Generalized Horn Clause Programs *

Saumya K. Debray Raghu Ramakrishnan
Department of Computer Science Computer Sciences Department
The University of Arizona University of Wisconsin
Tucson, AZ 85721 Madison, WI 53706

November 23, 1994

Abstract

This paper considers, in a general setting, an axiomatic basis for Horn clause logic program-
ming. It characterizes a variety of “Horn-clause-like” computations, arising in contexts such
as deductive databases, various abstract interpretations, and extensions to logic programming
involving E-unification, quantitative deduction, and inheritance, in terms of two simple opera-
tors, and discusses algebraic properties these operators must satisfy. It develops fixpoint and
model-theoretic semantics in this generalized setting, and shows that the fixpoint semantics is
well-defined and coincides with the model-theoretic semantics. This leads to a generalized notion
of a Horn clause logic program that captures a variety of fixpoint computations proposed in dif-
ferent guises, and allows concise expression in the logic programming idiom of several programs
that involve aggregate operations.

*S. Debray was supported in part by NSF grant CCR-9123520. R. Ramakrishnan’s work was supported in part
by NSF grant [RI-9011563, a Presidential Young Investigator award, and a David and Lucile Packard Foundation

Fellowship in Science and Engineering.

1 Introduction

A logic program consists of a set of clauses of the form ‘H :— By,..., B,.” Logically, such a clause
is read as an implication “By and ...and B, implies H.” This reading gives rise to two distinct
notions of the semantics of a Horn program: the model-theoretic semantics, which relates to the set
of facts that follow logically from the program; and the fixzpoint semantics, which relates to the set of
facts that can be computed using the rules defined by the program. In the case of “ordinary” Horn
programs (essentially an idealized version of Prolog), the model-theoretic semantics of a program
is given by its least Herbrand model, which is the intersection of all its Herbrand models (i.e.,
models where function symbols are uninterpreted). Conventionally, the fixpoint semantics of a
Horn program P is obtained by repeatedly “applying” the clauses comprising P to a set of atoms
that is initially empty, and collecting together the results, until nothing new can be generated: this
process can be formalized in terms of the least fixpoint of an operator Tp defined in terms of P.
A fundamental property of Horn programs is that every program P has a (unique) least Herbrand
model that coincides with the least fixpoint of the associated operator Tp.

The fact that the model-theoretic and fixpoint semantics of a Horn program coincide is very
pleasant mathematically, and establishes the fundamental connection between the operational (fix-
point) and intended (model-theoretic) semantics for a large class of systems. Researchers who
have investigated variations of and extensions to Horn clause programming have generally striven
to prove similar results for the various different cases considered (for examples of such variations
and extensions, see Section 6). Unfortunately, the development of the various model-theoretic and
fixpoint semantics in such cases has typically proceeded from scratch. This is unsatisfactory for two
reasons: first, much of the machinery involved in these proofs is reinvented, with minor modifica-
tions, for each such variant; and second, by approaching these results piecemeal on a per-application
basis, we miss the fundamental essence of “Horn-like” computations that causes these results to
hold. The aim of this paper is to address this situation by considering, in a fairly general setting,
an axiomatic basis for Horn clause logic programming. The basic idea behind our approach is very
simple: we define a generic notion of Horn computations in a simple algebraic setting, and present
a small set of axioms that seek to capture the essence of bottom-up fixpoint evaluation for a variety
of “Horn-like” computations. These axioms serve to specify a wide class of algebraic structures over
which generalized Horn programs can be defined in a manner that conforms with our intuitions
of Horn computations, and guarantees the existence of intuitively reasonable least fixpoints and
least models that coincide. In the process, they show how a variety of fixpoint computations, pro-
posed in different guises, can be expressed concisely in the logic programming idiom. In Section 6,
we demonstrate the generality of these results by considering several proposed “Horn-like” frame-
works. Finally, we discuss connections to OLDT resolution and memoizing top-down computations
in Section 8.

2 Preliminaries

We consider the language of Horn clauses [21]; however, because we want to reason about fixpoint
computations over both standard and non-standard domains, we refer to values rather than terms:
values are simply syntactic entities manipulated during a computation, and can be atoms, terms,

feature structures, graph structures, abstract domain elements, etc. The set of all values is denoted
by D. Further, it is technically convenient to treat a predicate of arity k as a unary predicate whose

argument is a k-tuple of terms.

The fixpoint evaluation of a program P on an input set of values R is the set of values that
can be obtained by repeatedly applying the clauses of P to inferred values, with the initial set of
inferred values being R, until no new tuples can be inferred.! There are two reasons we consider
arbitrary input sets instead of evaluating P on (): first, in deductive database applications the “base
relations” are usually considered to be part of the input rather than of the program itself; second,
we may want to fix the meanings of some predicates, such as plus and minus that specify arithmetic

operations.

We assume that we have a binary operator @ : D x D — D. The notion of a value being an

instance of another is defined as follows.

Definition 2.1 Given ¢,,t, € D, t; is an instance of t, if and only if there is some ¢5 € D such that
t, =ty @ t;. We denote this ast; <t,. 1

Since bottom-up evaluation requires the manipulation of sets of values, we “lift” the operator ®
to operate on sets, to obtain an operator @ :P(D) x P(D) — P(D):

Definition 2.2 For any S;, S, in P(D), S1 © So = {51 @ 55 | 8, € 51,8, € Sy} . ¥

Sets of values may reasonably be assumed to convey “information”—indeed, the Tp» operator of van
Emden and Kowalski [43], like other immediate consequence operators that have been proposed for
various extensions to Horn logic programming, essentially specifies what information can be inferred
using the rules of a given program given some information that is known to be true. In general, it
may happen that two different sets of values .S5; and S, contain the same amount of information:
this can be expressed by specifying, for each set of values S, a “canonical representative” S* that
contains the same amount of information as S: the idea is that all sets that contain the same
amount of information have the same canonical representative. To this end, we assume that we
are given a normalization operator * : P(D) — P(D) that yields, for any set of values S, the
canonical representative of those sets of values whose information content is the same as that of 5.
The notion of a set containing “the same amount of information” as another can be captured via

a relation ~:
Definition 2.3 Given S;,5, € P(D), S, = S, if and only if Sf = SL. ¥

Recall that the fixpoint evaluation of a Horn program can be seen in terms of repeatedly applying
the rules of the program and “collecting together” the sets of tuples obtained from each rule. The

LOf course, we have no way of knowing at this time whether such a set always exists, or, if it exists, is unique,
so perhaps it is premature to speak of “the set” of values so obtained. At this point, the appeal is primarily to the
reader’s intuitions: later in the paper we will consider conditions that guarantee that there is a unique “smallest” set

that can be obtained by repeated application of rules in this way.

notion of “collecting together” a set of sets of tuples can now be defined in terms of a merge operator

~

6 :

Definition 2.4 Given any set of sets of values S C P(D), their merge is defined as @ S = (US)F.
|

Finally, given a set S of (values that are) tuples, the selection operator |, returns the set consisting
of the first element of each (tuple) element in S.

A Summary of the Development so far : We have assumed that we are given two operators
®@ and *'. These, together with the operations of set union and selection (), yield an
algebra with operations U, |1, *, and & . Using these, we have defined the derived operators
@ and & , and the relation =, which are notationally more convenient in the development
that follows. The reader may wish to keep in mind, however, that everything in the rest of

the paper can easily be restated in terms of only U, |1, ', and @ , essentially by a process of
macro expansion.

