
Predicate Analysis and If-Conversion in an Itanium
Link-Time Optimizer �

Noah Snavely, Saumya Debray, Gregory Andrews

Department of Computer Science
University of Arizona
Tucson, AZ 85721.fsnavely, debray, gregg@cs.arizona.edu

ABSTRACT
EPIC architectures, such as the Intel IA-64 (Itanium), combine ex-
plicit instruction-level parallelism with instruction predication. To
generate efficient code, it is important to use predication effectively.
In particular, it is important to replace conditional branches and
multiple code blocks by single, branch-free code blocks when do-
ing so would lead to faster code. This process, which is knownas
if-conversion, is generally carried out early in the code-generation
process; hence subsequent analyses and optimizations haveto deal
with predicated code. This paper examines an alternative approach
in which code is unpredicated during disassembly, the internal rep-
resentations are virtually identical to those in a conventional archi-
tecture (specifically the IA-32 Pentium) and if-conversionis done
late in the compilation process, at the same time as instruction
scheduling and just before code layout. This paper also presents
new algorithms for analyzing predicated code and evaluatestheir
efficacy. We show that our approach is able to produce code that is
denser (fewer nop instructions) and almost as fast as the best code
produced by the Intelecc compiler on the SPECint-2000 bench-
mark suite. On the same programs, our predicate analysis andif-
conversion algorithms lead to an average speed improvementof a
little over 4% on the best code produced by thegcc compiler.

1. INTRODUCTION
There has been a great deal of recent interest in EPIC (Explic-

itly Parallel Instruction Computing) architectures, suchas the Intel
IA-64 (Itanium), that support predicated instructions andexplicit
instruction-level parallelism. A predicated instructionis guarded
by a Boolean source operand; the instruction is executed only if this
guard evaluates to true. In addition, instruction-level parallelism is
explicit: the compiler is responsible for collecting instructions into
groups that will be executed in parallel.

In order to make effective use of the capabilities of such archi-
tectures, a compiler must selectively eliminate conditional branches
in favor of predicated instructions that are conditionallyexecuted.
This process, known asif-conversion, must be carried out judi-
ciously: if it is too aggressive, it leads to contention for system
resources and a concomitant degradation in performance; ifit is not
aggressive enough, it results in insufficient instruction-level paral-
lelism, which also leads to a loss in performance. There are two
important questions that have to be addressed in this regard. The
first is that of when if-conversion should be carried out in the com-
pilation process. The second is that of determining relationships
between predicates, which is necessary to identify dependencies�This work was supported in part by the National Science Foundation under
grants CCR-0073394, EIA-0080123, and CCR-0113633.

between predicated instructions.
One option for carrying out if-conversion is to do it early inthe

code generation process, with subsequent analyses and optimiza-
tions working on predicated code. This is the approach takenby
Augustet al. [3], who carry out aggressive if-conversion early, and
subsequently perform partial reverse if-conversion during instruc-
tion scheduling. The advantage of such an approach is that the com-
piler can take full advantage of instruction predication ina variety
of low-level optimizations. A disadvantage of such an approach is
that analyses and optimizations in the compiler backend mayhave
to be reimplemented to cope with predication. An alternative is
to delay if-conversion until much later in the compilation process,
during instruction scheduling, after most optimizations have been
carried out. The advantage here is that other analyses and optimiza-
tions do not have to be made predication-aware. This can simplify
the construction of portable multi-target optimizers.

The determination of relationships between predicates canbe
helpful for improving the quality of code generated. For exam-
ple, during instruction scheduling, it can allow the compiler to ex-
clude false scheduling dependencies between instructionswhose
guarding predicates cannot be simultaneously true. Another situa-
tion where knowledge of such relationships can be useful is in the
context of profile-guided code layout, which can enhance program
performance by improving its instruction cache behavior [12]. This
can sometimes require us to invert the sense of a branch, e.g., so as
to have it fall through rather than be taken. If the branch instruc-
tion in question is conditioned on a predicate registerp, and we
know that a predicateq is guaranteed to be the complement ofp
at that point, we can achieve this inversion simply by replacing the
guard predicatep by its complementq. Without such knowledge,
we may have to explicitly compute the complement ofp, which can
take several instructions and adversely affect performance.

The contribution of this paper is to present algorithms for if-
conversion and predicate analysis and to evaluate their efficacy ex-
perimentally. Our approach is very different from those that have
been discussed in the literature. To simplify implementation and
keep our analyses and optimizations architecture-independent, our
internal representation does not support predicated instructions. We
therefore carry out reverse if-conversion after disassembly, convert-
ing instructions into their unpredicated form and introducing con-
ditional branches in the process, following which a conventional
control flow graph is constructed. This control flow graph is then
subjected to various analyses and optimizations in the usual way.
We then carry out if-conversion during instruction scheduling, just
prior to code layout. Our approach can be seen as dual to that
of August et al. [3]. Our predicate analysis is also quite differ-
ent from previous proposals for determining relationshipsbetween

predicates: we use a dataflow analysis that is able to handle arbi-
trary control flow, and can be extended in a straightforward way to
an inter-procedural analysis.

The remainder of the paper is organized as follows. Section 2
gives background information on the Itanium architecture and on
our experimental optimization system. Section 3 describeshow we
analyze the use of predicate registers to compute what we call weak
and strong disjointness sets. Section 4 presents our if-conversion
algorithm. Section 5 contains examples that illustrate theuse of
predicate analysis and if-conversion. Section 6 address two ques-
tions: How effective is our approach in improving a mostly unpred-
icated instruction stream? And how effective is it in identifying
opportunities for if-conversion? That section describes our exper-
imental method and shows that the answers to both questions are
positive. Finally, Section 7 discusses related work, and Section 8
gives concluding remarks.

