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ABSTRACT indirectly. Depending on the system, the number and type of the

Event-based systems provide a simple way to create flexible, ex-arguments passed_ to the_handler may also not be known, requiring
argument marshaling. Finally, there may be repeated work, e.g.,

tensible, and customizable system architectures and give a “user<" 2~ """ 4 ;
driven” feel to the system. However, the indirect coupling between initialization or checking of shared data structures, across multiple

the raising and handling of events introduces a number of over- handlers for a given event. All these extra costs can be surprisingly

heads into the system. Such overheads can be surprisingly Iarget“gh_Our experiment§ ind!cate that they can account for up t0 20%
and are especially significant in small mobile systems. This pa- of thg total executiontime in some scenarios. .

per describes a framework for profile-guided optimization of event- This paper describes a collection of static optimizations designed
based systems. Experiments using our approach on two different© r.educe the ove.rhead Of. ever.]t.-based programs. Our approach ex-
event-based systems, Cactus and X-windows, indicates that it carPl0its the underlying predictability of many event-based programs

achieve significant reductions in event handling overheads and Ieac#.O generate aevent profilethat is conceptually akin to path pro-
to considerable improvements in overall system performance. iles through the call graph of the program. These profiles are then
used to identify commonly encountered events and their handlers,

as well as the collection of handlers associated with each event and
1. INTRODUCTION the order in which they are invoked. This information is then used
to optimize event execution by, for example, merging handlers and

for writing programs in a variety of contexts. They are used to Chaining events. The techniques are specific to event-based pro-
structure user interaction code in GUI systems [16, 7], form the 9rams, since standard optimization techniques are largely ineffec-
basis for configurability in systems to build customized distributed 1€ in this context. For example, conventional static analysis tech-

services and network protocols [3, 8, 14], are the paradigm usednidues cannot generally dlspoyer the connectlons. between events
for asynchronous notification in distributed object systems [17], @"d handlers, let alone optimize away the associated overheads.

and are advocated as an alternative to threads in web servers anBYN@mic optimization systems such as Dynamo [1] can be used
other types of system code [18, 21]. Even operating system ker- " Principle, but they focus primarily on lightweight optimizations
nels can be viewed as event-based systems, with the occurrence ofUch @ improving locality and instruction-cache usage in an effort

interrupts and system calls being events that drive execution. The!© keep runtime overheads low. In contrast, the optimizations we
rationale behind using events is multidimensional. Events are asyn-COnsider are substantially more heavyweight, and—in the context

chronous, which is a natural match for the reactive execution be- ©f €vent-based programs—offer correspondingly greater benefits.

havior of GUIs and operating systems. Events also allow the mod- OUr techniques are specifically designed to improve execution on
ules raising events to be decoupled from those fielding the events small mobile devices, where resource constraints make any reduc-

thereby improving configurability. In short, event-based program- 10N in overhead valuable. , , .
ming is generally more flexible and can often be used to realize __1N€ remainder of the paper is organized as follows. Section 2
richer execution semantics than traditional procedural or thread- 4€Scribes a general model for event-based programs. This is fol-
oriented styles. lowed in section 3 by a description of our approach to optimizing

Despite these advantages, events have the potentially serious draa#'ch Programs, including our profiling scheme and the collection of
back of extra execution overhead due to the indirection between©Ptimization techniques based on these profiles. Section 4 gives ex-
modules that raise and handle events [4, 13]. Typically, there is perimental results that demonstrate the potential improvements for

a registry that maps an event to a collection of handlers to be exe-three different examples. The first two, a video application and a

cuted when the event occurs. Because these handlers are not knowfPhfigurable secure communication service, are built using Cactus,

statically—and may in fact change dynamically—they are invoked & system for constructing highly configurable distributed services
and network protocols that supports event-based execution [11, 9].

*The work of S. Debray was supported in part by the NSF un- The third is client side tools that use X Windows, a popular system
der grants CCR-0073394, EIA-0080123, and CCR-0113633. The for building GUIs [16]. This is followed by discussions of possi-
work by others supported in part by the DARPA under grant ble extensions in section 5 and related work in section 6. Finally,
N66001-97-C-8518 and by the National Science Foundation undersection 7 offers conclusions.

grant ANI-9979438.

Eventsare increasingly being used as a fundamental abstraction




2. EVENT-BASED PROGRAMS registry may be implemented using either a centralized or decen-

While event-based programs differ considerably depending on tralized approach.
the specifics of the underlying programming model and notation, 2.2  Execution

their architectures have a number of broad underlying similarities.
Because of this, the optimizations described in this paper are gen- The handlers bound to an event are executed when the event oc-

erally applicable to most such systems. This section presents aCurs. An event may occur because the program receives some ex-
general model for event-based systems in order to provide a com-ternal stimuli (external event) or because some program component
mon framework for discussion. As examples, we describe how both raises the event (internal event). An execution environment or run-

Cactus and the X Windows system map into the model. time system is typically responsible for detecting or receiving exter-
nal stimuli and activating the corresponding events. As a result, we
2.1 Components say these events are raised implicitly, \_/vhereas events directly acti-
Our general model consists of three main componestents vated by a program component are raised explicilied events
handlersthat specify the reaction to an event, aniddings that are events that are activated at a specified time or after a specified
specify which handlers are to be executed when a specific eventd€lay. These can be either internal or external events.
OCCUIS. We identify two major types of event activatiosynchronous

activationandasynchronous activatiorWith synchronous activa-

Events. Events abstract the asynchronous occurrence of stimuli tion, the specified handlers are executed to completion before the
that must be dealt with by a program. Mouse motion, button click, activator continues execution. With asynchronous activation, the
and key press are examples of such events in a user interface conactivator continues execution without any guarantees as to when
text, while receiving a packet from the network and message pass-the handlers are executed. The different types of event activation
ing are examples in a systems context. In addition to sxtérnal have specific uses in event-based systems. Synchronous activation
events an event-based program may usternal eventshat are can be used for internal events when the event activator needs to
generated and processed within the program. The set of events usefinow when the processing of the message has completed before
in the event system may be fixed or the system may allow programscontinuing its own processing. Synchronous activation can be used
to define new events. Basic events may be composedartplex for external events when the runtime system needs to ensure that
events For example, two basic button click events within a short such events are executed sequentially without interleaving. Asyn-
time period can be defined to constitute a double-click event. chronous activation can be used when none of these requirements
. apply.

