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Abstract

Embedded systems are becoming increasingly complex angitha growing trend to deploy complicated soft-
ware systems such as operating systems and databases idenhiptatforms. It is especially important to improve
the efficiency of memory usage in embedded systems becaese tlevices often have limited physical memory.
Previous work on improving the efficiency of memory usage # karnels has mostly focused on reducing the size
of code and global data in the OS kernel. This paper, by csntpgesentslynamic data structure compressjamn
complementary approach that reduces the runtime memotgrfobof dynamic data structures. A prototype imple-
mentation for the Linux kernel reduces the memory conswmnpif the slab allocators in Linux by about 17.5% when
running the MediaBench suite, while incurring only mininvadreases in execution time (1.9%).

1 Introduction

The amount of memory available on typical embedded systsnusually limited by considerations such as size,
weight, or cost. This makes it important to reduce the menfmoyprint of software running on embedded systems.
The operating system on an embedded processor accountsifprificant part of its memory requirements. While
there has been some work on reducing the memory usage of @8 %kemnost of this has focused on reducing the size
of code and global data in the OS kernels [4, 5, 8]. Howeverstaticcomponents of an OS kernel—its code and
global data—account for only a portion of its total memorgtfarint. Just as significant are tdgnamicdata, namely,
the stack and heap memory, which can easily exceed the sgtatmf memory. We are not aware of any research on
reducing the dynamic memory consumption of OS kernels.

It turns out that, in practice, there is quite often room tuee the memory requirements for dynamic data. For
example, integer-valued variables often do not requirefulie32 bits allocated to them (on a conventional 32-bit
architecture); other opportunities for memory usage rédo@rise from redundancy in sets of pointer values whose
high-order bits typically share a common prefix. Howeveghsapportunities for data compression are usually not
obvious statically, making it difficult to optimize prograrto take advantage of them.

This paper presents a technique caliBthamic data structure compressitivat aims to address the problem of
reducing the dynamic memory requirements of programs. €chrtique uses profiling to detect opportunities for
dynamic data size reduction, then transforms the code sad#ta values are maintained using a smaller amount
of memory. The technique isafe if a runtime value is beyond the value range that can be acumated in the
compressed representation of some variable, our appragchatically “expands” that variable to its original (un-
optimized) size. Our experiments show that this approachbeaquite effective in reducing the dynamic memory
footprint of the OS kernel: applying our technique to thévsddlocator in Linux kernel reduces the dynamic memory
consumption of slab allocator in Linux kernel by about 17.&%en running the MediaBench suite, while incurring
only a 5.4% increase in code size and a 1.9% increase in éxedtime.

The remainder of this paper is organized as follows. Seaitirst gives a brief background of slab allocator in
Linux kernel. Section 3 describes our approach in more d&action 4 describes the code transformations we use to
maintain and use values in compressed form. Section 5 tesavur experimental results. Section 6 describes related
work, and Section 7 concludes.

2 Background: Linux kernel slab allocator

Slab allocation forms the core of dynamic memory allocaiiothe Linux kernel: the kernel memory allocation
routineskmalloc and kfree (the kernel-level analogs ahalloc and fre€) are built atop the slab allocator. For this
reason, our prototype implementation targets the Linulz aléocator. This section gives a brief introduction to the
slab allocator in the Linux kernel.

Slab allocation was adopted for the first time in the SunOXé&rdel and introduced in Linux kernel since Linux
2.2 [7]. It provides an efficient mechanism to speed up dyonangmory allocation and reduce internal fragmentation
in the kernel. The slab allocator groups objects icdchesnvhere each cache stores objects of the same type. The
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caches are then divided insdabs(hence the name of this system). Each slab consists of oneor physically
contiguous pages but typically consists of only a singleepdg avoid initializing objects repeatedly, the slab allioe

does not discard the objects that have been allocated amdaleased but instead saves them in memory. When a new
object is then requested, it can be taken from memory withauing to be reinitialized. Our approach does not need
to modify the internal implementation of slab allocator imlix kernel. Instead, the memory consumption of the slab
allocator is reduced by compressing only the data strusting are used by the slab caches.

