
Compressing Dynamic Data Structures in Operating System Kernels∗

Haifeng He, Saumya Debray, Gregory Andrews
Department of Computer Science, The University of Arizona,Tucson, AZ 85721, USA

Abstract

Embedded systems are becoming increasingly complex and there is a growing trend to deploy complicated soft-
ware systems such as operating systems and databases in embedded platforms. It is especially important to improve
the efficiency of memory usage in embedded systems because these devices often have limited physical memory.
Previous work on improving the efficiency of memory usage in OS kernels has mostly focused on reducing the size
of code and global data in the OS kernel. This paper, by contrast, presentsdynamic data structure compression, a
complementary approach that reduces the runtime memory footprint of dynamic data structures. A prototype imple-
mentation for the Linux kernel reduces the memory consumption of the slab allocators in Linux by about 17.5% when
running the MediaBench suite, while incurring only minimalincreases in execution time (1.9%).

1 Introduction

The amount of memory available on typical embedded systems is usually limited by considerations such as size,
weight, or cost. This makes it important to reduce the memoryfootprint of software running on embedded systems.
The operating system on an embedded processor accounts for asignificant part of its memory requirements. While
there has been some work on reducing the memory usage of OS kernels, most of this has focused on reducing the size
of code and global data in the OS kernels [4, 5, 8]. However, the static components of an OS kernel—its code and
global data—account for only a portion of its total memory footprint. Just as significant are thedynamicdata, namely,
the stack and heap memory, which can easily exceed the size ofstatic memory. We are not aware of any research on
reducing the dynamic memory consumption of OS kernels.

It turns out that, in practice, there is quite often room to reduce the memory requirements for dynamic data. For
example, integer-valued variables often do not require thefull 32 bits allocated to them (on a conventional 32-bit
architecture); other opportunities for memory usage reduction arise from redundancy in sets of pointer values whose
high-order bits typically share a common prefix. However, such opportunities for data compression are usually not
obvious statically, making it difficult to optimize programs to take advantage of them.

This paper presents a technique calleddynamic data structure compressionthat aims to address the problem of
reducing the dynamic memory requirements of programs. Our technique uses profiling to detect opportunities for
dynamic data size reduction, then transforms the code so that data values are maintained using a smaller amount
of memory. The technique issafe: if a runtime value is beyond the value range that can be accommodated in the
compressed representation of some variable, our approach automatically “expands” that variable to its original (un-
optimized) size. Our experiments show that this approach can be quite effective in reducing the dynamic memory
footprint of the OS kernel: applying our technique to the slab allocator in Linux kernel reduces the dynamic memory
consumption of slab allocator in Linux kernel by about 17.5%when running the MediaBench suite, while incurring
only a 5.4% increase in code size and a 1.9% increase in execution time.

The remainder of this paper is organized as follows. Section2 first gives a brief background of slab allocator in
Linux kernel. Section 3 describes our approach in more detail. Section 4 describes the code transformations we use to
maintain and use values in compressed form. Section 5 describes our experimental results. Section 6 describes related
work, and Section 7 concludes.

2 Background: Linux kernel slab allocator

Slab allocation forms the core of dynamic memory allocationin the Linux kernel: the kernel memory allocation
routineskmallocand kfree (the kernel-level analogs ofmalloc and free) are built atop the slab allocator. For this
reason, our prototype implementation targets the Linux slab allocator. This section gives a brief introduction to the
slab allocator in the Linux kernel.

Slab allocation was adopted for the first time in the SunOS 5.4kernel and introduced in Linux kernel since Linux
2.2 [7]. It provides an efficient mechanism to speed up dynamic memory allocation and reduce internal fragmentation
in the kernel. The slab allocator groups objects intocacheswhere each cache stores objects of the same type. The

∗This work was supported in part by NSF Grants CNS-0410918 andCNS-0615347.

1



caches are then divided intoslabs(hence the name of this system). Each slab consists of one or more physically
contiguous pages but typically consists of only a single page. To avoid initializing objects repeatedly, the slab allocator
does not discard the objects that have been allocated and then released but instead saves them in memory. When a new
object is then requested, it can be taken from memory withouthaving to be reinitialized. Our approach does not need
to modify the internal implementation of slab allocator in Linux kernel. Instead, the memory consumption of the slab
allocator is reduced by compressing only the data structures that are used by the slab caches.

