be cycles in the use-definition chain.alto computes an approximation of the solution
to the benefit equations. This estimate is used inalto to select program points for
value-based optimizations.

We use a simple decision function for estimating when the netbenefit due to special-
ization for a given value profile is high enough to justify specialization for a particular
valuev: Bene�t(p; r)�prob(v)�TestCost(r;v)�Exe
utionFreq(p)� φ; (1)

whereprob(v) is the probability of occurrence of the valuev, TestCost(r;v) denotes the
cost of testing whether a registerr has a valuev, 3 andφ is an empirically chosen thresh-
old. This means that we will choose program pointp and and registerr for optimization
if the benefit is high enough. Note that the cost of testing forthe valuev is taken into
account by subtracting it from the benefit.

This benefit computation is somewhat limited. It does not consider different pos-
sible values when computing the benefit for knowing the result of an instruction. In
some cases (such as if the value is always zero), this means our computation may miss
some opportunities to greatly simplify the code. Using particular values, however, re-
sults in very high overhead for the cost-benefit computation. Our computation also does
not attempt to precisely model the cache behavior of the specialized code. We consid-
ered several alternative computations, but most were either impractical or too costly to
compute. Our benefit computation, while imprecise in some respects can be computed
quickly, and produces noticeable speedup on significant benchmarks (see Figure 6).

4.2 Expression Profiling

The idea of value profiling can be generalized to that ofexpression profiling, where
we profile the distribution of values for an arbitrary expression, not just a variable or
register, at a given program point. Examples include arithmetic expressions, such as “the
difference between the contents of registersra andrb” and boolean expressions such as
“the value of registerra is different from that of registerrb” In general, the expressions
profiled may not even occur in the program, either at the source or executable level.

Expression profiles are not simply summaries of value profiles: e.g., given value
profiles for registersra andrb, we cannot in general reconstruct how often the boolean
expressionra == rb holds. Expression profiles are important for two reasons. First,
they conceptually generalize the notion of value profiles byallowing us to capture the
distribution of relationships between different program entities. Second, an expression
profile may have a skewed distribution, and therefore enableoptimizations, even if the
value profiles for the constituents of the expression profileare not very skewed: for

3 The cost of the test varies, depending on the value ofv. Usually, this test requires at least
two instructions, a compare and a branch. If no registers arefree, the test cost is higher. The
cheapest value to test against is zero, since that requires only a conditional instruction.



example, a boolean expressionra 6= rb may be true almost all of the time even if the
values inra andrb do not have a very skewed distribution.

The expressions that we choose to profile are determined by considerations of the
optimizations that they might enable. Our implementation currently targets two opti-
mizations:loop unrollingandload avoidance. More detailed discussion of expression
profiling can be found in [15].

4.3 Static Elimination of Unprofitable Candidates

When determining whether to profile a particular profiling candidate, we consider
whether the net benefit from any specialization for that candidate would be high enough
in the best possible case. For this we assume thatprob(v) = 1 (i.e.,v is the only value
encountered at runtime), andTestCost(r;v) is the cheapest possible, i.e., we test against
the value 0. If, despite these optimistic assumptions, the benefit of performing opti-
mization is outweighed by the cost of performing the test, this variable is eliminated as
a candidate for profiling. In other words, a program point register pairhp; ri is selected
for profiling if and only if,Bene�t(p; r)� TestCost(r;0)�Exe
utionFreq(p)+φ; (2)

Using this selection algorithm has the additional propertythat profiling will tend to
be inserted in the less frequently executed portions of the code. Inserting tests in the
middle of a frequently executed loop is unlikely to result inspeedups, and using a cost
benefit model accurately predicts that profiling such an instruction would be a waste of
resources.

This elimination of candidates is conservative, in the sense that no matter what dis-
tribution of values is observed at runtime, the compiler will never choose this candidate
for specialization. This means that profiling these instructions would be a waste of re-
sources. This elimination of candidates is also very effective: As shown in Table 2,
fewer than 1% of possible program points are selected for profiling. This results in a
reduction in execution time of 74% on average (see Figure 2).

