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ABSTRACT
Event-based systems provide a simple way to create flexible, ex-
tensible, and customizable system architectures and give a “user-
driven” feel to the system. However, the indirect coupling between
the raising and handling of events introduces a number of over-
heads into the system. Such overheads can be surprisingly large,
and are especially significant in small mobile systems. This pa-
per describes a framework for profile-guided optimization of event-
based systems. Experiments using our approach on two different
event-based systems, Cactus and X-windows, indicates that it can
achieve significant reductions in event handling overheads and lead
to considerable improvements in overall system performance.

1. INTRODUCTION
Eventsare increasingly being used as a fundamental abstraction

for writing programs in a variety of contexts. They are used to
structure user interaction code in GUI systems [16, 7], form the
basis for configurability in systems to build customized distributed
services and network protocols [3, 8, 14], are the paradigm used
for asynchronous notification in distributed object systems [17],
and are advocated as an alternative to threads in web servers and
other types of system code [18, 21]. Even operating system ker-
nels can be viewed as event-based systems, with the occurrence of
interrupts and system calls being events that drive execution. The
rationale behind using events is multidimensional. Events are asyn-
chronous, which is a natural match for the reactive execution be-
havior of GUIs and operating systems. Events also allow the mod-
ules raising events to be decoupled from those fielding the events,
thereby improving configurability. In short, event-based program-
ming is generally more flexible and can often be used to realize
richer execution semantics than traditional procedural or thread-
oriented styles.

Despite these advantages, events have the potentially serious draw-
back of extra execution overhead due to the indirection between
modules that raise and handle events [4, 13]. Typically, there is
a registry that maps an event to a collection of handlers to be exe-
cuted when the event occurs. Because these handlers are not known
statically—and may in fact change dynamically—they are invoked�The work of S. Debray was supported in part by the NSF un-
der grants CCR-0073394, EIA-0080123, and CCR-0113633. The
work by others supported in part by the DARPA under grant
N66001-97-C-8518 and by the National Science Foundation under
grant ANI-9979438.

indirectly. Depending on the system, the number and type of the
arguments passed to the handler may also not be known, requiring
argument marshaling. Finally, there may be repeated work, e.g.,
initialization or checking of shared data structures, across multiple
handlers for a given event. All these extra costs can be surprisingly
high—our experiments indicate that they can account for up to 20%
of the total execution time in some scenarios.

This paper describes a collection of static optimizations designed
to reduce the overhead of event-based programs. Our approach ex-
ploits the underlying predictability of many event-based programs
to generate anevent profilethat is conceptually akin to path pro-
files through the call graph of the program. These profiles are then
used to identify commonly encountered events and their handlers,
as well as the collection of handlers associated with each event and
the order in which they are invoked. This information is then used
to optimize event execution by, for example, merging handlers and
chaining events. The techniques are specific to event-based pro-
grams, since standard optimization techniques are largely ineffec-
tive in this context. For example, conventional static analysis tech-
niques cannot generally discover the connections between events
and handlers, let alone optimize away the associated overheads.
Dynamic optimization systems such as Dynamo [1] can be used
in principle, but they focus primarily on lightweight optimizations
such as improving locality and instruction-cache usage in an effort
to keep runtime overheads low. In contrast, the optimizations we
consider are substantially more heavyweight, and—in the context
of event-based programs—offer correspondingly greater benefits.
Our techniques are specifically designed to improve execution on
small mobile devices, where resource constraints make any reduc-
tion in overhead valuable.

The remainder of the paper is organized as follows. Section 2
describes a general model for event-based programs. This is fol-
lowed in section 3 by a description of our approach to optimizing
such programs, including our profiling scheme and the collection of
optimization techniques based on these profiles. Section 4 gives ex-
perimental results that demonstrate the potential improvements for
three different examples. The first two, a video application and a
configurable secure communication service, are built using Cactus,
a system for constructing highly configurable distributed services
and network protocols that supports event-based execution [11, 9].
The third is client side tools that use X Windows, a popular system
for building GUIs [16]. This is followed by discussions of possi-
ble extensions in section 5 and related work in section 6. Finally,
section 7 offers conclusions.



2. EVENT-BASED PROGRAMS
While event-based programs differ considerably depending on

the specifics of the underlying programming model and notation,
their architectures have a number of broad underlying similarities.
Because of this, the optimizations described in this paper are gen-
erally applicable to most such systems. This section presents a
general model for event-based systems in order to provide a com-
mon framework for discussion. As examples, we describe how both
Cactus and the X Windows system map into the model.

2.1 Components
Our general model consists of three main components:events,

handlersthat specify the reaction to an event, andbindings that
specify which handlers are to be executed when a specific event
occurs.

Events. Events abstract the asynchronous occurrence of stimuli
that must be dealt with by a program. Mouse motion, button click,
and key press are examples of such events in a user interface con-
text, while receiving a packet from the network and message pass-
ing are examples in a systems context. In addition to suchexternal
events, an event-based program may useinternal eventsthat are
generated and processed within the program. The set of events used
in the event system may be fixed or the system may allow programs
to define new events. Basic events may be composed intocomplex
events. For example, two basic button click events within a short
time period can be defined to constitute a double-click event.

Handlers. Handlers direct the response of the program to event-
based stimuli. Specifically, a handler is a section of code that
specifies the actions to be performed when a given event occurs.
Typically, handlers have at least one parameter, the event that was
raised; other parameters may be passed through variable argument
lists or through shared data structures. The decoupling provided
by the event mechanism allows handlers to be developed indepen-
dently from other handlers in the system.

