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1 IntroductionA logic program consists of a set of clauses of the form `H :� B1; : : : ; Bn.' Logically, such a clauseis read as an implication \B1 and : : :and Bn implies H ." This reading gives rise to two distinctnotions of the semantics of a Horn program: the model-theoretic semantics, which relates to the setof facts that follow logically from the program; and the �xpoint semantics, which relates to the set offacts that can be computed using the rules de�ned by the program. In the case of \ordinary" Hornprograms (essentially an idealized version of Prolog), the model-theoretic semantics of a programis given by its least Herbrand model, which is the intersection of all its Herbrand models (i.e.,models where function symbols are uninterpreted). Conventionally, the �xpoint semantics of aHorn program P is obtained by repeatedly \applying" the clauses comprising P to a set of atomsthat is initially empty, and collecting together the results, until nothing new can be generated: thisprocess can be formalized in terms of the least �xpoint of an operator TP de�ned in terms of P .A fundamental property of Horn programs is that every program P has a (unique) least Herbrandmodel that coincides with the least �xpoint of the associated operator TP .The fact that the model-theoretic and �xpoint semantics of a Horn program coincide is verypleasant mathematically, and establishes the fundamental connection between the operational (�x-point) and intended (model-theoretic) semantics for a large class of systems. Researchers whohave investigated variations of and extensions to Horn clause programming have generally strivento prove similar results for the various di�erent cases considered (for examples of such variationsand extensions, see Section 6). Unfortunately, the development of the various model-theoretic and�xpoint semantics in such cases has typically proceeded from scratch. This is unsatisfactory for tworeasons: �rst, much of the machinery involved in these proofs is reinvented, with minor modi�ca-tions, for each such variant; and second, by approaching these results piecemeal on a per-applicationbasis, we miss the fundamental essence of \Horn-like" computations that causes these results tohold. The aim of this paper is to address this situation by considering, in a fairly general setting,an axiomatic basis for Horn clause logic programming. The basic idea behind our approach is verysimple: we de�ne a generic notion of Horn computations in a simple algebraic setting, and presenta small set of axioms that seek to capture the essence of bottom-up �xpoint evaluation for a varietyof \Horn-like" computations. These axioms serve to specify a wide class of algebraic structures overwhich generalized Horn programs can be de�ned in a manner that conforms with our intuitionsof Horn computations, and guarantees the existence of intuitively reasonable least �xpoints andleast models that coincide. In the process, they show how a variety of �xpoint computations, pro-posed in di�erent guises, can be expressed concisely in the logic programming idiom. In Section 6,we demonstrate the generality of these results by considering several proposed \Horn-like" frame-works. Finally, we discuss connections to OLDT resolution and memoizing top-down computationsin Section 8.2 PreliminariesWe consider the language of Horn clauses [21]; however, because we want to reason about �xpointcomputations over both standard and non-standard domains, we refer to values rather than terms:values are simply syntactic entities manipulated during a computation, and can be atoms, terms,1



feature structures, graph structures, abstract domain elements, etc. The set of all values is denotedby D. Further, it is technically convenient to treat a predicate of arity k as a unary predicate whoseargument is a k-tuple of terms.The �xpoint evaluation of a program P on an input set of values R is the set of values thatcan be obtained by repeatedly applying the clauses of P to inferred values, with the initial set ofinferred values being R, until no new tuples can be inferred.1 There are two reasons we considerarbitrary input sets instead of evaluating P on ;: �rst, in deductive database applications the \baserelations" are usually considered to be part of the input rather than of the program itself; second,we may want to �x the meanings of some predicates, such as plus and minus that specify arithmeticoperations.We assume that we have a binary operator 
 : D� D �! D. The notion of a value being aninstance of another is de�ned as follows.De�nition 2.1 Given t1; t2 2 D, t1 is an instance of t2 if and only if there is some t3 2 D such thatt1 = t2 
 t3. We denote this as t1 � t2.Since bottom-up evaluation requires the manipulation of sets of values, we \lift" the operator 
to operate on sets, to obtain an operator b
 : P(D)�P(D) �! P(D):De�nition 2.2 For any S1; S2 in P(D), S1 b
 S2 = fs1 
 s2 j s1 2 S1; s2 2 S2g .Sets of values may reasonably be assumed to convey \information"|indeed, the TP operator of vanEmden and Kowalski [43], like other immediate consequence operators that have been proposed forvarious extensions to Horn logic programming, essentially speci�es what information can be inferredusing the rules of a given program given some information that is known to be true. In general, itmay happen that two di�erent sets of values S1 and S2 contain the same amount of information:this can be expressed by specifying, for each set of values S, a \canonical representative" S] thatcontains the same amount of information as S: the idea is that all sets that contain the sameamount of information have the same canonical representative. To this end, we assume that weare given a normalization operator ] : P(D) �! P(D) that yields, for any set of values S, thecanonical representative of those sets of values whose information content is the same as that of S.The notion of a set containing \the same amount of information" as another can be captured viaa relation �:De�nition 2.3 Given S1; S2 2 P(D), S1 � S2 if and only if S]1 = S]2.Recall that the �xpoint evaluation of a Horn program can be seen in terms of repeatedly applyingthe rules of the program and \collecting together" the sets of tuples obtained from each rule. The1Of course, we have no way of knowing at this time whether such a set always exists, or, if it exists, is unique,so perhaps it is premature to speak of \the set" of values so obtained. At this point, the appeal is primarily to thereader's intuitions: later in the paper we will consider conditions that guarantee that there is a unique \smallest" setthat can be obtained by repeated application of rules in this way.2