3 Data Structure Compression

A data structure is transformed into a more space-efficient structure by statically compressing its compressible fields,
which include scalars and pointers, based on profile information. Our approach consists of the following steps. We first
use training inputs to obtain profile information about the values stored in each compressible field. Based on the profile
data, we choose a compression scheme for each compressible field with the goal to use as few bits as possible. Finally,
we modify the program source code to use compressed structures. Each statement that writes to a compressed field
is modified so that the value being written is compressed appropriately before being stored. Similarly, each statement
that reads from a compressed field is modified to extract the value of the field from the compressed representation and
decompress it appropriately. To ensure safety of our optimization, we exclude from consideration structure fields with
certain properties; this is discussed in more detail in Section 4.2.

It is important to note that since this compression is based on data obtained from profiling runs, it can happen
that our scheme compresses a data field tok bits but some run of the program can produce a value for that field that
requires more thank bits to represent it. To handle this, our approach uses a scheme to expand the compressed data
field with additional storage, as necessary, to hold the incompressible data.

3.1 Data structure profiling
The goal of data structure profiling is to obtain informationabout the values stored in variables and in the fields of
aggregate data structures, in particularstructs (i.e., records), in order to determine whether and how to compress
them. Data structure profiling is done by instrumenting all field reference expressions in the source code of a program.
In the C programming language, the targets for profiling are fields that are referenced through the operators ‘.’ and
‘->’. Three kinds of data are collected for a compressible field:1) value range, i.e., the minimal and maximum values
that are encountered during program execution; 2)distinct values, which record the topN distinct values presented
in a profiled field [2, 13]; and 3) the number of references.1 Based on the characteristics of the data obtained from
profiling, the values taken on by a field in a data structure canbe classified into the following categories:

Narrow width. This refers to a set of values that can be represented by a small number of bits. For example, values
from the set{0, 2, 3, 5} can be represented using only 3 bits.

Common prefix. This refers to a set of values whose binary representations have some number of high-order bits in
common. In other words, there exists somek > 0 such that the topk bits of these binary representations are the
same for all of these values. This situation is encountered primarily with pointers.

Small set. This refers to a set of values of “sufficiently small” cardinality. The idea here is that a value can then be
referred to by its index in the set, and the index can be represented using only a small number of bits.

3.2 Data compression techniques
Based on the characteristics of profiling data, as describedabove, we consider four kinds of compression techniques:
(i) compression with narrow-width data (NW ); (ii) compression with common-prefix data (CP ); (iii) compression
with compression table, which is used for small-set data (CT ); and(iv) a combination of 2 and 3 (CT+CP ). The
first scheme is mainly used to compress non-pointer scalar type fields and the other three schemes are mainly used to
compress pointer fields.

Figure 1 illustrates one of the Linux kernel data structure called dentry (directory entry), which is used to
describe the name of a file in the Linux file system. For simplicity, we only list four compressible fields indentry to
explain our compression approach. Table 1 shows the profile data collected for these four fields. In Table 1, the second
column is the type of each field and the third column is the bit width of each field. The fourth and fifth columns indicate
the value range of each field. The fifth column is the number of distinct values of a field2. The last column shows the

1This number is used later in our experimental evaluation to avoid compressing frequently-used fields and thereby reducethe runtime overhead.
2a value table with size= 4096 is used in experiments



/* l inux-src/include/l inux/dcache.h */

s t ruct  dentry  {
    ...
    int d_mounted;      
    struct dentry_operations *d_op;
    struct inode *d_inode;
    struct dentry *d_parent; 
} ;

Memory pages 
used for dentry 
slab cache

Compression table of d_op

0   &proc_dentry_operations
1   &simple_dentry_operations
2   &eventpollfs_dentry_operations
3   &pid_dentry_operations
4   &tid_fd_dentry_operations
5   &proc_base_dentry_operations
6   &pipefs_dentry_operations
7      - empty -  

index of pages offset within a page

7 bits 12 bits

Bit layout in d_parent

....
dentry 
object

dentry 
object

Compression
table

Figure 1: Data structuredentry in Linux kernel

Field Type Size(bits) Min Max # of values # of pg. prefix

d mounted Integer 32 0x0 0x1 2 -
d op Pointer 32 0x0820b78c 0x0820ccd4 6 -
d inode Pointer 32 0x086480b4 0x09c82e34 4096 737
d parent Pointer 32 0x084fb1a4 0x0903cf74 349 99

Table 1: Profiling data of the four compressible fields indentry structure (with value tablesize = 4096)

data for “page prefixes,” a special case of value profiling in which the values are prefixes of the addresses of memory
pages. Page prefix information is used for a particular type of data compression that combines the common-prefix and
compression-table techniques; this is discussed in more detail in Section 3.2.4.

