
Lower Bound Cost Estimation for Logic Programs �Saumya DebrayDepartment of Computer ScienceUniversity of ArizonaTucson, AZ 85721, U.S.A.debray@cs.arizona.edu P. L�opez Garc��a Manuel HermenegildoDept. of Arti�cial IntelligenceUniversidad Politecnica de MadridE-28600 Madrid, Spainpedro@dia.fi.upm.es,herme@.fi.upm.es,Nai-Wei LinDepartment of Computer Science and Information EngineeringNational Chung Cheng UniversityChiayi, 62107, Taiwan, R.O.C.naiwei@cs.ccu.edu.twApril 4, 1997Keywords: Cost Analysis, Lower bound estimation, Granularity Control, Parallelism.AbstractIt is generally recognized that information about the runtime cost of computationscan be useful for a variety of applications, including program transformation, granularitycontrol during parallel execution, and query optimization in deductive databases. Mostof the work to date on compile-time cost estimation of logic programs has focused on theestimation of upper bounds on costs. However, in many applications, such as parallelimplementations on distributed-memory machines, one would prefer to work with lowerbounds instead. The problem with estimating lower bounds is that in general, it isnecessary to account for the possibility of failure of head uni�cation, leading to a triviallower bound of 0. In this paper, we show how, given type and mode informationabout procedures in a logic program, it is possible to (semi-automatically) derive non-trivial lower bounds on their computational costs. We also discuss the cost analysisfor the special and frequent case of divide-and-conquer programs and show how |as apragmatic short-term solution |it may be possible to obtain useful results simply byidentifying and treating divide-and-conquer programs specially.1 IntroductionIt is generally recognized that information about the runtime cost of computations canbe useful for a variety of applications. For example, it is useful for granularity control,i.e., dynamic control of thread creation in parallel implementations of logic and functionallanguages [12, 3, 8, 13], and for query optimization in deductive databases [4]. In the contextof logic programming, the work on cost estimation has generally focused on upper bound�The work of S. Debray was supported in part by the National Science Foundation under grant CCR-9123520. The work of M. Hermenegildo and P. L�opez-Garc��a was supported in part by ESPRIT projectLTR 22532 \DiSCiPl" and CICYT proyect number TIC96-1012-C02-01.1

cost analyses [5]. However, in many cases one would prefer to work with lower boundsinstead. As an example, consider a distributed memory implementation of Prolog: supposethat the work involved in spawning a task on a remote processor takes 1000 instructions,and that we infer that a particular procedure call in a program will execute no more than5000 instructions. This suggests that it may be worth executing this call on a remoteprocessor, but provides no assurance that doing so will not actually produce a performancedegradation relative to a sequential execution (the call might terminate after executing onlya small number of instructions). On the other hand, if we know that a call will execute atleast 5000 instructions, we can be assured that spawning a task on a remote processor toexecute this call is worthwhile. Thus, while upper bound cost information is better than noinformation at all, lower bounds may be more useful than upper bounds.The biggest problem with the inference of lower bounds on the computational costof logic programs is the possibility of failure. Any attempt to infer lower bounds has tocontend with the possibility that a goal may fail during head uni�cation, yielding a triviallower bound of 0. An obvious solution would be to try and rule out \bad" argument valuesby considering the types of predicates. However, most existing type analyses provide upperapproximations, in the sense that the type of a predicate is a superset of the set of argumentvalues that are actually encountered at runtime. Unfortunately, straightforward attemptsto address this issue, for example by trying to infer lower approximations to the callingtypes of predicates, fail to yield nontrivial lower bounds for most cases.In [2], we showed how, given mode and (upper approximation) type information, we candetect procedures and goals that can