2. OVERVIEW
The work reported in this paper was carried out in the context

of ILTO, a link-time optimizer we have developed for the Intel Ita-
nium processor. This section summarizes relevant aspects of the
Itanium architecture, including predicated instructions, instructions
groups, bundles, and templates. Then we give an overview of the
processing stages in ILTO and identify the places where it employs
predicate register analysis.

2.1 Itanium Architecture
The Itanium contains multiple functional units and uses pro-

grammer specified instruction-level parallelism. Moreover, every
instruction ispredicated: It specifies a one-bit predicate register,
and if the value of that register is true (1), then the instruction is
executed; otherwise, the instruction usually has no effect. The Ita-
nium has 64 predicate registers; registerp0 has constant value true
(assignments to it are ignored). Many instructions in programs use
p0 as their predicate; these are said to beunguardedand by con-
vention the predicate register is not specified in assembly code (as
shown below). Instructions that specify a predicate register other
thanp0 are said to beguarded.

Predicate registers are set by compare instructions. Thereare
three broad classes of compares: normal, unconditional, and par-
allel. A normal compare has four operands: two data operands
that are compared, and two predicate registers that are assigned the
result and its complement. An unconditional compare is likea nor-
mal compare, except that it clears both predicate-registeroperands
before doing the data comparison and setting the results; moreover,
the predicate registers are cleared even if the instructionis not ex-
ecuted because its guard is false. A parallel-OR compare sets both
predicate-register operands if the data comparison is true; other-
wise neither predicate register is changed. A parallel-ANDcom-
pare clears both predicate-register operands if the data comparison
is false; otherwise neither predicate register is changed.Parallel
compares are used to compute sequences of logical OR and logical
AND operations.

The compiler writer or assembly programmer expresses paral-
lelism by forming what are calledinstruction groups. Each group is
a sequence of instructions that do not contain register dependencies
and hence that can potentially be issued in parallel. In particular,
instructions in a group cannot in general contain read-after-write
(RAW) or write-after-write (WAW) register dependencies. (Write-
after-read dependencies are allowed in a group since the processor
will ensure that the read occurs before the data is overwritten.) The
programmer indicates the end of an instruction group by means of
what are calledstop bits.

Following is an example of a sequence of predicated instructions:

cmp.eq p6,p7=r10,r11
(p6) ld8 r15=[r32]
(p7) ld8 r16=[r33] ;;
(p6) add r15=r15,1
(p7) add r16=r16,1 ;;
(p6) st8 [r32],r15
(p7) st8 [r33],r16

The first instruction is unguarded and always executed. It com-
pares the contents of general registersr10 andr11; if they are the
same, predicate registerp6 is set to true and registerp7 is set to
false; otherwisep7 is set to true andp6 is set to false. Because the
values ofp6 andp7 are complements of each other, exactly one set
of load, add, store instructions will execute, depending onwhich of
p6 or p7 is true. There are register dependencies between the add
and load instructions, and between the store and add instructions,
so stop bits—indicated by double semicolons;;—are placed after
the pair of loads and the pair of adds.

The Itanium processor fetches instructionbundlesthat are 128
bits long (two words). Each bundle consists of three 41-bit instruc-
tion slots and a 5-bittemplate. The template specifies the kind
of functional unit needed by each instruction—integer, memory,
branch, etc.—and where stop bits are located. The processorviews
up to two bundles (six instructions) at a time and attempts todis-
perseall of them to functional units in parallel. An instruction can
be dispersed when a functional unit is available; up to six instruc-
tions can be dispersed at the same time, but instructions arenever
dispersed out of order.

An instructionissueswhen it can be dispersed and when all the
resources it requires (e.g., source registers) are available. A split
issueoccurs whenever an instruction does not issue at the same
time as the previous instruction. (Split issue leads to a delay of at
least one clock cycle.) Stop bits always cause a split issue,because
they indicate the presence of register dependencies. On theother
hand, predication never causes a split issue.

To summarize, Itanium instructions are predicated, and they have
to be placed into groups (demarcated by stop bits) and bundles
(with associated templates). Using predicates wisely and schedul-
ing instructions efficiently are thus keys to producing efficient code.

2.2 ILTO: Itanium Link-Time Optimizer
Our experimental infrastructure is a software system called ILTO

(Itanium Link-Time Optimizer). ILTO has the same basic structure
as PLTO, a link-time optimizer we have developed for the Intel IA-
32 (Pentium) architecture [13]. In particular, ILTO reads in a binary
object file, disassembles the code, carries out numerous analyses
and code optimizations, performs if-conversion and code schedul-
ing, and finally lays out code blocks and assembles a new binary.

For code analysis and optimization purposes, ILTO constructs a
control flow graph (CFG) for each function in a program [1]. Con-
trol flow across function boundaries is represented using aninter-
procedural control flow graph(e.g., see [11]). It consists of the con-
trol flow graphs of all the functions in the program, togetherwith
edges representing calls and returns that connect the flow graphs of
different functions. As shown in Figure 1, a function call isrepre-
sented using a pair of blocks, acall blockand areturn block. There
is acall edgefrom a call block to the entry block of the callee, with
a correspondingreturn edgefrom the exit block of the callee to the
return block. Indirect function calls are modelled using a special
pseudo-functionF? that represents worst-case behaviors; e.g., it
uses and defines all registers, writes to all memory locations, etc.

Disassembly and assembly are obviously architecture dependent.
However, the representation of basic blocks, structure of the CFG,

call
block

block
return

ret

ret

ret

entry block

return edge

call f

caller callee

(dummy)
exit block

ca
ll

ed
ge

Figure 1: Representing function calls in the interprocedural
control flow graph

and—most importantly—the various analyses and optimizations
are essentially the same as in PLTO. The special characteristics of
the Itanium—such as predication, instruction groups, and bundles—
are thrown away as the control flow graph is created. This lessened
the time it took to develop ILTO, and more importantly it permits
existing architecture-independent analyses and optimizations to be
employed. However, it means that we have to deal with predication,
stop bits, and bundling when scheduling and laying out code.

