Predicate Analysis and If-Conversion in an ltanium
Link-Time Optimizer

Noah Snavely, Saumya Debray, Gregory Andrews

Department of Computer Science
University of Arizona
Tucson, AZ 85721.

{snavely, debray, greg}@cs.arizona.edu

ABSTRACT

EPIC architectures, such as the Intel IA-64 (Itanium), coralex-
plicit instruction-level parallelism with instruction @dication. To
generate efficient code, itis important to use predicatffactvely.

In particular, it is important to replace conditional braas and
multiple code blocks by single, branch-free code blocksmihe-
ing so would lead to faster code. This process, which is knasvn
if-conversion, is generally carried out early in the codagration
process; hence subsequent analyses and optimizationsohdeal
with predicated code. This paper examines an alternatipeoaph

in which code is unpredicated during disassembly, theniaieep-
resentations are virtually identical to those in a conveal archi-
tecture (specifically the 1A-32 Pentium) and if-conversismone
late in the compilation process, at the same time as ingbruct
scheduling and just before code layout. This paper alsceptes
new algorithms for analyzing predicated code and evaluhieis
efficacy. We show that our approach is able to produce codéstha
denser (fewer nop instructions) and almost as fast as thebés
produced by the Intetcc compiler on the SPECint-2000 bench-
mark suite. On the same programs, our predicate analysif-and
conversion algorithms lead to an average speed improveofient
little over 4% on the best code produced by tfuee compiler.

1. INTRODUCTION

There has been a great deal of recent interest in EPIC (Explic
itly Parallel Instruction Computing) architectures, sashthe Intel
IA-64 (Itanium), that support predicated instructions axglicit
instruction-level parallelism. A predicated instructienguarded
by a Boolean source operand; the instruction is executgdfahis
guard evaluates to true. In addition, instruction-levebfialism is
explicit: the compiler is responsible for collecting ingttions into
groups that will be executed in parallel.

In order to make effective use of the capabilities of suctniarc
tectures, a compiler must selectively eliminate condéldmanches
in favor of predicated instructions that are conditionakecuted.
This process, known a§-conversion must be carried out judi-
ciously: if it is too aggressive, it leads to contention fgstem
resources and a concomitant degradation in performanités ifot
aggressive enough, it results in insufficient instructierel paral-
lelism, which also leads to a loss in performance. Therewe t
important questions that have to be addressed in this redare
first is that of when if-conversion should be carried out ia tom-
pilation process. The second is that of determining rebatigps
between predicates, which is necessary to identify depmiee

*This work was supported in part by the National Science Fatiod under
grants CCR-0073394, EIA-0080123, and CCR-0113633.

between predicated instructions.

One option for carrying out if-conversion is to do it earlytire
code generation process, with subsequent analyses amdizagti
tions working on predicated code. This is the approach tdken
Augustet al. [3], who carry out aggressive if-conversion early, and
subsequently perform partial reverse if-conversion dumrstruc-
tion scheduling. The advantage of such an approach is thabth-
piler can take full advantage of instruction predicatioraivariety
of low-level optimizations. A disadvantage of such an apptois
that analyses and optimizations in the compiler backend mazg
to be reimplemented to cope with predication. An altermats/
to delay if-conversion until much later in the compilatiorogess,
during instruction scheduling, after most optimizatiomséd been
carried out. The advantage here is that other analyses dinuzgp
tions do not have to be made predication-aware. This canli§imp
the construction of portable multi-target optimizers.

The determination of relationships between predicatesbean
helpful for improving the quality of code generated. Forrexa
ple, during instruction scheduling, it can allow the corapiio ex-
clude false scheduling dependencies between instructitiose
guarding predicates cannot be simultaneously true. Anailhea-
tion where knowledge of such relationships can be useful ke
context of profile-guided code layout, which can enhancegam
performance by improving its instruction cache behavi@}.[This
can sometimes require us to invert the sense of a branchse.as
to have it fall through rather than be taken. If the branchrirts
tion in question is conditioned on a predicate regigteand we
know that a predicate is guaranteed to be the complementpof
at that point, we can achieve this inversion simply by repigthe
guard predicate by its complement. Without such knowledge,
we may have to explicitly compute the complemenpofvhich can
take several instructions and adversely affect performanc

The contribution of this paper is to present algorithms fer i
conversion and predicate analysis and to evaluate thesaeffiex-
perimentally. Our approach is very different from those theve
been discussed in the literature. To simplify implementatnd
keep our analyses and optimizations architecture-inciggnour
internal representation does not support predicatedictidns. We
therefore carry out reverse if-conversion after disas$grobnvert-
ing instructions into their unpredicated form and intradgccon-
ditional branches in the process, following which a coniaeral
control flow graph is constructed. This control flow graphhisrt
subjected to various analyses and optimizations in thel wgayp
We then carry out if-conversion during instruction schauyljust

prior to code layout. Our approach can be seen as dual to that

of Augustet al. [3]. Our predicate analysis is also quite differ-
ent from previous proposals for determining relationshipsveen

predicates: we use a dataflow analysis that is able to handile a
trary control flow, and can be extended in a straightforwaag @
an inter-procedural analysis.

The remainder of the paper is organized as follows. Section 2

gives background information on the Itanium architecturd an
our experimental optimization system. Section 3 descililogswe
analyze the use of predicate registers to compute what \weeak
and strong disjointness sets. Section 4 presents our Vfecsion
algorithm. Section 5 contains examples that illustrateube of
predicate analysis and if-conversion. Section 6 addresgjtves-
tions: How effective is our approach in improving a mostlyred-
icated instruction stream? And how effective is it in id@ritig
opportunities for if-conversion? That section describesexper-
imental method and shows that the answers to both questiens a
positive. Finally, Section 7 discusses related work, anctiGe 8
gives concluding remarks.

