
Cassyopia: Compiler Assisted System Optimization

Mohan Rajagopalan Saumya K. Debray
Department of Computer Science

University of Arizona
Tucson, AZ 85721, USAfmohan, debrayg@cs.arizona.edu

Matti A. Hiltunen Richard D. Schlichting
AT&T Labs-Research

180 Park Avenue
Florham Park, NJ 07932, USAfhiltunen, rickg@research.att.com

Abstract

Execution of a program almost always involves multi-
ple address spaces, possibly across separate machines.
Here, an approach to reducing such costs using compiler
optimization techniques is presented. This paper elabo-
rates on the overall vision, and as a concrete example,
describes how this compiler assisted approach can be ap-
plied to the optimization of system call performance on
a single host. Preliminary results suggest that this ap-
proach has the potential to improve performance signifi-
cantly depending on the program’s system call behavior.

1 Introduction

Execution of a program almost always involves multi-
ple address spaces, whether it executes on a standalone
system such as a desktop or a PDA or across multiple
machines such as a client-server program or a program
based on the Web or the Grid. On a standalone system,
user-level address spaces (processes) request services
from the kernel address space using system calls and po-
tentially interact with other user-space processes or sys-
tem daemons. Programs that span machines by definition
are composed of multiple processes, which also interact
with kernels, e.g., to exchange messages. Address spaces
play a valuable role as protection boundaries, and typi-
cally represent units of independent development, com-
pilation, and linking. Largely for these reasons, crossing
address spaces—even on the same machine—has con-
siderable execution cost, typically orders of magnitude
higher than the cost of a procedure call [9, 10].

Here, we describe an approach to reducing this cost—
sometimes dramatically—using compiler optimization
techniques. Unlike traditional uses of such tech-
niques that are confined to optimizing within procedures
(intra-procedural optimization), across procedures (inter-
procedural optimization), or across compilation units
(whole-program optimization), our approach focuses on
applying these techniques across address spaces on the

same or different machines while preserving the desir-
able features of separate address spaces. The specific fo-
cus is onprofiling-based optimizationwhere the address
space crossing behavior of a component (e.g., the system
calls made by a process) is profiled and then optimized
by reducing the number of crossings or the cost of each
crossing. This compiler assisted approach to system op-
timization is being realized in a system called Cassyopia.

This paper elaborates on this overall vision. We first
highlight its application in one context, that of optimiz-
ing traditional system call performance on a single host.
This work complements existing techniques for system
call optimization [3, 4, 9, 11, 12, 13], which focus on op-
timizing calls in isolation rather than collections of mul-
tiple calls as done here. We then briefly discuss other
areas in which these ideas could be applied.

2 Case Study: System Call Clustering

Overview. As an application of the general approach
described above, we describesystem call clustering, a
profile-directed approach to optimizing a program’s sys-
tem call behavior. In this approach, execution profiles
are used to identify groups of systems calls that can
be replaced by a single call implementing their com-
bined functionality, thereby reducing the number of ker-
nel boundary crossings. A key aspect of the approach is
that the optimized system calls need not be consecutive
statements in the program or even within the same proce-
dure. Rather, we exploit correctness preserving compiler
transformations such as code motion, function inlining,
and loop unrolling to maximize the number and size of
the clusters that can be optimized. The single combined
system call is then constructed using a newmulti-call
mechanism that is implemented using kernel extension
facilities like those described in [1, 2, 5, 6, 12, 17]. We
also introducelooped multi-calls, an extension to the ba-
sic technique spanning address spaces. The overall ap-
proach is illustrated by a simple copy program.

1



Clustering mechanisms. This section describes the
mechanisms used to realize system call clustering in a
traditionally structured operating system. The goal, in
addition to reducing boundary crossing costs, is to reduce
the number of boundary crossings required. Specifically,
we want to extend the kernel to allow the execution of a
sequence of system calls in a single boundary crossing.
The new mechanism must not compromise protection,
transparency or portability, significant advantages pro-
vided by the existing system call mechanism. We now
look at one such mechanism, themulti-call [14].