3 Axioms for Horn Programs

Our first axiom states that normalization preserves information content (and thus that * is idem-
potent):

Axiom 1 For any S € P(D), S* = S.
It is straightforward, from the definition of a2, that it is an equivalence relation.

NOTATION : In the remainder of the paper, the “domain of computation” we will typically be
concerned with will be P(D)/ =. For brevity of notation, this set will be denoted by D.

The next axiom states, intuitively, that the operations of interest in our algebra, namely, union,
@ , and the selection of the first element of a tuple, respect the notion of information content:

Axiom 2 = is a congruence relation with respect to U, @ , and },, i.e.:

1. Let {S; | i > 0} and {S] | ¢« > 0} be subsets of D, then if S; =~ S| for each i > 0 , then
(Uiz05:) & (Uiz05])-

2. For any {S1,5},55, 58} CD, if S = S} and Sy = S} then S; @ S, ~ S, @ S).

3. If S~ 5" forS,S" €D, then S |, =~ S |i.

Our third axiom states that @ behaves sensibly when applied to tuples (so that, for example, @
applied to two 5-tuples does not yield a 17-tuple):

Axiom 3 Let ry,...,r, and si,...,s, be elements of D, then (ri,...,r,) @ (s1,...,8,) =
(ti,...,tn), wheret; < r; and t; < s;,1 <7< n.

Note that this axiom states only that & cannot behave in completely unconstrained ways when
applied to tuples. It may not say everything we might want to say about the behavior of @ on
tuples in the context of a particular application (e.g., that variables shared across different elements
of the tuples are handled consistently): such additional constraints have to be taken into account
explicitly when defining ® for a particular application. These axioms are sufficient to show our
first main result, which states that every program has a least fixpoint. Our second result states
that every program has a least model. The notion of a model rests upon a reinterpretation of the
notion of entailment based on the notion of “information content” discussed above. To establish
this result we need an additional axiom that expresses the requisite properties for ®@ . This axiom
consists of two parts: intuitively, the first part states that for any values ¢ and ', the value t ® ¢/
conveys no more information than does ¢, while the second part elaborates on the special case where
t' = t, stating the value ¢t ® ¢t conveys no less information than does .

Axiom 4 Foranyt,t' €D, (1) {t} B {t @ t'} = {t}; and (2) {t} & {t @ t} = {t @ t}.

Our first use of Axiom 4 is in Section 5; preceding results require only Axioms 1-3.
4 A Generic Fixpoint Semantics

A generic fixpoint semantics for Horn programs, in terms of the operators ® and @ , can be

defined as follows:

1. Rule Application :
To evaluate a clause C' given a set R of values for its body literals, it is necessary to
generate instances C' of ' such that each body literal of C’ is an instance of an ap-
propriate value in R. If ¢ = ‘H :— Bj,...,B,’, then any such instance is given by
(H,By,...,B,) ® (H,B},...,B}), where Bl € R,1 < ¢ < n. The set of all such instances,

therefore, is simply
{H,By,...,B)} & {(H,B,,...,B') | BL€¢ R,1<i<n}.

The appropriate instances of the head of the clause C' can then be obtained simply by selecting
the first element of each tuple so computed:

apply _rule(C,R) = ({(H,By,...,B)} @ {(H,B,,...,B.) | B R,1<i<n}) |
where C'=‘H :— By,..., B,

2. Fvaluating a Program :
Evaluating a program on input R now involves computing the least fixpoint of an operator
Tp that yields the values that can be inferred by using R in the body literals of rules of P.

Tp(R) = & {apply_rule(C,R)| C € P}.

3. Fizpoint Semantics :
The fixpoint semantics of a program P is given by the least fixpoint Ifp(7p). Corollary 4.9
below shows that this exists and is well-defined for any program P.

The following example illustrates our approach, and also shows that it can capture some important

cases of Horn computations.

Example 4.1 Consider the case where, given a Horn program P, the set of values D is the set
of terms of the language of P augmented with a distinguished element —, denoting failure of

unification, and the instance operator @ and the normalization operator ' are defined as follows:

1. ®@ is the “usual” first order notion of “most general instance” [31, 33]: Given two (tuples
of) terms ¢; and o, t; @ t5 is their most general instance, if one exists, and — otherwise.

2. 'is the identity function, modulo ignoring —: for any S € D, S§* = S\ {=}. Thus, @ is set
union, modulo ignoring —.

This case corresponds to the “usual” case of Horn program evaluation, and yields the S-model

semantics of Falaschi et al. [13].

Alternatively, we can consider the following variation on this example: the operator ® is
defined as before, but ! is modified so that it yields only irredundant sets of elements, where an
element of a set S is redundant if and only if it is subsumed by some other element of S [22]. In
other words, S* is the set of maximal elements of S, where the partial order is the usual “more
general than” ordering on terms (modulo variable renaming). In this case, the computation involves

subsumption checking each time the rules are applied. g
The following properties of @& and @ that are useful in developing our results.

Lemma 4.1 & is associative, commutative, and idempotent. g

Proposition 4.2 @ distributes over & .

Proof: By definition, S ® S' = {s @ s’ | s€ SAs € 5"} for any S, S’ € P(D). Thus, we have
S @ (S US,)
={s@5|s€ SN ES US,}
={s@s|(seSNFeS)V(se SN €S}
={s@s|seSANSeSU{sRs|se SN €S}
=(S@S)U(S D 9).

Now from Axiom 1, S =~ S*, and since, from Axiom 2, ~ is a congruence with respect to U, we have

S & (S1USy) =S A (S1US) =58 (S, 8 Sy).

Similarly, (S ® S;)U(S ® S2) ~ ((9 @ S)U(S @ 99))F = ((S @ S1) & (S @ Ss)). Thus, we have
SO (5135~ (5B S8) & (SO Sy,

which shows that @ is left-distributive over @ . A symmetric argument can be used to show that

@ is also right-distributive over D . Thus, @ distributes over & . n

Intuitively, given sets of values S;,S, € D, S; & S, contains the information present in both
S; and S, This implies that S; & S, can reasonably be expected to contain more information that
either S; or S, by itself. The notion of “contains more information than” can be formalized by

defining a binary relation C over D as follows:
Definition 4.1 For any S;,5, € D, S; C S, if and only if S; & So ~ S5. 1

Proposition 4.3 D is partially ordered by C, and forms a complete lattice with least element ()

and greatest element D, and join operation & .

Proof: That (D,C) is a poset is a straightforward consequence of Lemma 4.1.

It is straightforward to show, from the definition of C, that for any S; and S, in (D,C), S, &S,
is the least upper bound of S; and S,. First, from Lemma 4.1, @ is associative and idempotent,

whence it is easy to show that for any 51,5, € D,
51@ (51@52)%51@52

whence S; C (5, & S3). A similar argument establishes that S, C (5 & S3). Thus, S; @ Sy is
an upper bound for S; and S5 with respect to C. We now show that it is the least upper bound:
consider any S; € D that is an upper bound for S; and S5, i.e. S, C S5 and S C S3. From the
definition of C, it follows that S; & S5 ~ S5 and S5 & S5 ~ S3. Then, we have

(S1 @ Sy) & S~ (S1 & S3) D (S5 & Ss) from Lemma 4.1
~ 53 @ 53 since (Sl @ 53) ~ 53 ~ (Sz @ 53)
~~ 93 since, from Lemma 4.1, & is idempotent

whence (5 o Sy) C Ss, i.e. S) @ S, is the least upper bound of S, and S, with respect to C.

Now () C S for any S € D, whence we have § & S = (0 U S)! = S* so that § T 5, i.e. 0 is the
least element of Dwith respect to C.