2. OVERVIEW

The work reported in this paper was carried out in the context
of ILTO, a link-time optimizer we have developed for the Irita-
nium processor. This section summarizes relevant aspétte o
Itanium architecture, including predicated instructianstructions
groups, bundles, and templates. Then we give an overvieweof t
processing stages in ILTO and identify the places where [ileys
predicate register analysis.

2.1 Itanium Architecture

The Itanium contains multiple functional units and uses- pro
grammer specified instruction-level parallelism. Morepwvery
instruction ispredicated It specifies a one-bit predicate register,
and if the value of that register is true (1), then the ingtourcis
executed; otherwise, the instruction usually has no effEae Ita-
nium has 64 predicate registers; regigtérhas constant value true
(assignments to it are ignored). Many instructions in paags use
pO as their predicate; these are said tounguardedand by con-
vention the predicate register is not specified in assentdug ¢as
shown below). Instructions that specify a predicate registher
thanpO are said to bguarded

Predicate registers are set by compare instructions. Tdrere
three broad classes of compares: normal, unconditiondlpan

allel. A normal compare has four operands: two data operands

that are compared, and two predicate registers that agnaskihe
result and its complement. An unconditional compare isdik®r-
mal compare, except that it clears both predicate-regigterands
before doing the data comparison and setting the resultsower,
the predicate registers are cleared even if the instrucsiont ex-
ecuted because its guard is false. A parallel-OR compaseisét
predicate-register operands if the data comparison is ttreer-
wise neither predicate register is changed. A parallel-Addn-
pare clears both predicate-register operands if the datpaason
is false; otherwise neither predicate register is chandeatallel
compares are used to compute sequences of logical OR axdllogi
AND operations.

The compiler writer or assembly programmer expresses -paral
lelism by forming what are calleidstruction groups Each group is
a sequence of instructions that do not contain registenatpeies
and hence that can potentially be issued in parallel. Inquéat,
instructions in a group cannot in general contain read-aftée
(RAW) or write-after-write (WAW) register dependenciesVrite-
after-read dependencies are allowed in a group since tlvegsor
will ensure that the read occurs before the data is oveemrittThe
programmer indicates the end of an instruction group by meén
what are calledtop bits

Following is an example of a sequence of predicated instnst

cnp.eq p6, p7=r10,ri1l

(p6) 1d8 r15=[r32]
(p7) 1d8 r16=[r33] ;;
(p6) add r15=r15,1
(p7) add ri6=r16,1 ;;
(p6) st8 [r32],r15
(p7) st8 [r33],rl16

The first instruction is unguarded and always executed. rit-co
pares the contents of general registet® andr 11; if they are the
same, predicate registpb is set to true and regist@7 is set to
false; otherwis@?7 is set to true an@6 is set to false. Because the
values ofp6 andp7 are complements of each other, exactly one set
of load, add, store instructions will execute, dependingvbith of
p6 or p7 is true. There are register dependencies between the add
and load instructions, and between the store and add itisinac
so stop bits—indicated by double semicolons—are placed after
the pair of loads and the pair of adds.

The Itanium processor fetches instructiomndlesthat are 128
bits long (two words). Each bundle consists of three 41rsitruc-
tion slotsand a 5-bittemplate The template specifies the kind
of functional unit needed by each instruction—integer, mgm
branch, etc.—and where stop bits are located. The proceissos
up to two bundles (six instructions) at a time and attempdige
perseall of them to functional units in parallel. An instructioarc
be dispersed when a functional unit is available; up to sixrirc-
tions can be dispersed at the same time, but instructionseser
dispersed out of order.

An instructionissueswhen it can be dispersed and when all the
resources it requires (e.g., source registers) are alailabsplit
issueoccurs whenever an instruction does not issue at the same
time as the previous instruction. (Split issue leads to aydef at
least one clock cycle.) Stop bits always cause a split isseguse
they indicate the presence of register dependencies. Ouothiee
hand, predication never causes a split issue.

To summarize, Itanium instructions are predicated, anghhge
to be placed into groups (demarcated by stop bits) and bsindle
(with associated templates). Using predicates wisely ahddul-
ing instructions efficiently are thus keys to producing éfit code.

2.2 ILTO: Itanium Link-Time Optimizer

Our experimental infrastructure is a software system dalleO
(Itanium Link-Time Optimizer). ILTO has the same basic stune
as PLTO, a link-time optimizer we have developed for thelli#e
32 (Pentium) architecture [13]. In particular, ILTO readsibinary
object file, disassembles the code, carries out numerougsasa
and code optimizations, performs if-conversion and cotedal-
ing, and finally lays out code blocks and assembles a newybinar

For code analysis and optimization purposes, ILTO contraic
control flow graph (CFG) for each function in a program [1].n€o
trol flow across function boundaries is represented usingtan
procedural control flow grapie.g., see [11]). It consists of the con-
trol flow graphs of all the functions in the program, togethéth
edges representing calls and returns that connect the flphgiof
different functions. As shown in Figure 1, a function caltépre-
sented using a pair of blocksgall blockand areturn block There
is acall edgefrom a call block to the entry block of the callee, with
a correspondingeturn edgefrom the exit block of the callee to the
return block. Indirect function calls are modelled usingpadal
pseudo-functiorF | that represents worst-case behaviors; e.g., it
uses and defines all registers, writes to all memory locstiett.

Disassembly and assembly are obviously architecture diepen
However, the representation of basic blocks, structuré®QFG,

call
block

caller calle¢

return
block

Figure 1: Representing function calls in the interprocedual
control flow graph

and—most importantly—the various analyses and optinonati
are essentially the same as in PLTO. The special charaaenis

the ltanium—such as predication, instruction groups, amdies—
are thrown away as the control flow graph is created. Thigtess
the time it took to develop ILTO, and more importantly it péisn
existing architecture-independent analyses and opttioizmato be
employed. However, it means that we have to deal with prédita
stop bits, and bundling when scheduling and laying out code.

used extensively during if-conversion and instructionesttiing to
produce good code, and used when blocks are moved during code
layout in order to change the sense of branches. The definitio
construction, and use of predicate disjointness sets a@itded in

the next section.