Bindings. Bindings determine which handlers are executed when
a specific event occurs. The binding between an event and a han-
der is often provided using some type ofbind operation, although
the binding may also be predefined and fixed. Most systems al-
low multiple handlers to be bound to a single event and a handler
to be bound into more than one event. An event is ignored if no
handlers are bound to the event. The execution order of multiple
handlers bound to the same event may be important. Bindings may
bestatic, i.e., remain the same throughout the execution of the pro-
gram, ordynamic, i.e., may change at runtime. Figure 1 illustrates
bindings.

Events Handlers
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Figure 1: Event Bindings

Bindings are maintained in a registry that maps each event to
a list of handlers. The registry may be implemented as a shared
data structure like the table shown in the figure, or each list may
be maintained as a part of an event data structure. For distributed
systems where handlers may be on distinct physical machines, the

registry may be implemented using either a centralized or decen-
tralized approach.

2.2 Execution
The handlers bound to an event are executed when the event oc-

curs. An event may occur because the program receives some ex-
ternal stimuli (external event) or because some program component
raises the event (internal event). An execution environment or run-
time system is typically responsible for detecting or receiving exter-
nal stimuli and activating the corresponding events. As a result, we
say these events are raised implicitly, whereas events directly acti-
vated by a program component are raised explicitly.Timed events
are events that are activated at a specified time or after a specified
delay. These can be either internal or external events.

We identify two major types of event activation:synchronous
activationandasynchronous activation. With synchronous activa-
tion, the specified handlers are executed to completion before the
activator continues execution. With asynchronous activation, the
activator continues execution without any guarantees as to when
the handlers are executed. The different types of event activation
have specific uses in event-based systems. Synchronous activation
can be used for internal events when the event activator needs to
know when the processing of the message has completed before
continuing its own processing. Synchronous activation can be used
for external events when the runtime system needs to ensure that
such events are executed sequentially without interleaving. Asyn-
chronous activation can be used when none of these requirements
apply.

The overall picture of the event-based program to be optimized
then consists of a program that reacts to stimuli from its environ-
ment, such as user actions or messages. These stimuli are con-
verted into events. Each event may have multiple handlers bound
to it and handlers may activate other events synchronously or asyn-
chronously. Thus, the occurrence of an event may lead to the acti-
vation of a chain of handlers and other events and, in turn, their
handlers. Events can also be generated by the passage of time
(e.g., timeouts). The type of event activation has implications on
our optimization techniques. For example, since the handlers for
a synchronous activation are executed when the event is raised,
an optimization that replaces the activation call with calls to the
handlers bound to that event at this time results in a correct trans-
formation. Similarly, it is easy to see that sequences of or nested
synchronous activations can be readily optimized. The specific op-
timization techniques and their limitations are discussed below in
section 3.

2.3 Example Systems
Cactus. Cactus is a system and a framework for constructing

configurable protocols and services, where each service property
or functional component is implemented as a separate module [9].
As illustrated in figure 2, a service in Cactus is implemented as a
composite protocol, with each service property or other functional
component implemented as amicro-protocol. A customized in-
stance of the composite protocol is constructed simply by choosing
the appropriate set of micro-protocols. A micro-protocol is struc-
tured as a collection ofevent handlersthat correspond to the han-
dlers in our general event-based model. A typical micro-protocol
consists of two or more event handlers. Events in Cactus are user-
defined. A typical composite protocol uses 10-20 different events
consisting of few external events caused by interactions with soft-
ware outside the composite protocol and numerous internal events
used to structure the internal processing of a message or service
request. Each event typically has multiple event handlers. As a re-
sult, Cactus composite protocols often have long chains of events
and event handlers activated by one event. Section 4 gives concrete
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Figure 2: Cactus Composite Protocol

examples of events used in a Cactus composite protocol.
The Cactus runtime system provides a variety of operations for

managing events and event handlers. In particular, operations are
provided for binding an event handler to a specified event (bind)
and for activating an event (raise). Event handler binding is com-
pletely dynamic. Events can be raised either synchronously or
asynchronously, and an event can also be raised with a specified de-
lay to implement time-driven execution. The order of event handler
execution can also be specified if desired. Arguments can be passed
to handlers in both the bind and raise operations. Other operations
are available for unbinding handlers, creating and deleting events,
halting event execution, and canceling a delayed event. Handler
execution is atomic with respect to concurrency, i.e., a handler is
executed to completion before any other handler is started unless it
voluntarily yields the CPU. Cactus does not directly support com-
plex events, but such events can be implemented by defining a new
event and having a micro-protocol raise this event when the condi-
tions for the complex event are satisfied.

The X Window system.X is a popular GUI framework for Unix
systems. The standard architecture of an X based system is shown
in figure 3. The X server is a program that runs on each system sup-
porting a graphics display and is responsible for managing device
drivers. Application programs, also called X clients, may be local
or remote to the display system. X servers and X clients use the
X-protocol for communication. X clients are typically built on the
Xlib libraries using toolkits like Xt, GTK, or Qt. X clients are im-
plemented as a collection ofwidgets, which are the basic building
blocks of X applications.

An X event is defined as “a packet of data sent by the server to
the client in response to user behavior or to window system changes
resulting from interactions between windows” [16]. Examples of
X events include mouse motion, focus change, and button press.
These events are recognized through device drivers and relayed to
the X server, which in turn conveys them to X clients. The Xlib
framework specifies 33 basic events. X clients may choose to re-
spond to any of these based on event masks, which they specify at
bind time. Events are also used in communication between wid-
gets. Events may arrive in any order and they are queued by the
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Figure 3: Architecture of X Window Systems

X client. The event activation in X is similar to the synchronous
activation in our general model.