A multi-call is a mechanism that allows multiple system
calls to be performed on a single kernel crossing, thereby
reducing the overall execution overhead. Multi-calls can
be implemented as a kernel level stub that executes a
sequence of system calls. At the application level, the
multi-call interface resembles a standard system call and
uses the same mechanism to perform the kernel bound-
ary crossing, thereby retaining the desirable features of
the system call abstraction. An ordered list of system
calls to be executed is passed as a parameter to the multi-
call. Each system call in the list is described by its sys-
tem call number and parameters. An issue that has to be
addressed to preserve correctness is that of error behav-
ior, i.e., replacing a group of system calls by a multi-call
must not alter the original error behavior of the program.
Upon detecting an error in any constituent system call,
the multi-call returns control to the application level and
reports the system call in which the error occurred as well
as the error itself.

Modifications to a program to replace a sequence of sys-
tem calls by a multi-call are conceptually simple and can
be done using a compiler. In the next section, we briefly
discuss profiling and the use of compilation techniques
to add multi-calls to the program.

Profiling. Given this mechanism, the issue becomes
one of identifying optimization opportunities in the pro-
gram, both in the sense of identifying sequences of
calls that can be replaced by a multi-call and identify-
ing correctness-preserving program transformations that
can be used to create such sequences. Profiling does this
by characterizing the dynamic system call behavior of a
program on a given set of inputs. Operating system ker-
nels often have utilities for generating such traces (e.g.,
strace in Linux), or they can be obtained by instru-
menting kernel entry points to write to a log file.

Figure 1.c shows a graphical summary of a collection of
such traces for a simple file copy program; the code for
this program is in figure 1.a, while 1.b shows the con-
trol flow. Each node in the system call graph represents
a system call with a given set of arguments. Consecutive

system calls in the trace appear as nodes connected by
directed edges indicating the order. The weight of each
edge indicates the number of times the sequence appears.
This graph forms the basis for compile-time transforma-
tions for grouping system calls. The general idea is to
find frequently executed sequences of calls in the system
call graph; if the corresponding system calls are not syn-
tactically adjacent in the program source, we attempt to
restructure the program code so as to make them adja-
cent, as described below.

Applying compiler optimizations. The fact that two
system calls appear as a sequence in the graph does not,
by itself, imply that the system calls can be grouped to-
gether. This is because even if two system calls fol-
low each other in the trace, the system calls in the pro-
gram code may be separated by arbitrary user code that
does not include system calls. Replacing these calls by
a multi-call would require moving the intervening code
into the multi-call, which may compromise safety. To in-
crease the applicability of this technique, we use simple,
well-understood, correctness preserving transformations
like function inlining, code motion and loop unrolling
that enhance the applicability of our optimization. Al-
though code rearrangement is a common compiler trans-
formation, to our knowledge it has not been used to opti-
mize system calls as done here. Here, we give examples
of program transformations that can be used to rearrange
the statements in a program to allow system call group-
ing without affecting the observable behavior of the pro-
gram.

A simple such transformation involves interchangingin-
dependent statements. Two statements are said to be in-
dependent if neither one reads from or writes to any vari-
able that may be written to by the other. Two adjacent
statements that are independent and have no externally
visible side-effects may be interchanged without affect-
ing a program’s observable behavior. This transforma-
tion can be used to move two system calls in a program
closer to each other, so as to allow them to be grouped
into a multi-call. Note that such system calls may ac-
tually start out residing in different procedures, but can
be brought together (and hence, optimized) using tech-
niques such as function inlining.