3.2.1 Compression with narrow width data

Narrow width data is common in many non-pointer scalar type fields. The fieldd mounted in structuredentry in
Figure 1 illustrates this: it is defined to be of typeint, which has value range[−231, 231 − 1] in a 32-bit machine.
d mounted is used to represent the number of file systems that are mounted on one particular directory. Table 1
shows that the value range ofd mounted is [0, 1]. This is because normally there is at most one file system that
is mounted on one directory. It is, therefore, very unlikelythat there are231 − 1 file systems mounted on a single
directory. A field with narrow width data is compressed by selecting the least possible bit width to represent the value
ranges. In the above example, a single bit is enough to represent the value range of fieldd mounted.

3.2.2 Compression with common prefix

A set of addresses that share a common prefix can be compressedby factoring out the common prefix and keeping
the remaining bits as the compressed value. To decompress, the common prefix of the pointer is simply added back to
the compressed value. For example, consider the value rangeof field d op in Table 1. The minimum and maximum
addresses of fieldd op share a 17-bit common prefix (0x08208---), which means all the addresses presented in
d op during profiling also share 17 bit common prefix. We can therefore represent each value for this field using
32 − 17 = 15 bits, with the 17-bit prefix stored separately. Whenever thefield is used, the 17-bit prefix and 15-bit
compressed representation are concatenated to obtain the original 32-bit representation.

3.2.3 Compression with compression table

The basic idea of this compression scheme is to keep the actual data value of a field in a table, which we call the
compression table, and to use the index into the table as the compressed value inthe field. LetVf be the set of distinct



values of a fieldf from profiling, then we need⌈log2|Vf |⌉ bits to represent the index forVf . For instance, in Table 1,
d op takes on 6 distinct values, and we need 3 bits to represent theindexes for this field in the compression table.

Using a compression table can achieve better compression results than using a common prefix. However, maintain-
ing the compression table may introduce considerable overhead at runtime, especially when the size of the compression
table is large. To limit the cost of using a compression table, our implementation limits the size of the table to at most
256 values; thus, a value needs at most 8 bits for the index. When the size of the compression table is larger than
this limit, the common-prefix scheme, described in Section 3.2.2 above, is used instead. For example, consider the
profiling data of fieldd inode in Table 1. The number of distinct values (addresses) ofd inode is 4096,3 which is
larger than the limit. Therefore, compression with compression table is not applied tod inode.

3.2.4 Combining common prefix and compression table

There are situations where the compression results can be further improved by combining the common-prefix and
compression-table approaches. As an example, since a memory page in the Linux kernel is 4KB in size, the addresses
of all the objects inside of a memory page of a slab cache differ only in the lower 12 bits, which give the offset
within the page; the top 20 bits of these addresses are therefore a common prefix—the page prefix. The page prefixes
themselves can be further compressed by keeping them in a compression table and using the index into the table plus
page offset as compressed value.

For example, consider fieldd parent in dentry structure: this is a pointer to objects in thedentry slab cache,
as shown in Figure 1. The number of distinct page prefixes ofd parent (shown in the last column in Table 1) is 99,
which is less than our 256 value limit for compression table size. Therefore, fieldd parent can be compressed to
use⌈log299⌉ = 7 bits for the index and 12 bits for page offset, for a total of 19bits. This is illustrated in Figure 1.

3.2.5 Choosing the compression scheme

To determine which compression scheme to use for each field ofa data structure, we compute, for each compression
scheme, the number of bits that would be necessary to represent the training set of values obtained for that field using
that compression scheme. For each field, we choose the schemethat achieves the smallest bit width for that field.

The choice of a compression scheme for a field in this manner effectively determines the representation for the
values of that field at runtime. Runtime values for that field that can be accommodated within the chosen representation
for that field are said to becompressible, while values that cannot be accommodated within that representation are said
to beincompressible. For example, suppose we decide to use narrow data to represent a fieldf with 6 bits. Then, the
runtime value 58 forf is compressible, but the value 68 is incompressible.

4 Data Structure and Source Code Transformation

After the compression scheme for each compressible field in adata structure has been determined, all the compressed
fields are packed into an arraycdatathat is just large enough to accommodate the total number of bits in the compressed
data structure. We usechar as the type of arraycdata becausechar is the smallest data type in C.