The X architecture has a number of different methods for han-
dling events:event handlers, actions, andcallbacks. Although all
of these map into the handlers in our general model, they have sig-
nificant differences. For example, while actions can be specified
for an X client, event handlers and callbacks are specified for each
widget in the X client. While each callback is bound to a specific
callback name and all the callbacks associated with this name are
executed when the specific callback name is called, an event han-
dler can be bound to be executed whenany of the events that are
specified using an event mask occur. Actions provide an additional
level of indirection, where a mapping is created first between an
event and the action name and then between the action name and
the action procedure to be called. In addition to these three, X has
a number of other mechanisms that can be broadly classified as
event handling, namelytimeouts, signal handlers, and input han-
dlers. Each of these mechanisms allows the program to specify a
procedure to be called when the specific condition occurs. For all
of these handler types, X provides operations for registering the
handlers and activating them.

3. OPTIMIZATION APPROACH
Compiler optimizations are based on being able to statically pre-

dict some aspects of a program’s runtime behavior, either via in-
variants that always hold at runtime (e.g., based on dataflow anal-
yses), or that are likely to hold (e.g., based on execution profiles).
Event-based systems, by contrast, are largely unpredictable in their
runtime behavior due to unpredictabilities associated with the be-
havior of their external environment, e.g., the user’s actions. We
have found, however, that in practice, there is a significant amount
of predictability in their internal behavior that can be exploited for
optimization purposes. This predictability occurs at two levels. At
the event level, certain sequences of events can be found to occur in
all (or most) system executions. At the handler level, there is often
more than one handler bound to a specific event, and all of these
handlers are executed in sequence each time the event occurs.

We identify predictable aspects of the behavior of event-based
systems using event and handler profiling. This section describes
our profiling techniques and the optimizations we carry out based
on these profiles.

3.1 Event Profiling
We identify static optimization opportunities in an event-based

program using a event and handler execution profiles. We first
identify commonly occurring event sequences by instrumenting the
event system to log an entry each time an event occurs, indicating
the event being raised and whether it is being raised synchronously
or asynchronously. We use the resulting event profiles to iden-
tify frequently invoked event handlers, add instrumentation code
to each such handler, and log entries each time the handler is in-
voked, thereby obtaining handler profiles. Profiling is done to one
program—and for configurable programs, one program configuration—
at a time. At present, the event framework is instrumented by hand,
but this can easily be automated using well-understood techniques
[2]. The analysis and optimizations are currently performed off-
line after the program to be optimized is executed enough times.
On-line analysis, and potentially optimization, are potential exten-
sions to this work and are discussed in section 5.

The profiling algorithm takes the event trace generated by the in-
strumented event framework and generates anevent graph, which
summarizes the event sequences in the trace. There is an edge from
nodeA to nodeB in the event graph if eventA is ever followed im-
mediately by eventB in the event trace. Each edge(A;B) has an



EventGraph =;;
prev event = eventTrace!firstEvent;
while not (end of eventTrace)f

event = eventTrace!nextEvent;
if (prev event,event)not in EventGraphf

EventGraph += (prevevent,event);
EventGraph(prevevent,event)!weight = 1;g else
eventGraph(prevevent,event)!weight++;

prev event = event;g
Figure 4: GraphBuilderalgorithm.

associated weight indicating how many times the sequencehA;Bi
appeared in the trace. The algorithm used to generate the event
graph is presented in figure 4. Note that in the event trace, if an
eventA is followed immediately by an eventB that was raised
synchronously, then we can infer that execution ofB followsA se-
quentially. However, ifB was raised asynchronously, then the fact
that it followsA in the event trace may be pure happenstance: we
cannot conclude thatA had any role in raisingB. For example,B may be the result of a timeout from an earlier event completely
unrelated toA.

The event graph is used as the starting point for the analysis that
identifies predictable event and handler sequences. Commonly oc-
curring event sequences can be easily identified in the event graph
through edge weights. Given an event graphG and a threshold�,
we define anevent pathof weight � in G as a path such that no
edge on the path has edge weight less than�. To simplify the algo-
rithm, we first discard from the event graph edges whose weights
are below the threshold�: this produces areduced event graph,
from which we extract event paths. Each event path indicates a
frequent sequence of events and hence represents a candidate for
optimization. The remainder of this discussion focuses on event
paths unless otherwise mentioned. Notice that the event paths so
constructed are not quite the same as hot path profiles: the reason
we do not use path profiling at the level of events is that path pro-
files tend to be large and expensive to compute [12, 23], and the
results we see experimentally using the approach described above
have been adequate for the optimizations we implement.

Since an event may have multiple handlers that are executed in
sequence each time the event occurs, a handler level profiling is re-
quired to identify predictable sequences of handler activation (be-
cause of the decoupling between events and their handlers, know-
ing the events that occur does not, in itself, tell us about the handlers
that are activated). The event paths in the event graph identify the
most promising events for handler level profiling. The handlers for
the nodes in each event path are instrumented and we construct an-
other graph, thehandler graph, that forms the basis for optimiza-
tion. The profiling and graph construction for handlers is carried
out in the same way as before.

Figure 5 shows the event graph for a video player application im-
plemented on top of a configurable transport protocol CTP built us-
ing Cactus [22]; details are given in section 4.2 (the bold edges are
discussed later, in Section3.2.1). The event paths in this graph can
be grown by iteratively reducing the threshold�. Figure 6 shows
the corresponding reduced event graph for� = 300.

3.2 Optimization Techniques
Once we have identified the most frequent event and handler

sequences, the optimizations are performed based on the handler
graph. Our goal is to eliminate:

1. Marshalling overheads for event raises.

2. Indirect function call and variable argument passing costs.
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3. State maintenance (synchronization and locking) costs for
global variables.