notion of \collecting together" a set of sets of tuples can now be de�ned in terms of amerge operatorb� :De�nition 2.4 Given any set of sets of values S � P(D), their merge is de�ned as b� S = ([S)].Finally, given a set S of (values that are) tuples, the selection operator #1 returns the set consistingof the �rst element of each (tuple) element in S.A Summary of the Development so far : We have assumed that we are given two operators
 and ]. These, together with the operations of set union and selection (#1), yield analgebra with operations [; #1; ], and 
 . Using these, we have de�ned the derived operatorsb
 and b� , and the relation �, which are notationally more convenient in the developmentthat follows. The reader may wish to keep in mind, however, that everything in the rest ofthe paper can easily be restated in terms of only [; #1; ], and 
 , essentially by a process ofmacro expansion.3 Axioms for Horn ProgramsOur �rst axiom states that normalization preserves information content (and thus that ] is idem-potent):Axiom 1 For any S 2 P(D), S] � S.It is straightforward, from the de�nition of �, that it is an equivalence relation.NOTATION : In the remainder of the paper, the \domain of computation" we will typically beconcerned with will be P(D)= �. For brevity of notation, this set will be denoted by D.The next axiom states, intuitively, that the operations of interest in our algebra, namely, union,b
 , and the selection of the �rst element of a tuple, respect the notion of information content:Axiom 2 � is a congruence relation with respect to [, b
 , and #1, i.e.:1. Let fSi j i � 0g and fS 0i j i � 0g be subsets of D, then if Si � S 0i for each i � 0 , then([i�0Si) � ([i�0S 0i).2. For any fS1; S 01; S2; S02g � D, if S1 � S 01 and S2 � S 02 then S1 b
 S2 � S 01 b
 S 02.3. If S � S 0 for S; S 0 2 D, then S #1 � S 0 #1.Our third axiom states that 
 behaves sensibly when applied to tuples (so that, for example, 
applied to two 5-tuples does not yield a 17-tuple):3



Axiom 3 Let r1; : : : ; rn and s1; : : : ; sn be elements of D, then hr1; : : : ; rni 
 hs1; : : : ; sni =ht1; : : : ; tni, where ti � ri and ti � si; 1 � i � n.Note that this axiom states only that 
 cannot behave in completely unconstrained ways whenapplied to tuples. It may not say everything we might want to say about the behavior of 
 ontuples in the context of a particular application (e.g., that variables shared across di�erent elementsof the tuples are handled consistently): such additional constraints have to be taken into accountexplicitly when de�ning 
 for a particular application. These axioms are su�cient to show our�rst main result, which states that every program has a least �xpoint. Our second result statesthat every program has a least model. The notion of a model rests upon a reinterpretation of thenotion of entailment based on the notion of \information content" discussed above. To establishthis result we need an additional axiom that expresses the requisite properties for 
 . This axiomconsists of two parts: intuitively, the �rst part states that for any values t and t0, the value t 
 t0conveys no more information than does t, while the second part elaborates on the special case wheret0 = t, stating the value t 
 t conveys no less information than does t.Axiom 4 For any t; t0 2 D, (1) ftg b� ft 
 t0g � ftg; and (2) ftg b� ft 
 tg � ft 
 tg.Our �rst use of Axiom 4 is in Section 5; preceding results require only Axioms 1{3.4 A Generic Fixpoint SemanticsA generic �xpoint semantics for Horn programs, in terms of the operators 
 and b� , can bede�ned as follows:1. Rule Application :To evaluate a clause C given a set R of values for its body literals, it is necessary togenerate instances C 0 of C such that each body literal of C 0 is an instance of an ap-propriate value in R. If C � `H :� B1; : : : ; Bn', then any such instance is given byhH;B1; : : : ; Bni 
 hH;B01; : : : ; B0ni, where B0i 2 R; 1 � i � n. The set of all such instances,therefore, is simplyfhH;B1; : : : ; Bnig b
 fhH;B01; : : : ; B0ni j B0i 2 R; 1 � i � ng:The appropriate instances of the head of the clause C can then be obtained simply by selectingthe �rst element of each tuple so computed:apply rule(C;R) = (fhH;B1; : : : ; Bnig b
 fhH;B01; : : : ; B0ni j B0i 2 R; 1 � i � ng) #1where C � `H :� B1; : : : ; Bn'.2. Evaluating a Program :Evaluating a program on input R now involves computing the least �xpoint of an operatorTP that yields the values that can be inferred by using R in the body literals of rules of P .TP (R) = b� fapply rule(C;R) j C 2 Pg.4



3. Fixpoint Semantics :The �xpoint semantics of a program P is given by the least �xpoint lfp(TP ). Corollary 4.9below shows that this exists and is well-de�ned for any program P .The following example illustrates our approach, and also shows that it can capture some importantcases of Horn computations.Example 4.1 Consider the case where, given a Horn program P , the set of values D is the setof terms of the language of P augmented with a distinguished element ?, denoting failure ofuni�cation, and the instance operator 
 and the normalization operator ] are de�ned as follows:1. 
 is the \usual" �rst order notion of \most general instance" [31, 33]: Given two (tuplesof) terms t1 and t2, t1 
 t2 is their most general instance, if one exists, and ? otherwise.2. ] is the identity function, modulo ignoring ?: for any S 2 D, S] = S n f?g. Thus, b� is setunion, modulo ignoring ?.This case corresponds to the \usual" case of Horn program evaluation, and yields the S-modelsemantics of Falaschi et al. [13].Alternatively, we can consider the following variation on this example: the operator 
 isde�ned as before, but ] is modi�ed so that it yields only irredundant sets of elements, where anelement of a set S is redundant if and only if it is subsumed by some other element of S [22]. Inother words, S] is the set of maximal elements of S, where the partial order is the usual \moregeneral than" ordering on terms (modulo variable renaming). In this case, the computation involvessubsumption checking each time the rules are applied.The following properties of b� and b
 that are useful in developing our results.Lemma 4.1 b� is associative, commutative, and idempotent.Proposition 4.2 b
 distributes over b� .Proof: By de�nition, S b
 S 0 = fs 
 s0 j s 2 S ^ s0 2 S 0g for any S; S 0 2 P(D). Thus, we haveS b
 (S1 [ S2)= fs 
 s0 j s 2 S ^ s0 2 S1 [ S2g= fs 
 s0 j (s 2 S ^ s0 2 S1) _ (s 2 S ^ s0 2 S2)g= fs 
 s0 j s 2 S ^ s0 2 S1g [ fs 
 s0 j s 2 S ^ s0 2 S2g= (S b
 S1) [ (S b
 S2).Now from Axiom 1, S � S], and since, from Axiom 2, � is a congruence with respect to [, we have5