be guaranteed to not fail. Our technique is based on anintuitively very simple notion, that of a (set of) tests \covering" the type of a variable. Weshowed that the problem of determining a covering is undecidable in general, and is co-NP-hard even if we have only �nite types and simple equality tests. We then gave an algorithmfor checking whether a set of tests covers a type, that is e�cient in practice. Based on thisinformation, we show how to identify goals and procedures that can be guaranteed to notfail at runtime. Note that this information is interesting in its own right, in the context ofprogram transformations (for example, we may want to execute possibly-failing goals aheadof non-failing goals where possible) and in systems that exploit speculative parallelism.The main contributions of this paper are as follows: (i) we show how non-failure infor-mation can be used to infer lower bounds on the computational costs of goals; (ii) discusshow to bound the chromatic polynomial of a graph from below, and thereby show how toinfer lower bounds on the number of solutions a predicate can generate (this information isuseful, for example, for estimating communication costs in distributed-memory implemen-tations); (iii) show how information about the number of solutions computed can be usedto improve lower bound estimates when all solutions to a goal are required; and (iv) showhow to obtain improved lower bound estimates for a simple but common class of divide-and-conquer programs. We discuss the application of our ideas to granularity control forparallel programs: in this case, the use of lower bound cost estimates guarantees that noslowdowns will occur, even in systems with signi�cant overheads associated with parallelexecution. Our ideas have been implemented within the CASLOG system, and the resultinglower bound cost estimates, given in Section 7, can be seen to be quite precise, especiallyfor an automatic analysis tool. Experimental results with granularity control using lowerbound cost estimates indicate that signi�cant performance improvements can be attainedusing our approach. 2

2 Lower-Bound Cost Analysis: The One-Solution CaseIf only one solution is required of any computation, it su�ces to know whether a compu-tation will generate at least one solution, i.e., will not fail. Assuming that this informationis available, for example by using the technique mentioned in the previous section, costanalysis for a particular predicate can then proceed as follows:1. We �rst determine the relative sizes of variable bindings at di�erent program pointsin a clause by computing lower bounds on output argument sizes as functions of inputargument sizes. This is done by solving (or estimating lower bound solutions to) theresulting di�erence equations: the approach is very similar to that discussed in [5],the only di�erence being that whereas [5] estimated upper bounds on argument sizesusing the max function across the output sizes of di�erent clauses in a cluster, we usethe min function across clauses to estimate lower bounds on argument sizes.2. The (lower bound) computational cost of a clause is then expressed as a function ofthe input argument size, in terms of the costs of the body literals in that clause.Consider a clause C � `H :� B1; : : : ; Bm'. Let the input argument size for the headof the clause be n, and let (lower bounds on) the input argument sizes for the bodyliterals B1; : : : ; Bm be �1(n); : : : ; �m(n) respectively. Assume that the cost of headuni�cation and tests for this clause is at least h(n), and let CostBi(x) denote a lowerbound on the cost of the body literal Bi. Then, if Bk is the rightmost body literalthat is guaranteed to not fail, the following gives a lower bound on the cost CostC(n)of the clause C on an input of size n:h(n) + kXi=1CostBi(�i(n)) � CostC(n).3. A lower bound on the cost Costp(n) of a predicate p on an input of size n is thengiven byminfCostC(n) j C is a clause de�ning pg � Costp(n).As discussed in [5], recursion is handled by expressing the cost of recursive goals symbolicallyas a function of the input size. From this, we can obtain a set of di�erence equations thatcan be solved (or approximated) to obtain a lower bound on the cost of a predicate in termsof the input size.Given a predicate de�ned by m