Since US € D for any S C D, it follows, from the definition of & , that & S € D for any S C D.
Thus, every subset of D has a least upper bound in D. Since (D,C) also has a least element, it

follows [6] that it is a complete lattice.

To see that D is the greatest element of the lattice (D,C), note that S C D for any S € D, so
(SUD) = D. It follows that (SUD)! = D!, which means that (S @& D) ~ D, or equivalently, S C D.

Lemma 4.4 Let C' be any clause in a program. For any 51,5, € D, if S ~ S, then
apply _rule(C, S1) = apply _rule(C, Ss).

Proof: Let C' be a clause ‘p(t) :— q(t1),...,¢.(t,)’, and let S;,.S5 € D such that S; =~ S,.
For simplicity of notation, let R; denote the set {(¢,#},....t,) | t; € (S1),}, and R, the set
{8,) | th € (Sa),,}. Since Sy &= Sy, it follows, from the definition of ¥, that R; &~ R,. From
Axioms 2 and 3, we therefore have

({<t7 tl? .. 7£n>} ® Rl) ~ ({<£7 517 .. 7£n>} ® Rz)
It follows, from Axiom 2, that ({{f,t,,...,6,)} @ Ry) b1 = ({{t,t1,...,t,)} @ Ry) |1 . From the
definition of apply_rule, we then have apply_rule(C, S,) =~ apply_rule(C,S3). n

Lemma 4.5 Let C' be any clause in a program, and let S = {S; | ¢ > 0} be a chain in (D,C), i.e.
So ESl ESQ E Then,

U apply _rule(C, S) = apply_rule(C,US).

SES

Proof: Let C be the clause ‘H :— By,..., B, . First, consider the set R = {R; | i > 0}, defined
as follows:

Ry = So;
Ri:Ri_lLJSZ', l>0

It is obvious that (R, C) is a chain, i.e., Ry C Ry C Ry C We show, by induction on ¢, that
R; =~ S;. The base case, for ¢ = 0, is trivial. In the inductive case, assume that R; = S; for 0 <1 < k,
and consider Ry 1 = Ry U Sky1. Since S is a chain, Sy C Sy, 80 S, U Sky1 = Sky1. Since S; U5,
is nothing but (S; U S,)* for any S; and S, this implies that (S; U Sky1)! = Sky1, and therefore
that (S, U Spy)¥ = S,i_l_l. Since ! is idempotent (Axiom 1), this implies that S, U Spy1 & Siq1-
Since Ry = Sy from the inductive hypothesis, Axiom 2 implies that R, U S,11 = Sky1, i.e., that
Ry = Siti.

The proof proceeds by first considering the application of apply_rule to the chain (R, C), then
applying the results to the chain (S, C). First, consider an atom H’ € U;apply_rule(C, R;). It must
be the case that H' € apply_rule(C, R;) for some R; € R, which means that there must be atoms
B € R;,1 < j < n,such that

H'= ((H,Bi,...,B,) @ (H,Bl,...,B.)) |..

But if this is true, then since B’ € R;, it must also be the case that B’ € UR;, 1 <
n. This means that H’' must also be in apply_rule(C,U;R;). Thus, U, apply_rule(R;
apply _rule (C, U; R;).

N IA

j
i)

We next want to show that apply_rule(C,U;R;) C U;apply_rule(C, R;). Consider an atom
H' € apply_rule(C,U;R;): suppose H' is in apply_rule(C,U;R;) because there is some set of atoms
B; € U;R;,1 < j < n, such that

H =({(H,By,...,B,) @ (H,By,...,B)) |i.

Clearly, for each B}, 1 < j < n, there must be some element of R—call it RU)—such that B; € RU)
for otherwise, B} cannot be in UR. Thus, if we union together all such RU), then all of the B;
will appear in the result: in other words, let R®) = U;?:lR(j)7 then B; € R% 1 < j < n. This
implies that H' € apply_rule(C, U?IlR(j)). Now each of the sets RU) is an element of the chain
R ={Ry, Ry, Rs,...}: let

m = max{i | 3j: Ry = RV}
then it is not difficult to see, from the definition of the set R, that R, = U?IlR(j). Thus, we have
H' € apply_rule(C, R,,).

It follows from this that H’' € Uapply_rule(C,R;), i.e., that apply_rule(C,U;R;) C
U;apply_rule(C, R;). Thus, we have apply_rule(C,U;R;) = U;apply_rule(C, R;).

Now R; =~ 5; for ¢ > 0, and from Axiom 2 = is a congruence with respect to U, whence it is easy
tosee that U; R; = U;S;. Then, from Lemma 4.4, we have apply_rule(C,U;S;) = U;apply _rule(C, S;).
The Lemma follows. g

Lemma 4.6 Let C be any set of rules in a program P, and S C D any set of sets of atoms. Then,

U U apply _rule(C, S) = U U apply _rule(C, S).

SeSCeC CeC SeS

Proof: It is easy to see, from the definition of the function apply_rule, that

Uses Ucec apply_rule(C,5)

={u| (35 € S)(3C € C)[u € apply_rule(C, S)]}

={u | (3C € C)(3S € S)u € apply_rule(C,S)]} since the choices of S and C are
independent

= Ucec Uses apply_rule(C, S).

The following is our first main result.
Theorem 4.7 For any program P, the operator Tp : D — D is continuous.

Proof: We wish to show that for any P, 7Tp(US) = U{7p(5) | S € S} for any chain S = {S,, Sy, ...}
in (D,C). Let p be a predicate in the program P, where p is defined by the rules C'y,...,C,,. Then,
we have

U2 apply _rule(Cy, US) = U, Uses apply _rule(C;,) From Lemma 4.5
/2 Uges Uy apply_rule(Cy, S) from Lemma 4.6
~ Uges @ sy apply_rule(C;, S) from Axiom 1.

From the definition of eval_pred, this gives
eval_pred(p,US) & Ugegeval _pred(p, S).

Since Tp(R) is nothing but the union of eval_pred(p,R) for each predicate p defined in P, this
implies immediately that 7p(US) & UsesTp(S). Since S; U Sy = (S U S,)! for any S; and S,, this
can be restated as Tp(US) = UgesTp(S). The theorem follows. m

Next, we combine this result with the Knaster-Tarski fixpoint theorem, which may be stated

as follows for our purposes.

Theorem 4.8 [/2] If (D,C) is a complete lattice with meet and join operations M and U respec-
tively, and f : D — D is continuous, then f has a unique least fixzpoint Ifp(f) € D, given by
Ifp(f) = Uisofi(=) = {a | f(z) C 2}, where — is the least element of D. g

The following corollary guarantees the existence of a unique least fixpoint for our generic immediate
consequence operator 7p:

Corollary 4.9 For any Horn program P, the operator Tp : D — D has a unique least fixpoint
Ufp(Tp), given by lfp(Tp) = UisoTA(0) = M{a | Tp(x) C '}, where N is the meet operation of the
lattice (D,C). n

5 Models Over a Domain Equipped with @ and &

We now develop the notions of interpretations and models, and show that every program has a
“least” model that coincides with the least fixpoint.

As we saw in earlier sections, the 7Tp operator computes elements of D. The elements of D are
sets of elements of D, and we think of each such set as conveying some information. Intuitively,

an interpretation should assign a set of elements of D to each predicate in the program, and a
model is an interpretation in which for each rule “instance” (obtained using ©), the head should
follow from the interpretation whenever the facts used to instantiate the body follow from the
interpretation. It is important to note the use of the phrase “follow from” in the above: since an
interpretation is seen as conveying information, a fact follows from an interpretation if adding this
fact to the interpretation does not change the information content. We formalize these intuitions

below.