Program No. of Program Points
Total Baseline Static Dynamic

compress 16749 3302 71 17
gcc 271899 32910 6459 871
go 65328 14710 1273 262
ijpeg 49650 11728 189 31
li 32221 5404 152 33
m88ksim 40867 7535 211 54
perl 82462 16500 430 160
vortex 113236 23499 242 36

Table 2.Program Points Profiled Using Different Techniques



4.4 Dynamic Elimination of Unprofitable Candidates

Given the cost-benefit computationalto uses for selecting optimization opportunities,
we can determine before value profiling how frequently the most frequent value must
appear in order to perform specialization. This frequency can be used to turn off profil-
ing when it becomes unprofitable (i.e. the compiler will not perform the optimization).
The cutoff threshold is computed by taking equation 1 and solving for prob(v).prob(v)� φ+ TestCost(r;0)�Exe
utionFreq(p)Bene�t(p; r) ; (3)

This gives a lower bound on the probability the most frequentvalue must have in order
for the optimizer to perform specialization. Since we know the execution frequency of
p from our basic block profile, we can substitute that into the equation forprob(v) ,
yielding the following:
ount(v)Exe
utionFreq(p) � φ+ TestCost(r;0)�Exe
utionFreq(p)Bene�t(p; r) ;
If we solve this formula for
ount(v) , we can compute the minimum count that the
most frequently occurring value must have for the optimizerto perform specialization.
We then compute our threshold by subtracting this minimum count from the execution
frequency ofp. We know that if the count of theotherfield ever exceeds this threshold,
then the optimizer can not select this value for specialization (since
ount(v) can not
be high enough)4. This means, that if theother threshold is exceeded, we should stop
profiling this point, since it will no longer be selected for optimization.

The cutoff threshold is thus computed as follows (φ is the same empirically chosen
threshold as in equation 1):

Threshold= (1� φ+TestCost(r;0)�Exe
utionFreq(p)Bene�t(p; r) )�Exe
utionFreq(p).
Each profiling table has a boolean flag added, which determines when value profiling
takes place. If the flag is true, normal value profiling takes place, if not, the value pro-
filing is skipped, and execution is returned to the original code. This boolean flag is
checked at every execution of the original profiling point.

The boolean flag is set to true before profiling begins. Each time the value profiling
table is cleaned, the table is inspected to see if profiling should continue. The count of
theotherfield is compared to the threshold cutoff value, and if the threshold is exceeded,
the boolean flag is set to false. Thereafter, value profiling will not be performed at this
program point.

Use of the cutoff threshold as computed above results in an additional 25% reduc-
tion in execution time beyond static elimination (see Figure 2). Again, this threshold
is a conservative choice, since the compiler would never choose this instruction for
optimization after exceeding the threshold as computed above.

4 Strictly speaking, profiling could stop when the sum of all table entries other than the most fre-
quent value exceed the threshold. For reasons of efficiency and simplicity of implementation,
we consider the more conservative criterion given above.



compress gcc go ijpeg li m88ksim perl vortex average

5.0

10.0

15.0

20.0

25.0

30.0

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

5.0

10.0

15.0

20.0

25.0

30.0

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

Straightforward profiling
Static profiling

Dynamic profiling
No profiling
Bbl profiling

5.0

10.0

15.0

20.0

25.0

30.0

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

Fig. 2. Impact of Value Profiling on Execution Time (Relative to No Profiling)

5 Performance

We implemented our value profiling approach within thealto link-time optimizer.
The programs used were the eight SPEC-95 integer benchmarks. The programs were
compiled with the vendor supplied C compiler at maximum optimization (cc -O4) with
additional flags to produce statically linked executables.

Our tests used the training input for all benchmarks. Times reported represent the
average of ten runs, with the fastest and slowest times eliminated.

5.1 Baseline

Calderet al. instrument the register result of every load instruction [5]. To obtain a base-
line for our results, we implemented this approach inalto. Table 2 shows the number
of load instructions profiled using this approach. We implemented this straightforward
approach only for comparison purposes.