Handlers. Handlers direct the response of the program to event- The overall picture of the event-based program to be optimized

ls)azii?i esstlmlé“é ctis opnescgécg!}y’ :rfg?:qilgrwlﬁe?] Zecit\'/%nn ?:/ecr?td gcihu?ts then consists of a program that reacts to stimuli from its environ-
p p 9 ‘ment, such as user actions or messages. These stimuli are con-

Typically, handlers have at least one parameter, the event that Waserted into events. Each event may have multiple handlers bound

Ir'zltzegr; (t)r:?c?r pﬁ':hngfézrsdgzysgegaf:sed _trr;]rgu dgehc(\)/arllquile a}’rgjl{crjne%% it and handlers may activate other events synchronously or asyn-
: g uctures. upling provi chronously. Thus, the occurrence of an event may lead to the acti-

by the event mechanism aI.Iows handlers to be developed Ir'de':)eni/ation of a chain of handlers and other events and, in turn, their
dently from other handlers in the system.

handlers. Events can also be generated by the passage of time
Bindings. Bindings determine which handlers are executed when (€.g., timeouts). The type of event activation has implications on
a specific event occurs. The binding between an event and a hanour optimization techniques. For example, since the handlers for
der is often provided using some typelwhd operation, although @ synchronous activation are executed when the event is raised,
the binding may also be predefined and fixed. Most systems al-an optimization that replaces the activation call with calls to the
low multiple handlers to be bound to a single event and a handler handlers bound to that event at this time results in a correct trans-
to be bound into more than one event. An event is ignored if no formation. Similarly, it is easy to see that sequences of or nested
handlers are bound to the event. The execution order of multiple Synchronous activations can be readily optimized. The specific op-
handlers bound to the same event may be important. Bindings maytimization techniques and their limitations are discussed below in
bestatig i.e., remain the same throughout the execution of the pro- section 3.

gram, ordynamig i.e., may change at runtime. Figure 1 illustrates 2.3 Example Systems

bindings. - )
Cactus. Cactus is a system and a framework for constructing

vents Handiors configurable protocols and services, where each service property
—3 or functional component is implemented as a separate module [9].

: @( As iIIustrated in figurg 2,a servicg in Cactus is implemente.d as a
f\ composite protocolwith each service property or other functional
” component implemented asnaicro-protocol A customized in-
Pl stance of the composite protocol is constructed simply by choosing

EventD ¢
- \» the appropriate set of micro-protocols. A micro-protocol is struc-

tured as a collection advent handlershat correspond to the han-

dlers in our general event-based model. A typical micro-protocol
Figure 1: Event Bindings consists of two or more event handlers. Events in Cactus are user-

defined. A typical composite protocol uses 10-20 different events

consisting of few external events caused by interactions with soft-
Bindings are maintained in a registry that maps each event to ware outside the composite protocol and numerous internal events
a list of handlers. The registry may be implemented as a sharedused to structure the internal processing of a message or service
data structure like the table shown in the figure, or each list may request. Each event typically has multiple event handlers. As a re-
be maintained as a part of an event data structure. For distributedsult, Cactus composite protocols often have long chains of events
systems where handlers may be on distinct physical machines, theand event handlers activated by one event. Section 4 gives concrete



$ X client. The event activation in X is similar to the synchronous
Top API activation in our general model.
Micro-protocols Events The X architecture has a humber of different methods for han-
DESPrivacy ~— dling events:event handlersactions andcallbacks Although all
of these map into the handlers in our general model, they have sig-
nificant differences. For example, while actions can be specified

for an X client, event handlers and callbacks are specified for each

widget in the X client. While each callback is bound to a specific
{ keyMiss | callback name and all the callbacks associated with this name are
executed when the specific callback name is called, an event han-
Bottom AP dler can be bound to be executed whaaty of the events that are
specified using an event mask occur. Actions provide an additional
level of indirection, where a mapping is created first between an
Figure 2: Cactus Composite Protocol event and the action name and then between the action name and
the action procedure to be called. In addition to these three, X has
a number of other mechanisms that can be broadly classified as
examples of events used in a Cactus composite protocol. event handling, namelgimeouts signal handlersandinput han-

The Cactus runtime system provides a variety of operations for dlers Each of these mechanisms allows the program to specify a
managing events and event handlers. In particular, operations argrocedure to be called when the specific condition occurs. For all
provided for binding an event handler to a specified evbintdj of these handler types, X provides operations for registering the
and for activating an eventdjse). Event handler binding is com-  handlers and activating them.
pletely dynamic. Events can be raised either synchronously or
asynchronously, and an event can also be raised with a specified de=
lay to implement time-driven execution. The order of event handler ~* OPTIMIZATION APPROACH
execution can also be specified if desired. Arguments can be passed Compiler optimizations are based on being able to statically pre-
to handlers in both the bind and raise operations. Other operationsdict some aspects of a program’s runtime behavior, either via in-
are available for unbinding handlers, creating and deleting events,variants that always hold at runtime (e.g., based on dataflow anal-
halting event execution, and canceling a delayed event. Handleryses), or that are likely to hold (e.g., based on execution profiles).
execution is atomic with respect to concurrency, i.e., a handler is Event-based systems, by contrast, are largely unpredictable in their
executed to completion before any other handler is started unless ituntime behavior due to unpredictabilities associated with the be-
voluntarily yields the CPU. Cactus does not directly support com- havior of their external environment, e.g., the user’s actions. We
p|e)( events, but such events can be imp|emented by defining a ne\,\have found, however, that in practice, there is a significant amount

event and having a micro-protocol raise this event when the condi- of predictability in their internal behavior that can be exploited for
tions for the complex event are satisfied. optimization purposes. This predictability occurs at two levels. At