Another useful transformation isloop unrolling. In the
control flow graph (figure 1.b), theif statement in ba-
sic blockB4 prevents theread and thewrite system
calls from being grouped together. Programs like FTP,
encryption programs, and compression programs (e.g.,
gzip and pzip) exhibit similar control dependencies. In
cases like this where the dependency appears within a
loop, loop unrolling can sometimes be used to eliminate
the dependency. In the case of the copy program in fig-

2



#include <stdio.h>
#include <fcntl.h>

#define N 4096

void main(int argc, char* argv[])
{

int inp, out, n;
char buff[N];

inp = open(argv[1],O_RDONLY);
out = creat(argv[2],0666);

while ((n = read(inp,&buff,N)) > 0) {
write(out,&buff,n);

}
}

(a) Source code

B3
write(out, &buff, 4096)

B4
return

n = read(inp, &buf, 4096)

B0

B1

B2

inp = open(argv[1], ... )

out = creat(argv[2], ... )

if (n <= 0) goto B4

(b) Control flow graph

Loader system calls

1

1

open(in,...)

read(3,...)

write(4...)

557557

1

close(3,...)

1

close(4,..)

open(out,...)

(c) Syscall graph

Figure 1: Copy program

Entry Exit
System Call 140 (173-33) 189 (222-33)

Procedure Call 3 (36-33) 4 (37-33)

Table 1: CPU cycles for entry and exit

ure 1, for example, unrolling the loop once and combin-
ing the footer of one iteration with the header of the next
iteration results in the code shown below, with adjacent
system calls within the loop that are now candidates for
the multi-call optimization:

n = read(in, buff0, size);
while (n > 0) f

write(outfd, buff1, n);
n = read(in, buff0, size);g

Looped multi-calls. The looped multi-callis a variant
of the basic multi-call motivated by this philosophy. It is
applicable in the situation where, after other transforma-
tions have been applied, the entire body of a loop consists
of a single multi-call. In this case, the entire loop is, in
effect, moved into the kernel by replacing it by a looped
multi-call. This results in a single kernel boundary cross-
ing rather than one per iteration. For example, in the
copy program, notice that after replacing the write-read
sequence, the body of the loop contains just one multi-
call. The loop can now be moved into the kernel by using
the looped multi-call. Notice again that the semantics of
the program are not affected by this transformation.

Experimental results. A number of experiments have
been performed to identify both the potential and actual

benefits of this approach. All tests were run on a Pentium
II-266 Mhz laptop running Linux 2.4.4-2.

As a baseline, we first measured the cost of a system
call versus a procedure call. Table 1 gives the results
of these experiments; these results were obtained using
therdtscl call, which reads the lower half of the 64
bit hardware counter Read Time Stamp Counter, RDTSC
provided on Intel Pentium processors. These results in-
dicate that clustering even two system calls and replacing
them with a multi-call can result in savings of over 300
cycles every time the pair of system calls is executed.

Table 2 gives the results of applying system call cluster-
ing using both the multi-call and the looped multi-call
to the copy program shown in figure 1. To do this, the
multi-call or looped multi-call was assigned system call
number 240 and added as a loadable kernel module. The
numbers reported in Figure 2 were calculated by taking
the average of 10 runs on files of 3 sizes ranging from a
small 80K file to large files with size around 2Mb. The
block was chosen as 4096 bytes since it was the page size
and hence the optimal block size for both the optimized
and unoptimized versions of the copy program. Smaller
block sizes would result in a larger number of system
calls and hence the multi-call would show larger relative
improvement. The maximum benefit seemed to appear
in the small and medium files since disk and memory
operations seemed to dominate for larger files.

3 Other Compiler Assisted Techniques

The multi-call mechanism can be extended further to in-
clude code other than the system calls, error checking,
and loops in the multi-call. Specifically, we can extend

3



File Size Original Multi-call Looped Multi-Call
Cycles (106) Cycles (106) % Savings Cycles (106) % Savings

80K 0.3400 0.3264 4% 0.3185 6.3%
925K 4.371 4.235 3.1% 4.028 7.8%
2.28M 10.93 10.65 2.6% 10.37 5.2%

Table 2: Optimization of a copy program with block size of 4096.

the basic code-motion transformations to identify aclus-
terable region, possibly containing arbitrary code, that
can then be added to the body of a multi-call. Optimiza-
tion techniques like dead-code elimination, loop invari-
ant elimination, redundancy elimination, and constant
propagation can then be applied to optimize the program.
For example, the data transformation code in programs
such as compression or multimedia encoding/decoding
can be included in the multi-call.