S b
 (S1 [ S2) � S b
 (S1 [ S2)] = S b
 (S1 b� S2).Similarly, (S b
 S1)[ (S b
 S2) � ((S b
 S1)[ (S b
 S2))] = ((S b
 S1) b� (S b
 S2)). Thus, we haveS b
 (S1 b� S2) � (S b
 S1) b� (S b
 S2),which shows that b
 is left-distributive over b� . A symmetric argument can be used to show thatb
 is also right-distributive over b� . Thus, b
 distributes over b� .Intuitively, given sets of values S1; S2 2 D, S1 b� S2 contains the information present in bothS1 and S2 This implies that S1 b� S2 can reasonably be expected to contain more information thateither S1 or S2 by itself. The notion of \contains more information than" can be formalized byde�ning a binary relation v over D as follows:De�nition 4.1 For any S1; S2 2 D, S1 v S2 if and only if S1 b� S2 � S2.Proposition 4.3 D is partially ordered by v, and forms a complete lattice with least element ;and greatest element D, and join operation b� .Proof: That hD;vi is a poset is a straightforward consequence of Lemma 4.1.It is straightforward to show, from the de�nition of v, that for any S1 and S2 in hD;vi, S1 b� S2is the least upper bound of S1 and S2. First, from Lemma 4.1, b� is associative and idempotent,whence it is easy to show that for any S1; S2 2 D,S1 b� (S1 b� S2) � S1 b� S2whence S1 v (S1 b� S2). A similar argument establishes that S2 v (S1 b� S2). Thus, S1 b� S2 isan upper bound for S1 and S2 with respect to v. We now show that it is the least upper bound:consider any S3 2 D that is an upper bound for S1 and S2, i.e. S1 v S3 and S2 v S3. From thede�nition of v, it follows that S1 b� S3 � S3 and S2 b� S3 � S3. Then, we have(S1 b� S2) b� S3 � (S1 b� S3) b� (S2 b� S3) from Lemma 4.1� S3 b� S3 since (S1 b� S3) � S3 � (S2 b� S3)� S3 since, from Lemma 4.1, b� is idempotentwhence (S1 b� S2) v S3, i.e. S1 b� S2 is the least upper bound of S1 and S2 with respect to v.Now ; � S for any S 2 D, whence we have ; b� S = (; [ S)] = S] so that ; v S, i.e. ; is theleast element of Dwith respect to v.Since [S 2 D for any S � D, it follows, from the de�nition of b� , that b� S 2 D for any S � D.Thus, every subset of D has a least upper bound in D. Since hD;vi also has a least element, itfollows [6] that it is a complete lattice. 6



To see that D is the greatest element of the lattice hD;vi, note that S � D for any S 2 D, so(S[D) = D. It follows that (S[D)] = D], which means that (S b� D) � D, or equivalently, S v D.Lemma 4.4 Let C be any clause in a program. For any S1; S2 2 D, if S1 � S2 thenapply rule(C; S1) � apply rule(C; S2).Proof: Let C be a clause `p(�t) :� q1(�t1); : : : ; qn(�tn)', and let S1; S2 2 D such that S1 � S2.For simplicity of notation, let R1 denote the set fh�t; �t01; : : : ; �t0ni j �t0i 2 (S1)qig, and R2 the setfh�t; �t01; : : : ; �t0ni j �t0i 2 (S2)qig. Since S1 � S2, it follows, from the de�nition of ], that R1 � R2. FromAxioms 2 and 3, we therefore have(fh�t; �t1; : : : ; �tnig b
 R1) � (fh�t; �t1; : : : ; �tnig b
 R2).It follows, from Axiom 2, that (fh�t; �t1; : : : ; �tnig b
 R1) #1 � (fh�t; �t1; : : : ; �tnig b
 R2) #1 : From thede�nition of apply rule, we then have apply rule(C; S1) � apply rule(C; S2).Lemma 4.5 Let C be any clause in a program, and let S = fSi j i � 0g be a chain in hD;vi, i.e.S0 v S1 v S2 v : : :. Then,[S2S apply rule(C; S)� apply rule(C;[S):Proof: Let C be the clause `H :� B1; : : : ; Bn'. First, consider the set R = fRi j i � 0g, de�nedas follows:R0 = S0;Ri = Ri�1 [ Si; i > 0:It is obvious that hR;�i is a chain, i.e., R0 � R1 � R2 � : : :. We show, by induction on i, thatRi � Si. The base case, for i = 0, is trivial. In the inductive case, assume thatRi � Si for 0 � i � k,and consider Rk+1 = Rk [ Sk+1. Since S is a chain, Sk v Sk+1, so Sk t Sk+1 = Sk+1. Since S1 t S2is nothing but (S1 [ S2)] for any S1 and S2, this implies that (Sk [ Sk+1)] = Sk+1, and thereforethat (Sk [ Sk+1)]] = S]k+1. Since ] is idempotent (Axiom 1), this implies that Sk [ Sk+1 � Sk+1.Since Rk � Sk from the inductive hypothesis, Axiom 2 implies that Rk [ Sk+1 � Sk+1, i.e., thatRk+1 � Sk+1.The proof proceeds by �rst considering the application of apply rule to the chain hR;�i, thenapplying the results to the chain hS;vi. First, consider an atom H 0 2 [iapply rule(C;Ri). It mustbe the case that H 0 2 apply rule(C;Ri) for some Ri 2 R, which means that there must be atomsB0j 2 Ri; 1 � j � n, such that 7



H 0 = (hH;B1; : : : ; Bni 
 hH;B01; : : : ; B0ni) #1.But if this is true, then since B0j 2 Ri, it must also be the case that B0j 2 [iRi; 1 � j �n. This means that H 0 must also be in apply rule(C;[iRi). Thus, [iapply rule(C;Ri) �apply rule(C;[iRi).We next want to show that apply rule(C;[iRi) � [iapply rule(C;Ri). Consider an atomH 0 2 apply rule(C;[iRi): suppose H 0 is in apply rule(C;[iRi) because there is some set of atomsB0j 2 [iRi; 1 � j � n, such thatH 0 = (hH;B1; : : : ; Bni 
 hH;B01; : : : ; B0ni) #1.Clearly, for each B0j ; 1 � j � n, there must be some element of R|call it R(j)|such that B0j 2 R(j):for otherwise, B0j cannot be in [R. Thus, if we union together all such R(j), then all of the B0jwill appear in the result: in other words, let R(?) = [nj=1R(j), then B0j 2 R(?); 1 � j � n. Thisimplies that H 0 2 apply rule(C;[nj=1R(j)). Now each of the sets R(j) is an element of the chainR = fR0; R1; R2; : : :g: letm = maxfi j 9j : Ri = R(j)gthen it is not di�cult to see, from the de�nition of the set R, that Rm = [nj=1R(j). Thus, we haveH 0 2 apply rule(C;Rm).It follows from this that H 0 2 [iapply rule(C;Ri), i.e., that apply rule(C;[iRi) �[iapply rule(C;Ri). Thus, we have apply rule(C;[iRi) = [iapply rule(C;Ri).Now Ri � Si for i � 0, and from Axiom 2 � is a congruence with respect to [, whence it is easyto see that [iRi � [iSi. Then, from Lemma 4.4, we have apply rule(C;[iSi) � [iapply rule(C; Si).The Lemma follows.Lemma 4.6 Let C be any set of rules in a program P , and S � D any set of sets of atoms. Then,[S2S [C2C apply rule(C; S) = [C2C [S2S apply rule(C; S):Proof: It is easy to see, from the de�nition of the function apply rule, that[S2S [C2C apply rule(C; S)= f�u j (9S 2 S)(9C 2 C)[�u 2 apply rule(C; S)]g= f�u j (9C 2 C)(9S 2 S)[�u 2 apply rule(C; S)]g since the choices of S and C areindependent= [C2C [S2S apply rule(C; S). 8