The X Window system. X is a popular GUI framework for Unix the event level, certain sequences of events can be found to occur in
systems. The standard architecture of an X based system is showr@!l (Or most) system executions. At the handler level, there is often
in figure 3. The X server is a program that runs on each system sup-more than one handler bound to a specific event, and all of these
porting a graphics display and is responsible for managing device handlers are executed in sequence each time the event occurs.
drivers. Application programs, also called X clients, may be local ~ We identify predictable aspects of the behavior of event-based
or remote to the display system. X servers and X clients use theSystems using event and handler profiling. This section describes
X-protocol for communication. X clients are typically built on the —our profiling techniques and the optimizations we carry out based
Xlib libraries using toolkits like Xt, GTK, or Qt. X clients are im-  on these profiles.

lemented as a collection afidgets which are the basic buildin -
Elocks of X applications. ’ 9 31 Event Profiling

An X event is defined as “a packet of data sent by the server to We identify static optimization opportunities in an event-based
the clientin response to user behavior or to window system changesprogram using a event and handler execution profiles. We first
resulting from interactions between windows” [16]. Examples of identify commonly occurring event sequences by instrumenting the
X events include mouse motion, focus change, and button pressevent system to log an entry each time an event occurs, indicating
These events are recognized through device drivers and relayed téhe event being raised and whether it is being raised synchronously
the X server, which in turn conveys them to X clients. The Xlib or asynchronously. We use the resulting event profiles to iden-
framework specifies 33 basic events. X clients may choose to re-tify frequently invoked event handlers, add instrumentation code
spond to any of these based on event masks, which they specify ato each such handler, and log entries each time the handler is in-
bind time. Events are also used in communication between wid- voked, thereby obtaining handler profiles. Profiling is done to one
gets. Events may arrive in any order and they are queued by theprogram—and for configurable programs, one program configuration—

at a time. At present, the event framework is instrumented by hand,

Devices X—Client Application but this can easily be automated using well-understood techniques
\Device{ Drivers\ [2]. The analysis and optimizations are currently performed off-
X-Server Xt | Toolkit |Qt line after the program to be optimized is executed enough times.
XLib On-line analysis, and potentially optimization, are potential exten-

i sions to this work and are discussed in section 5.

—/L—> X~-Protocol The profiling algorithm takes the event trace generated by the in-
strumented event framework and generates\ant graphwhich
summarizes the event sequences in the trace. There is an edge from

Figure 3: Architecture of X Window Systems nodeA to nodeB in the event graph if evert is ever followed im-

mediately by evenB in the event trace. Each ed@d, B) has an
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. o . 86 |2 Adap)
assouated. weight indicating how many times the sequéAc®) 552 1 Segmenﬂ-imeo i/ 391
appeared in the trace. The algorithm used to generate the event Seg2Net
graph is presented in figure 4. Note that in the event trace, ifan|| js 42 , \ControllerClkL

event A is followed immediately by an ever® that was raised
synchronously, then we can infer that executioBdbllows A se-
quentially. However, ifB was raised asynchronously, then the fact
that it follows A in the event trace may be pure happenstance: we
cannot conclude thatt had any role in raising3. For example,

(_Controller )~ Ao L -
61 ControllerCIkH
\l ______
B may be the result of a timeout from an earlier event completely

unrelated to4.

The event graph is used as the starting point for the analysis that ey () Synchronously Activated Events

SegmentAcked 317 Y38 a7 391 391

identifies predictable event and handler sequences. Commonly oc- s )

curring event sequences can be easily identified in the event graph '____.  Asynchronously Activated Events
through edge weights. Given an event gr&pland a threshold),

we define arevent pathof weightz in G as a path such that no Figure 5: Event Graph Generated from Video Player

edge on the path has edge weight less thafo simplify the algo-
rithm, we first discard from the event graph edges whose weights
are below the thresholg: this produces aeduced event graph
from which we extract event paths. Each event path indicates a
frequent sequence of events and hence represents a candidate for 4, Redundant initializations and fragments for events with mul-
optimization. The remainder of this discussion focuses on event tiple handlers.

paths unless otherwise mentioned. Notice that the event paths so

constructed are not quite the same as hot path profiles: the reason Inthe case of synchronous events we also expect to observe event
we do not use path profiling at the level of events is that path pro- sequences that can lshainedtogether. Elimination of indirect

files tend to be large and expensive to compute [12, 23], and thefunction calls increases the potential for value based optimizations
results we see experimentally using the approach described abovéuch as constant propagation. Another option we have explored is
have been adequate for the optimizations we implement. inlining code for raising popular events. This section takes a look

Since an event may have multiple handlers that are executed inat our different optimizations. Broadly, these can be classified as
sequence each time the event occurs, a handler level profiling is re-9raph and compiler optimizations.
quired to identify predictable sequences of handler activation (be- S
cause of the decoupling between events and their handlers, know-?"z'l Event Gr‘.”lplh th'm'zatlons ) )
ing the events that occur does not, in itself, tell us about the handlers Event graph optimizations try to reduce the costs associated with
that are activated). The event paths in the event graph identify theinteractions between events and handlers in the system, by reducing
most promising events for handler level profiling. The handlers for the number of handler activations along common event paths. This
the nodes in each event path are instrumented and we construct aris done by reducing the number of nodes in an event graph and
other graph, théandler graph that forms the basis for optimiza-
tion. The profiling and graph construction for handlers is carried
out in the same way as before.

Figure 5 shows the event graph for a video player application im-
plemented on top of a configurable transport protocol CTP built us-
ing Cactus [22]; details are given in section 4.2 (the bold edges are
discussed later, in Sectiéh2.1). The event paths in this graph can 552 Threshold =300 479
be grown by iteratively reducing the threshajd Figure 6 shows ControllerFiring
the corresponding reduced event graphifes 300. o 201

Controller

391

3. State maintenance (synchronization and locking) costs for
global variables.

392
MsgFromUser MsgFromUser ]
N

ControllerFired

SegFromUser

Seg2Net

3.2 Optimization Techniques

Once we have identified the most frequent event and handler
sequences, the optimizations are performed based on the handler
graph. Our goal is to eliminate:

" ControllerClock 1392

| |
N 7

ControllerClock

Figure 6: Reduced Event Graph

1. Marshalling overheads for event raises.

2. Indirect function call and variable argument passing costs.



Events | Handlers events may suggest, superficially, that different events are largely
(Eventa ) —r= Tt independent of each other. However, our experiments indicate that
W) very often there are significant correlations between different events,
SN S _ of the form,“Event B always follows Event AThis leads to com-
Handlerl Handierz Handler3 | - monly occurring sequences of events, which we term event chains,
, HLcode , H2_code ) H3_code that are candidates for optimization. Awent chainis defined to
be a path in the event graph

ag = ar = — ay [n > 0]
Handler Merging

satisfying the following:

Events | Handlers Ve Handierizs 1+ (7) each vertexs; in the chain (except possibly for the IasF ver-
I R U1 code - tex, a,,) has exactly one successor edge corresponding to a
H2_code synchronous event activation; and
) H3_code
(i1) the edgen; — a;4+1 corresponds to a synchronous event ac-
tivation.
Figure 7: Handler Merging The intuition behind event chains is that they denote sequences of

generating simpler collapsed graphs, as well as by merging handlerevem activationg that we can guarantee wiI_I occur if the event at the
nodes to create “super-handlers” for’events and chains head of the_chaln occurs. The reason we ignore event_graph edges
' corresponding to asynchronous raises is that, as mentioned earlier,
Handler Merging: In case of events with multiple handlers, the if an eventA is followed by an asynchronously raised evéhtwe
handler graph shows a sequence of contiguous nodes. The everff@nnot infer thatB was raised byd. Event chains can arise due
system is responsible for issuing calls to all handlers bound to the 0 two reasons. First, the configuration of the event system may
event. References to handlers are stored as function pointers irP€ such that a particular set of events is raised in sequence under
a list associated with the event, and each raise operation for theth® appropriate circumstances (we see this situation commonly in
event translates into a sequence of indirect function calls. Therethe X-windows system). Second, the handlers of one event may
are two sources of overhead here: the cost of an indirect call, and—(Synchronously) raise other events. Two examples of event chains
since in general the identities and the number of arguments taken@re shown in figure 5 as sequences of bold edges. .
by the handlers for an event are not statically known—a cost as-  We optimize event chains in two ways. First, we can generalize
sociated with argument marshaling and unmarshaling. However, the notion of handler merging (secti@n2.]) to span event bound-
we can use the handler graph obtained from our event handler pro-2ries. The effect is to combine all of the handlers for all of the
files to identify the sequence of handlers activated when an eventévents in the chain into a single handler. This has the effect of
is raised. Given this information, a simple approach for dealing §v0|d|ng thg runtime cost of multiple handler |nvocat|ons.. If this
with this overhead is to merge all the handlers associated with aniS Not possible for some reason (see below), we can optimize the
event into a single large handler. On the handler graph, this trans-handlers fo_r e\_/ents Iater_ln the chain knowing that the handlers for
lates to collapsing all handler nodes for a given event into a single €vents earlier in the chain have been executed. This may allow us
super-handler nodeThe immediate savings from this transforma- 0 eliminate some redundant work across handlers.
tion is the reduction in the number of indirect function calls. Figure  Inter-event handler merging is not carried out if any of the events
7 shows the effect of this optimization. Further savings then result in @n event chain is an asynchronous event (or, as a special case, a
from the application of standard compiler optimizations, such as timed event, see section 2.2). This is necessary in order to preserve
common subexpression elimination and dead-code elimination , onthe observable behavior of the system with respect to the timing
the super-handler code. semantics of the system. For example, suppose that e\jesigni-
An important point to note in this context is that some event sys- f¥ing “data transfer initiated,” is always followed by evefit sig-
tems such as Cactus allow event bindings to change dynamically.nifying “data transfer completed,” but that occurs (at least) some
We need to account for such changes and ensure that the correcfixed time afterA. In this case,B is raised as an asynchronous
ness is preserved by our optimization even if there are such dy-€vent, and so is not subjected to handler-merging. Note that this
namic changes. Our experiments indicate that dynamic changes td/So maintains the threading semantics of the system. In case of
the set of handlers for an event are rare: we keep track of whether oiSynchronously activated events, the activator thread services all of
not there have been any changes to the set of handlers for an eventts handlers, whereas in the case of asynchronously activated events
and drop back into the original unoptimized code for the event if a this may not be the case. Maintaining asynchronous events in the
change is detected. See section 3.3 for more details. system replicates this behavior. It should be noted that even though
Raise operations are typically generic, in the sense that they canhandler merging is not carried out in such cases, the event chains
raise any arbitrary event. Because of this, they incur overheads duecan still be optimized to some extent based on knowledge about the
to argument marshaling, indirect invocation of handlers, and state context in which later events can be raised, e.g., in this example
maintenance. The number of indirect raises—and hence their to-We know that when even is raised, the everd must have been
tal cost—can be reduced using super-handlers, as discussed abovEaised, and handled, previously. _ S
However, super-handlers are still invoked indirectly, and so incur ~ There is an important special case of event chain optimization
some residual cost. These costs can be reduced by replacing th@/h.ere the handlers of one event raise other events synchronously.
raise operation with a direct call to the super-handler based on pro-This leads to event chains where handlers for an evemhay
file information. This, in turn, opens up the possibility of inlining P& embedded in the handlers for the parent eventAn exam-

the function call into the call site, as discussed below. ple of this is found in the video player example shown in figure 5,
and is described by figure 8, which focuses on two distinct events,

Event Chains and Subsumption. The unpredictable nature of  SegFr omJser andSeg2Net , from figure 5; the former is shown



Handler Graph View

scattered across the program over a number of different handler

eventorapn_~ | (_FEC P ) [ rFec sz routines. As a result, they become amenable to further optimization
(seasegsFu) (oSN ) via standard compiler optimization techniques. We mention below
SegFromUser some of these optimizations that tend to be especially useful in this
((torversfu ) FECS2N ) context.
*
(CPusan ) ((_weesan ) Function Inlining. Since most event handlers tend to be relatively

small in size, function inlining—applied aggressively along, and
restricted to, frequently executed event paths—is very effective in
Figure 8: Subsumption of Events reducing the overhead of function calls without substantial growth
in code size. Additionally, a secondary benefit of inlining is the
reduction in the cost associated with supporting variable numbers
of arguments to a function. Typically event-based systems do not
regulate the types and number of parameters for a handler. This
leads to the use of variable argument lists in handlers. Inlining
Handler code allows us to eliminate the overheads associated with
argument marshaling and unmarshaling.