4. Redundant initializations and fragments for events with mul-
tiple handlers.

In the case of synchronous events we also expect to observe event
sequences that can bechainedtogether. Elimination of indirect
function calls increases the potential for value based optimizations
such as constant propagation. Another option we have explored is
inlining code for raising popular events. This section takes a look
at our different optimizations. Broadly, these can be classified as
graph and compiler optimizations.

3.2.1 Event Graph Optimizations
Event graph optimizations try to reduce the costs associated with

interactions between events and handlers in the system, by reducing
the number of handler activations along common event paths. This
is done by reducing the number of nodes in an event graph and
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generating simpler collapsed graphs, as well as by merging handler
nodes to create “super-handlers” for events and chains.

Handler Merging: In case of events with multiple handlers, the
handler graph shows a sequence of contiguous nodes. The event
system is responsible for issuing calls to all handlers bound to the
event. References to handlers are stored as function pointers in
a list associated with the event, and each raise operation for the
event translates into a sequence of indirect function calls. There
are two sources of overhead here: the cost of an indirect call, and—
since in general the identities and the number of arguments taken
by the handlers for an event are not statically known—a cost as-
sociated with argument marshaling and unmarshaling. However,
we can use the handler graph obtained from our event handler pro-
files to identify the sequence of handlers activated when an event
is raised. Given this information, a simple approach for dealing
with this overhead is to merge all the handlers associated with an
event into a single large handler. On the handler graph, this trans-
lates to collapsing all handler nodes for a given event into a single
super-handler node. The immediate savings from this transforma-
tion is the reduction in the number of indirect function calls. Figure
7 shows the effect of this optimization. Further savings then result
from the application of standard compiler optimizations, such as
common subexpression elimination and dead-code elimination , on
the super-handler code.

An important point to note in this context is that some event sys-
tems such as Cactus allow event bindings to change dynamically.
We need to account for such changes and ensure that the correct-
ness is preserved by our optimization even if there are such dy-
namic changes. Our experiments indicate that dynamic changes to
the set of handlers for an event are rare: we keep track of whether or
not there have been any changes to the set of handlers for an event,
and drop back into the original unoptimized code for the event if a
change is detected. See section 3.3 for more details.

Raise operations are typically generic, in the sense that they can
raise any arbitrary event. Because of this, they incur overheads due
to argument marshaling, indirect invocation of handlers, and state
maintenance. The number of indirect raises—and hence their to-
tal cost—can be reduced using super-handlers, as discussed above.
However, super-handlers are still invoked indirectly, and so incur
some residual cost. These costs can be reduced by replacing the
raise operation with a direct call to the super-handler based on pro-
file information. This, in turn, opens up the possibility of inlining
the function call into the call site, as discussed below.

Event Chains and Subsumption. The unpredictable nature of

events may suggest, superficially, that different events are largely
independent of each other. However, our experiments indicate that
very often there are significant correlations between different events,
of the form,“Event B always follows Event A.”This leads to com-
monly occurring sequences of events, which we term event chains,
that are candidates for optimization. Anevent chainis defined to
be a path in the event grapha0 ! a1 ! � � � ! an [n > 0℄
satisfying the following:(i) each vertexai in the chain (except possibly for the last ver-

tex, an) has exactly one successor edge corresponding to a
synchronous event activation; and(ii) the edgeai ! ai+1 corresponds to a synchronous event ac-
tivation.

The intuition behind event chains is that they denote sequences of
event activations that we can guarantee will occur if the event at the
head of the chain occurs. The reason we ignore event graph edges
corresponding to asynchronous raises is that, as mentioned earlier,
if an eventA is followed by an asynchronously raised eventB, we
cannot infer thatB was raised byA. Event chains can arise due
to two reasons. First, the configuration of the event system may
be such that a particular set of events is raised in sequence under
the appropriate circumstances (we see this situation commonly in
the X-windows system). Second, the handlers of one event may
(synchronously) raise other events. Two examples of event chains
are shown in figure 5 as sequences of bold edges.

We optimize event chains in two ways. First, we can generalize
the notion of handler merging (section3.2.1) to span event bound-
aries. The effect is to combine all of the handlers for all of the
events in the chain into a single handler. This has the effect of
avoiding the runtime cost of multiple handler invocations. If this
is not possible for some reason (see below), we can optimize the
handlers for events later in the chain knowing that the handlers for
events earlier in the chain have been executed. This may allow us
to eliminate some redundant work across handlers.

Inter-event handler merging is not carried out if any of the events
in an event chain is an asynchronous event (or, as a special case, a
timed event, see section 2.2). This is necessary in order to preserve
the observable behavior of the system with respect to the timing
semantics of the system. For example, suppose that eventA, signi-
fying “data transfer initiated,” is always followed by eventB, sig-
nifying “data transfer completed,” but thatB occurs (at least) some
fixed time afterA. In this case,B is raised as an asynchronous
event, and so is not subjected to handler-merging. Note that this
also maintains the threading semantics of the system. In case of
synchronously activated events, the activator thread services all of
its handlers, whereas in the case of asynchronously activated events
this may not be the case. Maintaining asynchronous events in the
system replicates this behavior. It should be noted that even though
handler merging is not carried out in such cases, the event chains
can still be optimized to some extent based on knowledge about the
context in which later events can be raised, e.g., in this example
we know that when eventB is raised, the eventA must have been
raised, and handled, previously.