The ILTO system has nine major stages: The ILTO system has
nine major stages:

1. Build Control Flow Graph.Disassemble instruction bundles
and build a control flow graph (CFG) with individual instruc-
tions. Eliminate dead code by doing a depth-first search from
the entry point to mark reachable code.

2. Predicate Analysis.Compute predicate register disjointness
sets, as described in Section 3.

3. Unpredicate the CFG.Remove predication from the instruc-
tions in the CFG by constructing explicit decision nodes.

4. Code Optimizations.Analyze and optimize the code: live-
ness analysis, function inlining, constant propagation, etc.
For this paper, this phase is not used, as discussed in the re-
sults section.

5. Predicate Analysis.Recompute predicate register disjoint-
ness sets.

6. Scheduling and If-Conversion.Form a schedule for each ba-
sic block and convert decision nodes to predicated instruc-
tions where possible. Group instructions into bundles.

7. Predicate Analysis.Recompute predicate register disjoint-
ness sets.

8. Code Layout.Layout and align the basic blocks, using edge
profiles as a guide. (Edge profiles are generated during a
training run on an instrumented version of the unpredicated
CFG.)

9. Global Bundle Check and Patch.Iterate through the basic
blocks to check the validity of instruction bundles and to re-
pair them when needed.

Predicate disjointness sets specify relations between thevalues of
predicate registers at the start of each basic block. They are con-
sulted as the CFG is unpredicated in order to simplify some cases,

used extensively during if-conversion and instruction scheduling to
produce good code, and used when blocks are moved during code
layout in order to change the sense of branches. The definition,
construction, and use of predicate disjointness sets are described in
the next section.

3. PREDICATE ANALYSIS
Given Booleansp andq, ‘p) q’ denotes logical implication,

i.e., p) q � (:p) _ q, while ‘p , q’ denotes logical equiva-
lence, i.e.,p, q � (p) q)^ (q) p). We define the following
notions of disjointness:

DEFINITION 3.1. Booleansp andq are said to beweakly dis-
joint if p) :q. They are said to bestrongly disjointif p , :q.

Note that both weak and strong disjointness are symmetric—e.g.,
if p) :q, thenq) :p—so it is not necessary to specify direc-
tionality for either of them.

An an example, the following instruction sets predicate registers
p6 andp7 to complementary values, depending on whether gen-
eral registerr5 is less than registerr6:

cmp.lt p6,p7=r5,r6

Immediately after this instruction,p6 andp7 are strongly disjoint,
independent of their actual values. They remain strongly disjoint
until some instruction (on some path) invalidates the relationship.

Suppose the next instruction that altersp6 or p7 is

(p8) cmp.eq p6,p7=r10,r11

This instruction is executed conditionally, depending on whether
p8 is true. However,p6 andp7 will still be strongly disjoint,
even though their values might have changed. (Ifp6 andp7 were
weakly disjoint before this instruction, they would also beweakly
disjoint after it; if we knew nothing about their relation before the
instruction, we would still know nothing.)

The weakly disjoint relationship most often arises due to in-
stances of unconditional compare instructions. An exampleis

(p8) cmp.unc.eq p6,p7=r10,r11

If p8 is true, the semantics of this instruction are the same as a nor-
mal compare. However, an unconditional compare first clearsboth
predicate operands,p6 andp7 above, and these remain cleared if
the guard predicate is false. Thus, after this instruction,p6 andp7
are weakly disjoint: they cannot both be true but they might both
be false.

In order to do effective if-conversion and instruction scheduling
(see Sections 4 and 5), we need to know—at each instruction—
how predicate registers are related to each other. In particular, for a
given register, which other register is strongly disjoint from it, and
which other registers are weakly disjoint from it? (There can be at
most one register that is strongly disjoint, but there couldbe several
that are weakly disjoint.) The predicate analysis phases inthe ILTO
system compute this information for the start and end of eachbasic
block in a program, as described below. (It is straightforward to
propagate information from the start of a basic block to instructions
in the block.)

Our predicate analysis is a forward dataflow analysis that propa-
gates sets of pairs of predicates(p; q) over the control flow graph of
a function. We consider two kinds of such sets at each basic blockB:

initializeweak IN(B) andstrong IN(B) as described in the text;weakOUT(B) = weak IN(B) ; strongOUT(B) = strong IN(B) ;
for each instructionI in basic blockB in their order of occurrence inB do

if I is not a compare instructionthen continue;
/* Assume I has the form: (pG) compare-opcode pA,pB=data-operands */
if I is a normal compare instructionthen

if I is unguarded, i.e.,pG == p0 then
remove all pairs containingpA or pB fromweakOUT(B) andstrongOUT(B) ;
add (pA, pB) toweakOUT(B) andstrongOUT(B) ;

else
setwasInWeak to true if (pA, pB) is inweakOUT(B) and to false otherwise;
setwasInStrong to true if (pA, pB) is in strongOUT(B) and to false otherwise;
remove all pairs containingpA or pB fromweakOUT(B) andstrongOUT(B) ;
if wasInStrong then

add (pA,pB) toweakOUT(B) andstrongOUT(B) ;
else ifwasInWeak or pG == pA or pG == pB then

add (pA,pB) toweakOUT(B) ;
else

/* now no relations between pA and pB */
end if

end if
else ifI is an unconditional compare instructionthen

remove all pairs containingpA or pB fromweakOUT(B) andstrongOUT(B) ;
add (pA, pB) toweakOUT(B) ;
for all (p, pG) that are inweakOUT(B) do

add (p, pA) and (p, pB) toweakOUT(B) ;
end for

else/* I is a parallel AND or OR compare instruction */
remove all pairs containingpA or pB fromweakOUT(B) andstrongOUT(B) ;

end if
end for

Figure 2: Computing Predicate Disjointness Sets for a BasicBlock

DEFINITION 3.2. Setweak IN(B) is the set of pairs of weakly
disjoint predicates at the entry to blockB, andweakOUT(B) is
the set of pairs of weakly disjoint predicates at the exit from blockB. Similarly, strong IN(B) is the set of pairs of strongly disjoint
predicates at the entry to blockB, andstrongOUT(B) is the set
of pairs of strongly disjoint predicates at the exit fromB.