3 Data Structure Compression

A data structure is transformed into a more space-efficiemttire by statically compressing its compressible fields
which include scalars and pointers, based on profile inftiomaOur approach consists of the following steps. We first
use training inputs to obtain profile information about th&ses stored in each compressible field. Based on the profile
data, we choose a compression scheme for each compresihlsith the goal to use as few bits as possible. Finally,
we modify the program source code to use compressed stesctiach statement that writes to a compressed field
is modified so that the value being written is compressedapately before being stored. Similarly, each statement
that reads from a compressed field is modified to extract thee\a the field from the compressed representation and
decompress it appropriately. To ensure safety of our opétitn, we exclude from consideration structure fields with
certain properties; this is discussed in more detail iniSeet.2.

It is important to note that since this compression is basedaia obtained from profiling runs, it can happen
that our scheme compresses a data field bits but some run of the program can produce a value for tHdtthat
requires more thah bits to represent it. To handle this, our approach uses arsele expand the compressed data
field with additional storage, as necessary, to hold themmqressible data.

3.1 Data structure profiling

The goal of data structure profiling is to obtain informatedsout the values stored in variables and in the fields of
aggregate data structures, in particidar uct s (i.e., records), in order to determine whether and how topress
them. Data structure profiling is done by instrumenting albfreference expressions in the source code of a program.
In the C programming language, the targets for profiling aeldi that are referenced through the operatorshd

‘- >’ Three kinds of data are collected for a compressible fig)dialue rangei.e., the minimal and maximum values
that are encountered during program executiorgi&jinct valueswhich record the topV distinct values presented

in a profiled field [2, 13]; and 3) the number of referenéeBased on the characteristics of the data obtained from
profiling, the values taken on by a field in a data structurebeaolassified into the following categories:

Narrow width. This refers to a set of values that can be represented by &samaber of bits. For example, values
from the set{0, 2, 3,5} can be represented using only 3 bits.

Common prefix. This refers to a set of values whose binary representatiavis some number of high-order bits in
common. In other words, there exists solng 0 such that the tog bits of these binary representations are the
same for all of these values. This situation is encounterieagpily with pointers.

Small set. This refers to a set of values of “sufficiently small” carditya The idea here is that a value can then be
referred to by its index in the set, and the index can be repted using only a small number of bits.

3.2 Data compression techniques

Based on the characteristics of profiling data, as descabete, we consider four kinds of compression techniques:
(1) compression with narrow-width dat&/(1"); (ii) compression with common-prefix datd P); (iii) compression
with compression table, which is used for small-set déat@); and(iv) a combination of 2 and 3{T+CP). The

first scheme is mainly used to compress non-pointer scglerfiglds and the other three schemes are mainly used to
compress pointer fields.

Figure 1 illustrates one of the Linux kernel data structustted dent ry (directory entry), which is used to
describe the name of a file in the Linux file system. For sinifgligve only list four compressible fields ohent r y to
explain our compression approach. Table 1 shows the prafileabllected for these four fields. In Table 1, the second
columnis the type of each field and the third column is the mitfvof each field. The fourth and fifth columns indicate
the value range of each field. The fifth column is the numbeisifritt values of a fielél The last column shows the

1This number is used later in our experimental evaluatiorveidecompressing frequently-used fields and thereby retheeuntime overhead.
2a value table with size= 4096 is used in experiments
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Figure 1: Data structuréent r y in Linux kernel

| Field | Type | Size(bits)] Min | Max | #of values| # of pg. prefix]
d_nount ed | Integer 32 0x0 0x1 2 -
d.op Pointer 32 0x0820b78c | 0x0820ccd4 6 -
d_i node Pointer 32 0x086480b4 | 0x09c82e34 4096 737
d_par ent Pointer 32 0x084f blad | 0x0903cf 74 349 99

Table 1: Profiling data of the four compressible fieldslent r y structure (with value tableize = 4096)

data for “page prefixes,” a special case of value profiling Imcl the values are prefixes of the addresses of memory
pages. Page prefix information is used for a particular tfptta compression that combines the common-prefix and
compression-table techniques; this is discussed in maed deSection 3.2.4.

3.2.1 Compression with narrow width data

Narrow width data is common in many non-pointer scalar typlel$i. The fieldd_nount ed in structuredent ry in
Figure 1 illustrates this: it is defined to be of typet , which has value range-23!, 23! — 1] in a 32-bit machine.
d_nount ed is used to represent the number of file systems that are nebont®ne particular directory. Table 1
shows that the value range dfrount ed is [0, 1]. This is because normally there is at most one file system that
is mounted on one directory. It is, therefore, very unlikéilgt there ar@3' — 1 file systems mounted on a single
directory. A field with narrow width data is compressed byesghg the least possible bit width to represent the value
ranges. In the above example, a single bit is enough to reptrédse value range of field nount ed.