Definition 5.1 An interpretation of a program is an element of D. Let .S be an element of D, and

let @ be an element of D. We say that S = a iff S @ {a} = S.

The notion of |= corresponds to the notion of truth; a fact a is “true” in an interpretation S if

S Ea.

Definition 5.2 An interpretation [is a modelfor atule H :— By,..., B, if, for every set of atoms
By, ..., B! such that I = B,...,I |E B/, it is also the case that I = H’, where

H' =({(H,By,...,B,) @ (H,B},...,B.)) li.

An interpretation [is a model for a program if it is a model for every rule in the program.

A model M is said to be minimal if for every a € M, M\ {a} % M. 1

Intuitively, applying & to two elements of D gives us all the information in the two elements, and
similarly, ® gives us the information that is common to the two elements. We will use the &
and ©@ as the union and intersection operations on interpretations (and therefore models). The
following result provides an intuitive and useful connection between our notion of “entailment” ()

and the notion of “information content”.

Proposition 5.1 Let S, and S, be elements of D, then S; C Sy if and only if, for any element a
of D, it is the case that S, = a implies S, = a.

Proof: [=]: Suppose that S; C Sy, i.e., S; & Sy &= Sy. Then, for any a € D,

Sy & {a} =~ (S, @ Sa) & {a}, since S; C .5,

~ (S; @ {a}) & Ss, since, from Lemma 4.1, & is commutative and associative.

Then, if S; = a then S; & {a} = Sy, whence S, & {a} =~ (S1 & {a}) & Sy =S, & Sy ~ S,
i.e., Sy = a. This shows that if S} C Sy, then for any a € D, S; = a implies S, = a.

[<] From the definition of |=, it is easy to show that S; | a for every a € S;. Now suppose that
for every a € D, it is the case that S| = a implies S, |= a. Then, since S; = a for every a € Sy,

10

it follows also that S, |= a for every a € Sy, or, equivalently, that S, & {a} ~ S, for every a € 5.
Then, it is a straightforward consequence of the definitions of = and =, and Axiom 1, that for any

S, T eD,
(SOT)~S <« (SUT)=S.

From Axiom 2, 2 is a congruence with respect to U. Therefore, we have

Uses, (S2U{a}) &= Uges, S2 since S, & {a} = S, for every a € S,
< Sy U (Uges, {a}) = 5

< (S, US)) = S, from Axiom 2, since Uges, {a} = 54
& (9, D S)) ~ 9,

< 5 C9,.

Corollary 5.2 For any S1,S, € D, S; = S, if and only if, for everya € D, S1 Fa< S; Ea. n
Proposition 5.3 Let S, and S, be elements of D, then Sy @ So T Sy and S; @ S T S,.

Proof: From Axiom 4 and the definition of C, we have {a ® b} C {a} for any a,b € D. Now
consider any S;, S, € D: since, from Proposition 4.3, @ is the join of the lattice (D,LC), it follows
that

@ {{81 ® 82} | 51 € Sl and S9 € Sz} E @ {{81} | 51 € Sl}
le'

Thus, @ {{s; @ 55} |51 €51 and 5, € S3} C S;. Now from the definition of & , we have

51®52:{81®82|81651and82652}
= U{{Sl & 82} | 81 € Sl and 8o € Sz}
~ @ {{s1 @ 82} |5 €95 and sy € S,}.

It follows from the definition of C that S; ® S, C S;. A symmetric argument establishes that
Si ® Sy 5. |

As observed earlier, we wish to use the & operation for model intersection. The following
result justifies this choice by showing that, as one would expect, a fact is true in the “intersection”

of two interpretations if and only if it is true in each of them.

Proposition 5.4 Let I, and I, be elements of D, and let a be an element of D, then I, & I, = a
if and only if I, = a and I, | a.

11

Proof: The only if direction of the proof follows immediately from Propositions 5.1 and 5.3.

To prove the if part, suppose that I; |= @ and I, |= a, and consider the set I; @ I,. From Axiom
2 and the definition of =, we have I, @ I, = (I, & {a}) @ (I, & {a}). Now, from Proposition 4.2,
@ distributes over @ . It follows from this that

Lo L~ 66L& (I {d)d ({a} & L) & ({a} & {a})
From Axiom 4, ® is idempotent, whence we have

Lo L~ L) ® (L ®{d)® ({a} & L) & {a}.
Then, if we add {a} to both sides, we get

(L& L) & {a} = (L8 L)& (L &{a}) & ({a} & b) & {a} & {a}

~I1, ® I, since, from Lemma 4.1, & is associative and idempotent.

It follows from this that I, @ I, = a.

The following result is somewhat surprising, given our rather weak assumptions about the
operator @ :

Proposition 5.5 & is associative, commutative, and idempotent.
Proof: To see that & is associative, note that for any Iy, I, Is € D, and for any a € D,

(LOL) O LEaeas (LdL)Eaand ;= a from Proposition 5.4
<l EFaand L Eaand I; = a
el Eaand (L ® L) = a.
It follows, from Corollary 5.2, that (I, © I,) @ Iy~ I, ® (I, ® I3).
To see that & is commutative, note that for any I;, I, € D, and for any a € D,
(LoL)FaslEFaand I, =a from Proposition 5.4
s lLhEaand I Ea
<~ (12 ® Il)): a.
It follows, from Corollary 5.2, that I} @ I, ~ I, @ I,.

To see that @ is idempotent, note that for any I € D, it follows from Proposition 5.4 that for
anya € D, (I ® I)=aifand only if I | a and I |= a,i.e., (I @ I) = a if and only if I |= a. It
follows, from Corollary 5.2, that I @ T~ 1. m

12

Theorem 5.6 (D,C) forms a complete distributive lattice with meet operation © , join operation
& , least element O and greatest element D.

Proof: It has already been shown, from Proposition 4.3, that (D, C) forms a complete lattice with
join operation & , least element @, and greatest element D. From Proposition 4.2, @ distributes
over @ . It remains, therefore, to show only that & is the meet of this lattice. For this, it suffices
to show that & is associative, commutative, idempotent, and satisfies the absorption laws

A@(A@B)zA@(A@B)%A for any A, B € D.

The associativity, commutativity, and idempotence of & follows from Proposition 5.5. From
Proposition 5.3, A @ B C A, whence we have A & (A ® B)YC A & A, and from the idempotence
of & , it follows that

Ad (AD B)C A.

Since @ is the join operation of the lattice (D,LC), it follows that A T A & (A ® B). This

establishes that A @& (A ® B) = A. From Proposition 4.2, @ distributes over @ , Whence we
have
A® (A & B) ~ A® B)

©A) D (
& (A® B), since from Proposition 5.5 ® is idempotent

(A

2
S

Q

Thus, the absorption laws are satisfied. It follows, therefore, that @ is the meet operation of the
lattice (D,C). n

The algebraic structure of D given by this theorem can be elaborated further—the following
result, which is an easy consequence of Theorem 5.6 and the definitions of @ and @ , is interesting

because of the connections that it establishes with transitive closure computations (see also [18]).
Corollary 5.7 (D, @ , @& ,0,D) is a closed semiring.

The following proposition states that the meet of two models is also a model; an important conse-
quence is that every program has a unique least model.

Proposition 5.8 Let M, and M, be models of a program P. Then, My & M, is also a model.