Let B0 denote the entry block of the function under considera-
tion. The following dataflow equations specify how the abovefour
sets are computed.

1. The dataflow information at the exit from a basic blockB is
obtained, as usual, by taking the dataflow information enter-
ingB and propagating it throughB. In particular,weakOUT(B)
is a function ofweak IN(B) and the instructions inB, and
similarly strongOUT(B) is a function ofstrong IN(B) and
the instructions inB.

2. Determining disjointness relationships at the entry to ablockB involves three cases:

(a) For intraprocedural analysis we assume that nothing is
known at the entry blockB0 to a function:weak IN(B0) = strong IN(B0) = ;:

(b) If B is the return block for a call to a functionf from
a blockB0, then the dataflow information enteringB is
obtained by taking the disjointness relations that hold
at exit fromB0, i.e., just before control is transferred to

f , and filtering this through the summary information
known about the behavior of the callee functionf :weak IN(B) = FnOutf (weakOUT(B0)), andstrong IN(B) = FnOutf (strongOUT(B0)).

(c) Otherwise, it consists of the disjointness relations that
hold at the exit from each ofB’s predecessors, and so
are guaranteed to hold at entry toB:weak IN(B) = \P2preds(B)weakOUT(P) , andstrong IN(B) = \P2preds(B)strongOUT(P) .

Figure 2 gives the algorithm for computingweakOUT(B) andstrongOUT(B) from weak IN(B) andstrong IN(B) . There are
several cases to consider, but the details are straightforward appli-
cations of the kinds of reasoning illustrated in the examples at the
start of this section. For example, a normal comparison makes its
predicate-register operands strongly disjoint and hence also weakly
disjoint; thus, the pair of operands gets added to both the strong
and weak output sets. The unconditional compare instruction has
the most complex effect, because it clears both predicate-register
operands before conditionally setting one of them. A parallel com-
pare instruction has the simplest effect with respect to predicate dis-
jointness because it either does nothing or modifies both predicate-
register operands, and hence it destroys any disjointness relation-
ship that might have existed for either predicate register.

We solve the dataflow equations given above by starting with the
initial valuesweak IN(B) = strong IN(B) = weakOUT(B) = strongOUT(B) = ;
for all basic blocksB in a function, and then computing a fixpoint
by iteratively applying the equations above until there is no change
to any of these sets.

In case 2(b) of the dataflow equations above,FnOutf (S) de-
notes the effect of the function callf on the disjointness relations
at the call site. A simple conservative estimate for intra-procedural
analyses is to assume that nothing is known about disjointness re-
lationships at the return from a function call. We can do better,
however, by identifying for each functionf , the setUnhg(f) of
predicate registers whose values will not be affected by a call to f .
We proceed as follows:

1. DefineSaveRestore(f) to be the set of predicate registers
that are saved at entry tof before any use, and restored prior
to leavingf . These sets can be determined by inspecting the
prolog and epilog off ’s code.

2. LetUnhg(B) be the set of predicate registers whose values
will not be changed during the execution ofB:Unhg(B) = � ; if B ends in a function callfp j p not assigned to inBg otherwise

Then, the set of predicate registers that are unaffected by acall tof is given byUnhg(f) = SaveRestore(f) [(\B2bloks(f)Unhg(B)):
Note that the setUnhg(f) can be computed in a single pass over
the instructions off . We can then define the effect of a call to a
functionf on predicate disjointness relationships as follows:FnOutf (S) = f(p; q) 2 S j fp; qg � Unhg(f) g:
This is a pessimistic estimate of the effects of a function call, be-
cause when computingUnhg(B) for a basic blockB, we assume
that all predicate registers may be overwritten ifB contains a func-
tion call. A better approach is to propagateUnhg(f) values over
the call graph of the program and iterate to a fixpoint. This iswhat
we have implemented.

It is relatively straightforward to extend these equationsto do
inter-procedural analysis. At this time, we have extended the analy-
sis described above into a simple context-insensitive inter-procedural
algorithm, and we are looking into a context-sensitive inter-procedural
version.

4. IF-CONVERSION
If-conversion is the process of replacing explicit controltransfers

in code by predicated instructions that are executed conditionally
depending on the value of a Boolean source operand [2]. It canim-
prove performance in a number of different ways. First, it can elim-
inate difficult-to-predict branches and reduce branch misprediction
rates [4]. Second, it can increase instruction-level parallelism. Fi-
nally, by allowing the producer of a value to be moved to an earlier
point in the instruction stream, if-conversion can be used to hide
instruction latencies.

Figure 3 gives an outline of our if-conversion algorithm. The ba-
sic idea is simple: For each basic block in a function, we firstsched-
ule the instructions in the block, then we try to use if-conversion to

improve the code for that block. This employs the predicate dis-
jointness sets described in the previous section and is doneas fol-
lows:

1. We attempt to replacenops in the block by useful instruc-
tions from its successor blocks.

2. If a block ends in a conditional branch, and it is profitable
and possible to eliminate this branch, we replace the condi-
tional branch by appropriately predicated instructions from
the block’s successors.