3.2.2 Compression with common prefix

A set of addresses that share a common prefix can be compi®s$actoring out the common prefix and keeping
the remaining bits as the compressed value. To decomphesspinmon prefix of the pointer is simply added back to
the compressed value. For example, consider the value drigdd d_op in Table 1. The minimum and maximum
addresses of field_op share a 17-bit common prefi®X08208- - - ), which means all the addresses presented in
d_op during profiling also share 17 bit common prefix. We can ttaeefepresent each value for this field using
32 — 17 = 15 bits, with the 17-bit prefix stored separately. Wheneveffigld is used, the 17-bit prefix and 15-bit
compressed representation are concatenated to obtaingireab32-bit representation.

3.2.3 Compression with compression table

The basic idea of this compression scheme is to keep thelaldtavalue of a field in a table, which we call the
compression tableand to use the index into the table as the compressed vathe field. LetV; be the set of distinct



values of a fieldf from profiling, then we neeflog,|V;|] bits to represent the index féf;. For instance, in Table 1,
d_op takes on 6 distinct values, and we need 3 bits to represeirtdbeges for this field in the compression table.

Using a compression table can achieve better compressiolséhan using a common prefix. However, maintain-
ing the compression table may introduce considerable eaerht runtime, especially when the size of the compression
table is large. To limit the cost of using a compression tatile implementation limits the size of the table to at most
256 values; thus, a value needs at most 8 bits for the indexenwtie size of the compression table is larger than
this limit, the common-prefix scheme, described in Secti@23above, is used instead. For example, consider the
profiling data of fieldd_i node in Table 1. The number of distinct values (addresses) bhode is 40962 which is
larger than the limit. Therefore, compression with comgi@stable is not applied td_i node.

3.2.4 Combining common prefix and compression table

There are situations where the compression results canrttefumproved by combining the common-prefix and
compression-table approaches. As an example, since a m@age in the Linux kernel is 4KB in size, the addresses
of all the objects inside of a memory page of a slab cacherdiffdy in the lower 12 bits, which give the offset
within the page; the top 20 bits of these addresses are ther@icommon prefix—the page prefix. The page prefixes
themselves can be further compressed by keeping them in pressaion table and using the index into the table plus
page offset as compressed value.

For example, consider fieliLpar ent in dent r y structure: this is a pointer to objects in tthent r y slab cache,
as shown in Figure 1. The number of distinct page prefixekpar ent (shown in the last column in Table 1) is 99,
which is less than our 256 value limit for compression tali#e.sTherefore, fieldl_par ent can be compressed to
use[log,99] = 7 bits for the index and 12 bits for page offset, for a total obit8. This is illustrated in Figure 1.

3.2.5 Choosing the compression scheme

To determine which compression scheme to use for each fiedlddlafa structure, we compute, for each compression
scheme, the number of bits that would be necessary to rejiridsetraining set of values obtained for that field using
that compression scheme. For each field, we choose the sthanaehieves the smallest bit width for that field.

The choice of a compression scheme for a field in this maniiectefely determines the representation for the
values of that field at runtime. Runtime values for that fiblat tan be accommodated within the chosen representation
for that field are said to beompressiblgwhile values that cannot be accommodated within that sgmtation are said
to beincompressibleFor example, suppose we decide to use narrow data to repeegeld f with 6 bits. Then, the
runtime value 58 forf is compressible, but the value 68 is incompressible.

4 Data Structure and Source Code Transformation

After the compression scheme for each compressible fieldlatastructure has been determined, all the compressed
fields are packed into an arragtatathat is just large enough to accommaodate the total numbeétsahlthe compressed
data structure. We usehar as the type of arraydata becausehar is the smallest data type in C.

Figure 2 a) shows the memory layout of arealy:ta in the compressedent r y structure. We use one bit, called
compressed hifpercdataarray(the lowest bit in the first byte eflata) to indicate whether it contains compressed
data or whethecdatacontains a forwarding pointer to an uncompressed reprasemtof that structure (i.e., some
field value was incompressible). Initially, this bit is setlt, which meansdata contains compressed values. Later, if
an incompressible value is encountered for any compressdddfithat structure, this bit is set to 0 and the first word
of cdatais set to point to an uncompressed representation of thetgteu More detail is discussed in Section 4.1.