The following is our �rst main result.Theorem 4.7 For any program P , the operator TP : D �! D is continuous.Proof: We wish to show that for any P, TP (tS) � tfTP (S) j S 2 Sg for any chain S = fS0; S1; : : :gin hD;vi. Let p be a predicate in the program P , where p is de�ned by the rules C1; : : : ; Cn. Then,we have[ni=1apply rule(Ci;[S) � [ni=1 [S2S apply rule(Ci; S) From Lemma 4.5� [S2S [ni=1 apply rule(Ci; S) from Lemma 4.6� [S2S b� ni=1apply rule(Ci; S) from Axiom 1.From the de�nition of eval pred, this giveseval pred(p;[S) � [S2Seval pred(p; S).Since TP (R) is nothing but the union of eval pred(p;R) for each predicate p de�ned in P , thisimplies immediately that TP ([S) � [S2STP (S). Since S1 t S2 = (S1 [ S2)] for any S1 and S2, thiscan be restated as TP (tS) � tS2STP (S). The theorem follows.Next, we combine this result with the Knaster-Tarski �xpoint theorem, which may be statedas follows for our purposes.Theorem 4.8 [42] If hD;vi is a complete lattice with meet and join operations u and t respec-tively, and f : D �! D is continuous, then f has a unique least �xpoint lfp(f) 2 D, given bylfp(f) = ti�0f i(?) = ufx j f(x) v xg, where ? is the least element of D.The following corollary guarantees the existence of a unique least �xpoint for our generic immediateconsequence operator TP :Corollary 4.9 For any Horn program P , the operator TP : D �! D has a unique least �xpointlfp(TP ), given by lfp(TP ) = ti�0T iP (;) = ufx j TP (x) v xg, where u is the meet operation of thelattice hD;vi.5 Models Over a Domain Equipped with b
 and b�We now develop the notions of interpretations and models, and show that every program has a\least" model that coincides with the least �xpoint.As we saw in earlier sections, the TP operator computes elements of D. The elements of D aresets of elements of D, and we think of each such set as conveying some information. Intuitively,9



an interpretation should assign a set of elements of D to each predicate in the program, and amodel is an interpretation in which for each rule \instance" (obtained using b
 ), the head shouldfollow from the interpretation whenever the facts used to instantiate the body follow from theinterpretation. It is important to note the use of the phrase \follow from" in the above: since aninterpretation is seen as conveying information, a fact follows from an interpretation if adding thisfact to the interpretation does not change the information content. We formalize these intuitionsbelow.De�nition 5.1 An interpretation of a program is an element of D. Let S be an element of D, andlet a be an element of D. We say that S j= a i� S b� fag � S.The notion of j= corresponds to the notion of truth; a fact a is \true" in an interpretation S ifS j= a.De�nition 5.2 An interpretation I is amodel for a rule H :� B1; : : : ; Bn if, for every set of atomsB01; : : : ; B0n such that I j= B01; : : : ; I j= B0n, it is also the case that I j= H 0, whereH 0 = (hH;B1; : : : ; Bni 
 hH;B01; : : : ; B0ni) #1.An interpretation I is a model for a program if it is a model for every rule in the program.A model M is said to be minimal if for every a 2M , M n fag 6�M .Intuitively, applying b� to two elements of D gives us all the information in the two elements, andsimilarly, b
 gives us the information that is common to the two elements. We will use the b�and b
 as the union and intersection operations on interpretations (and therefore models). Thefollowing result provides an intuitive and useful connection between our notion of \entailment" (j=)and the notion of \information content".Proposition 5.1 Let S1 and S2 be elements of D, then S1 v S2 if and only if, for any element aof D, it is the case that S1 j= a implies S2 j= a.Proof: [ ) ] : Suppose that S1 v S2, i.e., S1 b� S2 � S2. Then, for any a 2 D,S2 b� fag � (S1 b� S2) b� fag, since S1 v S2� (S1 b� fag) b� S2, since, from Lemma 4.1, b� is commutative and associative.Then, if S1 j= a then S1 b� fag � S1, whence S2 b� fag � (S1 b� fag) b� S2 � S1 b� S2 � S2,i.e., S2 j= a. This shows that if S1 v S2, then for any a 2 D, S1 j= a implies S2 j= a.[ ( ] From the de�nition of j=, it is easy to show that S1 j= a for every a 2 S1. Now suppose thatfor every a 2 D, it is the case that S1 j= a implies S2 j= a. Then, since S1 j= a for every a 2 S1,10