3. PREDICATE ANALYSIS

Given Booleang andg, ‘p = ¢’ denotes logical implication,
i.e,p=q = (-p)Vq, while ‘p < ¢ denotes logical equiva-
lence,i.e.p < q = (p = q) A (g = p). We define the following
notions of disjointness:

DEeFINITION 3.1. Booleang andq are said to baveakly dis-
jointif p = —q. They are said to bstrongly disjointif p < —q.
1

Note that both weak and strong disjointness are symmetrig—e
if p = —q, thenq = —p—so it is not necessary to specify direc-
tionality for either of them.

An an example, the following instruction sets predicataestegs
p6 andp7 to complementary values, depending on whether gen-
eral register 5 is less than register6:

cmp. It p6,p7=r5,r6

Immediately after this instructiop6 andp7 are strongly disjoint,

The ILTO system has nine major stages: The ILTO system has jndependent of their actual values. They remain strongjoitit

nine major stages:

1. Build Control Flow GraphDisassemble instruction bundles
and build a control flow graph (CFG) with individual instruc-
tions. Eliminate dead code by doing a depth-first search from
the entry point to mark reachable code.

2. Predicate AnalysisCompute predicate register disjointness
sets, as described in Section 3.

3. Unpredicate the CFGRemove predication from the instruc-
tions in the CFG by constructing explicit decision nodes.

. Code OptimizationsAnalyze and optimize the code: live-
ness analysis, function inlining, constant propagatidn, e

For this paper, this phase is not used, as discussed in the re-

sults section.

5. Predicate AnalysisRecompute predicate register disjoint-
ness sets.

6. Scheduling and If-Conversioform a schedule for each ba-
sic block and convert decision nodes to predicated instruc-
tions where possible. Group instructions into bundles.

7. Predicate AnalysisRecompute predicate register disjoint-
ness sets.

8. Code LayoutLayout and align the basic blocks, using edge

profiles as a guide. (Edge profiles are generated during a

training run on an instrumented version of the unpredicated
CFG.)

9. Global Bundle Check and Patchterate through the basic
blocks to check the validity of instruction bundles and to re
pair them when needed.

Predicate disjointness sets specify relations betweenalues of
predicate registers at the start of each basic block. Theyam-
sulted as the CFG is unpredicated in order to simplify sonsesa

until some instruction (on some path) invalidates the i@hship.
Suppose the next instruction that altp&or p7 is

(p8) cnp.eq p6,p7=r10,rl1l

This instruction is executed conditionally, depending dmetiner
p8 is true. Howeverp6 andp7 will still be strongly disjoint,
even though their values might have changedp@fandp7 were
weakly disjoint before this instruction, they would alsovkeakly
disjoint after it; if we knew nothing about their relationfoee the
instruction, we would still know nothing.)
The weakly disjoint relationship most often arises due to in

stances of unconditional compare instructions. An exansple

(p8) cnp.unc.eq p6, p7=r10,r1ll

If p8is true, the semantics of this instruction are the same as-a no
mal compare. However, an unconditional compare first cleatis
predicate operandp6 andp7 above, and these remain cleared if
the guard predicate is false. Thus, after this instruct@andp7
are weakly disjoint: they cannot both be true but they migithb
be false.

In order to do effective if-conversion and instruction sihieng
(see Sections 4 and 5), we need to know—at each instruction—
how predicate registers are related to each other. In p&atjdor a
given register, which other register is strongly disjonurfi it, and
which other registers are weakly disjoint from it? (Thera ba at
most one register that is strongly disjoint, but there cdddeveral
that are weakly disjoint.) The predicate analysis phast#®iiLTO
system compute this information for the start and end of éasic
block in a program, as described below. (It is straightfooyvm
propagate information from the start of a basic block torirgtons
in the block.)

Our predicate analysis is a forward dataflow analysis thapgr
gates sets of pairs of predicates ¢q) over the control flow graph of
a function. We consider two kinds of such sets at each basakbl
B:

initialize weakIN(B) andstrongIN(B) as described in the text;
weakOUT(B) = weakIN(B) ; strongOUT(B) = strongIN(B) ;
for each instructior in basic blockB in their order of occurrence iB do
if I is not a compare instructighen continue
/* Assume I has the form: (pG) compare-opcode pA,pB=data-operands */
if Iis a normal compare instructighen
if Iis unguarded, i.epG == pOthen
remove all pairs containingA or pB from weakOUT(B) andstrongOUT(B) ;
add pA, pB) to weakOUT(B) andstrongOUT(B) ;
else
setwasIn Weak to true if (pA, pB) is in weakOUT(B) and to false otherwise;
setwasInStrong to true if (pA, pB) is in strongOUT(B) and to false otherwise;
remove all pairs containingA or pB from weakOUT(B) andstrongOUT(B) ;
if wasInStrong then
add pA,pB) to weakOUT(B) andstrongOUT(B) ;
else ifwasInWeak or pG == pA or pG == pB then
add pA,pB)to weakOUT(B) ;
else
/* now no relations between pA and pB */
end if
end if
else ifI is an unconditional compare instructitren
remove all pairs containingA or pB from weakOUT(B) andstrongOUT (B) ;
add pA, pB) to weakOUT(B) ;
for all (p, pG) that are inweakOUT(B) do
add p, pA) and p, pB) to weakOUT(B) ;
end for
else/* I is a parallel AND or OR compare instruction */
remove all pairs containingA or pB from weakOUT(B) andstrongOUT(B) ;

end if
end for
Figure 2: Computing Predicate Disjointness Sets for a BasiBlock
DEFINITION 3.2. SetweakIN(B) is the set of pairs of weakly f, and filtering this through the summary information
disjoint predicates at the entry to bloék, and weakOUT (B) is known about the behavior of the callee functifin
the set of pairs of weakly disjoint predicates at the exitrfiglock weakIN(B) = FnOut; (weakOUT(B')), and