There is an important special case of event chain optimization
where the handlers of one event raise other events synchronously.
This leads to event chains where handlers for an eventB may
be embedded in the handlers for the parent eventA. An exam-
ple of this is found in the video player example shown in figure 5,
and is described by figure 8, which focuses on two distinct events,
SegFromUser andSeg2Net, from figure 5; the former is shown
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unshaded, the latter shaded gray. The relevant portion of the cor-
responding handler graph is shown on the top right of figure 8,
with handlers arising from the actions ofSegFromUser shown
unshaded and those arising fromSeg2Net shown shaded. The
proper nesting of the shaded handler sequence within the unshaded
sequence indicates thatSeg2Net is calledsynchronouslyby the
handlers ofSegFromUser. In other words, if the eventSeg2Net
is raised from within a handler forSegFromUser, the latter will
wait until the handling ofSeg2Net has been completed, at which
point control will return to the handler forSegFromUser. In this
case, we can simplysubsumethe handler forSeg2Net into that for
SegFromUser, thereby eliminating the synchronous event raise
between them.

Figure 9 shows the effects of event subsumption for the events
shown in Figure 8. The eventSegFromUser has four handlers:
FEC-SFU1,SeqSegSFU,TDriver-SFU, andFEC-SFU2, while
Seg2Net has four handlersPAU-S2N,WFC-S2N,FEC-S2N, and
TD-S2N.TDriver-SFU synchronously raises the eventSeg2Net,
which causes the execution of its handlers, after which control re-
turns to handlingSegFromUser and causes the last handler,FEC-
SFU2, to be executed. Without event subsumption, the best we
would be able to do is to merge the handlers forSegFromUser
to create a super-handler for it, and similarly forSeg2Net. This
would still incur the overhead of an event raise ofSeg2Net from
TDriver-SFU. However, the synchronous nature of this raise al-
lows us to optimize this code so that the event raise ofSeg2Net
within the superhandler forSegFromUser is replaced by the han-
dler code forSeg2Net, as illustrated in Figure 9.
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Figure 9: Effect of Event Subsumption

3.2.2 Compiler Optimizations
The super-handlers resulting from event graph optimization have

the effect of bringing together code that was, prior to optimization,

scattered across the program over a number of different handler
routines. As a result, they become amenable to further optimization
via standard compiler optimization techniques. We mention below
some of these optimizations that tend to be especially useful in this
context.

Function Inlining. Since most event handlers tend to be relatively
small in size, function inlining—applied aggressively along, and
restricted to, frequently executed event paths—is very effective in
reducing the overhead of function calls without substantial growth
in code size. Additionally, a secondary benefit of inlining is the
reduction in the cost associated with supporting variable numbers
of arguments to a function. Typically event-based systems do not
regulate the types and number of parameters for a handler. This
leads to the use of variable argument lists in handlers. Inlining
handler code allows us to eliminate the overheads associated with
argument marshaling and unmarshaling.

Constant Propagation and Dead Code Elimination. Function
inlining makes it straightforward to propagate information about
constant arguments from the call site into the inlined code. This in
turn exposes the potential for constant propagation optimizations
to be applied to the super-handler. For example, conditionals that
test the value of one or more arguments can be eliminated if the
values of the corresponding arguments are known at the call site
where inlining is carried out. As a specific case, this allows us to
take the code for a handler that could be invoked by multiple events
(e.g., Handler 4 in figure 1), and create a customized version of the
(inlined) handler corresponding to a frequently encountered event.

General purpose handlers may be shared amongst different events.
Typically such handlers contain conditional statements for deciding
the nature of handling. Constant propagation, together with opti-
mizations it enables such as the elimination of conditional branches
whose outcomes become known, can cause code to become dead or
unreachable. The elimination of such useless code further improves
handler and system performance.

Redundant Code Elimination.Handlers are not required to know
about the behavior of other handlers in the system. Because of this,
they usually do not make assumptions about the actions that may
have been carried out by other handlers. This can lead to redundant
code in the system. For example, a handler may evaluate expres-
sions that have already been evaluated by preceding handlers in an
event chain. Another common example is that of managing system
state: since the system state may change because of handlers, in
a multithreaded context handlers typically start by updating their
state from the global system state, and commit new system state at
the end. In an event chain, this can cause redundant updates of the
handler state. Such redundant operations can be identified in the
super-handler code and are target for this optimization.

3.3 Dealing with the Unexpected
A limitation of profiling is the fact that it will typically not ex-

plore all possible program execution paths. For example, the pro-
gram may choose a completely new path when given an input that
was not used in the profiling test runs. Since the optimized pro-
gram must operate in the same way as (except faster than) the corre-
sponding unoptimized version, we must have a mechanism for en-
suring that the optimized super handlers are only used when the un-
optimized program would have taken the corresponding sequence
of handlers. We solve this problem by bypassing the optimized su-
per handlers when the program would not execute this sequence of
handlers.

The specific solution is based on keeping track of event bindings
in the event framework. We associate a flag with each event path.
When the bindings for any event along the path change, it gets re-



Total Execution Time (sec) Event Handler Time (sec)
Frame rate Orig. (T0) Opt. (T1) T1=T0 (%) Orig. (T0) Opt. (T1) T1=T0 (%)

10 43.1 41.9 97.2 2.3 0.9 39.1
15 30.9 30.3 98.0 1.6 0.6 37.5
20 24.5 22.1 90.2 1.5 0.5 33.3
25 23.9 21.3 89.1 1.5 0.5 33.3

Key: Orig: Original program; Opt: Optimized program

Figure 10: Video player optimization results.

flected in the flag. This flag is checked before executing the super
handler for the path. If the flag isset, we fall back to the handlers in
the original version of the program. This ensures that the optimized
version behaves in the same way as the original. Note that as a re-
sult, this optimization technique results in a larger code size since
now the event-based program must contain both the super handlers
as well as the original unoptimized handlers. However our experi-
ments indicate that this increase is small, typically under 1.5% (see
Section 4.2).