Figure 2 a) shows the memory layout of arraycdata in the compresseddentry structure. We use one bit, called
compressed bit, percdataarray(the lowest bit in the first byte ofcdata) to indicate whether it contains compressed
data or whethercdatacontains a forwarding pointer to an uncompressed representation of that structure (i.e., some
field value was incompressible). Initially, this bit is set to 1, which meanscdata contains compressed values. Later, if
an incompressible value is encountered for any compressed field of that structure, this bit is set to 0 and the first word
of cdatais set to point to an uncompressed representation of the structure. More detail is discussed in Section 4.1.

For each compressed data structure, two tables, shown in Figure 2, are created automatically. The first table,
compress access table, stores the information about how to handle compressed values for each compressed field.
The second table,expansion access table, contains information about how to handle a value once an instance of a
compressed data structure is expanded to store an incompressible value. The compress access table is used to access
the compressed representationcdataof a compressed structure as long as all the data values are compressible. Consider
the compress access table shown in Figure 2 a).fid is a unique id assigned to each compressed field for fast look-up

3In fact, the total number of distinct values that appeared ind inode is larger than 4096. However, the table used for value profiling is set
to hold a maximum of 4096 values. Note that even though the number of distinct values recorded saturates at 4096, this doesnot compromise
soundness because in this case, saturation simply means compression-table scheme is not applied.



1245 0

31 30  29

48

d_inode

d_parent

d_mount

d_op

not used

char  cdata [7 ]

0
1
2
3
4
5
6 55

char  cdata [7 ]

void *extra
(4 byes)

compress bi t= 1 compress bi t= 0

0    d_mount   
1    d_op         
2    d_inode    
3    d_parent   

fid  field              start   bits  scheme

compress access table

0    d_mount   
1    d_op         
2    d_inode    
3    d_parent   

fid  field              start   bits    extra

expansion access table

a) Memory layout of compressed fields in cdata array
  and the compression access table.

b) Memory layout of cdata array and extra al located space 
 after expansion and the expansion access table.

i

 1
 2
 5

30

 1
 3

25
19

NW
CT
CP

CP+CT

 0
32
64
96

32
32
32
32

True
True
True
True

extra_space

d_inode

d_op

d_parent

031

3263

6495

d_mount

96127

not used in this case
(3 bytes)

Figure 2: Memory layout of compressed data structure beforeand after expansion.

Procedurecompress(S, v)
if (S.type = NW ) then /* narrow width */

v′ ← v

else if(S.type = CP ) then /* common prefix */
v′ ← v & S.offset mask

else/* compression-table + common prefix */
prefix ← v&S .prefix mask

idx ← index ofprefix in S .compress table

v′ ← (idx << S.offset bits) | (v & S.offset mask)
return v′

Proceduredecompress(S, v)
if (S.type = NW ) then /* narrow width */

v′ ← v

else if(S.type = CP ) then /* common prefix */
v′ ← S.prefix | v

else/* compression-table + common prefix */
idx← extra index fromv

prefix ← S .compress table[idx]
v′ ← S.prefix | v

return v′

Note: The operators&, |, and<< denote bitwise-and, bitwise-or, and left-shift operations.

Figure 3: Procedures for compression and decompression a valuev according to compression schemeS.

into the table.start is the bit location where a compressed field starts incdataandbits is the bit width of a compressed
field. Lastly,scheme is the compression scheme of a compressed field as we discussed in Section 3.2.

The size of arraycdatacan be computed as⌈
∑

Bitsf +1

8 ⌉, whereBitsf is the bit width of a compressed fieldf .
For example, the size ofcdatafor compresseddentry structure is⌈ 1+3+25+19+1

8 ⌉ = 7

4.1 Maintaining compressed data
The main issue in dealing with compressed structures is thatwhile the decision to compress specific fields of a structure
are made statically, the actual runtime representation of such a structure may or may not be compressed, depending on
the values that have been stored into it. When accessing a compressed data structure at runtime, we therefore have to
check the compress bit to determine the actual representation of that structure. Suppose that we have a compressible
data structureT whose compressed representation isT ′. As execution progresses, instances ofT ′ are accessed and
maintained as follows:

Allocate and free. Allocation and freeing of dynamically allocated data proceeds as expected: when a compressed
structure is allocated, the compress bit is set to 1; when it is freed, its compress bit is checked, and if this bit is
found to be 0, i.e., the structure was expanded, then the expanded representation is freed as well.