B. Similarly, strongIN(B) is the set of pairs of strongly disjoint

predicates at the entry to blodk, andstrongOUT(B) is the set strongIN(B) = FnOut; (strongOUT(B')).

of pairs of strongly disjoint predicates at the exit frdm | (c) Otherwise, it consists of the disjointness relatiorat th
hold at the exit from each aB’s predecessors, and so
Let By denote the entry block of the function under considera- are guaranteed to hold at entry/®Bo

tion. The following dataflow equations specify how the abfoue

sets are computed. weakIN(B) = (] weakOUT(P),and
Pepreds(B)
1. The dataflow information at the exit from a basic bldgks strongIN(B) = ﬂ strongOUT(P) .

obtained, as usual, by taking the dataflow information enter ' Peprads(B) ’

ing B and propagating itthrougB. In particular,weakOUT(B)

is a function ofweakIN(B_) and th_e instructions iB, and Figure 2 gives the algorithm for computingzakOUT(B) and
Slml,larly strlongQUT(B) is a function ofstrongIN(B) and strongOUT(B) from weakIN(B) andstrongIN(B) . There are
the instructions in5. several cases to consider, but the details are straigtafdrappli-

cations of the kinds of reasoning illustrated in the examplethe
start of this section. For example, a normal comparison sike
predicate-register operands strongly disjoint and helsceveeakly

(@) For intraprocedural analysis we assume that nothing is disjoint; thus, the pair of operands gets added to both tegt

2. Determining disjointness relationships at the entrybtoak
B involves three cases:

known at the entry block, to a function: and weak output sets. The unconditional compare instmdtas
the most complex effect, because it clears both prediegfister

weakIN(Bo) = strongIN(Bo) = 0. operands before conditionally setting one of them. A patathm-

(b) If B is the return block for a call to a functiofifrom pare instruction has the simplest effect with respect tdipege dis-
a blockB’, then the dataflow information enterigyis jointness because it either does nothing or modifies bottiqate-

obtained by taking the disjointness relations that hold register operands, and hence it destroys any disjointrdsson-
at exit fromB’, i.e., just before control is transferred to ship that might have existed for either predicate register.

We solve the dataflow equations given above by starting \uith t
initial values

improve the code for that block. This employs the predicage d
jointness sets described in the previous section and is @effia-

lows:
weakIN(B) = strongIN(B) = weakOUT(B) = strongOUT(B) =10

for all basic blocksB in a function, and then computing a fixpoint
by iteratively applying the equations above until theredschange
to any of these sets.

In case 2(b) of the dataflow equations abokeQut;(S) de-
notes the effect of the function cafl on the disjointness relations
at the call site. A simple conservative estimate for intraepdural
analyses is to assume that nothing is known about disjaatre
lationships at the return from a function call. We can do évett
however, by identifying for each functiofy, the setUnchg(f) of
predicate registers whose values will not be affected byldaccd.
We proceed as follows:

1. DefineSaveRestore(f) to be the set of predicate registers
that are saved at entry fobefore any use, and restored prior
to leavingf. These sets can be determined by inspecting the
prolog and epilog off’s code.

. LetUnchg(B) be the set of predicate registers whose values
will not be changed during the execution Bf

Unchg(B) — 0 if B ends in a function call
nene “ 1 {p|pnotassignedtoiB} otherwise

Then, the set of predicate registers that are unaffecteddayl o
f is given by

Unchg(f) = SaveRestore(f) U (Unchg(B)).
Beblocks(f)

Note that the setynchg(f) can be computed in a single pass over
the instructions off. We can then define the effect of a call to a
function f on predicate disjointness relationships as follows:

FnOut;(S) = {(p.q) € S | {p,q} C Unchg(f) }.

This is a pessimistic estimate of the effects of a functidh be-
cause when computifignchg(B) for a basic blockB, we assume
that all predicate registers may be overwritte®i€ontains a func-
tion call. A better approach is to propagatechg(f) values over
the call graph of the program and iterate to a fixpoint. Thishsit
we have implemented.

It is relatively straightforward to extend these equatitmsio
inter-procedural analysis. At this time, we have extentiedinaly-
sis described above into a simple context-insensitive-imtecedural
algorithm, and we are looking into a context-sensitiveripi@cedural
version.

4. |F-CONVERSION

If-conversion is the process of replacing explicit contrahsfers
in code by predicated instructions that are executed dondity
depending on the value of a Boolean source operand [2]. linean
prove performance in a number of different ways. First, it ebm-
inate difficult-to-predict branches and reduce branch rediption
rates [4]. Second, it can increase instruction-level pelisin. Fi-
nally, by allowing the producer of a value to be moved to afierar
point in the instruction stream, if-conversion can be usedite
instruction latencies.

Figure 3 gives an outline of our if-conversion algorithm eTia-
sicideais simple: For each basic block in a function, we $ickied-
ule the instructions in the block, then we try to use if-cosi@n to

1. We attempt to replaceops in the block by useful instruc-
tions from its successor blocks.

2. If a block ends in a conditional branch, and it is profitable
and possible to eliminate this branch, we replace the condi-
tional branch by appropriately predicated instructiorsir
the block’s successors.

In this context, given a basic blodk and a successds’ of B, we
say thatB' is if-convertible intoB if every instruction inB’ can
be if-converted into a predicated version that can then beriad
at the end ofB, prior to any branch instruction at the end Bf
without altering any use-definition relationships betweey pair
of instructions.