In many cases such a straightforward approach will waste significant time and space.
Most of the instructions being profiled will never be chosen by the optimizer for value-
based optimizations. Profiling these points is a waste of resources, since the optimizer
does not make use of the information obtained by the profiler.Knowing how the op-
timizer will make use of the profiles allows us to focus our profiler on those program
points that may be chosen for value-based optimization.

5.2 Experimental Results

Figure 2 shows the performance results, where No profiling represents the running time
of the original executable. The Straightforward profiler profiled the result of every load
instruction, as discussed in section 5.1. The Static profiler used static elimination of un-
profitable candidates, as discussed in section 4.3. The Dynamic profiler added dynamic
elimination of candidates as discussed in section 4.4.

Our baseline implementation profiled the result of every load instruction. This was
quite costly, both in time and space, with a slowdown of 10-28times the original code.
After eliminating candidates unsuitable for profiling, thecost of profiling was reduced
to 2.4-5x of the original execution. Space overhead was alsosignificantly reduced,



Profiling Space(Bytes)
Program Straightforward Optimized SizeStraightforward=Sizeopt

compress 343408 7384 0.0215
gcc 3422640 671736 0.1960
go 1529840 132392 0.0865
ijpeg 1219712 19656 0.0161
li 583632 15808 0.0270
m88ksim 783640 21944 0.0280
perl 1716000 44720 0.0260
vortex 2443896 25168 0.0102

average 1231447 134115 0.0516

Table 3.Space Requirements for Profiling

on average our approach uses 5% of the space of the straightforward approach. After
adding the threshold optimization, the cost of value profiling was reduced to 1.5-4.5x
of the original execution time. Table 3 shows the space overhead of value profiling.

The last column for Figure 2 shows the geometric mean of performance for each
implementation. Above each bar we also show the runtime overhead of gathering basic
block profiles, since we use this information to select valueprofiling opportunities. It
can be seen that this additional overhead of basic block profiling is very small. This
information would be gathered for optimization purposes nomatter which implementa-
tion of value profiling is used.

5.3 Low Level Characteristics

We examined the performance of our profiling code using hardware performance coun-
ters. Unsurprisingly, we found that the Straightforward profiler used many more cycles
than either the Static or Dynamic profilers. This is due to instrumenting many more pro-
gram points than the other two approaches, which results in amuch higher instruction
count for the Straightforward profiler. Figure 3 shows the cycles for the original code,
as well as the three profilers.

Adding the profiling cutoff threshold to the Static profiler resulted in a significant
drop cycles and instructions. This is due to the Dynamic profiler abandoning program
points when they would no longer be selected by the optimizer. Figure 4 shows the
number of loads executed, and Figure 5 shows the number of branch instructions exe-
cuted.

For some benchmarks, such as compress, the profiling cutoff threshold was ex-
tremely effective. Many of the program points profiled were either extremely unpre-
dictable (resulting in the cutoff being invoked quickly) orextremely predictable (result-
ing in the most frequent value being the initial table entry). For other benchmarks, the
cutoff was less useful. This is largely due to the cleaning check only considering the
other field when turning on or off profiling. If the value table has 3 values that each
happen 33% of the time, then the cutoff will not be invoked. However, the flag is still
checked every time the value profiling is invoked.