unshaded, the latter shaded gray. The relevant portion of the cor-
responding handler graph is shown on the top right of figure 8,
with handlers arising from the actions 8égFr omJser shown
unshaded and those arising frdbeg2Net shown shaded. The
proper nesting of the shaded handler sequence within the unshade
sequence indicates th&eg2Net is calledsynchronouslyy the

handlers oSegFr onlser . In other words, if the everSieg2Net Constant Propagation and Dead Code Elimination. Function

is raised from within a handler fasegFr onser, the latter will inlining makes it straightforward to propagate information about

wait until the handling oSeg2Net has been completed, at which  constant arguments from the call site into the inlined code. This in
point control will return to the handler f@egFr onser . In this turn exposes the potential for constant propagation optimizations
case, we can simpsubsumehe handler foSeg2Net intothatfor  to be applied to the super-handler. For example, conditionals that
SegFronlser, thereby eliminating the synchronous event raise test the value of one or more arguments can be eliminated if the
between them. values of the corresponding arguments are known at the call site

Figure 9 shows the effects of event subsumption for the eventsyhere inlining is carried out. As a specific case, this allows us to
shown in Figure 8. The eveiSegFr omlser has four handlers:  take the code for a handler that could be invoked by multiple events
FEC- SFUL, SeqSegSFU, TDr i ver - SFU, andFEC- SFU2, while (e g., Handler 4 in figure 1), and create a customized version of the
Seg2Net has four handleBAU- S2N, WFC- S2N, FEC- S2N, and (inlined) handler corresponding to a frequently encountered event.

TD- S2N.TDr i ver - SFUsynchronously raises the evegg2Net , General purpose handlers may be shared amongst different events.
which causes the execution of its handlers, after which control re- Typically such handlers contain conditional statements for deciding
turns to handlingegFr omser and causes the last handEEC- the nature of handling. Constant propagation, together with opti-
SFU2, to be executed. Without event subsumption, the best we mizations it enables such as the elimination of conditional branches
would be able to do is to merge the handlers $egFr omser whose outcomes become known, can cause code to become dead or
to create a super-handler for it, and similarly &gg2Net . This unreachable. The elimination of such useless code further improves
would still incur the overhead of an event raiseSefg2Net from handler and system performance.

TDr i ver - SFU. However, the synchronous nature of this raise al-

lows us to optimize this code so that the event rais8ex2Net Redundant Code Elimination. Handlers are not required to know
within the superhandler f@egFr onser is replaced by the han-  about the behavior of other handlers in the system. Because of this,
dler code forSeg2Net , as illustrated in Figure 9. they usually do not make assumptions about the actions that may

have been carried out by other handlers. This can lead to redundant

Events | Handlers code in the system. For example, a handler may evaluate expres-
SeFoTea S s s/]/‘TDriver’u | * sions that have already been evaluated by preceding handlers in an
(SegFromuse § FEC | | Seaseq event chain. Another common example is that of managing system
state: since the system state may change because of handlers, in
™ B 11 a multithreaded context handlers typically start by updating their
PAU| (WFC| | rec| | 1D .
state from the global system state, and commit new system state at

the end. In an event chain, this can cause redundant updates of the
. handler state. Such redundant operations can be identified in the
Subsumptiq super-handler code and are target for this optimization.

3.3 Dealing with the Unexpected

,Evems venders | ——— FeC |t A limitation of profiling is the fact that it will typically not ex-
, Seaseg plore all possible program execution paths. For example, the pro-
/Z/' . ﬁ@r gram may choose a completely new path when given an input that

PAY FEC was not used in th(_e profiling test runs. Since the optimized pro-
FEC FEC2 gram must operate in the same way as (except faster than) the corre-
™ sponding unoptimized version, we must have a mechanism for en-

suring that the optimized super handlers are only used when the un-
Figure 9: Effect of Event Subsumption optimized program would have taken the corresponding sequence
of handlers. We solve this problem by bypassing the optimized su-
per handlers when the program would not execute this sequence of
. o handlers.
3.2.2 Compiler Optimizations The specific solution is based on keeping track of event bindings
The super-handlers resulting from event graph optimization have in the event framework. We associate a flag with each event path.
the effect of bringing together code that was, prior to optimization, When the bindings for any event along the path change, it gets re-



Total Execution Time (sec) Event Handler Time (sec)
Frame rate] Orig. (Iy) | Opt. 1) | T1 /o (%) | Orig. (Tv) | Opt. (1) | 11 /To (%)

10 43.1 41.9 97.2 2.3 0.9 39.1
15 30.9 30.3 98.0 1.6 0.6 375
20 245 221 90.2 15 0.5 33.3
25 23.9 213 89.1 15 0.5 33.3

Key: Orig: Original program; Opt: Optimized program

Figure 10: Video player optimization results.

flected in the flag. This flag is checked before executing the superure 11 were measured when running the program with frame rate
handler for the path. If the flag &et we fall back to the handlersin  of 10 frames/second, while figure 10 shows the impact of the opti-
the original version of the program. This ensures that the optimized mization on the total execution time of the program. Evkdapt
version behaves in the same way as the original. Note that as a rehas 2 handlers, while evenegFromUserand Seg2Nethave 4
sult, this optimization technique results in a larger code size since handlers each. In this experiment, our techniques reduce the time
now the event-based program must contain both the super handlerspent in event handlers by 73-88%. Event processing contributes
as well as the original unoptimized handlers. However our experi- to about 10-15% of the total system costs; /O accounts for about
ments indicate that this increase is small, typically under 1.5% (see60% of the total execution time. There is a concomitant improve-
Section 4.2). ment in the overall execution time, as shown in Figure 10, ranging
The new program can he-optimizedas before by continuous  from 2.3% at a frame rate of 10 to about 11% for a frame rate of
profiling. A more efficient solution would be to dynamically rewrite  25. The reason that the impact of the optimization on overall exe-
super handlers to reflect the changes in binding. We plan to im- cution time becomes more pronounced as the frame rate increases
plement this dynamic configurability as future work. We discuss is that when the frame rate is low, the CPU is idle a large part of

proposed solutions and provide more details in section 5 the time. Therefore, the unoptimized program can simply use a bit
more of the idle time to keep up with the required frame rate. With