A few aspects of this algorithm that deserve comment. First,
when processing a basic blodk and a considering a successor
block from which to if-convert instructions intB, we do not con-
sider any successd@ that has more than one predecessor. The
reason for this is that iS5 has multiple predecessors, then each
instruction moved out of would have to be replicated in the pre-
decessors of. This would result in code growth, and it would
complicate the if-conversion algorithm because it wouldhbees-
sary to ensure that such code replication preserves coesxt In
principle we could clone the blocK in such circumstances to cre-
ate a block with a single predecessor, which can then be gsede
as described; however, our implementation does not clyrent
this.

Second, when considering whether to use if-conversiorina-el
nate a branch instruction at the end of a bldtkwe want to make
sure that this does not introduce so many predicated iriginsc
into B that the cost of executing these instructions exceeds #te co
of the original branch instruction they replaced. We dotisisng an
architecture-dependent threshold that models the costeaiing
a branch instruction: if the number of predicated instarctiroups
being introduced intaB is less than this threshold, it is deemed
profitable to eliminate the branch instruction. The reasenfivst
attempt to use instructions fro1to eliminate no-ops iB before
attempting to eliminate branch instructionsihis that the num-
ber of instructions inS may initially exceed this threshold, but by
pulling out instructions front' to replace no-ops if3, we may be
able to reduce the number of instructionsSinio below the thresh-
old, thereby allowing the branch instructionfhto be eliminated.

Finally, an aspect of the overall if-conversion process ihaot
discussed in Figure 3 is that it is sometimes necessary tafiree
predicate register. Consider the following code fragment:

cnp. eq p6, pO=r14,r15 ;;

(p6) br.cond L1
mov r14=0
br.few L2 ;;

L1: mov rl14=1 ;;
L2: add r15=r14, 2

We would like to convert this to a single predicated block, e.
cnp. eq p6, p7=r14,r15 ;

mov r14=0

mov r14=1 ,

add r15=r14, 2

However, since the compare instruction that sets regisen the
original code discards the complemenp@f, we must find a pred-

IThe compare instruction actually assigns the complemep6db pred-
icate registep0. However, sincgO is hard-wired to the valu&ue, the
effect is to discard the complement.

(p6)
(p7)

for each basic bloclB in the functiondo
1. scheduleB;
2. sort the successors Bfin decreasing order of execution frequency;
3. for each successdf of B do
if S has more than one predecessontinue;
for each nopV in Bdo /* Eliminate no-ops in B if possible */
if there is an instructior in S that can replac&’ without affecting any
dependencies or adding stop hiten
removel from S;
replaceN with an appropriately predicated versionlof
endif
end for
[* Eliminate branch instructions in B if possible and profitable */
if (a) S isif-convertible intoB; and (b) there is a branch instructiohin B that
can be eliminated by fully if-converting into B; and (¢) the number of
groups inS is less than a fixed [architecture-dependent] threstiad
replace each instructioR in S by an appropriately predicated versionkfin B;
delete the branch instructioh
delete the basic block

end if
end for
end for
Figure 3: The Basic If-Conversion Algorithm
icate register to hold the complement. This regigtenust be free (p7) instr3
at the compare instruction and must not be defined on any path f
the compare to the instruction(s) whose predicated vensimuid This kind of machine code results from source code having the

use the complement @f6. If there are multiple compare instruc- form (in pseudo-C):
tions that set the guard predicate of the branch register iffer-

ent paths to the branch contain different compare instros}i then if (condition) _
p must not be defined on any path from any of the compares to the ol {Se' nstri; instr2; }
instructions that would uge Our implementation currently uses a { instr3; }

simple conservative approximation for this: If a predicaggister
p is not defined or used by a functighor any function reachable The machine code uses if-conversion and predication taldwai
from f, and if p is saved and restored at entry to and exit frffm pranches: one to jump to the else block and one to jump over the

thenp can safely be used for this purpose wittfin else block (from the end of the then block).
The straightforward way to unpredicate the above machide co
5. EXAMPLES would be to create two decision nodes—one to psaind one to

As described in Section 2.2, we analyze predicates threestim testp7—and and two code blocks, as shown in Figure 4(a). How-
in ILTO: before unpredicating the control flow graph, befife ever, the compare instruction make§ andp7 strongly disjoint,

conversion and scheduling, and before code layout. Belms-il and they remain strongly disjoint while the instructione axe-
trate how disjointness sets are used to simplify control fioaphs, cuted. Hence, we can create a simpler control flow graph ichvhi
to produce compact code during if conversion, and to revtrse (a) there is a single conditional branch at the end of a bdsitkb
sense of branches during code layout. BO, (b) that block has a true edge to a block B1 containingtthe i
. . structions that were predicated p6 and a false edge to a basic

5.1 Unpredicating the Control Flow Graph block B2 containing the instructions that were predicatachd.

When ILTO disassembles an Itanium binary, it first unbundles In short, we get the simpler, diamond-shaped control flovplgra
instructions, determines basic blocks, and constructsiaaldlow shown in Figure 4(b).

graph (CFG); at this point, instructions in basic blocks stié
predicated. We then unpredicate the instructions, repdaguard

5.2 Producing Compact Code

predicates by decision nodes and adding new basic blockedayss The following example shows how weak disjointness sets are
to the CFG. Often we can simplify the structure of the unpraid used during if-conversion to produce compact, efficienecod
CFG by taking account of the semantics of predicate insomst Consider the following C code fragment:
Having a less-complicated CFG simplifies later analyseswakes) L
. : - if (x ==0) {
it easier to produce efficient code later on. if (y==0) z=0; elsez=1;
Often the source program contains code sequences thatheave t ' '
following structure: el se

z = 2
cnp.eq p6, p7=r10,r11 ;;
(p6) instrl A straightforward translation of this to Itanium code wolidve
(p6) instr2 the following structure:

BO
cmp.eq p6,p7 = rl0, r11(p6)
(p6) br.cond B1

B1

\

instrl
instr2
instr3

/

‘ (p7) br.cond B2 ‘

\

B2

instr4
instr5

/

(a) Naive unpredication

BO
cmp.eq p6,p7 = rl0, r11(p6)
(p6) br.cond B1

e

instrl
instr2
instr3

[

B1

instr4
instr5

(b) Unpredication using disjoggs information

Figure 4: An example of unpredication using predicate analgis

cnp. eq p6, p7=x,0 ;
br.cond L2

cnp. eq p8, p9=y, 0 ;
br.cond L1

mov z=0

br. few Done

mov z=1

br. few Done

mov z=2

(p7)
(p9)

L1:

L2:
Done:

This is the traditional way of handling conditionals. Howev
we can collapse the inner if/then/else statement—from ¢cersd
comparison above through the last branch—into the compace,
predicated moves, and the last branch, as follows:

cnp. eq p6, p7=x,0 ;
br.cond L2

cnp. eq p8, p9=y, 0 ;
mov z=0

mov z=1

br. few Done

mov z=2

(p7)

(p8)
(p9)

L2:
Done:

This is called if-conversion; it depends on recognizing fithand
p9 are strongly disjoint and hence that only one of the two moves
will actually be executed.

We can if fact do even better for this type of code sequence:
compact the code into a single basic block withbranches. After
the first comparep6 andp7 are strongly disjoint. The first branch
and the instruction dt2 are executed ip7 is true. Ifp6 is true
(and hencex==0), then the second compare and one of the move
instructions predicated on (p8) or (p9) will be executedshort,
using predicate analysis we can determine that the threesrare
mutually independent, and we can simplify the code to a singl
block as follows:

cnp. eq p6, p7=x,0 ;
(p6) cnp.eq.unc p8, p9=y, 0 ;
(p7) mov z=2
(p8) mov z=0
(p9) nmov z=1

In fact, the three moves can even be scheduled in the sameacinst
tion group and hence execute in parallel. The second irigiruc
uses an unconditional compare so that uhandp9 are cleared
before the compare, and hence they are falgifs false. This

kind of code appears quite frequently in binaries producethb
tel's ecccompiler. ILTO is able to produce it by using predicate
analysis, which leads to the following three inference cbai

p8 = p6 = - p7
P9 = p6 = - p7
p8 = —p9

p7 andp8 weakly disjoint
p7 andp9 weakly disjoint
p8 andp9 weakly disjoint
5.3 Branch Sense Reversal During Code Lay-
out

The final example arises during code layout, which placeg bas
blocks in memory in an order that attempts to minimize the num
ber of instruction cache misses. This involves moving fesdly
executed blocks to one end of the address space and inftgquen
executed blocks to the other. If a block could be entered bgnme
of a fall-through edge, then we have to insert an explicinbha
if the block is moved. If we move a block so that its entry point
immediately follows what had been a branch to the block, then
want to delete the branch to the block.

As a (somewhat artificial) example of code motion, consitler t
following C program fragment:

if (x >0)

{ statenentsl; }
el se

{ statenents2; }

Straightforward Itanium code for this would be

cnp. gt p6,p7 = Xx,0 ;;
br.cond El se
code for statementsl
br.cond Done
code for statenments2

(p7)

El se:
Done:

If we decide to switch the positions of the code blocks fotesta
mentsl and statements2, the only other change we need toisnake
to usep6 to guard the predicate on the branch instruction. This is
a safe transformation becays@ andp?7 are strongly disjoint.

6. EXPERIMENTAL RESULTS

We evaluated our ideas using a set of seven programs from the
SPECint-2000 benchmark suitdzip2 gzip, mcf parser, twolf,
vortex andvpr. The programs were run on an HP i2000 worksta-
tion with a 733 MHz Intel Itanium processor running Redhatux
7.1, kernel 2.4.3-12. The memory configuration of the sysiem

as follows: split L1 instruction and data caches, each stingj of
16 KB of 4-way set associative cache memory with 32-bytestine

a 96 KB unified L2 cache; a 2 MB unified L3 cache; and 1 GB of
main memory and 2 GB of swap space. Execution times for these

programs were obtained as follows: Each binary was run fiwegi

on an unloaded machine and its runtime was measured using the
Unix t i me command; the largest and smallest of the resulting run

times were discarded; then the arithmetic mean of the rentain
three execution times was computed and taken as the rurimeg t
for that binary. We used statically linked binaries for ouperi-
ments, compiled with additional flags to instruct the lint@retain
relocation informatior?.

Static code density figures, expressing the ratio of uséll, (

non-op) instructions to the total number of instructions, were ob-

tained as follows. For the input binaries, we measured ceae d
sities after first discarding unreachable code (in orderxtuele
code brought in by the linker from libraries that is not refeced
by the program). Code densities after optimization weraiokt
just before the executables were written out and hencealftep-
timizations had been carried out. For these experiment®) Idid
not use any optimizations other than those described herthes
data presented refleonly the effects of if-conversion and predi-
cate analysis.

Recall that, unlike Augusgt al. [3], we postpone if-conversion
until the end of the compilation process in order to keep oai-a
yses and optimizations architecture-independent as faossble.
When evaluating our algorithm, therefore, there are tweiesh-
dent questions of interest: First, how effective is our atpom at
improving the performance of an unpredicated instructioeasn,
e.g., such as that produced by a conventional optimizingpdem
that does not have specialized support for predication?or&kc
how effective is the algorithm in actually identifying aladile op-
portunities for if-conversion? The difference between e is
that it is possible, in principle, that we could obtain penfiance
improvements from our if-conversion algorithm (the firsegtion)
even if it had weaknesses that caused it to miss a lot of opditioin
opportunities (the second question).