The new program can bere-optimizedas before by continuous
profiling. A more efficient solution would be to dynamically rewrite
super handlers to reflect the changes in binding. We plan to im-
plement this dynamic configurability as future work. We discuss
proposed solutions and provide more details in section 5

4. EXPERIMENTAL RESULTS

4.1 Overview
We ran experiments on 650 MHz Pentium 3 based desktop com-

puters with 128 Mb memory and on laptops with 266 MHz Pen-
tium II processors and 96 Mb memory, all running Linux 2.4. We
used Cactus/C, a C version of Cactus, and the XFree86 version
4.0.2 distribution of X including Xt, Xlib, and the Athena widget
family. Cactus programs used for profiling included a H263-based
video player implemented on top of a configurable transport proto-
col CTP [22], and SecComm, a configurable secure communication
service [10]. For X-based programs, we focused on optimizing spe-
cific event responses. Programs we used for this purpose include
xterm, a popular terminal emulator on Unix systems, andgvim, a
graphical version of the vi text editor program.

The effect of these optimizations is more pronounced on the the
slower processor based laptops. Common configurations for hand-
held devices (206Mhz,�64Mb RAM) are similar to those of the
laptops. We expect the need for and effect of these optimizations
to be even more significant on such platforms.

4.2 Cactus Programs
The video application is based on the Configurable Transport

Protocol (CTP) developed using Cactus/C. The input parameters
for the video player include the resolution of video and the frame
rate. The experiments were carried out on two data-files of 15-
16 Mb recorded at144 � 176 resolution. Both the original and
the optimized versions of the program were run 100 times each,
at each of several different frame rates. Individual times per event
were computed by running each program only 10 times, since each
event occurs a large number of times on each run; during a run of
the program about 8000 events—1000 of them asynchronous—are
raised. The execution time reported, in each case, is the average
of the run times so obtained. The event graph for this application
contains 18 distinct events as shown in figure 5. Each event has 2–4
event handlers, with a total of 54 handlers in the system.

Figures 10 and 11 show the effects of optimizing the video player
example on the laptop. The event processing times reported in fig-

ure 11 were measured when running the program with frame rate
of 10 frames/second, while figure 10 shows the impact of the opti-
mization on the total execution time of the program. EventAdapt
has 2 handlers, while eventsSegFromUserand Seg2Nethave 4
handlers each. In this experiment, our techniques reduce the time
spent in event handlers by 73–88%. Event processing contributes
to about 10–15% of the total system costs; I/O accounts for about
60% of the total execution time. There is a concomitant improve-
ment in the overall execution time, as shown in Figure 10, ranging
from 2.3% at a frame rate of 10 to about 11% for a frame rate of
25. The reason that the impact of the optimization on overall exe-
cution time becomes more pronounced as the frame rate increases
is that when the frame rate is low, the CPU is idle a large part of
the time. Therefore, the unoptimized program can simply use a bit
more of the idle time to keep up with the required frame rate. With
low frame rates, both programs can keep up with the required frame
rate. However, when the frame rate increases, both programs must
do more work in a time unit and the idle time decreases. When the
frame rate becomes high enough, the unoptimized program runs
out of extra idle time and starts falling behind the optimized pro-
gram. This indicates that our optimizations are especially effective
for mobile systems, such as handheld computers, that tend to have
less powerful processors than, say, desktop systems.

Event Processing Time (�sec) Speedup
Original Optimized (%)

Adapt 55 11 80.0
SegFromUser 346 41 88.2
Seg2Net 137 37 73.0

Figure 11: Event Processing Times in the video player.

SecComm is a configurable secure communication service that
allows the customization of security attributes for a communica-
tion connection, including privacy, authenticity, integrity, and non-
repudiation. One of the features of SecComm is its support for
implementing a security property using combinations of basic se-
curity micro-protocols. We optimized a configuration of SecComm
with three micro-protocols, two of which encrypt the message body
(DES and a trivial XOR with a key) and the third that coordinates
the execution of the other two. SecComm is a much simpler com-
posite protocol than CTP and the video player, and the event behav-
ior in this particular SecComm configuration turns out to be quite
predictable. In particular, there is one event path on the sender
and one path on the receiver. The majority of the execution time
in SecComm is spent in the cryptographic encryption and decryp-
tion routines. The SecComm measurements were performed on the
desktops, as follows: first a dummy message was sent to initial-
ize the micro-protocols, after which messages were sent 100 times.
This was repeated for different packet sizes, for a total of 1000 mes-
sages per packet size. The time reported in each case is the average



Push time (�sec) Pop time (�sec)
Size Orig. (T0) Opt. (T1) T1=T0 (%) Orig. (T0) Opt. (T1) T1=T0 (%)

64 274 241 88.0 397 378 95.2
128 287 263 91.6 460 448 97.4
256 304 273 89.8 484 457 94.4
512 336 299 89.0 494 470 95.1

1024 430 373 86.7 608 570 93.8
2048 572 552 96.5 1016 893 87.9

Figure 12: Impact of optimization in SecComm

of the run times so obtained.
Figure 12 shows the amount of time spent in thepushandpop

portions of SecComm before and after optimization. The push
portion encompasses the message processing from the time it is
passed to SecComm by the application until it is passed to the UDP
socket. The pop portion encompasses the message processing from
the time it is received from the socket until SecComm passes it to
the higher layer (the application). The push portion includes the
time taken by the encryption operations, whereas the pop portion
includes the decryption time. The time taken depends on the size of
message packets and we present results for different packet sizes. It
can be seen that the time for the push portion is reduced markedly
in most cases, with improvements of up to 13.3%. The improve-
ments in the pop portion are also noticeable, though not as high as
for the push portion, typically around 5% but going as high as 12%.