compress gcc go ijpeg li m88ksim perl vortex

5.0

10.0

15.0

20.0

25.0

30.0

N
or

m
al

iz
ed

 C
yc

le
s

5.0

10.0

15.0

20.0

25.0

30.0

N
or

m
al

iz
ed

 C
yc

le
s

Straightforward profiling
Static profiling

Dynamic profiling
No profiling

Fig. 3.Cycles used in benchmarks

compress gcc go ijpeg li m88ksim perl vortex

5.0

10.0

15.0

20.0

25.0

30.0

N
or

m
al

iz
ed

 L
oa

ds

5.0

10.0

15.0

20.0

25.0

30.0

N
or

m
al

iz
ed

 L
oa

ds

Straightforward profiling
Static profiling

Dynamic profiling
No profiling

Fig. 4. Load Instructions Executed

compress gcc go ijpeg li m88ksim perl vortex

20.0

40.0

60.0

N
or

m
al

iz
ed

 B
ra

nc
ho

ps

20.0

40.0

60.0

N
or

m
al

iz
ed

 B
ra

nc
ho

ps

Straightforward profiling
Static profiling

Dynamic profiling
No profiling

Fig. 5. Branch Instructions Executed



5.4 Specialization Performance

This paper is focused on improving the performance of value profiling. Our system au-
tomates both the selection of profiling points for profiling and the selection of value
profiles for specialization. Figure 6 shows the speedup of the specialized program over
runningalto with all optimizations other than specialization. As Figure 6 shows, spe-
cialization yeilds speedups of up to 14.1% on significant programs such as the SPEC95
integer benchmarks. See [15] for further discussion of specialization performance in
alto.

compress gcc go ijpeg li m88ksim perl vortex
-5.0

0.0

5.0

10.0

15.0

P
er

ce
nt

 Im
pr

ov
em

en
t

-5.0

0.0

5.0

10.0

15.0

P
er

ce
nt

 Im
pr

ov
em

en
t

Fig. 6.Specialization Performance

6 Related Work

This work is closely related to the value profiling work of Calder et al.[5]. Their im-
plementation supports profiling of both memory locations and registers. They report
performance numbers for profiling the register result of every load instruction. Our cur-
rent implementation profiles only registers. The mechanicsused in our implementation
are very similar to what Calderet al. refer to as “full” profiling.

Calderet al. also use convergent profiling to reduce the overhead of profiling in
their system. Convergent profiling uses an invariance variable to determine if profiling
is needed for a particular load instruction. This invariance variable is updated each time
the load instruction is reached. If the table is not changing, profiling will be turned
off for a while, and later turned back on for more profiling. Animportant invariant
for us was that the count of a value in the value profile was a lower bound on the
number of times the value actually appeared at run time. At the same time, we would
like the count to be as close to accurate as possible. The higher the frequency of a
value, the more benefit that will accrue for that program point when it is considered for
optimization. Convergent profiling loses information that“full” profiling retains. Calder
et al. report an average slowdown of 10x for convergent profiling. We chose to use a
cost-benefit analysis to reduce the number of program pointsprofiled, rather than lose



information through convergent profiling. Despite using “full” profiling, our overheads
are considerably lower than those reported by Calderet al.

Also related is work on runtime code specialization, which uses a semi-invariant
variable, along with its value to simplify the the code in thecommon case. Exist-
ing techniques require the programmer to annotate the code to identify candidates for
code specialization [1, 8, 9] Value profiling can then be usedto determine which of the
programmer-specified variables exhibit predictable behavior at runtime. Our implemen-
tation automates this process, identifying candidates forprofiling, and then choosing
among these candidates for optimization.

There is a large body of work relating to value prediction andspeculation, e.g.,
see [11, 12] . This involves using a combination of compiler generated information and
runtime information. For example, a load instruction will often load the same value as
it loaded the previous time it was executed. Predictable instructions such as these can
be speculatively executed, and then checked at a later time to make sure that execution
was correct. If the execution was incorrect, then recovery code must be executed.

Value profiling can help to classify predictable instructions for speculative execu-
tion. Value profiling could also indicate which of several predictors will best suit a
particular instruction, increasing prediction accuracy.

7 Conclusion

Value-based optimizations are becoming increasingly important for modern compil-
ers [9] [8]. Performing these optimizations relies on information gathered at runtime.
Knowledge of how the optimizer will use this information canmake the profiler much
more efficient. This paper describes our techniques for reducing the cost of gathering
value profiles, both in time and space, by tightly integrating the value profiler with the
optimizer that uses the value profiles.

Our optimizer makes use of a careful cost-benefit analysis tochoose optimization
opportunities. We use this same analysis to select only those h program point, registeri
pairs for profiling that could be selected for optimization.This results in less than 1%
of all program points being instrumented. Our profiler also makes use of this knowl-
edge to modify its behavior while running, stopping profiling for program points that
are no longer profitable. Our profiler will usually not instrument an instruction in the
middle of a heavily executed loop, since the cost-benefit analysis can predict that such
an instruction will not be chosen for optimization.