it follows also that S2 j= a for every a 2 S1, or, equivalently, that S2 b� fag � S2 for every a 2 S1.Then, it is a straightforward consequence of the de�nitions of j= and �, and Axiom 1, that for anyS; T 2 D,(S b� T ) � S , (S [ T ) � S.From Axiom 2, � is a congruence with respect to [. Therefore, we have[a2S1(S2 [ fag) � [a2S1S2 since S2 b� fag � S2 for every a 2 S1, S2 [ ([a2S1fag) � S2, (S2 [ S1) � S2 from Axiom 2, since [a2S1fag = S1, (S2 b� S1) � S2, S1 v S2.Corollary 5.2 For any S1; S2 2 D, S1 � S2 if and only if, for every a 2 D, S1 j= a, S2 j= a.Proposition 5.3 Let S1 and S2 be elements of D, then S1 b
 S2 v S1 and S1 b
 S2 v S2.Proof: From Axiom 4 and the de�nition of v, we have fa 
 bg v fag for any a; b 2 D. Nowconsider any S1; S2 2 D: since, from Proposition 4.3, b� is the join of the lattice hD;vi, it followsthat b� ffs1 
 s2g j s1 2 S1 and s2 2 S2g v b� ffs1g j s1 2 S1g� S1.Thus, b� ffs1 
 s2g j s1 2 S1 and s2 2 S2g v S1. Now from the de�nition of b
 , we haveS1 b
 S2 = fs1 
 s2 j s1 2 S1 and s2 2 S2g= [ffs1 
 s2g j s1 2 S1 and s2 2 S2g� b� ffs1 
 s2g j s1 2 S1 and s2 2 S2g.It follows from the de�nition of v that S1 b
 S2 v S1. A symmetric argument establishes thatS1 b
 S2 v S2.As observed earlier, we wish to use the b
 operation for model intersection. The followingresult justi�es this choice by showing that, as one would expect, a fact is true in the \intersection"of two interpretations if and only if it is true in each of them.Proposition 5.4 Let I1 and I2 be elements of D, and let a be an element of D, then I1 b
 I2 j= aif and only if I1 j= a and I2 j= a. 11



Proof: The only if direction of the proof follows immediately from Propositions 5.1 and 5.3.To prove the if part, suppose that I1 j= a and I2 j= a, and consider the set I1 b
 I2. From Axiom2 and the de�nition of j=, we have I1 b
 I2 � (I1 b� fag) b
 (I2 b� fag). Now, from Proposition 4.2,b
 distributes over b� . It follows from this thatI1 b
 I2 � (I1 b
 I2) b� (I1 b
 fag) b� (fag b
 I2) b� (fag b
 fag)From Axiom 4, 
 is idempotent, whence we haveI1 b
 I2 � (I1 b
 I2) b� (I1 b
 fag) b� (fag b
 I2) b� fag.Then, if we add fag to both sides, we get(I1 b
 I2) b� fag � (I1 b
 I2) b� (I1 b
 fag) b� (fag b
 I2) b� fag b� fag� (I1 b
 I2) b� (I1 b
 fag) b� (fag b
 I2) b� fag� I1 b
 I2 since, from Lemma 4.1, b� is associative and idempotent.It follows from this that I1 b
 I2 j= a.The following result is somewhat surprising, given our rather weak assumptions about theoperator 
 :Proposition 5.5 b
 is associative, commutative, and idempotent.Proof: To see that b
 is associative, note that for any I1; I2; I3 2 D, and for any a 2 D,(I1 b
 I2) b
 I3 j= a, (I1 b
 I2) j= a and I3 j= a from Proposition 5.4, I1 j= a and I2 j= a and I3 j= a, I1 j= a and (I2 b
 I3) j= a.It follows, from Corollary 5.2, that (I1 b
 I2) b
 I3 � I1 b
 (I2 b
 I3).To see that b
 is commutative, note that for any I1; I2 2 D, and for any a 2 D,(I1 b
 I2) j= a, I1 j= a and I2 j= a from Proposition 5.4, I2 j= a and I1 j= a, (I2 b
 I1) j= a.It follows, from Corollary 5.2, that I1 b
 I2 � I2 b
 I1.To see that b
 is idempotent, note that for any I 2 D, it follows from Proposition 5.4 that forany a 2 D, (I b
 I) j= a if and only if I j= a and I j= a, i.e., (I b
 I) j= a if and only if I j= a. Itfollows, from Corollary 5.2, that I b
 I � I . 12



Theorem 5.6 hD;vi forms a complete distributive lattice with meet operation b
 , join operationb� , least element ; and greatest element D.Proof: It has already been shown, from Proposition 4.3, that hD;vi forms a complete lattice withjoin operation b� , least element ;, and greatest element D. From Proposition 4.2, b
 distributesover b� . It remains, therefore, to show only that b
 is the meet of this lattice. For this, it su�cesto show that b
 is associative, commutative, idempotent, and satis�es the absorption lawsA b
 (A b� B) � A b� (A b
 B) � A for any A;B 2 D.The associativity, commutativity, and idempotence of b
 follows from Proposition 5.5. FromProposition 5.3, A b
 B v A, whence we have A b� (A b
 B) v A b� A, and from the idempotenceof b� , it follows thatA b� (A b
 B) v A.Since b� is the join operation of the lattice hD;vi, it follows that A v A b� (A b
 B). Thisestablishes that A b� (A b
 B) � A. From Proposition 4.2, b
 distributes over b� , whence wehave A b
 (A b� B) � (A b
 A) b� (A b
 B)� A b� (A b
 B), since from Proposition 5.5 b
 is idempotent� A:Thus, the absorption laws are satis�ed. It follows, therefore, that b
 is the meet operation of thelattice hD;vi.The algebraic structure of D given by this theorem can be elaborated further|the followingresult, which is an easy consequence of Theorem 5.6 and the de�nitions of b
 and b� , is interestingbecause of the connections that it establishes with transitive closure computations (see also [18]).Corollary 5.7 hD; b
 ; b� ; ;;Di is a closed semiring.The following proposition states that the meet of two models is also a model; an important conse-quence is that every program has a unique least model.Proposition 5.8 Let M1 and M2 be models of a program P . Then, M1 b
 M2 is also a model.Proof: Consider a rule instance ht :� t1; : : : ; tni such that M1 b
 M2 j= ti; 1 � i � n. FromProposition 5.4, it follows that M1 j= ti and M2 j= ti, for i = 1 : : :n. Since M1 and M2 are models,M1 j= t and M2 j= t. From Proposition 5.4, it follows that M1 b
 M2 j= t.The next result establishes an important link between the model-theoretic and �xpoint seman-tics. 13