4. EXPERIMENTAL RESULTS low frame rates, both programs can keep up with the required frame
rate. However, when the frame rate increases, both programs must

4.1 Overview do more work in a time unit and the idle time decreases. When the

We ran experiments on 650 MHz Pentium 3 based desktop com-frame rate becomes high enough, the unoptimized program runs
puters with 128 Mb memory and on laptops with 266 MHz Pen- ©Out of extra idle time and starts falling behind the optimized pro-
tium 11 processors and 96 Mb memory, all running Linux 2.4. We 9gram. This indicates that our optimizations are especially effective
used Cactus/C, a C version of Cactus, and the XFree86 versionfor mobile systems, such as handheld computers, that tend to have
4.0.2 distribution of X including Xt, Xlib, and the Athena widget €SS powerful processors than, say, desktop systems.
family. Cactus programs used for profiling included a H263-based
video player implemented on top of a configurable transport proto-

. L Event Processing Timeusec) | Speedup
col CTP[22], and SecComm, a configurable secure communication Original | Optimized (%)
service [10]. For X-based programs, we focused on optimizing spe- Adant Tt T 300
cific event responses. Programs we used for this purpose include p )
xterm a popular terminal emulator on Unix systems, @vin a SegFromUser 346 41 88.2
graphical version of the vi text editor program. Seg2Net 137 37 73.0

The effect of these optimizations is more pronounced on the the
slower processor based laptops. Common configurations for hand-
held devices (206Mhz,64Mb RAM) are similar to those of the
laptops. We expect the need for and effect of these optimizations

Figure 11: Event Processing Times in the video player.

to be even more significant on such platforms. SecComm is a configurable secure communication service that
allows the customization of security attributes for a communica-
4.2 Cactus Programs tion connection, including privacy, authenticity, integrity, and non-

The video application is based on the Configurable Transport repudiation. One of the features of SecComm is its support for
Protocol (CTP) developed using Cactus/C. The input parametersimplementing a security property using combinations of basic se-
for the video player include the resolution of video and the frame curity micro-protocols. We optimized a configuration of SecComm
rate. The experiments were carried out on two data-files of 15- with three micro-protocols, two of which encrypt the message body
16 Mb recorded at44 x 176 resolution. Both the original and  (DES and a trivial XOR with a key) and the third that coordinates
the optimized versions of the program were run 100 times each, the execution of the other two. SecComm is a much simpler com-
at each of several different frame rates. Individual times per event posite protocol than CTP and the video player, and the event behav-
were computed by running each program only 10 times, since eachior in this particular SecComm configuration turns out to be quite
event occurs a large number of times on each run; during a run ofpredictable. In particular, there is one event path on the sender
the program about 8000 events—1000 of them asynchronous—areand one path on the receiver. The majority of the execution time
raised. The execution time reported, in each case, is the averagen SecComm is spent in the cryptographic encryption and decryp-
of the run times so obtained. The event graph for this application tion routines. The SecComm measurements were performed on the
contains 18 distinct events as shown in figure 5. Each event has 2—4lesktops, as follows: first a dummy message was sent to initial-
event handlers, with a total of 54 handlers in the system. ize the micro-protocols, after which messages were sent 100 times.

Figures 10 and 11 show the effects of optimizing the video player This was repeated for different packet sizes, for a total of 1000 mes-
example on the laptop. The event processing times reported in fig-sages per packet size. The time reported in each case is the average



Push time gisec) Pop time fisec)

64 274 241 88.0 397 378 95.2
128 287 263 91.6 460 448 97.4
256 304 273 89.8 484 457 94.4
512 336 299 89.0 494 470 95.1

1024 430 373 86.7 608 570 93.8
2048 572 552 96.5 1016 893 87.9

Figure 12: Impact of optimization in SecComm

of the run times so obtained. : :

Figure 12 shows the amount of time spent in gheshand pop _IE_)\//ggt gflegcu(tTlg)n rlgp?t}.(ts(‘]%) TEO/A)T)b
portions of SecComm before and after optimization. The push Scrol 158 78 937
portion encompasses the message processing from the time it is )
passed to SecComm by the application until it is passed to the UDP Popup 37 31 83.8
socket. The pop portion encompasses the message processing from
the time it is received from the socket until SecComm passes it to
the higher layer (the application). The push portion includes the
_tlme taken by the er_lcryptlon oper_atlons, whereas the pop po_rt'ontimizations merge these two action handlers as described earlier.
includes the decryption time. The time taken depends on the size of

kets and A its for diff ¢ Ketsi The Scroll event corresponds to motion of the scrollbar igvaém
message packels and we present resufts for ditterent packet sizes. Window. Handling this event also involves two action handlers that
can be seen that the time for the push portion is reduced markedl

) ith ; 13.3%. The | Ymove the thumband update the new position. The first action han-
In most cases, with improvements of up to 13.3%. The Improve- yor e the underlying framework to get the co-ordinates of the

Shumb. The second is responsible for displaying the new position
of the thumb on the screen. Both these action handlers call call-
backs tied to corresponding widgets.

It can be seen that our optimizations reduce the coStadll by
about 6% and that dPopupby over 16%. Our optimizations were
applied at action handler level and we can optimize one step further

Figure 13: Optimization of X events

for the push portion, typically around 5% but going as high as 12%.