Proof: Consider a rule instance (t :— t;,...,¢,) such that M, & M, k= t;,1 < i < n. From
Proposition 5.4, it follows that M; =¢t; and M, =t;, for i = 1...n. Since M; and M, are models,
M, =t and M, |=t. From Proposition 5.4, it follows that M, ® M, =t. &

The next result establishes an important link between the model-theoretic and fixpoint seman-
tics.

13

Theorem 5.9 An interpretation I is a model for a program P if and only if Tp(1) C I.

Proof: If: Suppose that Tp(I) C I but [is not a model of P. Then, there must be some rule
C=H :— By,...,B,,n >0, in P, such that for some set of atoms {Bj,..., B.} C I, for which
we have

(H".BY,...,B"Y=(H,By,...,B,) ® (H,B,,...,B.)

for some BY, ..., B in D,such that [= B/ ;1 <i < mn, but I £ H”. However, from the definition of
the function apply_rule, we have H"” € apply_rule(C, I), and therefore that { H"} C apply_rule(C, I).
It follows, from the definition of 7p, that {H"} C Tp(I), i.e., that I & {H"} ~ I, which implies
that [= H”. This is a contradiction. We conclude, therefore, that I is a model of P.

Only if : Suppose that I is a model of P, i.e., for every rule H :— Bj,..., B, in P, and for every
set of atoms B, ..., B/ such that I = B!, where B} is an instance of B;, 1 <1 < n, if

H =({(H,By,...,B,)@(H,B,,...,B)) l1

then [|= H', i.e., that I @& {H’} ~ I. Since this is true for every such instance H’ for each rule C'
in P, it follows from the definition of the function apply_rule that

I & apply_rule(C,I) = I

or, in other words, that apply_rule(C,I) C I. 1t follows immediately that Tp(/)C I. n

The main result of this section can now be proved along essentially the same lines as the
corresponding result in [21]:

Corollary 5.10 For any Horn program P, let Mp denote the least model of P (with respect to the
ordering C), then lfp(Tp) = Mp.

Proof: From Theorem 5.6, @ is the meet of the lattice (D,C). Therefore, we have

Mp~ & {I'| Iisa model for P} from Proposition 5.8
~ @{I|Tp()CT I} from Theorem 5.9
~ lfp(Tp) from Corollary 4.9.

6 Applications

This section considers the application of the framework developed in the preceding sections to a
variety of fixpoint computations based on Horn logic programs. We briefly describe several proposed

14

fixpoint computations and define the operators @ and ! in each case. It is easy to show that our
axioms are satisfied, although we do not do so in this abstract for lack of space. The existence of
a least fixpoint and a least model and their equality then follows as a consequence of the theorems
proved in earlier sections. It is usually considerably simpler to prove the existence of a least fixpoint
by reasoning only about “local” properties of simple operators to show that Axioms 1-3 are satisfied,
and appealing to Corollary 4.9, than by carrying out an explicit proof of continuity that involves
“global” reasoning about the behavior of relatively more complex operators on chains and at limit
points. A similar remark holds with regard to results about least models.

6.1 Quantitative Deduction

A quantitative deduction system is described by van Emden for probabilistic inference in logic

programs [44]. In such a system, each inferred atom p(¢) is associated with a real number (its
weight) a € (0,1] that gives our “confidence” in the truth of p(f): an atom A with weight w is
written A : w. Thus, D is the set of weighted ground atoms of the language under consideration,
augmented with a distinguished element — denoting failure of unification. Additionally, each clause

has associated with it a real number f € (0,1], called a factor. A clause with head H, body

f
By, ..., B, and factor f is written ‘H :— By,..., B, . The idea is that given a set of weighted

!
ground atoms R, such a rule can be evaluated by taking a ground instance of the rule ‘H' :—

Bj, ..., B!’ where {Bj : wy,..., B! :w,} C R. Then, the weighted atom inferred is H' : w, where
w = f x min{wy,...,w,}. When evaluating a set of rules against a set of weighted ground atoms
R, a given atom may be inferred from many different rules, in a number of different ways, and
with different weights: the weight associated with this inferred atom is taken to be the largest of
the different weights associated with it. In other words, inference involves minimization of weights

within a rule, and maximization across rules.

To formulate this system as an instance of our framework, the instance operator & is defined
as follows: (t; 1 ay) @ (t2 : ay) =t : a, where t is the most general instance of t; and ¢, (— if they
have no common instance), and ¢ = min(ay, a,). Given a set S of (tuples of) terms with weights,
let mazwt(t,S) denote the largest value in the set {a | ¢ : @ € S}, if this set is nonempty, and 0
otherwise. The normalization operator ' is defined as:

St={t:a|a=mazwt(t,S)}\{t:a|t=-Va=0}.

6.2 Logic Programming with Inheritance

Ait-Kaci and Nasr describe a system that extends conventional logic programming languages by
incorporating subtyping and inheritance directly into the unification algorithm [1, 2]. In this case,
the notions of instance and merge are defined with respect to a type semilattice that is user-
definable. Objects in D are partially ordered type structures called i-terms. These concepts are
defined more formally in [1]: for our purposes, it suffices to note that if the set of type constructors
Y_, partially ordered via a subtype relation <, forms a join-semilattice (with — <« for all a € X),
then the set of ¥-terms D inherits this semilattice structure. Here, — denotes the empty set; this

implies that any term that contains an occurrence of — also denotes the empty set, and may be

15

identified with —. Then, it can be shown that for any pair of i-terms ¢; and t,, their greatest
lower bound ¢, 57 ¢5 (with respect to the type hierarchy) exists, is also a 1-term, and ¢, \/ ¢; can be
constructed effectively [1].

In this case, the instance operator & is nothing but the join operator on #-terms, 57. The
normalization operator ! is the identity function with the difference that it discards all terms that
have — as a subterm. Thus, S* = S\ {¢ | — occurs in ¢} for all S € D.

6.3 Logic Programming with Equality

A number of authors have considered extending logic programming languages by generalizing unifi-
cation to “F-unification”, i.e. unification with respect to an equational theory £ (see, for example,
[3, 17, 20, 39, 40]—a survey is given in [5]). Theoretical aspects of extended unification in the
context of logic programming have been studied by Jaffar et al. [19] and Gallier and Raatz [14].
Here we consider how logic programming languages extended to deal with certain kinds of equality
theories can be viewed as instances of our framework.

Let D denote the set of terms of the language under consideration, augmented with a distin-
guished element —. An equational theory F is said to be wunitary if any two terms ¢; and ¢, that
are F-unifiable have a unique (modulo equivalence under F) most general unifier. Apart from
the “usual” notion of unification of first order terms, equational theories that admit unique most
general unifiers include that of Boolean rings [28], and theories that are either left-distributive or
right-distributive (but not both) [35]. We assume that the equational theory E under considera-
tion is unitary. Given two F-unifiable terms ¢; and ¢, let mgug(t,,t2) denote the (E-unique) most
general unifier of ¢; and t,. The instance and normalization operators are defined as follows:

bt = t if t; and ty are F-unifiable, and t = 0(t,), where 8 = mgug(t,, ;)
' *7 1 = otherwise.

The normalization operator ! is essentially the identity function: S* =S\ {—}.

6.4 Aggregate Computations

As an example of an aggregate computation, consider the program

path(A, B, N) :- edge(A, B, N).
path(A, B, N) :- path(A, C, N1), path(C, B, N2), plus(Ni, N2, N).

Let the input consist of a relation edge such that (a,b,n) € edge if and only if there is an edge
from a node a to a node b with cost n; and a relation plus, such that (n,, ns, n) € plus if and only

if n =ny + no.