Theorem 5.9 An interpretation I is a model for a program P if and only if TP (I) v I.Proof: If : Suppose that TP (I) v I but I is not a model of P . Then, there must be some ruleC � H :� B1; : : : ; Bn; n � 0, in P , such that for some set of atoms fB01; : : : ; B0ng � I , for whichwe havehH 00; B001 ; : : : ; B00ni = hH;B1; : : : ; Bni b
 hH;B01; : : : ; B0nifor some B001 ; : : : ; B00n in D, such that I j= B00i ; 1 � i � n, but I 6j= H 00. However, from the de�nition ofthe function apply rule, we haveH 00 2 apply rule(C; I), and therefore that fH 00g v apply rule(C; I).It follows, from the de�nition of TP , that fH 00g v TP (I), i.e., that I b� fH 00g � I , which impliesthat I j= H 00. This is a contradiction. We conclude, therefore, that I is a model of P .Only if : Suppose that I is a model of P , i.e., for every rule H :� B1; : : : ; Bn in P , and for everyset of atoms B01; : : : ; B0n such that I j= B0i, where B0i is an instance of Bi, 1 � i � n, ifH 0 = (hH;B1; : : : ; Bni 
 hH;B01; : : : ; B0ni) #1then I j= H 0, i.e., that I b� fH 0g � I . Since this is true for every such instance H 0 for each rule Cin P , it follows from the de�nition of the function apply rule thatI b� apply rule(C; I)� Ior, in other words, that apply rule(C; I)v I . It follows immediately that TP (I) v I .The main result of this section can now be proved along essentially the same lines as thecorresponding result in [21]:Corollary 5.10 For any Horn program P , let MP denote the least model of P (with respect to theordering v), then lfp(TP ) �MP .Proof: From Theorem 5.6, b
 is the meet of the lattice hD;vi. Therefore, we haveMP � b
 fI j I is a model for Pg from Proposition 5.8� b
 fI j TP (I) v Ig from Theorem 5.9� lfp(TP ) from Corollary 4.9.6 ApplicationsThis section considers the application of the framework developed in the preceding sections to avariety of �xpoint computations based on Horn logic programs. We brie
y describe several proposed14



�xpoint computations and de�ne the operators 
 and ] in each case. It is easy to show that ouraxioms are satis�ed, although we do not do so in this abstract for lack of space. The existence ofa least �xpoint and a least model and their equality then follows as a consequence of the theoremsproved in earlier sections. It is usually considerably simpler to prove the existence of a least �xpointby reasoning only about \local" properties of simple operators to show that Axioms 1-3 are satis�ed,and appealing to Corollary 4.9, than by carrying out an explicit proof of continuity that involves\global" reasoning about the behavior of relatively more complex operators on chains and at limitpoints. A similar remark holds with regard to results about least models.6.1 Quantitative DeductionA quantitative deduction system is described by van Emden for probabilistic inference in logicprograms [44]. In such a system, each inferred atom p(�t) is associated with a real number (itsweight) a 2 (0; 1] that gives our \con�dence" in the truth of p(�t): an atom A with weight w iswritten A : w. Thus, D is the set of weighted ground atoms of the language under consideration,augmented with a distinguished element ? denoting failure of uni�cation. Additionally, each clausehas associated with it a real number f 2 (0; 1], called a factor. A clause with head H , bodyB1; : : : ; Bn and factor f is written `H f:� B1; : : : ; Bn'. The idea is that given a set of weightedground atoms R, such a rule can be evaluated by taking a ground instance of the rule `H 0 f:�B01; : : : ; B0n', where fB01 : w1; : : : ; B0n : wng � R. Then, the weighted atom inferred is H 0 : w, wherew = f �minfw1; : : : ; wng. When evaluating a set of rules against a set of weighted ground atomsR, a given atom may be inferred from many di�erent rules, in a number of di�erent ways, andwith di�erent weights: the weight associated with this inferred atom is taken to be the largest ofthe di�erent weights associated with it. In other words, inference involves minimization of weightswithin a rule, and maximization across rules.To formulate this system as an instance of our framework, the instance operator 
 is de�nedas follows: (t1 : a1) 
 (t2 : a2) = t : a, where t is the most general instance of t1 and t2 (? if theyhave no common instance), and a = min(a1; a2). Given a set S of (tuples of) terms with weights,let maxwt(t; S) denote the largest value in the set fa j t : a 2 Sg, if this set is nonempty, and 0otherwise. The normalization operator ] is de�ned as:S] = ft : a j a = maxwt(t; S)g n ft : a j t = ? _ a = 0g:6.2 Logic Programming with InheritanceA��t-Kaci and Nasr describe a system that extends conventional logic programming languages byincorporating subtyping and inheritance directly into the uni�cation algorithm [1, 2]. In this case,the notions of instance and merge are de�ned with respect to a type semilattice that is user-de�nable. Objects in D are partially ordered type structures called  -terms. These concepts arede�ned more formally in [1]: for our purposes, it su�ces to note that if the set of type constructors�?, partially ordered via a subtype relation �, forms a join-semilattice (with ? � a for all a 2 �),then the set of  -terms D inherits this semilattice structure. Here, ? denotes the empty set; thisimplies that any term that contains an occurrence of ? also denotes the empty set, and may be15



identi�ed with ?. Then, it can be shown that for any pair of  -terms t1 and t2, their greatestlower bound t15 t2 (with respect to the type hierarchy) exists, is also a  -term, and t15 t2 can beconstructed e�ectively [1].In this case, the instance operator 
 is nothing but the join operator on  -terms, 5. Thenormalization operator ] is the identity function with the di�erence that it discards all terms thathave ? as a subterm. Thus, S] = S n ft j ? occurs in tg for all S 2 D.6.3 Logic Programming with EqualityA number of authors have considered extending logic programming languages by generalizing uni�-cation to \E-uni�cation", i.e. uni�cation with respect to an equational theory E (see, for example,[3, 17, 20, 39, 40]|a survey is given in [5]). Theoretical aspects of extended uni�cation in thecontext of logic programming have been studied by Ja�ar et al. [19] and Gallier and Raatz [14].Here we consider how logic programming languages extended to deal with certain kinds of equalitytheories can be viewed as instances of our framework.Let D denote the set of terms of the language under consideration, augmented with a distin-guished element ?. An equational theory E is said to be unitary if any two terms t1 and t2 thatare E-uni�able have a unique (modulo equivalence under E) most general uni�er. Apart fromthe \usual" notion of uni�cation of �rst order terms, equational theories that admit unique mostgeneral uni�ers include that of Boolean rings [28], and theories that are either left-distributive orright-distributive (but not both) [35]. We assume that the equational theory E under considera-tion is unitary. Given two E-uni�able terms t1 and t2, let mguE(t1; t2) denote the (E-unique) mostgeneral uni�er of t1 and t2. The instance and normalization operators are de�ned as follows:t1 
 t2 = ( t if t1 and t2 are E-uni�able, and t = �(t1), where � = mguE(t1; t2)? otherwise.The normalization operator ] is essentially the identity function: S] = S n f?g.6.4 Aggregate ComputationsAs an example of an aggregate computation, consider the programpath(A, B, N) :- edge(A, B, N).path(A, B, N) :- path(A, C, N1), path(C, B, N2), plus(N1, N2, N).Let the input consist of a relation edge such that ha; b; ni 2 edge if and only if there is an edgefrom a node a to a node b with cost n; and a relation plus, such that hn1; n2; ni 2 plus if and onlyif n = n1 + n2.Suppose that we are interested not in all paths between any pair of nodes, but only in shortestpaths. This semantics is di�cult to specify in the usual Horn clause formalism. In this case, wemay consider any two sets of atoms for path to be equivalent in terms of \information content" if16