For each compressed data structure, two tables, shown urd=R) are created automatically. The first table,
compress access tablstores the information about how to handle compressecesdir each compressed field.
The second tableexpansion access tableontains information about how to handle a value once aarcge of a
compressed data structure is expanded to store an incasifpeagalue. The compress access table is used to access
the compressed representatiniataof a compressed structure as long as all the data valuesrapessible. Consider
the compress access table shown in Figure Za)is a unique id assigned to each compressed field for fastugok-

3In fact, the total number of distinct values that appeared_imode is larger than 4096. However, the table used for value pngfits set
to hold a maximum of 4096 values. Note that even though thebeurof distinct values recorded saturates at 4096, this doesompromise
soundness because in this case, saturation simply meamsession-table scheme is not applied.



compress bit=1 compress bit=0
char cdata[7] ’ char cdata[7] P

i
0 5[4 dop2f1]0 void *extra
1 (4 byes) —
2 d_inode d_mount
3131 30 |29 not used in this case extra_space
4 (3 bytes)
d_parent 31 d_mount 0
5 63 a_op 32
6|55 not used 48 95 d_inode 64
127 d_parent 96

compress access table expansion access table

fid field start bits scheme fid field start bits extra
0 d_mount 1 1 NwW 0 d_mount 0 32 True
1 d_op 2 3 CT 1 d_op 32 32 True
2 d_inode 5 25 CcP 2 d_inode 64 32 True
3 d_parent 30 19 CP+CT 3 d_parent 96 32 True

a) Memory layout of compressed fields in cdata array b) Memory layout of cdata array and extra allocated space
and the compression access table. after expansion and the expansion access table.

Figure 2: Memory layout of compressed data structure befodeafter expansion.

Procedure compress (S, v) Procedure decompress (S, v)

if (S.type = NW) then /* narrow width */ if (S.type = NW) then /* narrow width */
v — v —

else if(S.type = C'P) then /* common prefix */ else if (S.type = C'P) then /* common prefix */
v — v & S.offset_mask v — S.prefiz | v

else/* compression-table + common prefix */ else/* compression-table + common prefix */
prefiz «— v& S.prefiz_mask idx « extra index fromy
idz < index of prefiz in S.compress_table prefix < S.compress_table[idz)
v — (idz << S.offset_bits) | (v & S.offset-mask) v — S.prefic | v

return o’ return o’

Note: The operatorg, | , and<< denote bitwise-and, bitwise-or, and left-shift operasion

Figure 3: Procedures for compression and decompressidoewaccording to compression schersie

into the table start is the bit location where a compressed field startglismtaandbit s is the bit width of a compressed
field. Lastly,scheme is the compression scheme of a compressed field as we diddnsSection 3.2.

The size of arragdatacan be computed ds%], whereBits ; is the bit width of a compressed field
For example, the size eftlatafor compressedent ry structure ig/ 13425419417 — 7

4.1 Maintaining compressed data

The main issue in dealing with compressed structures isithiée the decision to compress specific fields of a structure
are made statically, the actual runtime representationdf a structure may or may not be compressed, depending on
the values that have been stored into it. When accessing pressed data structure at runtime, we therefore have to
check the compress bit to determine the actual represemtaftithat structure. Suppose that we have a compressible
data structurd” whose compressed representatioff’is As execution progresses, instanced 6fare accessed and
maintained as follows:

Allocate and free. Allocation and freeing of dynamically allocated data prede as expected: when a compressed
structure is allocated, the compress bit is set to 1; whenfieked, its compress bit is checked, and if this bit is
found to be 0, i.e., the structure was expanded, then thenebeplarepresentation is freed as well.

Read from a compressed field.When loading the value of a field within an instanceTdf if the structure is in



compressed form, the compress access table is looked upetonilee the location within thedataarray of the
compressed bits for that field as well as the compressiomsehised. This information is then used to access
the compressed bits for the field. THecompress() routine, shown in Figure 3, is then used to transform these
bits to an uncompressed value that can be used in a comput#titbe structure is in uncompressed form, the
forwarding pointer ircdatais used to access the uncompressed data, and the value eldhe ficcessed using
location and size information obtained from the expanstmess table.