clauses C1; : : : ; Cm, we can improve the precision of thisanalysis by noting that clause Ci will be tried only if clauses C1; : : : ; Ci�1 fail to yield asolution. For an input of size n, let �i(n) denote the least amount of work necessary todetermine that clauses C1; : : : ; Ci�1 will not yield a solution and that Ci must be tried: thefunction �i obviously has to take into account the type and cost of the indexing schemebeing used in the underlying implementation. In this case, the lower bound for p can beimproved to:minfCostCi(n) + �i(n) j 1 � i � mg � Costp(n).The pruning operator can also be taken into account, so that clauses which are afterthe �rst clause, say Ci, which has a non-failing sequence of literals just before the cut, are3

ignored, and the lower bound on the cost of the predicate is then the minimum of the costsof the clauses preceding the clause Ci and this clause itself.3 Lower-Bound Cost Analysis: All SolutionsIn many applications, it is reasonable to assume that all solutions are required. For exam-ple, in a distributed memory implementation of a logic programming system, the cost ofsending or receiving a message is likely to be high enough that it makes sense for a remotecomputation to compute all the solutions to a query and return them in a single messageinstead of sending a large number of messages, each containing a single solution. For suchcases, estimates of the computational cost of a goal can be improved greatly if we havelower bounds on the number of solutions|indeed, as the example of a distributed memorysystem suggests, in some cases the number of solutions may itself be a reasonable measureof cost.If we obtain lower bounds on the number of solutions that can be generated by theliterals in a clause (this problem is addressed in next section), we can use this informationto improve lower bound cost estimates for the case where all solutions to a predicate arerequired. Consider a clause `p(�x) :� B1; : : : ; Bn' where Bk is the rightmost literal thatis guaranteed to not fail. Let the input argument size for the head of the clause be n,and let (lower bounds on) the input argument sizes for the body literals B1; : : : ; Bm be�1(n); : : : ; �m(n) respectively. Assume that the cost of head uni�cation and tests for thisclause is at least h(n), and let CostBi(x) denote a lower bound on the cost of the bodyliteral Bi. Now consider a body literal Bj , where 1 � j � k + 1, i.e., all the predecessorsof Bj are guaranteed to not fail. The number of times Bj will be executed is given bythe total number of solutions generated by its predecessors, i.e., the literals B1; : : : ; Bj�1.Let this number be denoted by Nj : we can estimate Nj using Theorem 5.1 (or extensionsthereof), e.g., by considering a clause whose body consists of the literals B1; : : : ; Bj�1, andwhere the output variables in the head are given by vars(B1; : : : ; Bj�1)\ vars(Bj ; : : : ; Bn).Assume that the cost of head uni�cation and tests for this clause is at least h(n), and letCostBi(x) denote a lower bound on the cost of the body literal Bj . Then, a lower boundon the execution cost of the clause to obtain all solutions is given byh(n) + kXi=1(Ni � CostBi(�i(n)) � CostC(n).4 Number of Solutions: The Single-Clause CaseIn this section we address the problem of estimating lower bounds on the number of solutionswhich a predicate can generate.4.1 Simple Conditions for Lower Bound EstimationIt is tempting to try and estimate a lower bound on the number of solutions generated bya clause `H :� B1; : : : ; Bn' from lower bounds on the number of solutions generated byeach of the body literals Bi, possibly using techniques analogous to those used in [5] for theestimation of upper bounds on the number of solutions. Unfortunately, this does not work.4