they agree on the costs of the shortest paths between each pair of nodes. More formally, given aset S of tuples for path, let mindist(a; b; S) denote the cost of the shortest path, according to S,between nodes a and b:mindist(a; b; S) = ( minfn j ha; b; ni 2 Sg if fn j ha; b; ni 2 Sg 6= ;? otherwiseThe normalization operator can now be de�ned as follows: For any set S of triples of the formha; b; ni, where a and b represent nodes in the graph and n is a natural number,S] = fha; b; ni j n = mindist(a; b; S)^ n 6= ?g:The instance operator 
 is given by the usual �rst order notion of \most general instance". The�xpoint evaluation of this program with the operators ] and 
 de�ned in this manner yieldsonly the shortest paths between any pair of nodes. Notice the important operational di�erencesbetween the evaluation in this case, and that in the case of evaluation using the \usual" operators:at any point, this de�nition retains only the shortest distances between nodes, making for morecompact representations and more e�cient computation; moreover, the evaluation of the programterminates in �nitely many steps, as long as the graph does not contain any cycles of negative cost.It is not di�cult to show that this de�nition of the operators satis�es our axioms.6.5 Abstract InterpretationAn abstract interpretation may be thought of as an \execution" of the program over an abstractdomain Dabs , rather than the concrete domain of computation Dconc. A concretization functionconc : Dabs �! Dconc maps each abstract domain element to the concrete domain element itdescribes. Abstract interpretation of Horn programs has been studied by various researchers (see,for example, [4, 9, 10, 25, 26, 27, 29]). Given the structural relationships between the abstract andconcrete domains, the notion of 
 in Dabs can be derived without much trouble from the notionof instance in Dconc. For example, one plausible de�nition is the following: given elements s and tin Dabs , s is an instance of t if and only if every element in conc(s) is an instance of some elementin conc(t). For a groundness analysis, for example, let g, nv and any be abstract domain elementsdenoting, respectively, the set of ground terms, the set of non-variable terms, and the set of allterms. Then, g is an instance of nv, which in turn is an instance of any. The operator ] can bede�ned in at least two ways: either as set union, or by means of a LUB operation in the abstractdomain. The former is more precise but less e�cient, the latter less precise but more e�cient.We give two examples of how abstract interpretations of logic programs may be formulatedwithin our framework.Example 6.1 (Success Pattern Analysis [24, 25, 34])This analysis uses \depth-k abstractions" to obtain �nite descriptions of in�nite sets of terms. LetDdenote the set of terms of the language under consideration, augmented with a distinguished17



element ? denoting failure. A term t is said to be a canonical depth-k abstraction if the depth oft is at most k, and no variable occurs more than once in t or at a depth less than k [25]. Let thecanonical depth-k abstraction of a term t, modulo variable renaming, be denoted by �k(t). The setD is the set of all canonical depth-k abstractions of the language under consideration. Then, theinstance and normalization operators are de�ned as follows:� The instance operator 
 is de�ned as follows:t1 
 t2 = �k(mgi(t1; t2))where mgi(t1; t2) is the most general instance of t1 and t2 (in the usual �rst order sense) ifone exists, ? otherwise; and �k(?) = ?.� The normalization operator ] is essentially the identity function: S] = S n f?g.Example 6.2 (Groundness Analysis [10, 11, 26, 27, 23])First, consider a very simple groundness analysis that uses the special constant g to represent termsknown to be de�nitely ground, and the constant any to represent the set of all terms of the language[11, 23]. For notational convenience, de�ne the predicate is ground as follows: Given a term t,is ground(t) if and only if either t = g, or t is a ground term and t 6= any.The instance operator is de�ned as follows:t1 
 t2 = 8>>>><>>>>: ? if t1 = ? or t2 = ?? if t1 62 fg; anyg, t2 62 fg; anyg, and t1; t2 are not uni�ableg if is ground(t1) or is ground(t2)any otherwise.The normalization operator ] is essentially the identity function: S] = S n f?g.A more sophisticated groundness analysis may be obtained using propositional formulae to de-scribe dependencies between variables. A class of formulae that has received considerable attentionin this regard is the class Pos? of positive propositional formulae, which consists of the propositionalconstant false, together with formulae that can be constructed using variables and the connectives^, _ and $ [10, 26, 27]. To express this analysis in our framework, it su�ces to have D = Pos?,
 = ^, and #1 as 9. The abstract domain Dabs is therefore P(Pos?). Intuitively, two sets ofpropositional formulae convey the same amount of information if they are logically equivalent: onesimple way to capture this is to identify the \information content" of a set of such formulae withthe set of its logical consequences. Thus, for any S 2 Dabs , S] = fs j S j= sg.18



7 Generalizing the Instance Operator 
The discussion so far has assumed that the instance operator 
 is a function, 
 : D� D �! D:However, there is no a priori reason why this should be so. Given t1; t2 2 D, it is not unreasonableto assume that t1 
 t2 need not be unique. This is the case, for example, for most nontrivialequational theories [35]. Intuitively, this would correspond to 
 being something like a relationrather than a function. Technically, it turns out to be more convenient to model such a generalizedinstance operator as a set-valued function:
 : D� D �! P(D); i.e., 
 : D� D �! D.The \lifted" operator b
 : D �D �! D is then de�ned as follows: for any S1; S2 2 D,S1 b
 S2 = [ft1 
 t2 j t1 2 S1; t2 2 S2g.With this minor change, the treatment given earlier, including the results of Sections 4 and 5|inparticular, Corollaries 4.9 and 5.10)|extends directly to a variety of applications. Below we givetwo examples.7.1 Logic Programming in Equational Theories with Non-unique MGUsMost nontrivial equational theories E do not admit E-unique most general uni�ers [35]. For ex-ample, uni�cation in equational theories that are commutative, or idempotent, or associative-commutative, or associative-commutative-idempotent, can have (�nitely) many most general uni-�ers that are not E-equivalent to each other, while theories that are associative, or distributive, orassociative-commutative-distributive, can have in�nitely many most general uni�ers.Given an equational theory E, and two terms t1 and t2, let mguE(t1; t2) now denote the set ofmost general E-uni�ers of t1 and t2. The operators 
 and ] can now be de�ned in the expectedway: for any two terms t1 and t2,t1 
 t2 = ft j 9� 2 mguE(t1; t2) : t = �(t1)gand for any set of terms S, S] = S n f?g. The proof that these operators satisfy our axioms isstraightforward.Example 7.1 (Natural Language Processing)The following describes a generator/parser for a simple fragment of English. Here, the in�x func-tion symbol � is used to denote the concatenation of sequences of constants. Concatenation isassociative, i.e., � obeys the axiom(x � y) � z = x � (y � z) for every sequence of constants x; y; z.The following clauses describe the grammar under consideration:19