Another avenue of optimization is to replace general
purpose code in the kernel by compiler-generated case-
specific code in user-space. Examples of such general
code are the register saves and restores executed by the
kernel before and after each system call. Since the kernel
does not know which registers are actually used by the
application process, it must save and restore all of them.
This can be quite expensive on processors with a large
number of registers. However, the compiler has this in-
formation, and it can therefore generate specialized user-
space code for saving and restoring registers. Simula-
tions using this strategy for a 3 parameterread system
call on the Intel StrongARM processor show up to 20%
reduction in the number of cycles required to enter the
kernel. Other such examples include the general permis-
sion checking performed by each system call. Note that
both of the above extensions require that a degree of trust
be placed in the compiler.

The profiling and compiler-based optimization can also
be used to enable controlled information sharing be-
tween address spaces. Traditionally, components in dif-
ferent address spaces optimize their internal behavior not
knowing what type of interactions will be received from
other address spaces. For example, the operating sys-
tem conserves battery power by switching hardware de-
vices such as the CPU, display, hard disk, and wireless
cards into power-saving modes based on a period of in-
activity. These policies are generally based on statisti-
cal models of application behavior that attempt to pre-
dict future (in)activity based on patterns of past activ-
ity. Because of their stochastic nature, they can be quite
inaccurate for individual applications, and result in sig-
nificant performance overheads [18, 19, 20]. However,
by carefully exposing some of the components internal
state to other address spaces using atranslucent bound-

ary API, each address space can optimize its behavior
to better match the requirements of other system compo-
nents, and hence aim for a global optimum. The profil-
ing and compiler techniques can be used to collect and
generate the information at the application’s translucent
boundary API to the kernel. The same approach can be
used for compiler assisted scheduling, where an adap-
tive scheduler can fine-tune the scheduling policy based
on the processes running in the system and their require-
ments. The compiler could place ”yield” points within
the body of the program to indicate schedulable regions
and changes in requirements. Conversely, if the kernel
exposes changes in the state of an existing resource, e.g.,
a reduction in CPU speed to conserve power, the applica-
tion process may be able to adapt its internal algorithms
[7] to degrade the service gracefully while still satisfying
user requirements.

Finally, note that the same principles can be applied to
any address space crossing, including distributed pro-
grams where the “boundary crossing” cost involving net-
work communication may have a delay of tens or hun-
dreds of milliseconds. In particular, clustering multiple
remote procedure calls (or remote method invocations
in distributed object systems such as CORBA and Java
RMI) can lead to significant savings. Furthermore, more
general code movement techniques such as moving client
code to the server or server code to the client when ap-
propriate can also be used [21]. Note that the object mi-
gration techniques used in systems such as Emerald [8]
have the same goal, but without the systematic support
provided by our profiling and compiler techniques.

4 Concluding Remarks

The optimizations suggested in this paper complement
existing system specialization techniques and may be
used in conjunction with these techniques to yield even
greater improvement. We are in the process of integrat-
ing these optimizations into the PLTO binary rewriting
tool [16] as an optimization pass. Applying these tech-
niques to the popular media-playermpeg play [15]
has yielded an average 25% improvement in the frame
rate, 20% reduction in the execution time and 15% in
CPU cycles, suggesting the potential of this approach.

4



We have identified several optimization targets ranging
from utility programs like gzip and pzip, to web servers
and database applications. Independent of the savings in
CPU cycles, we believe such techniques will yield sig-
nificant energy savings, greater in fact than what the re-
duction in CPU cycles would imply.

References

[1] B. Bershad, S. Savage, P. Pardyak, E. Sirer, M. Fiuczyn-
ski, D. Becker, C. Chambers, and S. Eggers. Extensibil-
ity, safety, and performance in the SPIN operating system.
In Proceedings of the 15th ACM Symposium on Operat-
ing Systems Principles, pages 267–284, Copper Mountain
Resort, CO, Dec 1995.

[2] R. Campbell and S. Tan.�-Choices: An object-oriented
multimedia operating system. InFifth Workshop on Hot
Topics in Operating Systems, Orcas Island, WA, May
1995.