In this context, given a basic blockB and a successorB0 of B, we
say thatB0 is if-convertible intoB if every instruction inB0 can
be if-converted into a predicated version that can then be inserted
at the end ofB, prior to any branch instruction at the end ofB,
without altering any use-definition relationships betweenany pair
of instructions.

A few aspects of this algorithm that deserve comment. First,
when processing a basic blockB and a considering a successor
block from which to if-convert instructions intoB, we do not con-
sider any successorS that has more than one predecessor. The
reason for this is that ifS has multiple predecessors, then each
instruction moved out ofS would have to be replicated in the pre-
decessors ofS. This would result in code growth, and it would
complicate the if-conversion algorithm because it would beneces-
sary to ensure that such code replication preserves correctness. In
principle we could clone the blockS in such circumstances to cre-
ate a block with a single predecessor, which can then be processed
as described; however, our implementation does not currently do
this.

Second, when considering whether to use if-conversion to elimi-
nate a branch instruction at the end of a blockB, we want to make
sure that this does not introduce so many predicated instructions
intoB that the cost of executing these instructions exceeds the cost
of the original branch instruction they replaced. We do thisusing an
architecture-dependent threshold that models the cost of executing
a branch instruction: if the number of predicated instruction groups
being introduced intoB is less than this threshold, it is deemed
profitable to eliminate the branch instruction. The reason we first
attempt to use instructions fromS to eliminate no-ops inB before
attempting to eliminate branch instructions inB is that the num-
ber of instructions inS may initially exceed this threshold, but by
pulling out instructions fromS to replace no-ops inB, we may be
able to reduce the number of instructions inS to below the thresh-
old, thereby allowing the branch instruction inB to be eliminated.

Finally, an aspect of the overall if-conversion process that is not
discussed in Figure 3 is that it is sometimes necessary to finda free
predicate register. Consider the following code fragment:

cmp.eq p6,p0=r14,r15 ;;
(p6) br.cond L1

mov r14=0
br.few L2 ;;

L1: mov r14=1 ;;
L2: add r15=r14,2

We would like to convert this to a single predicated block, e.g.:

cmp.eq p6,p7=r14,r15 ;;
(p6) mov r14=0
(p7) mov r14=1 ;;

add r15=r14,2

However, since the compare instruction that sets registerp6 in the
original code discards the complement ofp6,1 we must find a pred-1The compare instruction actually assigns the complement ofp6 to pred-
icate registerp0. However, sincep0 is hard-wired to the valuetrue, the
effect is to discard the complement.

for each basic blockB in the functiondo
1. scheduleB;
2. sort the successors ofB in decreasing order of execution frequency;
3. for each successorS of B do

if S has more than one predecessorcontinue;
for each nopN in B do /* Eliminate no-ops in B if possible */

if there is an instructionI in S that can replaceN without affecting any
dependencies or adding stop bitsthen

removeI from S;
replaceN with an appropriately predicated version ofI;

endif
end for
/* Eliminate branch instructions in B if possible and profitable */
if (a) S is if-convertible intoB; and (b) there is a branch instructionJ in B that

can be eliminated by fully if-convertingS intoB; and () the number of
groups inS is less than a fixed [architecture-dependent] thresholdthen

replace each instructionK in S by an appropriately predicated version ofK in B;
delete the branch instructionJ
delete the basic blockS

end if
end for

end for

Figure 3: The Basic If-Conversion Algorithm

icate register to hold the complement. This registerp must be free
at the compare instruction and must not be defined on any path from
the compare to the instruction(s) whose predicated versionwould
use the complement ofp6. If there are multiple compare instruc-
tions that set the guard predicate of the branch register (i.e., differ-
ent paths to the branch contain different compare instructions), thenp must not be defined on any path from any of the compares to the
instructions that would usep. Our implementation currently uses a
simple conservative approximation for this: If a predicateregisterp is not defined or used by a functionf or any function reachable
from f , and ifp is saved and restored at entry to and exit fromf ,
thenp can safely be used for this purpose withinf .

5. EXAMPLES
As described in Section 2.2, we analyze predicates three times

in ILTO: before unpredicating the control flow graph, beforeif
conversion and scheduling, and before code layout. Below illus-
trate how disjointness sets are used to simplify control flowgraphs,
to produce compact code during if conversion, and to reversethe
sense of branches during code layout.

5.1 Unpredicating the Control Flow Graph
When ILTO disassembles an Itanium binary, it first unbundles

instructions, determines basic blocks, and constructs a control flow
graph (CFG); at this point, instructions in basic blocks arestill
predicated. We then unpredicate the instructions, replacing guard
predicates by decision nodes and adding new basic blocks andedges
to the CFG. Often we can simplify the structure of the unpredicated
CFG by taking account of the semantics of predicate instructions.
Having a less-complicated CFG simplifies later analyses andmakes
it easier to produce efficient code later on.

Often the source program contains code sequences that have the
following structure:

cmp.eq p6,p7=r10,r11 ;;
(p6) instr1
(p6) instr2

(p7) instr3

This kind of machine code results from source code having the
form (in pseudo-C):

if (condition)
{ instr1; instr2; }

else
{ instr3; }

The machine code uses if-conversion and predication to avoid two
branches: one to jump to the else block and one to jump over the
else block (from the end of the then block).

The straightforward way to unpredicate the above machine code
would be to create two decision nodes—one to testp6 and one to
testp7—and and two code blocks, as shown in Figure 4(a). How-
ever, the compare instruction makesp6 andp7 strongly disjoint,
and they remain strongly disjoint while the instructions are exe-
cuted. Hence, we can create a simpler control flow graph in which
(a) there is a single conditional branch at the end of a basic block
B0, (b) that block has a true edge to a block B1 containing the in-
structions that were predicated onp6 and a false edge to a basic
block B2 containing the instructions that were predicated on p7.
In short, we get the simpler, diamond-shaped control flow graph
shown in Figure 4(b).