For example, given a clause `p(X) :� q(X); r(X)', where X is an output variable, andassuming that q and r generate nq and nr bindings, respectively, for X , then min(nq; nr) isnot a lower bound on the number of solutions the clause can generate. To see this, considerthe situation where q can bind X to either a or b, while r can bind X to either b or c: thus,min(nq; nr) = min(2; 2) = 2, but the number of solutions for the clause is 1.The following gives a simple su�cient condition for estimating a lower bound on thenumber of solutions generated by a clause.Theorem 4.1 Let x1; : : : ; xm be distinct unaliased output variables in the head of a clausesuch that each of the xi occurs at most once in the body of the clause, and xi and xj do notoccur in the same body literal for i 6= j. If ni is a lower bound on the number of bindingsthat can be generated for xi by the clause body, then Qmi=1 ni is a lower bound on the numberof solutions that can be generated by the clause.This result can be generalized in various ways: we do not pursue them here due to spaceconstraints. The utility of this theorem is shown in Example 5.1.4.2 Handling Equality and Disequality ConstraintsThis section presents a simple algorithm for computing a lower bound on the number ofsolutions for predicates which can be \unfolded" into a conjunction of binary equality anddisequality constraints on a set of variables. The constraints are in the form of X = Yor X 6= Y for any two variables X and Y . The types of the variables in a predicate areassumed to be the same and to be given as a �nite set of atoms. The problem of computingthe number of bindings that satisfy a set of binary equality and disequality constraints ona set of variables with the same type can be transformed into the problem of computingthe chromatic polynomial of a graph G, denoted by C(G; k), which is a polynomial in k andrepresents the number of di�erent ways G can be colored by using no more than k colors(see [5]).Unfortunately, the problem of computing the chromatic polynomial of a graph is NP-hard, because the problem of k-colorability of a graph G is equivalent to the problem ofdeciding whether C(G; k)> 0 and the problem of graph k-colorability is NP-complete [10].Therefore, we will develop an approximation algorithm to compute a lower bound on thechromatic polynomial of a graph. The basic idea is to start with a subgraph that consistsof only a single vertex of the graph, then repeatedly build larger and larger subgraphsby adding a vertex at a time into the previous subgraph. When a vertex is added, theedges connecting that vertex to vertices in the previous subgraph are also added. At eachiteration, a lower bound on the number of ways of coloring the newly added vertex canbe determined by the number of edges accompanied with the vertex. Accordingly, a lowerbound on the chromatic polynomial for the corresponding subgraph can be determined usingthe bound on the polynomial for the previous subgraph and the bound on the number ofways of coloring the newly added vertex.We now describe the algorithm more formally. The order of a graph G = (V;E),denoted by jGj, is the number of vertices in V . Let G be a graph of order n. Suppose! = v1; : : : ; vn is an ordering of V . We de�ne two sequences of subgraphs of G according to!. The �rst is a sequence of subgraphs G1; : : : ; Gn, called accumulating subgraphs, whereGi = (Vi; Ei), Vi = fv1; : : : ; vig, and Ei is the set of edges of G that join the vertices of5

Let G = (V;E) be a graph of order n. The algorithm proceeds as follows:begincompute the degree for each vertex in V ;generate an ordering ! = v1; : : : ; vn of V by sorting the vertices in decreasing orderon their degrees using the radix sort;C(G; k) := k;G1 := (fv1g; ;);for i := 2 to n docompute the order jG0ij of the interfacing subgraph G0i;C(G; k) := C(G; k)� (k � jG0ij);construct the accumulating subgraph Gi;odendFigure 1: An approximation algorithm for computing the chromatic polynomial of a graphVi, for 1 � i � n, The second is a sequence of subgraphs G02; : : : ; G0n, called interfacingsubgraphs, where G0i = (V 0i ; E 0i), V 0i is the set of vertices of Gi�1 that are adjacent to vertexvi, and E 0i is the set of edges of Gi�1 that join the vertices of V 0i , for 2 � i � n.The algorithm for computing the chromatic polynomial of a graph, based on the con-struction of accumulating subgraphs and interfacing subgraphs, is shown in Figure 1. Thisalgorithm constructs the accumulating subgraphs according to an ordering of the set of ver-tices. At each iteration, the number of ways of coloring the newly added vertex is computedbased on the order of the corresponding interfacing subgraph.Theorem 4.2 Let G = (V;E) be a graph of order n and ! be an ordering of V . Supposethe interfacing subgraphs of G corresponding to ! are G02; : : : ; G0n. Then:kQni=2(k � jG0ij) � C(G; k).The proof of this theorem is given in [11]; we omit it here due to space constraints. Since thebound obtained from this may depend on the ordering chosen for the vertices in the graph,we use a heuristic to �nd a \good" ordering. The intuition behind the heuristic is that ifthe maximum order of the interfacing subgraphs is smaller, then we can get a nontriviallower bound (6= 0) on C(G; k) for more values of k. Therefore, we use the ordering thatsorts the vertices in the decreasing order on the degrees of vertices.Let the graph under consideration have n vertices and m edges. First, the computationfor the degrees of vertices in the graph can be performed in O(n +m). Second, since thedegrees of vertices in the graph are at most n�1, we can sort the vertices using radix sort inO(n). Third, The total cost for the construction of accumulating subgraphs Gi, i � i � n,is O(n+m) because each edge in the graph is examined only twice. Finally, since only theorders of the interfacing subgraphs are needed to compute the chromatic polynomial, it isnot necessary to construct the interfacing graphs. The orders of the interfacing subgraphscan be obtained as a by-product of constructing the accumulating graphs. Therefore, thecomplexity of the whole algorithm is O(n+m).6

5 Number of Solutions: Multiple ClausesThe previous section discussed the estimation of lower bounds on the number of solutionscomputed by a single clause. In this section we discuss how we can estimate the number ofsolutions for a group of clauses.Theorem 5.1 Consider a set of clauses S = fC1; : : : ; Cng that all have the same headuni�cation and tests. If ni is a lower bound on the number of solutions generated by Ci,1 � i � n, then Pni=1 ni is a lower bound on the total number of (not necessarily distinct)solutions generated by the set of clauses S.The restrictions in this theorem can be relaxed in various ways: we do not pursue this heredue to space constraints. We can use the result above to estimate a lower bound on thenumber of solutions generated by a predicate for an input of size n as follows: partitionthe clauses for the predicate into clusters such that the clauses in each cluster have thesame head uni�cation and tests, so that Theorem 5.1 is applicable, and compute lowerbound estimates of the number of solutions for each cluster. Then, if a number of di�erentclusters|say, clusters C1; : : : ; Ck, with number of solutions at least n1; : : : ; nk respectively,may be applicable to an input of size n, then the number of solutions overall for an input ofsize n is given by min(n1; : : : ; nk). The utility of this approach is illustrated by the followingexample.Example 5.1 Consider the following predicate to generate all subsets of a set representedas a list:subset([], X) :- X = [].subset([H|L], X) :- X = [H|X1], subset(L, X1).subset([H|L], X) :- subset(L, X).As discussed in Section 2, recursion is handled by initially using a symbolic representationto set up di�erence equations, and then solving, or estimating solutions to, these equations.In this case, let (a lower bound on) the number of solutions computed by subset/2 on aninput of size n be symbolically represented by S(n). The �rst clause for the predicate yieldsthe equationS(0) = 1.From Theorem 4.1, on an input of size n, n > 0, the second and third clauses each yieldat least S(n� 1) solutions. Since they have the same head uni�cation and tests, Theorem5.1 is applicable, and the number of solutions given by these two clauses taken together istherefore at least S(n� 1) + S(n� 1) = 2S(n� 1). Thus, we have the equationS(n) = 2S(n� 1).These di�erence equations can be solved to get the lower bound S(n) = 2n on the numberof solutions computed by this predicate on an input of size n. 27