Read from a compressed field.When loading the value of a field within an instance ofT ′, if the structure is in



compressed form, the compress access table is looked up to determine the location within thecdataarray of the
compressed bits for that field as well as the compression scheme used. This information is then used to access
the compressed bits for the field. Thedecompress() routine, shown in Figure 3, is then used to transform these
bits to an uncompressed value that can be used in a computation. If the structure is in uncompressed form, the
forwarding pointer incdatais used to access the uncompressed data, and the value of the field is accessed using
location and size information obtained from the expansion access table.

Write to a compressed field.When storing a valuev to a compressed fieldf in T ′, we have the following cases.
(1) If T ′ is compressed andv is small enough to fit in the compressed representation of that field, then we use
the functioncompress(), shown in Figure 3, to create the compressed representationv′ of v. We then use the
compress access table to determine the location and size of the compressed field withincdata, and write the
compressed bits there. (2) IfT ′ is compressed butv is too large to fit into the compressed representation of the
field, we have to first create an expanded representation. This is done as described below. The valuev is then
written to the appropriate location within the expanded representation. (3) IfT ′ is not compressed, we use the
expansion access table to determine the location and size ofthe field in the expanded representation, and write
v at that location.

If an incompressible value is encountered for any compressed field at runtime, all of the compressed fields are
expanded to their original size according to the expansion access table. Consider the example shown in Figure 2 b),
which illustrates how an instance of compresseddentry structure is expanded. First, extra space is allocated to hold
decompressed values. The first four bytes ofcdataare used to store the address of the extra allocated space. The
remaining space incdata is reused as much as possible, but in the example ofdentry, the remaining three bytes
are left unused. The compressed values stored incdataare decompressed and stored in new locations according to
the expansion access table. Assigning the address of extra space to the first four bytes incdataalso has the effect of
setting the compress bit incdatato 0.4

We made the design decision to expand all the compressed datain an instance of compressed data structure when-
ever any of the fields within that structure is assigned an incompressible value. The reason for this decision is that
there is at most one expansion operation for each instance and only one pointer is needed to keep the addresses of extra
space. It is possible to expand compressed fields separately, but that can lead to multiple allocations of extra space
(which is expensive) and also require multiple pointers. Once an instance of a compressed data structure is expanded,
it is always maintained in uncompressed form. This is to simplify the maintenance of an expanded instance, and also
to avoid repeatedly expanding and converting back to compressed form.

4.2 Soundness considerations
Data structure compression changes the way in which structure fields are represented and accessed. To preserve
safety, we have to make sure that such changes do not affect the observable behavior of the program. Intuitively, the
requirement for this is that a fieldf of a structureS is considered for compression only if the only way in which
f can be accessed in the program is via expressions of the form ‘S.f ’ or ‘ p->f ’, wherep is a pointer toS. This
property ensures that we can use type information to ensure that all accesses to a compressed field have the appropriate
compression/decompression code added to them. We enforce this requirement as follows: a fieldf of a structureS is
excluded from compression if any of the following hold: (1) the address off is taken, e.g., via an expression of the
form &(S.f); (2) a pointerp to the structureS or to the fieldf is cast to some other type (in either case, it would be
possible to bypass the compression/decompression code when accessingf ); or (3) an offset is used to access a field
within S, e.g.,(&S)+4. These restrictions exclude from compression any field of a structure that can have a pointer to
it. This is important because the process of comparison can change the relative order of fields that are compressed and
fields that are not compressed: the former get pulled into thecdataarray, the latter do not. The conditions given above
ensure that code that may be sensitive to the layout of fields within the structure are precluded from compression.

5 Experimental Evaluation

We evaluated our ideas using the Linux kernel version 2.6.19. In order to emulate an embedded system environment,
the experiments were conducted on an old laptop machine withIntel Pentium III 667MHZ processor and 128MB of
memory. The data structure profiling is done by modifying GCC(4.2.1) to insert profiling code for every statement

4This assumes that dynamic memory allocation routines such as malloc return addresses that are at least even-address aligned (common imple-
mentations ofmallocsatisfy this requirement, e.g., the GNU C library returns blocks that are at least 8-byte aligned).