Write to a compressed field. When storing a value to a compressed field in 77, we have the following cases.
(1) If T" is compressed andis small enough to fit in the compressed representation ofigld, then we use
the functioncompress(), shown in Figure 3, to create the compressed representdtmfiv. We then use the
compress access table to determine the location and size @ompressed field withiodatg and write the
compressed bits there. (2)17 is compressed butis too large to fit into the compressed representation of the
field, we have to first create an expanded representatiors. i kione as described below. The valuis then
written to the appropriate location within the expandedespntation. (3) Iff” is not compressed, we use the
expansion access table to determine the location and sibe dield in the expanded representation, and write
v at that location.

If an incompressible value is encountered for any compdeBskl at runtime, all of the compressed fields are
expanded to their original size according to the expansioess table. Consider the example shown in Figure 2 b),
which illustrates how an instance of compresdedt r y structure is expanded. First, extra space is allocatedltb ho
decompressed values. The first four bytesdditaare used to store the address of the extra allocated spaee. Th
remaining space iedatais reused as much as possible, but in the examptéeot r y, the remaining three bytes
are left unused. The compressed values storediataare decompressed and stored in new locations according to
the expansion access table. Assigning the address of @éca $0 the first four bytes icdataalso has the effect of
setting the compress bit odatato 02

We made the design decision to expand all the compressethdatanstance of compressed data structure when-
ever any of the fields within that structure is assigned anrmaressible value. The reason for this decision is that
there is at most one expansion operation for each instarberdy one pointer is needed to keep the addresses of extra
space. It is possible to expand compressed fields separatlthat can lead to multiple allocations of extra space
(which is expensive) and also require multiple pointersc®an instance of a compressed data structure is expanded,
it is always maintained in uncompressed form. This is to §ijmhe maintenance of an expanded instance, and also
to avoid repeatedly expanding and converting back to cossgeform.

4.2 Soundness considerations

Data structure compression changes the way in which steudields are represented and accessed. To preserve
safety, we have to make sure that such changes do not aféeecbervable behavior of the program. Intuitively, the
requirement for this is that a fieldl of a structureS is considered for compression only if the only way in which

f can be accessed in the program is via expressions of the ferfhor ‘p- >f’, wherep is a pointer toS. This
property ensures that we can use type information to ensatall accesses to a compressed field have the appropriate
compression/decompression code added to them. We enfosaeduirement as follows: a fieltiof a structures'is
excluded from compression if any of the following hold: (hetaddress of is taken, e.g., via an expression of the
form &(S.f); (2) a pointerp to the structureS or to the fieldf is cast to some other type (in either case, it would be
possible to bypass the compression/decompression codeaeicessing); or (3) an offset is used to access a field
within S, e.g.,(&S5) +4. These restrictions exclude from compression any field tigtire that can have a pointer to

it. This is important because the process of comparisonicange the relative order of fields that are compressed and
fields that are not compressed: the former get pulled intada¢aarray, the latter do not. The conditions given above
ensure that code that may be sensitive to the layout of fieidiénithe structure are precluded from compression.

5 Experimental Evaluation

We evaluated our ideas using the Linux kernel version 2.ari8rder to emulate an embedded system environment,
the experiments were conducted on an old laptop machinelmtighPentium 11l 667MHZ processor and 128MB of
memory. The data structure profiling is done by modifying G@.1) to insert profiling code for every statement

4This assumes that dynamic memory allocation routines ssiohefioc return addresses that are at least even-address aligmach@@oimple-
mentations ofmalloc satisfy this requirement, e.g., the GNU C library returrecks that are at least 8-byte aligned).



Cache Name Object type Size | Ratio || Cache Name | Object type Size | Ratio

(KB) | (%) (KB) | (%)
ext2inodecache| ext 2_i node_.i nfo | 1034 | 46.8 || inodecache i node 51 2.3
dentrycache dentry 450 | 20.4 || sysfsdir_.cache| sysfs_dirent 37 1.8
procinodecache| proc_i node 137 6.2 || bio bi o 18 0.8
buffer_head buf f er _head 67 3.0

Table 2: Slab caches that are compressed (sorted by caeha sian-increasing order)

that contains field referencing expression in a program.sbloece code transformations are done manually at present.
However, it is possible to automate the process using a sgorsource transformation tool, such@& [11].