To address the first question, we evaluate our algorithm on pr
grams compiled using thgcc compiler, which does not have very
sophisticated facilities for dealing with predication; wsedgcc
version 2.96, at optimization levelO3. Table 1 gives performance
results for this case. Table 1(a) shows code densitiesdafut af-
ter optimization. It can be seen that our algorithm yieldisggnsim-
provement in code density of about 1.3%. Code density isoreat
by the if-conversion process, which replaces uselessuict&ins,
and by predicate analysis, which makes scheduling (andlibghd
less constrained.

Program Code Density S1/S0
Original (Sp) | Optimized (1)
bzip2 0.7011 0.7119 1.0154
gzip 0.7031 0.7117 1.0123
mcf 0.7012 0.7098 1.0122
parser 0.6985 0.7088 1.0147
twolf 0.6985 0.7103 1.0168
vortex 0.7300 0.7338 1.0051
vpr 0.6994 0.7117 1.0177
| GEOMETRICMEAN | 1.013]
(a) Code Density
Program Execution Timgsec) T1/To
Original (Ip) | Optimized 1)
bzip2 1155.04 1015.06 0.879
gzip 1041.97 987.82 0.948
mcf 1506.34 1500.58 0.996
parser 1305.39 1269.69 0.973
twolf 1483.17 1458.61 0.983
vortex 1072.89 1042.48 0.972
vpr 1057.34 1008.77 0.954
| GEOMETRICMEAN | 0.957]

(b) Execution time

Table 1: Performance: gcc-compiled programs

‘- B - prof _use, Here we take input binaries that have already
been heavily optimized by a good, industrial-strength djwagte-
aware optimizing compiler using profile feedback; removerrdd-
ication using reverse if-conversion; then if-convert baskng our
algorithm. If there are significant weaknesses or imprenisi our
algorithm, the quality of the code produced by our optimizeuld

be inferior to that of the input file, so we would see a perfanoea
degradation relative to the input binary. If, on the othendhaour
approach is effective in identifying if-conversion opporities, the
performance of the code generated by ILTO should be comlgarab
to that of the input binaries. Table 2 shows the performance-n
bers in this case. As shown in Table 2(a), our algorithm igalht
able to improve static code densities by 2% on average cadpar
the originalecegenerated code. With respect to execution speed,
as shown in Table 2(b), it can be seen that our algorithm mesiu
code whose performance is essentially the same as that ai-the
put eccoptimized binaries. On three progranizip2 vortex and
twolf, our algorithm produces slightly faster binaries; on ttote
ers,gzip, vpr, andmcf we get a slight slowdown. On average, the
code obtained from ILTO is 0.1% slower than the original bina

Table 1(b) shows the effect of our optimization on execution ries. This indicates that in general, our predicate anslgsd if-

speed. The column labelled “Original” refers to the exeloleta
produced bygcc while that labelled “Optimized” refers to the ex-
ecutable obtained using our if-conversion algorithm onitipait
binaries. The biggest speedup is obtained forkhig2 program,

which improves by over 12%. On average, we see a speed im-

provement of 4.3%.

For the second question, we consider binaries obtained Uisin
tel's ecccompiler version 5.0.1, at optimization leve03 together
with profile feedback, i.e.: the programs were compiled vifith
options - A3 - pr of _gen,’ then executed on the SPEC training
inputs to generate profiles, and finally recompiled with thgams

2The requirement for statically linked executables is altesiuthe fact
that ILTO relies on the presence of relocation information to distisiy

addresses from data. The Unix linked refuses to retain relocation infor-
mation for executables that are not statically linked.

conversion algorithms are able to identify and recovertpmatch
all of the opportunities for if-conversion that were presinthe
input program but that were obfuscated during the initigkeree
if-conversion phase.

7. RELATED WORK

If-conversion has been investigated by Mahéteal., who dis-
cuss the formation and use of hyperblocks—single entryipieit
exit collections of basic blocks [10]. The focus of their Woby
contrast with that described here, is in identifying whidt ef
blocks should be included in a hyperblock. Once a hyperblock
has been formed, if-conversion is used to transform it insina
gle basic block containing predicated instructions, whglery
different from what we do. August al. discuss the tradeoffs as-
sociated with the timing of if-conversion in the overall qoitation

Program Code Density S1/So0
Original (So) | Optimized (1)
bzip2 0.7023 0.7165 1.0203
gzip 0.7047 0.7191 1.0205
mcf 0.7010 0.7140 1.0186
parser 0.7042 0.7203 1.0229
twolf 0.7041 0.7200 1.0225
vortex 0.7220 0.7391 1.0236
vpr 0.7010 0.7150 1.0200
| GEOMETRICMEAN | 1.021]
(a) Code Density
Program Execution Timgsec) Ti/To
Original (Tp) | Optimized 1)
bzip2 843.65 820.16| 0.972
gzip 633.15 648.86| 1.025
mcf 1409.94 1419.79| 1.007
parser 1190.45 1190.30| 1.000
twolf 1267.49 1261.49| 0.995
vortex 835.32 824.86| 0.987
vpr 906.85 925.15| 1.020
| GEOMETRICMEAN | 1.001]

(b) Execution time

Table 2: Performance: ecc-compiled programs

process [3]. They advocate an approach dual to ours, nanzaly,
rying out aggressive if-conversion early in the compilatwocess,
using compiler analyses and optimizations that underspaedi-
cated code, and then selectively reverse-if-convert dusahedul-
ing where appropriate. We have shown that it is possible to ge
excellent performance without requiring analysis androjatation
phases to understand predicated code.