Suppose that we are interested not in all paths between any pair of nodes, but only in shortest
paths. This semantics is difficult to specify in the usual Horn clause formalism. In this case, we

may consider any two sets of atoms for path to be equivalent in terms of “information content” if

16

they agree on the costs of the shortest paths between each pair of nodes. More formally, given a
set S of tuples for path, let mindist(a,b,S) denote the cost of the shortest path, according to 5,
between nodes a and b:

mindist(a, b, §) — { min{n | (a,b,n) € S} if {n | <'a,b,n> €ESH£D
- otherwise
The normalization operator can now be defined as follows: For any set S of triples of the form

(a,b,n), where a and b represent nodes in the graph and n is a natural number,
St = {{a,b,n) | n = mindist(a,b,S)An # —}.

The instance operator ® is given by the usual first order notion of “most general instance”. The
fixpoint evaluation of this program with the operators * and @ defined in this manner yields
only the shortest paths between any pair of nodes. Notice the important operational differences
between the evaluation in this case, and that in the case of evaluation using the “usual” operators:
at any point, this definition retains only the shortest distances between nodes, making for more
compact representations and more efficient computation; moreover, the evaluation of the program
terminates in finitely many steps, as long as the graph does not contain any cycles of negative cost.
It is not difficult to show that this definition of the operators satisfies our axioms.

6.5 Abstract Interpretation

An abstract interpretation may be thought of as an “execution” of the program over an abstract
domain D, rather than the concrete domain of computation D.,,.. A concretization function
conc : Dy, — Deyne maps each abstract domain element to the concrete domain element it
describes. Abstract interpretation of Horn programs has been studied by various researchers (see,
for example, [4, 9, 10, 25, 26, 27, 29]). Given the structural relationships between the abstract and
concrete domains, the notion of & in Dy, can be derived without much trouble from the notion
of instance in D,,,.. For example, one plausible definition is the following: given elements s and t
in Dy, s is an instance of t if and only if every element in conc(s) is an instance of some element
in conc(t). For a groundness analysis, for example, let g, nv and any be abstract domain elements
denoting, respectively, the set of ground terms, the set of non-variable terms, and the set of all
terms. Then, g is an instance of nv, which in turn is an instance of any. The operator * can be
defined in at least two ways: either as set union, or by means of a LUB operation in the abstract
domain. The former is more precise but less efficient, the latter less precise but more efficient.

We give two examples of how abstract interpretations of logic programs may be formulated
within our framework.

Example 6.1 (Success Pattern Analysis [24, 25, 34])
This analysis uses “depth-k abstractions” to obtain finite descriptions of infinite sets of terms. Let

Ddenote the set of terms of the language under consideration, augmented with a distinguished

17

element — denoting failure. A term ¢ is said to be a canonical depth-k abstraction if the depth of
t is at most k, and no variable occurs more than once in ¢t or at a depth less than k [25]. Let the
canonical depth-k abstraction of a term ¢, modulo variable renaming, be denoted by d;(f). The set
D is the set of all canonical depth-k abstractions of the language under consideration. Then, the

instance and normalization operators are defined as follows:

e The instance operator & is defined as follows:

ty @ty = 8 (mgi(ty,ts))

where mgi(t;,ts) is the most general instance of ¢; and ¢, (in the usual first order sense) if

one exists, — otherwise; and 9, (—) = —.

e The normalization operator ! is essentially the identity function: S* = S\ {-}.

Example 6.2 (Groundness Analysis [10, 11, 26, 27, 23])

First, consider a very simple groundness analysis that uses the special constant g to represent terms
known to be definitely ground, and the constant any to represent the set of all terms of the language
[11, 23]. For notational convenience, define the predicate is_ground as follows: Given a term t,

is_ground(t) if and only if either t = g, or ¢ is a ground term and ¢ # any.

The instance operator is defined as follows:

— iftlz—ortQZ—
bt = if t; & {g,any}, t, € {g,any}, and t,,t, are not unifiable
FE T) g ifis_ground(ty) or is_ground(ts)

any otherwise.

The normalization operator ! is essentially the identity function: S* =S\ {—}.

A more sophisticated groundness analysis may be obtained using propositional formulae to de-
scribe dependencies between variables. A class of formulae that has received considerable attention
in this regard is the class Pos_ of positive propositional formulae, which consists of the propositional
constant false, together with formulae that can be constructed using variables and the connectives
A, V and & [10, 26, 27]. To express this analysis in our framework, it suffices to have D = Pos_,

@ = A, and }; as 3. The abstract domain D, is therefore P(Pos_). Intuitively, two sets of
propositional formulae convey the same amount of information if they are logically equivalent: one
simple way to capture this is to identify the “information content” of a set of such formulae with

the set of its logical consequences. Thus, for any S € Dy, S* ={s| S = s}. n

18

7 Generalizing the Instance Operator ©

The discussion so far has assumed that the instance operator @ is a function, ® :D x D — D.
However, there is no a priori reason why this should be so. Given t;,t, € D, it is not unreasonable
to assume that t; ® t, need not be unique. This is the case, for example, for most nontrivial
equational theories [35]. Intuitively, this would correspond to @ being something like a relation
rather than a function. Technically, it turns out to be more convenient to model such a generalized

instance operator as a set-valued function:
@ :DxD— P(D), ie., ® :DxD—1D.

The “lifted” operator @ :D x D — D is then defined as follows: for any Sy, S5, € D,
S1 @ So=U{ty @ ts |ty € S1,t5 € Su}.

With this minor change, the treatment given earlier, including the results of Sections 4 and 5—in
particular, Corollaries 4.9 and 5.10)—extends directly to a variety of applications. Below we give

two examples.
7.1 Logic Programming in Equational Theories with Non-unique MGUs

Most nontrivial equational theories F' do not admit E-unique most general unifiers [35]. For ex-
ample, unification in equational theories that are commutative, or idempotent, or associative-
commutative, or associative-commutative-idempotent, can have (finitely) many most general uni-
fiers that are not F-equivalent to each other, while theories that are associative, or distributive, or

associative-commutative-distributive, can have infinitely many most general unifiers.

Given an equational theory F, and two terms ¢; and t,, let mgug(t;,t2) now denote the set of
most general F-unifiers of ¢; and ¢,. The operators @ and * can now be defined in the expected

way: for any two terms ¢; and t,,
ty @ty = {t |30 € mgup(t,ts) 1t =0(t1)}

and for any set of terms S, S* = S\ {=}. The proof that these operators satisfy our axioms is
straightforward.

Example 7.1 (Natural Language Processing)
The following describes a generator/parser for a simple fragment of English. Here, the infix func-
tion symbol o is used to denote the concatenation of sequences of constants. Concatenation is

associative, i.e., o obeys the axiom
(xoy)oz==ao(yoz) forevery sequence of constants z,y, z.

The following clauses describe the grammar under consideration:

19

sentence(N oV, s(N1,V1)) :— noun phrase(N, N1), verb phrase(V, V1).

noun _phrase(N, np(N)) :— proper noun(N).

noun _phrase(D o N, np(D, N)) :— det(D), noun(N).

noun phrase(D oN oP, np(D, N, P1)) :— det(D), noun(N), prep_phrase(P,
P1).

verb_phrase(V o N, vp(V,N1)) :— verb(V), noun phrase(lN, N1).
verb phrase(V o P, vp(V1,P1)) :— verb phrase(V, V1), prepphrase(P, P1).

prep_phrase(P o N, pp(P, N1)) :— preposition(P), noun phrase(N, N1).