[3] P. Druschel and L. Peterson. Fbufs: A high-bandwidth
cross-domain transfer facility. InProceedings of the 14th
ACM Symposium on Operating Systems Principles, pages
189–202, Dec 1993.

[4] A. Edwards, G. Watson, J. Lumley, D. Banks, and C. Dal-
ton. User space protocols deliver high performance to ap-
plications on a low-cost Gb/s LAN. InSIGCOMM, Aug
1994.

[5] E. Gabber, C. Small, J. Bruno, J. Brustoloni, and A. Sil-
berschatz. The Pebble component-based operating sys-
tem. InProceedings of the 1999 USENIX Annual Techni-
cal Conference, Monterey, CA, USA, June 1999.

[6] B Henderson. Linux loadable kernel module, HOWTO.
http://www.tldp.org/HOWTO/Module-HOWTO/, Aug
2001.

[7] M. Hiltunen and R. Schlichting. A model for adaptive
fault-tolerant systems. In K. Echtle, D. Hammer, and
D. Powell, editors,Proceedings of the 1st European De-
pendable Computing Conference (Lecture Notes in Com-
puter Science 852), pages 3–20, Berlin, Germany, Oct
1994.

[8] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-
grained mobility in the Emerald system.ACM Transac-
tions on Computer Systems, 6(1):109–133, Feb 1988.

[9] J. Mauro and R. McDougall.Solaris Internals-Core Ker-
nel Architecture, pages Section 2.4.2 (Fast Trap System
Calls), 46–47. Sun Microsystems Press, Prentice Hall,
2001.

[10] J. Mogul and A. Borg. The effect of context switches on
cache performance. InProceedings of the 4th Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 75–84,
1991.

[11] C. Poellabauer, K. Schwan, and R. West. Lightweight
kernel/user communication for real-time and multimedia
applications. InNOSSDAV’01, Jun 2001.

[12] C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan, J. In-
ouye, L. Kethana, J. Walpole, and K. Zhang. Optimistic
incremental specialization: Streamlining a commercial
operating system. InProceedings of the 15th ACM
Symposium on Operating Systems Principles (SOSP’95),
pages 314–324, Copper Mountain, CO, Dec 1995.

[13] C. Pu, H. Massalin, and J. Ioannidis. The Synthesis ker-
nel. Computing Systems, 1(1):11–32, 1988.

[14] M. Rajagopalan, S. Debray, M. Hiltunen, and R. Schlicht-
ing. System call clustering: A profile-directed optimiza-
tion technique. Technical report, The University of Ari-
zona, 2002.

[15] L. Rowe, K. Patel, B. Smith, S. Smoot, and
E. Hung. Mpeg video software decoder, 1996.
http://bmrc.berkeley.edu/mpeg/mpegplay.html.

[16] B. Schwarz, S. Debray, G. Andrews, and M. Legendre.
PLTO : A link time optimizer for the Intel IA32 architec-
ture. InProceedings of Workshop on Binary Rewriting,
Sept 2001.

[17] M. Seltzer, Y. Endo, C. Small, and K. Smith. Dealing
with disaster: Surviving misbehaved kernel extensions.
In Operating Systems Design and Implementation, pages
213–227, 1996.

[18] T. Simunic, L. Benini, and G. DeMicheli. Event-driven
power management of portable systems.IEEE Transac-
tions on Computer Aided Design, July 2001.

[19] T. Simunic, L. Benini, P. Glynn, and G. DeMicheli. Dy-
namic power management of laptop hard disk.DATE,
2000.

[20] T. Simunic, H. Vikalo, P. Glynn, and G. DeMicheli. En-
ergy efficient design of portable wireless systems.IS-
PLED, 2000.

[21] D. Waugaman and R. Schlichting. Using code shipping
to optimize remote procedure call. InProceedings of
the 1998 International Conference on Parallel and Dis-
tributed Processing Techniques and Applications, pages
17–24, Las Vegas, NV, Jul 1998.

5