Cache Name Object type Size Ratio Cache Name Object type Size Ratio
(KB) (%) (KB) (%)

ext2 inodecache ext2 inode info 1034 46.8 inodecache inode 51 2.3
dentrycache dentry 450 20.4 sysfsdir cache sysfs dirent 37 1.8
proc inodecache proc inode 137 6.2 bio bio 18 0.8
buffer head buffer head 67 3.0

Table 2: Slab caches that are compressed (sorted by cache size in non-increasing order)

that contains field referencing expression in a program. Thesource code transformations are done manually at present.
However, it is possible to automate the process using a source-to-source transformation tool, such asCIL [11].

5.1 Selecting the dynamic data structures to compress
In our current implementation, we compress part of the slab caches in the Linux slab allocator (recall that, as discussed
in Section 2, this forms the core of dynamic memory management in the Linux kernel). The compressed slab caches
are listed in Table 2. Column 1 gives the names of compressed slab caches; column 2 is the data structure type used
by each slab cache; column 3 shows the size of each slab cache based on profiling; and column 4 is the ratio of the
size of each slab cache to the total memory space in the slab allocator. Overall, the slab caches in Table 2 account for
over 81% of all memory space used by the Linux slab allocator.This is also the reason why we selected them. We
ignore the remaining slab caches for two reasons: first, mostof the remaining slab caches consume only small amount
of memory even though they can be compressed; second, there are several slab caches(account for about 14% of the
total memory space) that can not be compressed with our current implementation, e.g., we currently do not compress
array fields, and the main data field in the slab cacheradix tree node, which is also the largest one that we do
not compress, is an array.

Data structure compression can save memory space but it can also bring cost—compression/decompression of a
compressed field are much more expensive than the store/loadoperations of an uncompressed field. Based on the
profile information, all the fields can be classified into two categories:hotfields, which are the fields used frequently,
andcold fields, which are the fields used infrequently. Conceptually, we should not compress hot fields because it
may cause significant amount of overhead even though more memory space can be saved. To control this cost-benefit
tradeoff, we use a user-specified thresholdr ∈ [0.0, 1.0] to determine the fraction of compressible fields (i.e., hot
fields) that should not be compressed.

Let costbe the number of load/store of a compressible field based on profiling. Let C be the total number of
load/store of all compressible fields in a program.5 Given a value ofr, we consider all the compressible fieldsf in the
program in decreasing order ofcost(f) and determine the smallest value ofN such that

∑

f :cost(f)>N

cost(f) ≤ C · r.

Any compressible field whose number of load/store is larger thanN is avoided from compression. For example,r=0.0
means all compressible fields are compressed; andr=1.0 means nothing is compressed.

5.2 Experimental results
We used two sets of benchmarks to evaluate the runtime impacts of our approach: (1) a set of kernel-intensive bench-
marks:find, which runs thefind command at the root directory to scan all files in the file system, copy.small, which
makes a copy of 5MB file andcopy.large, which makes a copy of 20MB file; and (2) a collection of eight application
programs from the MediaBench suite [10], used for evaluating multimedia and communications systems. These two
sets of benchmarks were tested separately while all programs in each set were executed sequentially (for instance, the
execution sequence of kernel-intensive benchmarks isfind, copy.small, copy.large).

Table 3 shown the average percentage of memory reduction in Linux kernel slab allocator and average percentage
of performance overhead for kernel-intensive benchmarks and MediaBench benchmarks. The values ofr considered in
our experiments are{0.0, 0.2, 0.4, 0.6,0.8}. As we can see in Table 3, both the average memory reduction and average
performance overhead decrease when the value ofr increases. Whenr=0.0, there is about 18% memory reduction

5In case of our experiment in the Linux kernel, all compressible fields are defined as the compressible fields in the data structures in Table 2.



Threshold Kernel-intensive MediaBench
r Memory reduction Speed Overhead Memory reduction Speed Overhead

0.0 18.0% 7.3% 17.5% 1.9%
0.2 16.9% 6.0% 16.5% 1.8%
0.4 14.3% 2.7% 15.4% 0.9%
0.6 14.3% 1.1% 14.7% 0.4%
0.8 11.2% 0.1% 11.9% −0.1%

Table 3: Average memory savings and overhead of kernel-intensive benchmarks and MediaBench.

      find      copy.small      copy.large       adpcm      epic       g721      ghostscript          gsm       jpeg      mpeg2    pgp            
0

5

10

15

20

25

M
em

or
y 

re
du

ct
io

n 
(%

)

a) Memory reduction percentage of Linux slab allocator.