5.2 Producing Compact Code
The following example shows how weak disjointness sets are

used during if-conversion to produce compact, efficient code.
Consider the following C code fragment:

if (x == 0) {
if (y == 0) z = 0; else z = 1;

}
else

z = 2;

A straightforward translation of this to Itanium code wouldhave
the following structure:

cmp.eq p6,p7 = r10, r11(p6)
(p6) br.cond B1

instr1
instr2
instr3

B1

(p7) br.cond B2

instr4
instr5

B2

B0

cmp.eq p6,p7 = r10, r11(p6)
(p6) br.cond B1

B0

instr1
instr2
instr3

B1

instr4
instr5

B2

(a) Naive unpredication (b) Unpredication using disjointness information

Figure 4: An example of unpredication using predicate analysis

cmp.eq p6,p7=x,0 ;;
(p7) br.cond L2

cmp.eq p8,p9=y,0 ;;
(p9) br.cond L1

mov z=0
br.few Done

L1: mov z=1
br.few Done

L2: mov z=2
Done:

This is the traditional way of handling conditionals. However,
we can collapse the inner if/then/else statement—from the second
comparison above through the last branch—into the compare,two
predicated moves, and the last branch, as follows:

cmp.eq p6,p7=x,0 ;;
(p7) br.cond L2

cmp.eq p8,p9=y,0 ;;
(p8) mov z=0
(p9) mov z=1

br.few Done
L2: mov z=2
Done:

This is called if-conversion; it depends on recognizing that p8 and
p9 are strongly disjoint and hence that only one of the two moves
will actually be executed.

We can if fact do even better for this type of code sequence:
compact the code into a single basic block withno branches. After
the first compare,p6 andp7 are strongly disjoint. The first branch
and the instruction atL2 are executed ifp7 is true. Ifp6 is true
(and hencex==0), then the second compare and one of the move
instructions predicated on (p8) or (p9) will be executed. Inshort,
using predicate analysis we can determine that the three moves are
mutually independent, and we can simplify the code to a single
block as follows:

cmp.eq p6,p7=x,0 ;;
(p6) cmp.eq.unc p8,p9=y,0 ;;
(p7) mov z=2
(p8) mov z=0
(p9) mov z=1

In fact, the three moves can even be scheduled in the same instruc-
tion group and hence execute in parallel. The second instruction
uses an unconditional compare so that bothp8 andp9 are cleared
before the compare, and hence they are false ifp6 is false. This

kind of code appears quite frequently in binaries produced by In-
tel’s ecccompiler. ILTO is able to produce it by using predicate
analysis, which leads to the following three inference chains:

p8) p6): p7 p7 andp8 weakly disjoint
p9) p6): p7 p7 andp9 weakly disjoint
p8): p9 p8 andp9 weakly disjoint

5.3 Branch Sense Reversal During Code Lay-
out

The final example arises during code layout, which places basic
blocks in memory in an order that attempts to minimize the num-
ber of instruction cache misses. This involves moving frequently
executed blocks to one end of the address space and infrequently
executed blocks to the other. If a block could be entered by means
of a fall-through edge, then we have to insert an explicit branch
if the block is moved. If we move a block so that its entry point
immediately follows what had been a branch to the block, thenwe
want to delete the branch to the block.

As a (somewhat artificial) example of code motion, consider the
following C program fragment:

if (x > 0)
{ statements1; }

else
{ statements2; }

Straightforward Itanium code for this would be

cmp.gt p6,p7 = x,0 ;;
(p7) br.cond Else

code for statements1
br.cond Done

Else: code for statements2
Done:

If we decide to switch the positions of the code blocks for state-
ments1 and statements2, the only other change we need to makeis
to usep6 to guard the predicate on the branch instruction. This is
a safe transformation becausep6 andp7 are strongly disjoint.

6. EXPERIMENTAL RESULTS
We evaluated our ideas using a set of seven programs from the

SPECint-2000 benchmark suite:bzip2, gzip, mcf, parser, twolf,
vortex, andvpr. The programs were run on an HP i2000 worksta-
tion with a 733 MHz Intel Itanium processor running Redhat Linux
7.1, kernel 2.4.3-12. The memory configuration of the systemwas

as follows: split L1 instruction and data caches, each consisting of
16 KB of 4-way set associative cache memory with 32-byte lines;
a 96 KB unified L2 cache; a 2 MB unified L3 cache; and 1 GB of
main memory and 2 GB of swap space. Execution times for these
programs were obtained as follows: Each binary was run five times
on an unloaded machine and its runtime was measured using the
Unix time command; the largest and smallest of the resulting run
times were discarded; then the arithmetic mean of the remaining
three execution times was computed and taken as the running time
for that binary. We used statically linked binaries for our experi-
ments, compiled with additional flags to instruct the linkerto retain
relocation information.2

Static code density figures, expressing the ratio of useful (i.e.,
non-nop) instructions to the total number of instructions, were ob-
tained as follows. For the input binaries, we measured code den-
sities after first discarding unreachable code (in order to exclude
code brought in by the linker from libraries that is not referenced
by the program). Code densities after optimization were obtained
just before the executables were written out and hence afterall op-
timizations had been carried out. For these experiments, ILTO did
not use any optimizations other than those described here, so the
data presented reflectonly the effects of if-conversion and predi-
cate analysis.

Recall that, unlike Augustet al. [3], we postpone if-conversion
until the end of the compilation process in order to keep our anal-
yses and optimizations architecture-independent as far aspossible.
When evaluating our algorithm, therefore, there are two indepen-
dent questions of interest: First, how effective is our algorithm at
improving the performance of an unpredicated instruction stream,
e.g., such as that produced by a conventional optimizing compiler
that does not have specialized support for predication? Second,
how effective is the algorithm in actually identifying available op-
portunities for if-conversion? The difference between thetwo is
that it is possible, in principle, that we could obtain performance
improvements from our if-conversion algorithm (the first question)
even if it had weaknesses that caused it to miss a lot of optimization
opportunities (the second question).