An examination of the effects of our optimizations on these two
programs indicates two main sources of benefits: the reduction
of argument marshaling overhead when invoking event handlers;
and handler merging, leading to a reduction in the number of han-
dler invocations. The elimination of marshaling overhead seems to
have the largest effect on the overall performance improvements
achieved. The main effect of handler merging is to reduce the
number of function calls between handlers that are executed in se-
quence. Merging also creates opportunities for additional code im-
provements due to standard compiler optimizations.

To measure the effects of our optimization on code size we counted
the number of instructions in the original and optimized programs
using the commandobjdump -d program | wc -l. Our op-
timizations produce a code size increase of 1.3% for the video
player and 1.1 % for Seccomm.

4.3 X-based programs
X-based programs tend to be user driven, spending much of their

time in the event loop waiting for user input. Hence our focus in
the case of X-based programs is to improve the event response time,
i.e., the time taken to handle an event. Common applications like
gvimexhibit several examples of multiple handlers binding to sin-
gle events and hence are are good candidates for applying such op-
timizations. This section is indicative of the potential of our tech-
niques.

We evaluated our ideas on thextermapplication provided with
XFree86 andgvim. The effects of our optimizations on these pro-
grams while running on the laptop are shown in figure 13. These
numbers were obtained by raising the events 250 times.

Popuprepresents the Menu Popup that is triggered of by CTRL

+ MOUSE BUTTON in anxtermwindow. When handling the pop-
up, two action handlers are triggered in sequence. The first action
initializes the a menu object. This procedure is specific to the type
of GUI toolkit and in our case uses theSimpleMenuwidget in the
Athena Toolkit. The next action handler is responsible for con-
structing and displaying the menu. This action handler in turn calls
two callbacks to track mouse motion within the menu. Our op-

Event Execution Time (�sec) T1=T0
Type Orig. (T0) Opt. (T1) (%)
Scroll 158 148 93.7
Popup 37 31 83.8

Figure 13: Optimization of X events

timizations merge these two action handlers as described earlier.
The Scroll event corresponds to motion of the scrollbar in agvim
window. Handling this event also involves two action handlers that
move the thumb1 and update the new position. The first action han-
dler uses the underlying framework to get the co-ordinates of the
thumb. The second is responsible for displaying the new position
of the thumb on the screen. Both these action handlers call call-
backs tied to corresponding widgets.

It can be seen that our optimizations reduce the cost ofScroll by
about 6% and that ofPopupby over 16%. Our optimizations were
applied at action handler level and we can optimize one step further
by opening up callbacks in the same way.

We have tried our optimizations on the Athena widget family
based on Xt and Xlib, provided with XFree86. Athena toolkit is a
minimal toolkit with limited scope for configurability, and therefore
provided limited scope for applying our optimizations. The event
model in more recent (and popular) toolkits such as Gnome GTK
and KDE Qt provides functionality, e.g.,signalsandslots, that is
very similar to the Cactus event model. Such functionality greatly
increases the ease of use and development of client applications
but increases the cost of event handling significantly. Application
of our optimization techniques directly to these systems would re-
duce these costs and make event handling through signals etc. no
more expensive than “ordinary” event handling while significantly
enhancing ease of programming.

5. EXTENSIONS
We are working on a number of extensions to these optimization

techniques. These range from simple extensions and automation
of some of the steps required to extensions for dealing with the
dynamic aspects of the event system and for dealing with cases
where the event execution is not quite deterministic. An example
of a simple extension would be to perform handler merging for all
events that have more than one handler rather than only the events
in frequently executed event chains. In a sense, the optimization
used for X-based programs already uses this optimization.

Event-based system may change their behavior dynamically and
any optimization approach must be able to handle such changes.
The behavior of an event-based system can be altered simply by
changing the event binding. Such a change is a challenge for an
optimization system based on identifying and utilizing predictable
behavior in an event system. Our current approach is based on1The “thumb” here refers to a portion of the scrollbar.



detecting any change in event bindings and falling back to the orig-
inal code for any events affected by the binding change. A better
approach would be to construct the super handler so that it can be
used even if some of the bindings change. For example, consider
a predictable event sequence (A,B,C,D), which has been optimized
into one super handler (ABCD)�. If handlers for B change, the cur-
rent approach falls back to the original code for this whole event
sequence and all of the performance improvement achieved by the
optimization are lost. Alternatively, we could organize (ABCD)�
super handler internally so that the code corresponding to different
events is partitioned as illustrated for event B in figure 14. Even if
the event binding for event B changes, the optimized version can
still be used for events A, C and D.: : :

if event binding for event B changedf
call(original code for event B);g elsef
merged, inlined, and optimized code for event B;g: : :

Figure 14: Extended super handler for dynamic system

Other optimizing techniques could be added to optimize the sys-
tem even further than just the predictable event paths. Once all
event chains have been optimized, we will be left with a reduced
graph with no event paths. This reduced graph can be further op-
timized by using a speculative approach. In this scheme, if node
A is followed by B 90% of the time and C 10 % of the time, free
cycles in A can be used to initialize the execution of B. Value based
optimization, as suggested in [15] may also be extended to increase
the accuracy of prediction. Another strategy would be to perform
minimal processing for A and defer the bulk of handing A the next
event occurs. If the next event is B, optimized code for (A,B)� can
be executed. This type of deferral would particularly useful in a sit-
uation where event A is followed by B or C with equal probability.
Heavier optimizations such as dominator / post-dominator analysis
can be used to detect co-relations between events.