-5

0

5

10

15

20

P
er

fo
rm

an
ce

 o
ve

rh
ea

d 
(%

)

find      copy.small      copy.large       adpcm      epic       g721      ghostscript          gsm       jpeg      mpeg2    pgp            

b) Performance overhead percentage of benchmark programs.

keys: r=0.0 r=0.2 r=0.4 r=0.6 r=0.8

Figure 4: Runtime impacts of dynamic data structures compression on memory saving and performance overhead.

for both benchmarks while the overhead of MediaBench (1.9%)is much lower than the overhead of kernel-intensive
benchmarks (7.3%). However, even for kernel-intensive benchmarks, the overhead reduces to only 1.1% whenr=0.6
and there is still about 14% of memory reduction.

The detailed results of memory reduction percentage and performance overhead percentage for each program are
shown in Figure 4 a) and b) respectively. Generally, there ismore overhead for kernel-intensive benchmarks than
MediaBench benchmarks.copy.largehas the largest overhead(over 15%) among all programs whenr=0.0. But its
overhead reduces to below 5% whenr ≥ 6. The results shown in Figure 4 a) also include the extra allocated space from
expansion and the size of extra allocated space is relative small (less than a page (4KB)) for both sets of benchmarks.

Table 4 shows the static impacts of our approach on size reduction of compressed kernel data structure and kernel
code size. On average, there is 28.7% size reduction of all the compressed data structures in the Linux kernel when
r=0.0. The number drops to 21.5% whenr=0.8. The increase of code size caused by code transformation is about
5.4% whenr=0.0 and the increase reduces to about 2.5% whenr=0.8.

5.3 Discussion
The reason for low overall performance overhead in the Linuxkernel is that, even though data structure compression
causes a performance overhead within the Linux kernel, the actual time spent within the kernel is only a small portion



Threshold r 0.0 0.2 0.4 0.6 0.8

Avg. data structure size reduction28.7% 27.0% 25.9% 24.6% 21.5%
Increase of code size 5.4% 4.9% 3.9% 3.6% 2.5%

Table 4: Static impacts on data structure size and code size.

of the total running time of the whole system. For programs inMediaBench, most of the running time is spent in the
user processes. Even for the kernel-intensive benchmarks,a significant amount time is spent in data copying between
the kernel and the user applications. In order to evaluate how data structure compression can affect computation-
intensive applications, we applied our approach to severalbenchmarks in the Olden test suite [3],6 which consists of
a set of pointer intensive programs that make extensive use of dynamic data structures. Due to space constraints, we
only summarize the results here.

When compression is applied to on all fields regardless of howheavily they are used, we see significant perfor-
mance degradation. The average reduction in memory consumption ranges from a little over 30%, for small inputs, to
about 23% for large inputs. This is accompanied by slowdownsranging, on average, from about 183% for small inputs
to 194% for large inputs. When the most frequently accessed field is excluded from compression, there is a drop in the
amount of memory usage reduction obtained, as one would expect: about 20% on average for small inputs and 6% for
large inputs. However, because the remaining fields that arecompressed are still accessed quite frequently, this still
incurs significant runtime overhead, averaging about 88% for small inputs and 116% on large inputs. Interestingly,
in the second case one of the benchmarks consumed more space with data compression than the original version: the
reason for this is that the set of values encountered in the profiling data (small inputs) did not reflect the range of
values encountered in the large inputs, leading to many compressed representations having to be expanded at runtime,
thereby incurring an extra cost of 4 bytes per expanded representation to hold a pointer to the expanded representation.

The performance results for the Olden benchmarks illustrate that data structure compression can lead to significant
performance overheads if applied to heavily used data. In order to be a good candidate for data structure compression,
a program should use plenty of compressible data (to obtain significant memory size reductions) which are used
relatively infrequently (to keep the runtime performance overhead low). The OS kernel on embedded systems typically
meets these requirements. Our experiments with the Linux kernel bear this out, with good reductions in dynamic
memory usage with only a very small performance overhead.

6 Related work

The introduction of 64-bit architectures has led a number ofresearchers to investigate the problem of compressing
pointers into 32 bits [1, 12, 9]. Our work differs from these in that we can compress both pointer data and non-pointer
scalar data, so a wider set of applications can be benefit fromour approach.