To address the first question, we evaluate our algorithm on pro-
grams compiled using thegcccompiler, which does not have very
sophisticated facilities for dealing with predication; weusedgcc
version 2.96, at optimization level-O3. Table 1 gives performance
results for this case. Table 1(a) shows code densities before and af-
ter optimization. It can be seen that our algorithm yields a slight im-
provement in code density of about 1.3%. Code density is improved
by the if-conversion process, which replaces useless instructions,
and by predicate analysis, which makes scheduling (and bundling)
less constrained.

Table 1(b) shows the effect of our optimization on execution
speed. The column labelled “Original” refers to the executable
produced bygcc, while that labelled “Optimized” refers to the ex-
ecutable obtained using our if-conversion algorithm on theinput
binaries. The biggest speedup is obtained for thebzip2program,
which improves by over 12%. On average, we see a speed im-
provement of 4.3%.

For the second question, we consider binaries obtained using In-
tel’s ecccompiler version 5.0.1, at optimization level-O3 together
with profile feedback, i.e.: the programs were compiled withthe
options ‘-O3 -prof gen,’ then executed on the SPEC training
inputs to generate profiles, and finally recompiled with the options2The requirement for statically linked executables is a result of the fact
that ILTO relies on the presence of relocation information to distinguish
addresses from data. The Unix linkerld refuses to retain relocation infor-
mation for executables that are not statically linked.

Program Code Density S1=S0
Original (S0) Optimized (S1)

bzip2 0.7011 0.7119 1.0154
gzip 0.7031 0.7117 1.0123
mcf 0.7012 0.7098 1.0122
parser 0.6985 0.7088 1.0147
twolf 0.6985 0.7103 1.0168
vortex 0.7300 0.7338 1.0051
vpr 0.6994 0.7117 1.0177

GEOMETRICMEAN 1.013

(a) Code Density

Program Execution Time(sec) T1=T0
Original (T0) Optimized (T1)

bzip2 1155.04 1015.06 0.879
gzip 1041.97 987.82 0.948
mcf 1506.34 1500.58 0.996
parser 1305.39 1269.69 0.973
twolf 1483.17 1458.61 0.983
vortex 1072.89 1042.48 0.972
vpr 1057.34 1008.77 0.954

GEOMETRICMEAN 0.957

(b) Execution time

Table 1: Performance: gcc-compiled programs

‘-O3 -prof use,’ Here we take input binaries that have already
been heavily optimized by a good, industrial-strength, predicate-
aware optimizing compiler using profile feedback; remove all pred-
ication using reverse if-conversion; then if-convert backusing our
algorithm. If there are significant weaknesses or imprecision in our
algorithm, the quality of the code produced by our optimizerwould
be inferior to that of the input file, so we would see a performance
degradation relative to the input binary. If, on the other hand, our
approach is effective in identifying if-conversion opportunities, the
performance of the code generated by ILTO should be comparable
to that of the input binaries. Table 2 shows the performance num-
bers in this case. As shown in Table 2(a), our algorithm is actually
able to improve static code densities by 2% on average compared to
the originalecc-generated code. With respect to execution speed,
as shown in Table 2(b), it can be seen that our algorithm produces
code whose performance is essentially the same as that of thein-
put ecc-optimized binaries. On three programs,bzip2, vortex, and
twolf, our algorithm produces slightly faster binaries; on threeoth-
ers,gzip, vpr, andmcf, we get a slight slowdown. On average, the
code obtained from ILTO is 0.1% slower than the original bina-
ries. This indicates that in general, our predicate analysis and if-
conversion algorithms are able to identify and recover pretty much
all of the opportunities for if-conversion that were present in the
input program but that were obfuscated during the initial reverse
if-conversion phase.

7. RELATED WORK
If-conversion has been investigated by Mahlkeet al., who dis-

cuss the formation and use of hyperblocks—single entry multiple-
exit collections of basic blocks [10]. The focus of their work, by
contrast with that described here, is in identifying which set of
blocks should be included in a hyperblock. Once a hyperblock
has been formed, if-conversion is used to transform it into asin-
gle basic block containing predicated instructions, whichis very
different from what we do. Augustet al. discuss the tradeoffs as-
sociated with the timing of if-conversion in the overall compilation

Program Code Density S1=S0
Original (S0) Optimized (S1)

bzip2 0.7023 0.7165 1.0203
gzip 0.7047 0.7191 1.0205
mcf 0.7010 0.7140 1.0186
parser 0.7042 0.7203 1.0229
twolf 0.7041 0.7200 1.0225
vortex 0.7220 0.7391 1.0236
vpr 0.7010 0.7150 1.0200

GEOMETRICMEAN 1.021

(a) Code Density

Program Execution Time(sec) T1=T0
Original (T0) Optimized (T1)

bzip2 843.65 820.16 0.972
gzip 633.15 648.86 1.025
mcf 1409.94 1419.79 1.007
parser 1190.45 1190.30 1.000
twolf 1267.49 1261.49 0.995
vortex 835.32 824.86 0.987
vpr 906.85 925.15 1.020

GEOMETRICMEAN 1.001

(b) Execution time

Table 2: Performance: ecc-compiled programs

process [3]. They advocate an approach dual to ours, namely,car-
rying out aggressive if-conversion early in the compilation process,
using compiler analyses and optimizations that understandpredi-
cated code, and then selectively reverse-if-convert during schedul-
ing where appropriate. We have shown that it is possible to get
excellent performance without requiring analysis and optimization
phases to understand predicated code.