6 Cost Estimation for Divide-and-Conquer ProgramsA signi�cant shortcoming of the approach to cost estimation presented is its loss in precisionin the presence of divide-and-conquer programs in which the sizes of the output argumentsof the \divide" predicates are dependent. In the familiar quicksort program (see Section6.1), for example, since either of the outputs of the partition predicate can be the emptylist, the straightforward approach computes lower bounds under the assumption that bothoutput can simultaneously be the empty list, and thereby signi�cantly underestimates thecost of the program. In some sense, the reason for this loss of precision is that the approachoutlined so far is essentially an independent attributes analysis [9]. However, even if wecame up with a relational attributes analysis that kept track of relationships between thesizes of di�erent output arguments of a predicate, it is not at all obvious how we might,systematically and from �rst principles, use this information to improve our lower boundcost estimates. For the quicksort program, for example, if the input list has length n, thenthe two output lists of the partition predicate have lengths m and n �m � 1 for some m,0 � m < n. The resulting cost equation for the recursive clause is of the formC(n) = C(m) + C(n�m� 1) + : : : (0 � m � n� 1)In order to determine a worst-case lower bound solution to this equation we need to deter-mine the value of m that maximizes the function C(n), and doing this automatically, whenwe don't even know what C(n) looks like, seems nontrivial. As a pragmatic solution, weargue that it may be possible to get quite useful results simply by identifying and treatingcommon classes of divide-and-conquer programs specially.In many of these programs, the sum of the sizes of the input for the \divide" predicates inthe clause body is equal to the size of the input in the clause head minus some constant. Thissize relationship can be derived is some cases by the approach presented in [5]. However,this is not possible in other cases, since in this approach the size of each output argumentis treated as a function only of the input sizes, independently of the sizes of other outputarguments, and, as a result, relationships between the sizes of di�erent output arguments arelost (consider for example the partition/4 predicate de�ned in example 6.1). A possiblesolution to gain in precision is to use one of the recently proposed approaches for inferringsize relationships for this class of programs [1, 6].Assuming that we have the mentioned size relationship for these programs, in the costanalysis phase we obtain an expression of the form:y(0) = C,y(n) = y(n� 1� k) + y(k) + g(n) for n > 0, where k is an arbitrary value suchthat 0 � k � n � 1, C is a constant and g(n) is any function.in the cost analysis phase, where y(n) denotes the cost of the divide-and-conquer predicatefor an input of size n and g(n) is the cost of the part of a clause body which does notcontain any call to the divide-and-conquer predicate.For each particular computation, we obtain a succession of values for k. Each successionof values for k yields a value for y(n).In the following we discuss how we can compute lower/upper bounds for expressionssuch as that for Costqsort(n).Consider the expression: 8

y(0) = C,y(n) = y(n � 1 � k) + y(k) for n > 0, where k is an arbitrary value such that0 � k � n� 1 and C is a constant.A computation tree for such an expression is a tree in which each non-terminal node islabeled with y(n), n > 0, and has two children y(n� 1� k) and y(k) (left- and right-hand-side respectively), where k is an arbitrary value such that 0 � k � n�1. Terminal nodes arelabeled with y(0) and have no children. Assume that we construct a tree for y(n) followinga depth-�rst traversal. In each non-terminal node, we (arbitrarily) chose a value for k suchthat 0 � k � n� 1. We say that the computation succession of the tree is the succession ofvalues that have been chosen for k in chronological order, as the tree construction proceeds.Lemma 6.1 Any computation tree corresponding to the expression:y(0) = C,y(n) = y(n � 1 � k) + y(k) for n > 0, where k is an arbitrary value such that0 � k � n� 1 and C is a constant,has n + 1 terminal nodes and n non-terminal nodes.Proof By induction on n. For n = 0 the theorem holds trivially. Let us assume thatthe theorem holds for all m such that 0 � m � n, then, we can prove that for all msuch that 0 � m � n + 1 the theorem also holds by reasoning as follows: we have thaty(n + 1) = y(n � k) + y(k), where k is an arbitrary value such that 0 � k � n. Since0 � k � n, we also have that 0 � n � k � n, and, by induction hypothesis, the numberof terminal nodes in any computation tree of y(n � k) (respectively y(k)) is n � k + 1(respectively k + 1). The number of terminal nodes in any computation tree of y(n+ 1) isthe sum of the number of terminal nodes in the children of the node labeled with y(n+ 1),i.e. (n�k+1)+(k+1) = n+2. Also, the number of non-terminal nodes in any computationtree of y(n� k) (respectively y(k)) is n � k (respectively k). The number of non-terminalnodes of any computation tree of y(n+ 1) is the sum of the number of non-terminal nodesof the children of the node labeled with y(n+ 1) plus one (the node y(n+ 1) itself, since itis non-terminal) i.e. 1 + (n� k) + k = n+ 1. 