Zhang and Gupta [14] use a hardware-based scheme to reduce the memory usage of dynamic data by compressing
a 32-bit integer and a 32-bit pointer into 15-bit values, which then are packed into a single 32-bit field. Since their
approach compresses each field in a uniform way, it can potentially cause two problems: first, space is wasted if
compressible fields require few bits than 15; and second, more expansions happen at runtime if compressible fields
require more bits than 15. Also, it requires specialized hardware to improve performance.

Cooprider and Regehr [6] apply static whole-program analysis to reduce a program’s data size including statically
allocated scalars, pointers, structures, and arrays. However, their work targets small systems on microcontrollers that
do not support dynamic memory allocation. Priot work on reducing the memory requirement of OS kernels focuses
only on static memory data in the OS kernels, i.e., code and global data [4, 5, 8]. We are not aware of previous work
that exploits the opportunities of compressing dynamic data in the context of OS kernels.

7 Conclusions

Embedded systems are usually memory-constrained. This makes it important to reduce the memory requirements
of embedded system software. An important component of thisis the memory used by the operating system. This
paper describes an approach to reducing the memory requirements of the dynamic data structures within the operating
system. We use value profiling information to transform the OS kernel code reduce the size of kernel data structures.
Experimental results show that, on average, our approach reduces the memory consumption of the slab allocators

6The Olden benchmarks we considered areperimeter, treeadd, andtsp.



in Linux by about 17.5% when running the MediaBench suite, while incurring only minimal increases in code size
(5.4%) and execution time (1.9%).

References

[1] A.-R. Adl-Tabatabaiet al. Improving 64-bit Java IPF performance by compressing heap references. InCGO
’04: Proc. International Symposium on Code Generation and Optimization, pages 100–110, 2004.

[2] B. Calder, P. Feller, and A. Eustace. Value profiling and optimization.Journal of Instruction Level Parallelism,
vol. 1, March 1999.

[3] Martin Christopher Carlisle.Olden: parallelizing programs with dynamic data structures on distributed-memory
machines. PhD thesis, Princeton, NJ, USA, 1996.

[4] D. Chanet, B. De Sutter, B. De Bus, L. Van Put, and K. De Bosschere. System-wide compaction and special-
ization of the Linux kernel. InProc. 2005 ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES’05), pages 95–104, June 2005.

[5] D. Chanet, B. De Sutter, B. De Bus, L. Van Put, and K. De Bosschere. Automated reduction of the memory
footprint of the linux kernel.Trans. on Embedded Computing Sys., 6(4):23, 2007.

[6] N. Cooprider and J. Regehr. Offline compression for on-chip ram. InPLDI ’07: Proceedings of the 2007 ACM
SIGPLAN Conference on Programming language Design and Implementation, pages 363–372, June 2007.

[7] B. Fitzgibbons. The Linux slab allocator.http://citeseer.ist.psu.edu/fitzgibbons00linux.html.

[8] H. He, J. Trimble, S. Perianayagam, S. Debray, and G. Andrews. Code compaction of an operating system kernel.
In Proc. International Symposium on Code Generation and Optimization (CGO), pages 283–295, March 2007.

[9] C. Lattner and V. S. Adve. Transparent pointer compression for linked data structures. InMSP ’05: Proceedings
of the 2005 workshop on Memory system performance, pages 24–35, New York, NY, USA, 2005. ACM.

[10] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Mediabench: a tool for evaluating and synthesizing multi-
media and communications systems. InProc. 30th IEEE International Symposium on Microarchitecture (Micro
’97), pages 330–335, December 1997.

[11] George C. Necula, Scott McPeak, Shree Prakash Rahul, Shree Prakash Rahul, and Westley Weimer. Cil: Inter-
mediate language and tools for analysis and transformationof c programs. InCC ’02: Proceedings of the 11th
International Conference on Compiler Construction, pages 213–228, London, UK, 2002. Springer-Verlag.

[12] K. Venstermans, L. Eeckhout, and K. De Bosschere. Object-relative addressing: Compressed pointers in 64-bit
java virtual machines. InIn Proc. ECOOP ’07, volume 4609, pages 79–100. Springer-Verlag, 2007.

[13] S. Watterson and S. K. Debray. Goal-directed value profiling. In Proc. Tenth International Conference on
Compiler Construction (CC 2001), April 2001.

[14] Y. Zhang and R. Gupta. Data compression transformations for dynamically allocated data structures. InCC ’02:
Proc. 11th International Conference on Compiler Construction, pages 14–28. Springer-Verlag, 2002.