Mahlke et al. use the notion ofpredicate hierarchy graphsto
keep track of relationships between predicates [10]. Theiranalysis
is based on keeping track of which predicates guard the definition
of other predicates, and so does not work well when predicaterela-
tionships are not hierarchical. Eichenberger and Davis describe an
analysis that collects logical expressions expressing relationships
between predicates [5]. A more precise approach, based on keep-
ing track of logical partitions between predicate expressions, is de-
scribed by Gillies et al. [7] and Johnson and Schlansker [9].None
of these analyses extend across join blocks, i.e., where multiple
control flow paths merge. Sias, Hwu and August discuss the effi-
cient implementation of predicate analyses using binary decision
diagrams, and extend prior work to handle general control flow
[14]. The analysis described here, by contrast, takes a verydif-
ferent approach. It is formulated within the framework of a tradi-
tional meet-over-all-paths dataflow analysis, which makesit rela-
tively straightforward to understand, implement, and extend in var-
ious ways, e.g., to inter-procedural analysis. We have already ex-
tended our analysis to a context-insensitive inter-procedural pred-
icate disjointness analysis, and we are currently investigating the
question of context-sensitive inter-procedural disjointness analysis.

For instruction scheduling we use a conventional list scheduling
algorithm [6]. Our instruction bundling algorithm is similar to one
in [8], but we augmented it to handle several special cases.

8. CONCLUSIONS
This paper has examined a new approach to dealing with pred-

ication in an EPIC architecture and presented new algorithms for
predicate analysis and if-conversion. We converted a link-time op-

timizer (PLTO) for a conventional architecture, which did not sup-
port predication or explicit instruction-level parallelism, into one
(ILTO) for an EPIC architecture, the IA-64 (Itanium), focusing on
getting maximum mileage with minimal disruption. In particular,
we wanted to leave the code analysis and optimization phasesalone
as much as possible, which meant that they would not be aware of
predication or instruction-level parallelism.

The ILTO system deals with predication in three places: when
unpredicating the control flow graph, when doing if-conversion and
scheduling, and during code layout. ILTO deals with ILP only
when scheduling and bundling instructions. We have developed the
notion of predicate disjointness sets to guide these processes. Our
predicate analysis is used during unpredication to producesimpler
control flow graphs (which also turn out to be easier to get good
code from); heavily during if-conversion to eliminate branches, in-
crease ILP, and increase code density; and during code layout to
changes the sense of branch instructions.

The results in Section 6 show two things. First, when given code
that does not have very sophisticated use of predication (i.e., code
from gcc), ILTO produces code that is on average over 4% faster
and 1.3% denser on the SPECint-2000 benchmark suite. When
given code that makes sophisticated use of the Itanium’s features
(i.e., code fromecc), ILTO produces code that is on average 2%
denser and only 0.1% slower on the SPECint-2000 suite. In both
cases, ILTO used only predicate analysis and if-conversionto im-
prove the code; we did not examine other optimizations such as
constant propagation or inlining. We are currently integrating these
(mostly) architecture independent optimizations into ILTO.

9. REFERENCES
[1] A. V. Aho, R. Sethi, and J. D. Ullman.Compilers –

Principles, Techniques, and Tools. Addison-Wesley,
Reading, Mass., 1985.

[2] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren.
Conversion of control dependence to data dependence. In
Proc. Tenth Annual ACM Symposium on Principles of
Programming Languages, pages 177–189, January 1983.

[3] D. I. August, W. W. Hwu, and S. A. Mahlke. A framework
for balancing control flow and predication. InProc. 30th
Annual International Symposium on Microarchitecture,
pages 92–103, 1997.

[4] Y. Choi, A. Knies, L. Gerke, and T.-F. Ngai. The impact of
if-conversion and branch prediction on program execution on
the Intel Itanium processor. InProc. 34th Annual
International Symposium on Microarchitecture, pages
182–191, December 2001.

[5] A. E. Eichenberger and E. S. Davidson. Register allocation
for predicated code. InProc. 28th Annual International
Symposium on Microarchitecture, pages 180–191, 1995.

[6] P. B. Gibbons and S. S. Muchnick. Efficient instruction
scheduling for a pipelined architecture. InProc. ACM
SIGPLAN 86 Symposium on Compiler Construction, pages
11–16. June 1986.

[7] D. M. Gillies, D. R. Ju, R. Johnson, and M. Schlansker.
Global predicate analysis and its application to register
allocation. InProc. 29th Annual International Symposium on
Microarchitecture, pages 114–125, 1996.

[8] S. Haga and R. Barua. EPIC Instruction Scheduling Based
on Optimal Approaches. InProc. First Annual Workshop on
Explicitly Parallel Instruction Computing Architecturesand
Compiler Technology, 2001.

[9] R. Johnson and M. Schlansker. Analysis techniques for

predicated code. InProc. 29th Annual International
Symposium on Microarchitecture, pages 100–113, 1996.

[10] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A.
Bringmann. Effective compiler support for predicated
execution using the hyperblock. In25th Annual International
Symposium on Microarchitecture (MICRO-25), pages 45–54,
1992.

[11] E. W. Myers, Jr. A precise inter-procedural data flow
algorithm. InConference Record of the Eighth Annual ACM
Symposium on Principles of Programming Languages
(POPL ’81), pages 219–230, January 1981.

[12] K. Pettis and R. C. Hansen. Profile-guided code positioning.
In Proc. ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 16–27, June
1990.

[13] B. Schwarz, S. K. Debray, and G. R. Andrews. Plto: A
link-time optimizer for the Intel IA-32 architecture. InProc.
2001 Workshop on Binary Translation (WBT-2001), 2001.

[14] J. W. Sias, W. W. Hwu, and D. I. August. Accurate and
efficient predicate analysis with binary decision diagrams. In
Proc. of the 33rd Annual International Symposium on
Microarchitecture, pages 112–123, 2000.