2Theorem 6.2 For any computation tree corresponding to the expression:y(0) = C,y(n) = y(n � 1 � k) + y(k) for n > 0, where k is an arbitrary value such that0 � k � n� 1 and C is a constant,it holds that y(n) = (n+ 1)� C:Proof By Lemma 6.1, any computation tree has n + 1 terminal nodes labeled with y(0)and the evaluation of each of these terminal nodes is C. 2Theorem 6.3 Given the expression:y(0) = C,y(n) = y(n� 1� k) + y(k) + g(k) for n > 0, where k is an arbitrary value suchthat 0 � k � n� 1, C is a constant and g(k) a function,9

for any computation tree corresponding to it, it holds that y(n) = (n+ 1)�C +Pni=1 g(ki),where fkigni=1 is the computation succession of the tree.Proof By Lemma 6.1, any computation tree has n+ 1 terminal nodes and n non-terminalnodes. The evaluation of each terminal node yields the value C and each time a non-terminalnode i is evaluated, g(ki) is added. 2In order to minimize (respectively maximize) y(n) we can �nd a succession fkigni=1that minimizes (respectively maximizes) Pni=1 g(ki). This is easy when g(k) is a monotonicfunction, as the following corollary shows.Corollary 6.1 Given the expression:y(0) = C,y(n) = y(n� 1� k) + y(k) + g(k) for n > 0, where k is an arbitrary value suchthat 0 � k � n� 1, C is a constant and g(k) an increasing monotonic function,Then, the succession fkigni=1, where ki = 0 (respectively ki = n � 1) for all 1 � i � n givesthe minimum (respectively maximum) value for y(n) of all computation trees.Proof It follows from Theorem 6.3 and from the fact that g(k) is an increasing monotonicfunction. 2It follows from Corollary 6.1 that the solution of the di�erence equation (obtained byreplacing k by 0):y(0) = C,y(n) = y(n� 1) + y(0) + g(0) for n > 0,i.e. (n+1)�C+n�g(0) is the minimum of y(n), and the solution of the di�erence equation:y(0) = C,y(n) = y(0) + y(n� 1) + g(n� 1) for n > 0,i.e. (n+ 1)� C + n� g(n� 1) is the maximum of y(n).Note that we can replace g(k) by any lower/upper bound on it to compute a lower/upperbound on y(n). We can also take any lower/upper bound on each g(ki). For example, if g(k)is an increasing monotonic function then g(ki) � g(n� 1) and g(ki) � g(0) for 1 � i � n,thus, y(n) � (n+ 1)� C + n� g(n� 1) and y(n) � (n+ 1)� C + n � g(0).Let's now assume that the function g depends on n and k:Corollary 6.2 Given the expression:y(0) = C,y(n) = y(n � 1 � k) + y(k) + g(n; k) for n > 0, where k is an arbitrary valuesuch that 0 � k � n� 1, C is a constant and g(n; k) a function.Then, the solution of the di�erence equation:f(0) = C,f(n) = f(n� 1) + C + L for n > 0, 10

where L is a lower/upper bound on g(n; k), is a lower/upper bound on y(n) for all n � 0 andfor any computation tree corresponding to y(n). In particular, if g(n; k) is an increasingmonotonic function, then L � g(1; 0) (respectively L � g(n; n� 1)) is a lower (respectivelyupper) bound on g(n; k).Example 6.1 Let us see how, using the described approach for divide-and-conquer pro-grams, the lower-bound cost analysis can be improved. We �rst consider the analysis with-out the incorporation of the optimization, and then we compare with the result obtainedwhen the optimization is used.Consider the predicate qsort/2 de�ned as follows:qsort([], []).qsort([First|L1], L2) :-partition(First, L1, Ls, Lg),qsort(Ls, Ls2), qsort(Lg, Lg2),append(Ls2, [First|Lg2], L2).partition(F,[],[],[]).partition(F,[X|Y],[X|Y1],Y2) :-X =< F,partition(F,Y,Y1,Y2).partition(F,[X|Y],Y1,[X|Y2]) :-X > F,partition(F,Y,Y1,Y2).append([],L,L).append([H|L],L1,[H|R]) :- append(L,L1,R).Let Costp(n) denote the cost (number of resolution steps) of a call to predicate p withan input of size n.The estimation of cost functions proceeds in a \bottom-up" way as follows:The di�erence equation obtained for append/3 is:Costappend(0; m) = 1 (the cost of head uni�cation),Costappend(n;m) = 1 + Costappend(n� 1; m).The solution to this equation is: Costappend(n;m) = n + 1.The di�erence equation for partition/4 is:Costpartition(0) = 1 (the cost of head uni�cation),Costpartition(n) = 1 + Costpartition(n� 1).The solution to this equation is: Costpartition(n) = n + 1.For qsort/2, we have:Costqsort(0) = 1 (the cost of head uni�cation),Costqsort(n) = 1 + Costpartition(n� 1) + Costqsort(0) + Costqsort(0) + Costappend(0)because the computed lower bound for the size of the input to the calls to qsort and appendis 0. Thus, the cost function for qsort/2 is given by:11