An examination of the effects of our optimizations on these two
programs indicates two main sources of benefits: the reduction
of argument marshaling overhead when invoking event handlers;
and handler merging, leading to a reduction in the number of han-
dler invocations. The elimination of marshaling overhead seems to by opening up callbacks in the same way.
have the largest effect on the overall performance improvements We have tried our optimizations on the Athena widget family
achieved. The main effect of handler merging is to reduce the b

ber of f . s b hand| h di ased on Xt and Xlib, provided with XFree86. Athena toolkit is a
number of function calls between handlers that are executed In S€+yinimq) toolkit with limited scope for configurability, and therefore
guence. Merging also creates opportunities for additional code im-

d dard i oo provided limited scope for applying our optimizations. The event
provements due to standard compiler optimizations. model in more recent (and popular) toolkits such as Gnome GTK

Tomeasure t_he effe(_:ts of_our optir_ni_zation on co_de_ size we counte nd KDE Qt provides functionality, e.gsignalsandslots that is
the number of instructions in the original and optimized programs ey similar to the Cactus event model. Such functionality greatly
using t_he commandbj dunp '.d program | we 'Ol ) Ourop-_ increases the ease of use and development of client applications
timizations pro(()juce a code size increase of 1.3% for the video but increases the cost of event handling significantly. Application
player and 1.1 % for Seccomm. of our optimization techniques directly to these systems would re-

duce these costs and make event handling through signals etc. no
4.3 X-based programs more expensive than “ordinary” event handling while significantly

X-based programs tend to be user driven, spending much of theirenhancing ease of programming.
time in the event loop waiting for user input. Hence our focus in
the case of X-based programs is to improve the eventresponse timeg,. EXTENSIONS
i.e., the time taken to handle an event. Common applications like
gvimexhibit several examples of multiple handlers binding to sin-
gle events and hence are are good candidates for applying such o
timizations. This section is indicative of the potential of our tech-
niques.

We evaluated our ideas on tleermapplication provided with
XFree86 andyvim The effects of our optimizations on these pro-
grams while running on the laptop are shown in figure 13. These
numbers were obtained by raising the events 250 times.

Popuprepresents the Menu Popup that is triggered of bhRrIC
+ MouseBuUTTON in anxtermwindow. When handling the pop-
up, two action handlers are triggered in sequence. The first action
initializes the a menu object. This procedure is specific to the type
of GUI toolkit and in our case uses ti&mpleMenwvidget in the
Athena Toolkit. The next action handler is responsible for con-
structing and displaying the menu. This action handler in turn calls
two callbacks to track mouse motion within the menu. Our op- 'The “thumb” here refers to a portion of the scrollbar.

We are working on a number of extensions to these optimization
techniques. These range from simple extensions and automation
Pof some of the steps required to extensions for dealing with the
dynamic aspects of the event system and for dealing with cases
where the event execution is not quite deterministic. An example
of a simple extension would be to perform handler merging for all
events that have more than one handler rather than only the events
in frequently executed event chains. In a sense, the optimization
used for X-based programs already uses this optimization.

Event-based system may change their behavior dynamically and
any optimization approach must be able to handle such changes.
The behavior of an event-based system can be altered simply by
changing the event binding. Such a change is a challenge for an
optimization system based on identifying and utilizing predictable
behavior in an event system. Our current approach is based on




detecting any change in event bindings and falling back to the orig- berset al. discuss the use of dynamic compilation to optimize event
inal code for any events affected by the binding change. A better dispatching in the SPIN operating system [4]. Unlike our work,
approach would be to construct the super handler so that it can bewhich uses profile-based static optimizations, the work of Cham-
used even if some of the bindings change. For example, considererset al. relies on optimizations that are carried out during execu-
a predictable event sequence (A,B,C,D), which has been optimizedtion. As with other dynamic optimization systems (e.g., Dynamo
into one super handler (ABCD)If handlers for B change, the cur-  [1], Tempo [6]), the benefits of dynamic optimization have to be
rent approach falls back to the original code for this whole event balanced against the overheads associated with runtime monitoring,
sequence and all of the performance improvement achieved by theoptimization, and code generation. Because of this, dynamic code
optimization are lost. Alternatively, we could organize (ABCD) optimization systems generally rely on lightweight optimizations.
super handler internally so that the code corresponding to differentBy contrast, the optimizations we carry out are fairly heavy-weight,
events is partitioned as illustrated for event B in figure 14. Even if with correspondingly high payoff.
the event binding for event B changes, the optimized version can Events, and their variants, have traditionally been used for inter-
still be used for events A, C and D. action between different layers of systems software. For example,
Ensemble [8] uses events for communication between layers in a
protocol stack. Ensemble protocol stacks are typically relatively

if event binding for event B changéd deep since they consist of rather small modules, each of which
}elsce“-l{”(o“g'”a' code for event B); implements a specific function. Furthermore, Ensemble is imple-
merged, inlined, and optimized code for event B mented using ML, a functional programming language. Ensemble

focuses optimizations on the common sequence of operations (the
“normal” case) that occur in a protocol stack. Each such sequence,
denotedevent traceis triggered by an event such as receipt of a
message. The common operations must be annotated by the pro-
tocol designer. The code in an event trace is optimized into one
trace handlerusing techniques ranging from eliminating interme-
diate events to inlining and traditional compiler optimization. Each
event trace hastaace conditiorthat must be true for the trace han-

Figure 14: Extended super handler for dynamic system

Other optimizing techniques could be added to optimize the sys-
tem even further than just the predictable event paths. Once all
event chains have been optimized, we will be left with a reduced

graph with no event paths. This reduced graph can be further op_dler to be executed. The trace condition must have predicates from
timized by using a speculative approach. In this scheme, if node each protocol layer and these predicates must be provided by the

A is followed by B 90% of the time and C 10 % of the time, free protocol desi_gner. In com_parison, our ap_proach doe§ hot require the
cycles in A can be used to initialize the execution of B. Value based protocol designer to provide any annotations or predicates. Further-

optimization, as suggested in [15] may also be extended to increas ore, out focus is on providing generally applicable optimizations_ i
the accuracy of prediction. Another strategy would be to perform echnigues for event-based systems rather than for any one specific

minimal processing for A and defer the bulk of handing A the next system. . . L
event ocgurs. If thgJ next event is B, optimized code fo? (A89n Synthesis [20] and Synthetix [19] were efforts at specializing