5.1 Selecting the dynamic data structures to compress

In our currentimplementation, we compress part of the shalhes in the Linux slab allocator (recall that, as discussed
in Section 2, this forms the core of dynamic memory managé¢imehe Linux kernel). The compressed slab caches
are listed in Table 2. Column 1 gives the names of compredabd:aches; column 2 is the data structure type used
by each slab cache; column 3 shows the size of each slab caskd bn profiling; and column 4 is the ratio of the
size of each slab cache to the total memory space in the $tadatdr. Overall, the slab caches in Table 2 account for
over 81% of all memory space used by the Linux slab allocdfbrs is also the reason why we selected them. We
ignore the remaining slab caches for two reasons: first, ofake remaining slab caches consume only small amount
of memory even though they can be compressed; second, tieeseveral slab caches(account for about 14% of the
total memory space) that can not be compressed with ourrdumg@lementation, e.g., we currently do not compress
array fields, and the main data field in the slab cachdi x_t r ee_node, which is also the largest one that we do
not compress, is an array.

Data structure compression can save memory space but ils@abring cost—compression/decompression of a
compressed field are much more expensive than the storedjfmadtions of an uncompressed field. Based on the
profile information, all the fields can be classified into tvadegorieshotfields, which are the fields used frequently,
andcold fields, which are the fields used infrequently. Conceptyally should not compress hot fields because it
may cause significant amount of overhead even though moreonyespace can be saved. To control this cost-benefit
tradeoff, we use a user-specified threshold [0.0,1.0] to determine the fraction of compressible fields (i.e., hot
fields) that should not be compressed.

Let costbe the number of load/store of a compressible field based @iilipg. Let C' be the total number of
load/store of all compressible fields in a progra@iven a value of-, we consider all the compressible fielfl&n the
program in decreasing order @fst(f) and determine the smallest valueMfsuch that

Z cost(f) < C-r.

ficost(f)>N

Any compressible field whose number of load/store is laiganV is avoided from compression. For exampte0.0
means all compressible fields are compressedyathd means nothing is compressed.

5.2 Experimental results

We used two sets of benchmarks to evaluate the runtime impéour approach: (1) a set of kernel-intensive bench-
marks:find, which runs thd i nd command at the root directory to scan all files in the file systpy.smallwhich
makes a copy of 5MB file ancopy.large which makes a copy of 20MB file; and (2) a collection of eighplcation
programs from the MediaBench suite [10], used for evalgatiltimedia and communications systems. These two
sets of benchmarks were tested separately while all pragi@each set were executed sequentially (for instance, the
execution sequence of kernel-intensive benchmarksdscopy.smallcopy.largg.

Table 3 shown the average percentage of memory reductioimirx kernel slab allocator and average percentage
of performance overhead for kernel-intensive benchmariddediaBench benchmarks. The values obnsidered in
our experiments arf0.0, 0.2, 0.4, 0.6,0)8 As we can see in Table 3, both the average memory reductibawarage
performance overhead decrease when the valueiméreases. When=0.0, there is about 18% memory reduction

5In case of our experiment in the Linux kernel, all compressilelds are defined as the compressible fields in the datetstes in Table 2.



Threshold Kernel-intensive MediaBench
r Memory reduction| Speed Overheal Memory reduction| Speed Overheal
0.0 18.0% 7.3% 17.5% 1.9%
0.2 16.9% 6.0% 16.5% 1.8%
0.4 14.3% 2.7% 15.4% 0.9%
0.6 14.3% 1.1% 14.7% 0.4%
0.8 11.2% 0.1% 11.9% —0.1%

Table 3: Average memory savings and overhead of kernetsite benchmarks and MediaBench.
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Figure 4: Runtime impacts of dynamic data structures cosgiwa on memory saving and performance overhead.

for both benchmarks while the overhead of MediaBench (1.8%juch lower than the overhead of kernel-intensive
benchmarks (7.3%). However, even for kernel-intensivebprarks, the overhead reduces to only 1.1% witreh6
and there is still about 14% of memory reduction.

The detailed results of memory reduction percentage arfdnpesince overhead percentage for each program are
shown in Figure 4 a) and b) respectively. Generally, themadse overhead for kernel-intensive benchmarks than
MediaBench benchmarkgopy.largehas the largest overhead(over 15%) among all programs wh@®. But its
overhead reduces to below 5% whek 6. The results shown in Figure 4 a) also include the extraatkxtspace from
expansion and the size of extra allocated space is relatiadl §ess than a page (4KB)) for both sets of benchmarks.

Table 4 shows the static impacts of our approach on size tiedunf compressed kernel data structure and kernel
code size. On average, there is 28.7% size reduction of@ltdimpressed data structures in the Linux kernel when
r=0.0. The number drops to 21.5% whe+0.8. The increase of code size caused by code transfommiatabout
5.4% when-=0.0 and the increase reduces to about 2.5% wkersB.