sentence(N � V, s(N1,V1)) :� noun phrase(N, N1), verb phrase(V, V1).noun phrase(N, np(N)) :� proper noun(N).noun phrase(D � N, np(D, N)) :� det(D), noun(N).noun phrase(D � N � P, np(D, N, P1)) :� det(D), noun(N), prep phrase(P,P1).verb phrase(V � N, vp(V,N1)) :� verb(V), noun phrase(N, N1).verb phrase(V � P, vp(V1,P1)) :� verb phrase(V, V1), prep phrase(P, P1).prep phrase(P � N, pp(P, N1)) :� preposition(P), noun phrase(N, N1).The vocabulary part of this grammar, speci�ed via the relations determiner, preposition, noun,proper noun, and verb, may be either be speci�ed separately as inputs to the interpreter (\baserelations", in the language of deductive databases), or as part of the program itself. For example,consider the vocabulary given by the following:proper_noun(john).noun(telescope).noun(man).verb(saw).preposition(with).determiner(a).From the associativity of � , this is able to detect ambiguity in certain kinds of sentences: forexample, there are distinct values of t such that the �xpoint evaluation of the above programcontainssentence(john � saw � a � man � with � a � telescope, t),for example:t = s(np(john), vp(saw, np(a, man, pp(with, np(a, telescope)))))corresponding to the reading \John saw x, where x = a man with a telescope"; andt = s(np(john), vp(vp(saw, np(a, man)), pp(with, np(a, telescope))))corresponding to the reading \John saw x with a telescope, where x = a man".20



7.2 Logic Programming with Polymorphism and SubtypingAn earlier section discussed the application of our framework to logic programming with inheritance[1, 2]. There, it was assumed that the subtype relation over the set of type constructors is a (�nite)semilattice. The theory of  -terms [1, 2] can be formulated in terms of order-sorted logic [36]. Itturns out that order-sorted uni�cation, i.e., uni�cation when some types may be subtypes of othertypes, admits unique most general uni�ers when the sort structure is a �nite semilattice and thereis no overloading of constructors [46]. In the presence of overloading or polymorphism, however,where there can be more than one type assignment per constructor (as is the case, for example, withthe list constructor cons), the existence of unique most general uni�ers can no longer be guaranteedunless a number of additional restrictions are imposed [37].As the discussion earlier indicates, however, the operational aspects of this case can be handledin a straightforward way within our framework, even when the existence of unique most generaluni�ers cannot be guaranteed. The instance operator 
 is de�ned as described at the beginning ofthis section, and normalization is de�ned to be the identity function. The proof that this de�nitionsatis�es our axioms is straightforward.8 Top-Down Computational Models for Logic ProgrammingA question that presents itself immediately when we consider the extended model of Horn clausecomputation presented in this paper is the following: Is there a similar generalization of the top-down model of computation based on SLD-resolution? Things are complicated by the fact that abottom-up �xpoint computation can use ] to prune the set of inferences during a computation,while a top-down strategy can use 
 to restrict the search space. Thus, the top-down and bottom-up approaches restrict the computation in distinct ways; respectively, goal-directed search and earlyuse of ].One approach is to consider top-down computations that do memoing [47], i.e., that record allgenerated facts and goals are recorded (with the e�ect that b� is treated as set union). Now, ]can be applied as a �nal step to compute the answers. OLDT resolution [41] provides a formalbasis for such computation methods, and methods such as QSQR [45] and Extension Tables [12, 48]represent speci�c algorithms that are based upon OLDT resolution. It is well-known (see e.g., [7])that there is a close correspondence between bottom-up evaluation of programs rewritten using theMagic Templates transformation [32], and QSQR. Both methods generate and record the same setsof goals and facts. It is straightforward to reformulate QSQR in terms of our algebraic operators(and of course, we can simply substitute our generic �xpoint evaluation for the �xpoint evaluationphase of the Magic approach). Using the distributivity of b
 over b� (see Theorem 5.6), it is nothard to show that these versions of QSQR and Magic are equivalent in that they compute the sameanswer sets for the query predicate.9 Related Work and Future DirectionsWe have presented an extended model of Horn clause programs. To our knowledge, the algebraicformulation given is novel, although Carre has proposed a path algebra for a special class of pro-21



grams based on transitive closure [8]. Giacobazzi et al. give an algebraic semantics for constraintlogic programs that is similar in spirit to this work [16], but the details of their development arevery di�erent: for example, while we focus on a minimal set of axioms necessary to establish thenecessary semantic equivalences, [16] takes a di�erent approach by starting with closed semiringsand extending this to a class of cylindric algebras. Also related is Parker's work on partial orderprograming [30], which shows how a variety of programming problems can be formulated in termsof minimizing the value of an expression, given constraints that specify a partial order over the do-main of computation. Our goals are both more limited and more ambitious than Parker's: they aremore limited because, unlike Parker, we restrict ourselves to the domain of \Horn-like" programs;and they are more ambitious because, within this domain, we strive to examine the structure ofcomputations at a much �ner level of granularity, and give axioms that characterize a wide varietyof �xpoint computations that can be naturally expressed in the idiom of Horn programs.Finally, an important problem is to optimize extended Horn programs. For example, the short-est path query may be speci�ed as a logic program to compute all path-lengths between pairs ofcities followed by a selection of the shortest path. How can we automatically derive the equivalentprogram that only retains the shortest path between a pair of cities at any point in the compu-tation? While this is a di�cult problem, requiring a set of program transformation rules overextended programs (with some well-chosen suite of choices for ] and 
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