Mahlke et al. use the notion opredicate hierarchy graphs
keep track of relationships between predicates [10]. Ténedtysis
is based on keeping track of which predicates guard the tefini
of other predicates, and so does not work well when prediedde
tionships are not hierarchical. Eichenberger and Davisrd@san
analysis that collects logical expressions expressirgfiogiships
between predicates [5]. A more precise approach, basedep ke
ing track of logical partitions between predicate exp@ssi is de-
scribed by Gillies et al. [7] and Johnson and SchlanskerN@he
of these analyses extend across join blocks, i.e., wheré&pheul
control flow paths merge. Sias, Hwu and August discuss the effi
cient implementation of predicate analyses using binagisitm
diagrams, and extend prior work to handle general contral flo
[14]. The analysis described here, by contrast, takes a digry
ferent approach. It is formulated within the framework ofadi-
tional meet-over-all-paths dataflow analysis, which makesla-
tively straightforward to understand, implement, and edt® var-
ious ways, e.g., to inter-procedural analysis. We haveadjrex-
tended our analysis to a context-insensitive inter-procadored-
icate disjointness analysis, and we are currently invastig the
guestion of context-sensitive inter-procedural disjo@#s analysis.

For instruction scheduling we use a conventional list salied
algorithm [6]. Our instruction bundling algorithm is similto one
in [8], but we augmented it to handle several special cases.

8. CONCLUSIONS

This paper has examined a new approach to dealing with pred-
ication in an EPIC architecture and presented new algostfon
predicate analysis and if-conversion. We converted atiimie- op-

timizer (PLTO) for a conventional architecture, which diot sup-

port predication or explicit instruction-level paralkti, into one
(ILTO) for an EPIC architecture, the I1A-64 (Itanium), fodng on
getting maximum mileage with minimal disruption. In pauotiar,

we wanted to leave the code analysis and optimization pladses

as much as possible, which meant that they would not be avfare o
predication or instruction-level parallelism.

The ILTO system deals with predication in three places: when
unpredicating the control flow graph, when doing if-coni@msand
scheduling, and during code layout. ILTO deals with ILP only
when scheduling and bundling instructions. We have deeeldpe
notion of predicate disjointness sets to guide these pseseOur
predicate analysis is used during unpredication to prodiropler
control flow graphs (which also turn out to be easier to getdgoo
code from); heavily during if-conversion to eliminate bches, in-
crease ILP, and increase code density; and during codetlagou
changes the sense of branch instructions.

The results in Section 6 show two things. First, when givesteco
that does not have very sophisticated use of predicatien ¢ode
from gco), ILTO produces code that is on average over 4% faster
and 1.3% denser on the SPECint-2000 benchmark suite. When
given code that makes sophisticated use of the Itaniumtsifes
(i.e., code fromecq, ILTO produces code that is on average 2%
denser and only 0.1% slower on the SPECint-2000 suite. In bot
cases, ILTO used only predicate analysis and if-convergiom-
prove the code; we did not examine other optimizations sisch a
constant propagation or inlining. We are currently intéggathese
(mostly) architecture independent optimizations intodLT

9. REFERENCES

[1] A. V. Aho, R. Sethi, and J. D. UllmarCompilers —
Principles, Techniques, and Tookddison-Wesley,

Reading, Mass., 1985.

[2] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren.

Conversion of control dependence to data dependence. In

Proc. Tenth Annual ACM Symposium on Principles of

Programming Languagepages 177-189, January 1983.

D. I. August, W. W. Hwu, and S. A. Mahlke. A framework

for balancing control flow and predication. Rroc. 30th

Annual International Symposium on Microarchitecture

pages 92-103, 1997.

[4] Y. Choi, A. Knies, L. Gerke, and T.-F. Ngai. The impact of
if-conversion and branch prediction on program execution o
the Intel ltanium processor. Broc. 34th Annual
International Symposium on Microarchitectugages
182-191, December 2001.

[5] A. E. Eichenberger and E. S. Davidson. Register allocati

for predicated code. IRroc. 28th Annual International

Symposium on Microarchitecturpages 180-191, 1995.

P. B. Gibbons and S. S. Muchnick. Efficient instruction

scheduling for a pipelined architecture.Pmoc. ACM

SIGPLAN 86 Symposium on Compiler Constructjpeges

11-16. June 1986.

D. M. Gillies, D. R. Ju, R. Johnson, and M. Schlansker.

Global predicate analysis and its application to register

allocation. InProc. 29th Annual International Symposium on

Microarchitecture pages 114-125, 1996.

S. Haga and R. Barua. EPIC Instruction Scheduling Based

on Optimal Approaches. IRroc. First Annual Workshop on

Explicitly Parallel Instruction Computing Architecturesmd

Compiler Technology2001.

[9] R.Johnson and M. Schlansker. Analysis techniques for

(3]

(6]

(7]

(8]

[10]

[11]

[12]

[13]

[14]

predicated code. IRroc. 29th Annual International
Symposium on Microarchitectyrpages 100-113, 1996.

S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A.
Bringmann. Effective compiler support for predicated
execution using the hyperblock. &5th Annual International
Symposium on Microarchitecture (MICRO-2pages 45-54,
1992.

E. W. Myers, Jr. A precise inter-procedural data flow
algorithm. InConference Record of the Eighth Annual ACM
Symposium on Principles of Programming Languages
(POPL '81) pages 219-230, January 1981.

K. Pettis and R. C. Hansen. Profile-guided code posiipn
In Proc. ACM SIGPLAN Conference on Programming
Language Design and Implementatigages 1627, June
1990.

B. Schwarz, S. K. Debray, and G. R. Andrews. Plto: A
link-time optimizer for the Intel IA-32 architecture. Proc.
2001 Workshop on Binary Translation (WBT-20(2001.

J. W. Sias, W. W. Hwu, and D. |. August. Accurate and
efficient predicate analysis with binary decision diagraims
Proc. of the 33rd Annual International Symposium on
Microarchitecture pages 112-123, 2000.