be executed. This type of deferral would particularly useful in a sit- operating systems through ma’??‘f" speualllzat.lon. The primary dis-
uation where event A is followed by B or C with equal probability. adva.ntage.ls the lOS.S.Of portablhty and ma|r)ta|n§1b|l|ty. Automated
Heavier optimizations such as dominator / post-dominator analysis spemahzatl_on IS gaining Importance especially in areas related to
can be used to detect co-relations between events byte code interpretation. Most of these approaches rely on partial
Our next step will be to optimize events activated asynchronously.evgluat'tog banEd ort:_lt(notwmg the Input _values. larity in desiani
As we pointed out earlier, the current optimization can only address veln g a?te archi tec uresE aret gbalnlr:jg p%pu anty |nf tﬁs'%nérgA
event paths that may start with a synchronous or asynchronous actOMPIEX soltware systems. tvent-based web Servers ot ine
tivation, but all the other activations must be synchronous. Asyn- project [.21] outperform thelr_ t_hread-_based counterparts in terms of
' . Jesponsiveness and scalability. This approach partitions a system
a synchronous activation; the handlers bound to this event must bénto many Ioglca!ly mdependerstageswhere th? dn‘ferept stages
executed some time, preferably soon, after the event has been actigommunlcate using eV(_ent_s. Each stag_e is serviced by its own thread
vated. Although these semantics will make it difficult to create an FOOl't C;oncgptuailﬁl this '% thefoppostltg otfhour afproa%(_:k? tha}t at-
optimized program that has identical behavior to an unoptimized empts to reduce the number of events in the systém. The primary

one, it should be possible to generate one that executes the evendiiference is the targeted system architecture. While our work tar-

and handlers in order acceptable for the semantics of the event opgetS small single processor, possibly single-t.hreaded, systems as
erations. In particular, if an asynchronous activation of an event A expected on a mobile device, SEDA targets high-end server archi-

is always eventually followed by the activation of event B, it may tectures with seygrgl SMPs. S'.EDA gains Its performance improve-
be semantically correct to merge the handlers of A to the end of ment from maximizing parallelism by gxplomng frqe cycles avail-
the handlers for B. We will explore which program transformations able on the SMPs and hence they gain by releasing the processor

such as this preserve program correctness. We also plan to extend> Soon as possk;blﬁ. O ur approlgch g?'ns ffrom traddltlonalllly opt:j—
the family of compiler optimizations to include techniques such as mizing program behavior, €.g., elimination of procedure calls an

register allocation etc which are currently effected through standard other_ redundant qodg, and attempting to complete as much work as
compilers. Finally, we plan to extend this work to include dynamic possible befgre yleldlpg the processor. Our performance results in
profiling tool along with optimization modules for the compiler. _table 10 partially cc_)nf_|rm _the findings In [21]. When the frame rate
This will be used to apply our techniques to other event based sys-'.S very Iovt\)/, our optllmlkzatlon ;]icltéjlally sllgt?tly |ncresseglthe exet:lq-

: ; : . tion time because locks are held longer by super handlers resulting
tems like system call and interrupt behavior of operating systems. . . AT

y P P 9y in starving other threads even though the CPU utilization is low.
As the frame rate and CPU utilization increase, the effect of our
6. RELATED WORK optimizations gets more pronounced until we reach a limit where
We are not aware of a great deal of work aimed specifically at system throughput becomes the limiting factor.

compilation oriented optimization of event-based systems. Cham-



Finally, ILP (Integrated Layer Processing) [5] can be viewed as [8] M. Hayden. The Ensemble system. Technical Report
related work. ILP integrates data manipulation across protocol lay- TR98-1662, Department of Computer Science, Cornell
ers to minimize memory references by merging the message data University, Jan 1998.
manipulation done on different layers into one loop where each [9] M. Hiltunen, R. Schlichting, X. Han, M. Cardozo, and
data item is accessed only once. This technique can be used, for R. Das. Real-time dependable channels: Customizing QoS
example, to merge encryption, checksum computation, compres- attributes for distributed system&EE Transactions on
sion, and presentation formatting into one loop. Our optimization Parallel and Distributed System$0(6):600—-612, Jun 1999.

does not specifically attempt to reduce memory references relateqlo] M. Hiltunen, R. Schlichting, and C. Ugarte. Enhancing
to accessing the message data, so ILP could in principle added asan ~ syrvivability of security services using redundancy. In

additional optimization technique to our approach. Note that pro- Proceedings of the International Conference on Dependable

filing the memory references in a super handler the same way we Systems and Networks (DSN 20Qidges 173-182,

profile events and handlers, could automate the process of finding Gothenburg, Sweden, Jul 2001.

candidate code for ILP optimization. [11] M. Hiltunen, R. Schlichting, and G. Wong. Cactus system

software release.

7. CONCLUSION http://www.cs.arizona.edu/cactus/software.html, Dec 2000.
Event-based programs are used in a variety of domains due to[12] J. R. Larus. Whole program paths.Rnoceedings of the

their flexibility. However, event-based program execution has a ACM SIGPLAN '99 Conference on Programming Language

considerable performance overhead. Due to the dynamic nature ~ Design and Implementatiopages 259-269, Atlanta,

and unpredictability of events—which event occurs and when— Georgia, May 1-4, 1999.

and event bindings—which handlers are bound to an event when[13] R. Marlet, S. Thibault, and C. Consel. Efficient

it occurs—compiler optimization techniques have not traditionally implementations of software architectures via partial

been used in this domain. However, in this paper, we have deter- evaluation.Journal of Automated Software Engineering

mined that many event-based programs have considerable amount  (J.ASE) 6(4):411-440, Oct 1999.
of predictability that can, indeed, be utilized to perform powerful [14] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible

compiler optimizations. We have developed a novel multi-resolution protocol kernel supporting multiple coordinated channels. In
profiling technique to identify predictable program sequences and Proceedings of the 21st International Conference on
thus, targets for the optimization. Through the application of sim- Distributed Computing Systersages 707-710, Phoenix,
ple compiler layout and dataflow optimizations, we have achieved AZ, Apr 2001.
up to 80% reduction of event handling time, resulting in overall [15] R. Muth, S. A. Watterson, and S. K. Debray. Code
program performance improvements of up to 12%. We have suc- specialization based on value profiles Static Analysis
cessfully applied our general optimization technique to two event- Symposiumpages 340-359, 2000.
based systems, namely Cactus and X. We believe this work will [16] A. Nye and T. O'Reilly.X Toolkit Intrinsics Programming
the first in a series of tackling performance issues in event-driven Manual O'Reilly and Associates, 1992.
programs and system software. [17] Object Management Groufvent Service Specification
(Version 1.1) March 2001.
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