The vocabulary part of this grammar, specified via the relations determiner, preposition, noun,
proper noun, and verb, may be either be specified separately as inputs to the interpreter (“base
relations”, in the language of deductive databases), or as part of the program itself. For example,
consider the vocabulary given by the following;:

proper_noun(john).
noun(telescope).
noun{man) .
verb(saw) .
preposition(with).
determiner(a).

From the associativity of o, this is able to detect ambiguity in certain kinds of sentences: for
example, there are distinct values of ¢ such that the fixpoint evaluation of the above program
contains

sentence(john o saw oa oman owith oa otelescope, t),
for example:

t = s(np(john), vp(saw, np(a, man, pp(with, np(a, telescope)))))
corresponding to the reading “John saw 2z, where x = a man with a telescope”; and

t = s(np(john), vp(vp(saw, np(a, man)), pp(with, np(a, telescope))))

corresponding to the reading “John saw z with a telescope, where z = a man”. g

20

7.2 Logic Programming with Polymorphism and Subtyping

An earlier section discussed the application of our framework to logic programming with inheritance
[1, 2]. There, it was assumed that the subtype relation over the set of type constructors is a (finite)
semilattice. The theory of i-terms [1, 2] can be formulated in terms of order-sorted logic [36]. It
turns out that order-sorted unification, i.e., unification when some types may be subtypes of other
types, admits unique most general unifiers when the sort structure is a finite semilattice and there
is no overloading of constructors [46]. In the presence of overloading or polymorphism, however,
where there can be more than one type assignment per constructor (as is the case, for example, with
the list constructor cons), the existence of unique most general unifiers can no longer be guaranteed
unless a number of additional restrictions are imposed [37].

As the discussion earlier indicates, however, the operational aspects of this case can be handled
in a straightforward way within our framework, even when the existence of unique most general
unifiers cannot be guaranteed. The instance operator @ is defined as described at the beginning of
this section, and normalization is defined to be the identity function. The proof that this definition
satisfies our axioms is straightforward.

8 Top-Down Computational Models for Logic Programming

A question that presents itself immediately when we consider the extended model of Horn clause
computation presented in this paper is the following: Is there a similar generalization of the top-
down model of computation based on SLD-resolution? Things are complicated by the fact that a
bottom-up fixpoint computation can use * to prune the set of inferences during a computation,
while a top-down strategy can use @ to restrict the search space. Thus, the top-down and bottom-
up approaches restrict the computation in distinct ways; respectively, goal-directed search and early
use of F.

One approach is to consider top-down computations that do memoing [47], i.e., that record all
generated facts and goals are recorded (with the effect that & is treated as set union). Now, !
can be applied as a final step to compute the answers. OLDT resolution [41] provides a formal
basis for such computation methods, and methods such as QSQR [45] and Extension Tables [12, 48]
represent specific algorithms that are based upon OLDT resolution. It is well-known (see e.g., [7])
that there is a close correspondence between bottom-up evaluation of programs rewritten using the
Magic Templates transformation [32], and QSQR. Both methods generate and record the same sets
of goals and facts. It is straightforward to reformulate QSQR in terms of our algebraic operators
(and of course, we can simply substitute our generic fixpoint evaluation for the fixpoint evaluation
phase of the Magic approach). Using the distributivity of @ over & (see Theorem 5.6), it is not
hard to show that these versions of QSQR and Magic are equivalent in that they compute the same
answer sets for the query predicate.

9 Related Work and Future Directions

We have presented an extended model of Horn clause programs. To our knowledge, the algebraic
formulation given is novel, although Carre has proposed a path algebra for a special class of pro-

21

grams based on transitive closure [8]. Giacobazzi et al. give an algebraic semantics for constraint
logic programs that is similar in spirit to this work [16], but the details of their development are
very different: for example, while we focus on a minimal set of axioms necessary to establish the
necessary semantic equivalences, [16] takes a different approach by starting with closed semirings
and extending this to a class of cylindric algebras. Also related is Parker’s work on partial order
programing [30], which shows how a variety of programming problems can be formulated in terms
of minimizing the value of an expression, given constraints that specify a partial order over the do-
main of computation. Our goals are both more limited and more ambitious than Parker’s: they are
more limited because, unlike Parker, we restrict ourselves to the domain of “Horn-like” programs;
and they are more ambitious because, within this domain, we strive to examine the structure of
computations at a much finer level of granularity, and give axioms that characterize a wide variety
of fixpoint computations that can be naturally expressed in the idiom of Horn programs.

Finally, an important problem is to optimize extended Horn programs. For example, the short-
est path query may be specified as a logic program to compute all path-lengths between pairs of
cities followed by a selection of the shortest path. How can we automatically derive the equivalent
program that only retains the shortest path between a pair of cities at any point in the compu-
tation? While this is a difficult problem, requiring a set of program transformation rules over
extended programs (with some well-chosen suite of choices for § and @), some promising results
are developed—although not in an algebraic setting—for the case of programs involving min and
max aggregate operations in [15, 38].

10 Acknowledgements

The basic idea behind this paper had its roots in discussions with Suzanne Dietrich and David S.
Warren. Hassan Ait-Kaci’s patient explanations of the subtleties of order-sorted unification are
gratefully acknowledged. Thanks are due to Michael Maher for many insightful comments on an
earlier version of this paper.

References

[1] H. Ait-Kaci and R. Nasr, “Logic and Inheritance”, Proc. Thirteenth ACM Symposium on
Principles of Programming Languages, St. Petersburg Beach, FL, Jan. 1986, pp. 219-228.

[2] H. Ait-Kaci and R. Nasr, “LOGIN: A Logic Programming Language with Built-in Inheritance”,
J. Logic Programming vol 3 no. 3, Oct. 1986, pp. 185-215.

[3] R. Barbuti, M. Bellia, G. levi, and M. Martelli, “On the Integration of Logic Programming
and Functional Programming”, Proc. 1984 International Symposium on Logic Programming,
Atlantic City, NJ, Feb. 1984, pp. 160-166.

[4] R. Barbuti, R. Giacobazzi, and G. Levi, “A Declarative Approach to Abstract Interpretation
of Logic Programs”, Technical Report TR-20/89, Dipartimento di Informatica, Universita di
Pisa, Pisa, Italy, 1989.

22

[5]

[6]
[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

M. Bellia and G. Levi, “The Relation between Logic and Functional Languages: A Survey”,
J. Logic Programming vol. 3 no. 3, Oct. 1986, pp. 217-236.

G. Birkhoff, Lattice Theory, AMS Colloquium Publications vol. 25, 1940.

F. Bry, “Query evaluation in recursive databases: Bottom-up and top-down reconciled”, IEEFE
Transactions on Knowledge and Data Engineering, 5:289-312, 1990.

B. Carre, Graphs and Networks, Clarendon Press, Oxford, England, 1979.

M. Codish, D. Dams and E. Yardeni, “Bottom-up Abstract Interpretation of Logic Programs”,
Technical Report CS90-24, Dept. of Applied Mathematics and Computer Science, The Weiz-
mann Institute of Science, Rehovot, Israel, Oct. 1990.

A. Cortesi, G. Filé and W. Winsborough, “Optimal Groundness Analysis using Propositional
Logic”, J. Logic Programming (submitted for publication). (Preliminary version appeared in
Proc. Sizth IEEE Symposium on Logic in Computer Science, 1991.)

S. K. Debray and D. S. Warren, “Automatic Mode Inference for Logic Programs”, J. Logic
Programming vol. 5 no. 3 (Sept. 1988), pp. 207-229.