Our next step will be to optimize events activated asynchronously.
As we pointed out earlier, the current optimization can only address
event paths that may start with a synchronous or asynchronous ac-
tivation, but all the other activations must be synchronous. Asyn-
chronous activation, by its nature, has much looser semantics than
a synchronous activation; the handlers bound to this event must be
executed some time, preferably soon, after the event has been acti-
vated. Although these semantics will make it difficult to create an
optimized program that has identical behavior to an unoptimized
one, it should be possible to generate one that executes the events
and handlers in order acceptable for the semantics of the event op-
erations. In particular, if an asynchronous activation of an event A
is always eventually followed by the activation of event B, it may
be semantically correct to merge the handlers of A to the end of
the handlers for B. We will explore which program transformations
such as this preserve program correctness. We also plan to extend
the family of compiler optimizations to include techniques such as
register allocation etc which are currently effected through standard
compilers. Finally, we plan to extend this work to include dynamic
profiling tool along with optimization modules for the compiler.
This will be used to apply our techniques to other event based sys-
tems like system call and interrupt behavior of operating systems.

6. RELATED WORK
We are not aware of a great deal of work aimed specifically at

compilation oriented optimization of event-based systems. Cham-

berset al. discuss the use of dynamic compilation to optimize event
dispatching in the SPIN operating system [4]. Unlike our work,
which uses profile-based static optimizations, the work of Cham-
berset al. relies on optimizations that are carried out during execu-
tion. As with other dynamic optimization systems (e.g., Dynamo
[1], Tempo [6]), the benefits of dynamic optimization have to be
balanced against the overheads associated with runtime monitoring,
optimization, and code generation. Because of this, dynamic code
optimization systems generally rely on lightweight optimizations.
By contrast, the optimizations we carry out are fairly heavy-weight,
with correspondingly high payoff.

Events, and their variants, have traditionally been used for inter-
action between different layers of systems software. For example,
Ensemble [8] uses events for communication between layers in a
protocol stack. Ensemble protocol stacks are typically relatively
deep since they consist of rather small modules, each of which
implements a specific function. Furthermore, Ensemble is imple-
mented using ML, a functional programming language. Ensemble
focuses optimizations on the common sequence of operations (the
“normal” case) that occur in a protocol stack. Each such sequence,
denotedevent trace, is triggered by an event such as receipt of a
message. The common operations must be annotated by the pro-
tocol designer. The code in an event trace is optimized into one
trace handlerusing techniques ranging from eliminating interme-
diate events to inlining and traditional compiler optimization. Each
event trace has atrace conditionthat must be true for the trace han-
dler to be executed. The trace condition must have predicates from
each protocol layer and these predicates must be provided by the
protocol designer. In comparison, our approach does not require the
protocol designer to provide any annotations or predicates. Further-
more, out focus is on providing generally applicable optimizations
techniques for event-based systems rather than for any one specific
system.

Synthesis [20] and Synthetix [19] were efforts at specializing
operating systems through manual specialization. The primary dis-
advantage is the loss of portability and maintainability. Automated
specialization is gaining importance especially in areas related to
byte code interpretation. Most of these approaches rely on partial
evaluation based on knowing the input values.

Event-based architectures are gaining popularity in designing
complex software systems. Event-based web servers of the SEDA
project [21] outperform their thread-based counterparts in terms of
responsiveness and scalability. This approach partitions a system
into many logically independentstages, where the different stages
communicate using events. Each stage is serviced by its own thread
pool. Conceptually this is the opposite of our approach that at-
tempts to reduce the number of events in the system. The primary
difference is the targeted system architecture. While our work tar-
gets small single processor, possibly single-threaded, systems as
expected on a mobile device, SEDA targets high-end server archi-
tectures with several SMPs. SEDA gains its performance improve-
ment from maximizing parallelism by exploiting free cycles avail-
able on the SMPs and hence they gain by releasing the processor
as soon as possible. Our approach gains from traditionally opti-
mizing program behavior, e.g., elimination of procedure calls and
other redundant code, and attempting to complete as much work as
possible before yielding the processor. Our performance results in
table 10 partially confirm the findings in [21]. When the frame rate
is very low, our optimization actually slightly increases the execu-
tion time because locks are held longer by super handlers resulting
in starving other threads even though the CPU utilization is low.
As the frame rate and CPU utilization increase, the effect of our
optimizations gets more pronounced until we reach a limit where
system throughput becomes the limiting factor.



Finally, ILP (Integrated Layer Processing) [5] can be viewed as
related work. ILP integrates data manipulation across protocol lay-
ers to minimize memory references by merging the message data
manipulation done on different layers into one loop where each
data item is accessed only once. This technique can be used, for
example, to merge encryption, checksum computation, compres-
sion, and presentation formatting into one loop. Our optimization
does not specifically attempt to reduce memory references related
to accessing the message data, so ILP could in principle added as an
additional optimization technique to our approach. Note that pro-
filing the memory references in a super handler the same way we
profile events and handlers, could automate the process of finding
candidate code for ILP optimization.

7. CONCLUSION
Event-based programs are used in a variety of domains due to

their flexibility. However, event-based program execution has a
considerable performance overhead. Due to the dynamic nature
and unpredictability of events—which event occurs and when—
and event bindings—which handlers are bound to an event when
it occurs—compiler optimization techniques have not traditionally
been used in this domain. However, in this paper, we have deter-
mined that many event-based programs have considerable amount
of predictability that can, indeed, be utilized to perform powerful
compiler optimizations. We have developed a novel multi-resolution
profiling technique to identify predictable program sequences and
thus, targets for the optimization. Through the application of sim-
ple compiler layout and dataflow optimizations, we have achieved
up to 80% reduction of event handling time, resulting in overall
program performance improvements of up to 12%. We have suc-
cessfully applied our general optimization technique to two event-
based systems, namely Cactus and X. We believe this work will
the first in a series of tackling performance issues in event-driven
programs and system software.
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