5.3 Discussion

The reason for low overall performance overhead in the Likerxel is that, even though data structure compression
causes a performance overhead within the Linux kernel,dhebtime spent within the kernel is only a small portion



[ Threshold r [ 00 ] 02 ] 04 06 08 |

Avg. data structure size reduction28.7% | 27.0% | 25.9% | 24.6% | 21.5%
Increase of code size 54%| 49%| 3.9%| 3.6%| 2.5%

Table 4: Static impacts on data structure size and code size.

of the total running time of the whole system. For programileédiaBench, most of the running time is spent in the
user processes. Even for the kernel-intensive benchmeasignificant amount time is spent in data copying between
the kernel and the user applications. In order to evaluate data structure compression can affect computation-
intensive applications, we applied our approach to sexmmathmarks in the Olden test suite $3jhich consists of

a set of pointer intensive programs that make extensive udgnamic data structures. Due to space constraints, we
only summarize the results here.

When compression is applied to on all fields regardless of heavily they are used, we see significant perfor-
mance degradation. The average reduction in memory cortgumipnges from a little over 30%, for small inputs, to
about 23% for large inputs. This is accompanied by slowdaanging, on average, from about 183% for small inputs
to 194% for large inputs. When the most frequently accessétlifi excluded from compression, there is a drop in the
amount of memory usage reduction obtained, as one woulccexgiaout 20% on average for small inputs and 6% for
large inputs. However, because the remaining fields that@reressed are still accessed quite frequently, this still
incurs significant runtime overhead, averaging about 88%6rftall inputs and 116% on large inputs. Interestingly,
in the second case one of the benchmarks consumed more sipackata compression than the original version: the
reason for this is that the set of values encountered in tblipg data (small inputs) did not reflect the range of
values encountered in the large inputs, leading to many cesspd representations having to be expanded at runtime,
thereby incurring an extra cost of 4 bytes per expanded septation to hold a pointer to the expanded representation.

The performance results for the Olden benchmarks illustrett data structure compression can lead to significant
performance overheads if applied to heavily used data.dardo be a good candidate for data structure compression,
a program should use plenty of compressible data (to obtgnifisant memory size reductions) which are used
relatively infrequently (to keep the runtime performanegerhead low). The OS kernel on embedded systems typically
meets these requirements. Our experiments with the Linuxekdoear this out, with good reductions in dynamic
memory usage with only a very small performance overhead.

6 Related work

The introduction of 64-bit architectures has led a numbeteséarchers to investigate the problem of compressing
pointers into 32 bits [1, 12, 9]. Our work differs from thegdhat we can compress both pointer data and non-pointer
scalar data, so a wider set of applications can be benefitdwamapproach.

Zhang and Gupta [14] use a hardware-based scheme to re@umethory usage of dynamic data by compressing
a 32-bit integer and a 32-bit pointer into 15-bit values, atthihen are packed into a single 32-bit field. Since their
approach compresses each field in a uniform way, it can paligntause two problems: first, space is wasted if
compressible fields require few bits than 15; and seconde rexpansions happen at runtime if compressible fields
require more bits than 15. Also, it requires specializeditvare to improve performance.

Cooprider and Regehr [6] apply static whole-program anslgsreduce a program’s data size including statically
allocated scalars, pointers, structures, and arrays. twiaeir work targets small systems on microcontrollbed t
do not support dynamic memory allocation. Priot work on dg the memory requirement of OS kernels focuses
only on static memory data in the OS kernels, i.e., code aoldagldata [4, 5, 8]. We are not aware of previous work
that exploits the opportunities of compressing dynamia dathe context of OS kernels.

7 Conclusions

Embedded systems are usually memory-constrained. Thigsritlkmportant to reduce the memory requirements
of embedded system software. An important component ofishise memory used by the operating system. This
paper describes an approach to reducing the memory recgriterof the dynamic data structures within the operating
system. We use value profiling information to transform ttf&Kernel code reduce the size of kernel data structures.
Experimental results show that, on average, our approatrces the memory consumption of the slab allocators

6The Olden benchmarks we considered eemeter treeadd andtsp



in Linux by about 17.5% when running the MediaBench suiteilevimcurring only minimal increases in code size
(5.4%) and execution time (1.9%).
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