S. W. Dietrich, “Extension tables: Memo relations in logic programming”, Proc. Symposium
on Logic Programming, pages 264-272, 1987.

M. Falaschi, G. Levi, C. Palamidessi, and M. Martelli, “Declarative Modeling of the Opera-
tional Behavior of Logic Languages”, Theoretical Computer Science 69 (1989), pp. 289-318,
North Holland.

J. H. Gallier and S. Raatz, “SLD-Resolution Methods for Horn Clauses with Equality Based
on E-Unification”, in Proc. IEFE Symposium on Logic Programming, Salt Lake City, Utah,
Sept. 1986, pp. 168-179.

S. Ganguly, S. Greco, and C. Zaniolo, “Minimum and maximum predicates in logic program-
ming”, Procedings of the ACM Symposium on Principles of Database Systems, 1990.

R. Giacobazzi, S. K. Debray, and G. Levi, “A Generalized Semantics for Constraint Logic
Programs”, in Proc. International Conference on Fifth Generation Computer Systems, Tokyo,
1992, pp. 581-591.

J. A. Goguen and J. Meseguer, “Eqlog: Equality, Types, and Generic Modules for Logic
Programming”, in Functional and Logic Programming, eds. D. DeGroot and G. Lindstrom,
Prentice Hall, 1985.

Y.E. loannidis and E. Wong, “An Algebraic Approach to Recursive Inference”, Proc. First
Int. Conf. Frpert Database Systems, Charleston, SC, 1987, pp. 295-309.

J. Jaffar, J.-L. Lassez, and M. Maher, “A Theory of Complete Logic Programs with Equality”,
J. Logic Programming vol. 1 no. 3, Oct. 1984, pp. 211-224.

23

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[30]

[31]

[32]

[33]

W. A. Kornfeld, “Equality for Prolog”, in Proc. Fighth IJCAI Karlsruhe, W. Germany, 1983,
pp. 514-519.

J. W. Lloyd, Foundations of Logic Programming, Springer Verlag, 1984.

M. Maher and R. Ramakrishnan, “Déja Vu in Fixpoints of Logic Programs”, Proc. NACLP-89,
Cleveland, OH, Oct. 1989.

H. Mannila and E. Ukkonen, “Flow Analysis of Prolog Programs”, Proc. Fourth IFEE Sym-
posium on Logic Programming, San Francisco, CA, Sept. 1987.

K. Marriott and H. Sgndergaard, “On Describing Success Patterns of Logic Programs”, Tech-
nical Report 88/12, Dept. of Computer Science, University of Melbourne, Australia, May
1988.

K. Marriott and H. Sgndergaard, “Bottom-up Abstract Interpretation of Logic Programs”,
Proc. Fifth International Conference on Logic Programming, Seattle, 1988. MIT Press, pp.
733-748.

K. Marriott and H. Sgndergaard, “Precise and Efficient Groundness Analysis of Logic Pro-
grams”, ACM Letters on Programming Languages and Systems vol. 2 nos. 1-4, March—Dec.
1993, pp. 181-196.

K. Marriott, H. Sgndergaard and N. D. Jones, “Denotational Abstract Interpretation of Logic
Programs”, ACM Transactions on Programming Languages and Systems vol. 16 no. 3, May
1994, pp. 607-648.

U. Martin and T. Nipkow, “Unification in Boolean Rings”, in Proc. 8th International Confer-
ence on Automated Deduction, Oxford, July 1986. Springer-Verlag LNCS vol. 230, pp. 506-513.

K. Muthukumar and M. Hermenegildo, “Determination of Variable Dependence Information
Through Abstract Interpretation”, J. Logic Programming (special issue on Abstract Interpre-
tation) vol. 13 nos. 2 & 3, July 1992, pp. 315-347.

D. S. Parker, “Partial Order Programming”, in Proc. Sizteenth ACM Symposium on Principles
of Programming Languages, Austin, TX, Jan. 1989, pp. 260-266.

G. D. Plotkin, “A Note on Inductive Generalization” in Machine Intelligence 5, B. Meltzer
and D. Michie (eds.), Elsevier, New York, 1970, pp. 153-162.

R. Ramakrishnan, “Magic Templates: A Spellbinding Approach to Logic Programs”, Proc.
Fifth International Conference on Logic Programs, Seattle, Aug. 1988, pp. 140-159. MIT Press.

J. C. Reynolds, “Transformational Systems and the Algebraic Structure of Atomic Formulas”,
in Machine Intelligence 5, B. Meltzer and D. Michie (eds.), Elsevier, New York, 1970, pp.
135-151.

T. Sato and H. Tamaki, “Enumeration of Success Patterns in Logic Programs”, Theoretical
Computer Science vol. 34, 1984, pp. 227-240.

24

[35] J. H. Siekmann, “Unification Theory”, in Unification, ed. C. Kirchner, Academic Press, 1990,
pp- 1-68.

[36] G. Smolka and H. ATt-Kaci, “Inheritance Hierarchies: Semantics and Unification”, in Unifica-
tion, ed. C. Kirchner, Academic Press, 1990, pp. 489-516.

[37] G.Smolka, W. Nutt, J. Goguen, and J. Meseguer, “Order-Sorted Equational Computation”, in
Resolution of Equations in Algebraic Structures, vol. 2: Rewriting Techniques, eds. H. Att-Kaci
and M. Nivat, Academic Press, Cambridge, MA, 1989, pp. 297-367.

[38] S. Sudarshan and R. Ramakrishnan, “Aggregation and Relevance in Deductive Databases”,
Proc. International Conference on Very Large Databases, Barcelona, Spain, September 1991.

[39] P. A. Subrahmanyam and J.-H. You, “Conceptual Basis and Evaluation Strategies for Inte-
grating Functional and Logic Programming”, Proc. 1984 International Symposium on Logic
Programming, Atlantic City, NJ, Feb. 1984, pp. 144-153.

[40] H. Tamaki, “Semantics of a Logic Programming Language with Equality”, Proc. 1984 Inter-
national Symposium on Logic Programming, Atlantic City, NJ, Feb. 1984, pp. 259-264.

[41] H. Tamaki and T. Sato, “OLD Resolution with Tabulation”, Booktitle = iclp86, Proc. Interna-
tional Conference on Logic Programming, Lecture Notes in Computer Science 225, Springer-
Verlag, 1986, pp. 84-98.

[42] A. Tarski, “A Lattice-Theoretic Fixpoint Theorem and its Applications”, Pacific J. Math 5
(1955), 285-309.

[43] M. H. van Emden and R. A. Kowalski, “The Semantics of Predicate Logic as a Programming
Language”, J. ACM 23, 4 (Oct. 1976), pp. 733-742.

[44] M. H. van Emden, “Quantitative Deduction and its Fixpoint Theory”, J. Logic Programming,
vol. 3 no. 1, April 1986, pp. 37-53.

[45] Laurent Vieille, “Database complete proof procedures based on SLD-resolution”, Proc. Fourth
International Conference on Logic Programming, pages 74-103, 1987.

[46] Ch. Walther, “Unification in Many-sorted Theories”, in Proc. 6th Furopean Conference on
Artificial Intelligence, 1985, North-Holland, pp. 383-392.

[47] David S. Warren, “Memoing for logic programs”, Communications of the ACM, 35(3), March
1992.

[48] David S. Warren, “T'he XWAM: A Machine That Integrates Prolog and Deductive Database
Query Evaluation”, Technical Report 89/25, Department of Computer Science, SUNY at
StonyBrook, October 1989.

25