Our techniques result in a slowdown of 1.5-4.5x over the original code, down from
a 10-28x slowdown for a straightforward approach. We also reduce the space require-
ments for a value profile to an average of 5% of that required bya straightforward
approach.

References
1. J. Auslander, M Philipose, C. Chambers, S. Eggers, and B. Bershad. Fast, effectvie dynamic

compilation. InSIGPLAN ’96 Conference on Programming Language Design and Imple-
mentation, pages 149–159, May 1996.

2. T. Ball and J. R. Larus, “Optimally Profiling and Tracing Programs”,Proc. 19th. Symposium
on Principles of Programming Languages, Jan. 1992.



3. T. Ball and J. R. Larus, “Efficient Path Profiling”,Proc. MICRO-29, Dec. 1996.
4. B. Calder, P. Feller, and A. Eustace. Value profiling. In30th Annual International Symposium

on Microarchitecture, pages 259–269, December 1997.
5. B. Calder, P. Feller, and A. Eustace. Value profiling and optimization. InJournal of Instruc-

tion Level Parallelism, 1999.
6. P. P. Chang, S. A. Mahlke, W. Y. Chen, and W. W. Hwu, “Profile-guided automatic inline

expansion for C programs”,Software Practice and Experiencevol. 22 no. 5, May 1992,
pp. 349–369.

7. R. Cohn and P. G. Lowney, “Hot Cold Optimization of Large Windows/NT Applications”,
Proc. MICRO29, Dec. 1996.

8. C. Consel and F. Noel. A general approach to run-time specialization and its application to c.
In 23rd Annual ACM Symposium on Principles of Programming Languages, pages 145–146,
Jan 1996.

9. D. Engler, W. Hsieh, and M. Kaashoek. ‘c: A language for high-level, efficient, and machine-
independent dynamic code generation. In23rd Annual ACM Symposium on Principles of
Programming Languages, pages 131–144, Jan 1996.

10. P. Feller. Value profling for instructions and memory locations. Master’s thesis, UCSD,
1998.

11. C. Fu, M. Jennings, S. Larin, and T. Conte. Software-onlyvalue speculation scheduling.
Technical report, Department of Electrical and Computer Engineering, North Carolina State
University, June 1998.

12. F. Gabbay and A. Mendelson. Can program profiling supportvalue prediction? InProceed-
ings of the 30 th Annual ACM/IEEE International Symposium onMicroarchitecture, pages
270–280, Dec 1997.

13. A. J. Goldberg, “Reducing Overhead in Counter-Based Execution Profiling”, Technical Re-
port CSL-TR-91-495, Computer Systems Lab., Stanford University, Oct. 1991.

14. S. S. Muchnick,Advanced Compiler Design and Implementation, Morgan Kaufman, 1997.
15. Robert Muth, Scott Watterson, and Saumya Debray. Code specialization using value profiles.

In Static Analysis Symposium, July 2000, pp. 340-359.
16. R. Muth, S. K. Debray, S. Watterson, and K. De Bosschere, “alto : A Link-Time Optimizer

for the Compaq Alpha”,Software—Practice and Experience, vol. 31 no. 1, Jan 2001, pp. 67-
101.

17. K. Pettis and R. C. Hansen, “Profile-Guided Code Positioning”, Proc. SIGPLAN ’90 Confer-
ence on Programming Language Design and Implementation, June 1990, pp. 16–27.

18. B. Calder and D. Grunwald, “Reducing Indirect Function Call Overhead in C++ Programs”,
Proc. 21st ACM Symposium on Principles of Programming Languages, Jan. 1994, pp. 397–
408.

19. U. Hölzle and D. Ungar, “Optimizing Dynamically-Dispatched Calls with Run-Time Type
Feedback”,Proc. SIGPLAN ’94 Conference on Programming Language Design and Imple-
mentation (PLDI), June 1994, pp. 326–336.