Costqsort(0) = 1,Costqsort(n) = n + 4, for n > 0.Now, we use the described approach for divide-and-conquer programs. Assume that weuse the expression:Costqsort(0) = 1,Costqsort(n) =1 + Costpartition(n� 1) + Costqsort(k) + Costqsort(n� 1� k) + Costappend(k),for 0 � k � n� 1 and n > 0.Replacing values, we obtain:Costqsort(n) = 1 + n+ Costqsort(k) + Costqsort(n� 1� k) + k + 1, for 0 � k � n� 1.Costqsort(n) = n + k + 2 + Costqsort(k) + Costqsort(n� 1� k), for 0 � k � n� 1.According to Corollary 6.2, by giving to n and k the minimum possible value, i.e. 1 and0 respectively, we have that n + k + 2 � 3, and thus we replace n + k + 2 by 3 in order toobtain a lower bound on the former expression, which yields:Costqsort(n) = 3 + Costqsort(k) + Costqsort(n� 1� k), for 0 � k � n � 1.which is equivalent to the di�erence equation:Costqsort(n) = 3 + 1 + Costqsort(n� 1), for n > 0.The solution of this equation is Costqsort(n) = 4n+ 1, which is an improvement on theformer lower bound. 2The previous results can be easily generalized to cover multiple recursive divide-and-conquer programs and programs where the sum of the sizes of the input for the \divide"predicates in the clause body is equal to the size of the input in the clause head minus someconstant which is not necessarily 1.Example 6.2 Consider the predicate deriv/3 de�ned as:deriv(U+V,X,DU+DV) :- deriv(U,X,DU), deriv(V,X,DV).deriv(U-V,X,DU-DV) :- deriv(U,X,DU), deriv(V,X,DV).deriv(U*V,X, DU*V+U*DV) :- deriv(U,X,DU), deriv(V,X,DV).deriv(U/V,X,(DU*V-U*DV)/V^2) :- deriv(U,X,DU), deriv(V,X,DV).deriv(U^N,X, DU*N*U^N1) :- integer(N), N1 is N-1, deriv(U,X,DU).deriv(-U,X,-DU) :- deriv(U,X,DU).deriv(exp(U),X,exp(U)*DU) :- deriv(U,X,DU).deriv(log(U),X,DU/U) :- deriv(U,X,DU).deriv(X,X,1) :- atom(X).deriv(C,X,0) :- atom(C), C \= X.12

Let Costderiv(n) denote the computational cost (number of resolution steps) of a call toderiv/3, where the size of the �rst argument (which is an input argument) is n. The sizemeasure used is the number of nodes (function symbols) in a term.Roughly, the analysis proceeds as follows:From clauses 9 and 10 we derive the boundary condition Costderiv(1) = 1. For the restof the clauses we derive di�erence equations, so that we choose the minimum of the solutionfunctions to these equations:� For clauses 1 to 4 we yield the equation:Equation: Costderiv(n) = 1 + Costderiv(n� 1� k) + Costderiv(k),whose solution is Costderiv(n) = n.� For clause 5:Equation: Costderiv(n) = 1 + 1 + 1 + Costderiv(n� 2).Solution: Costderiv(n) = 3n� 2 + 1.� For clauses 6 and 7:Equation: Costderiv(n) = 1 + Costderiv(n� 1).Solution: Costderiv(n) = n.Thus, the cost function inferred is Costderiv(n) = n, for all n � 1, which is the bestlower bound.Now suppose we do not use the described approach for divide and conquer programs:For clauses 1 to 4 we have:Equation: Costderiv(n) = 1 + Costderiv(1) + Costderiv(1).Solution: Costderiv(n) = 3.This cost function is not very useful (the problem here is that the lower bounds computedfor the size of the input of the two recursive calls is trivial).For the rest of the clauses we obtain the same results as before, but when we choose theminimum of these functions we have that the �nal cost function is: Costderiv(1) = 1, andCostderiv(n) = 3, for n > 1 (which is not very useful). 27 ImplementationWe have implemented a prototype of a lower bound size/cost analyzer, by recoding theversion of CASLOG [5] currently integrated in the CIAO system [7]. The analysis is fullyautomatic, and only requires type information for the program entry point. Types, modesand size measures are automatically inferred by the system. Table 1 shows some accuracyand e�ciency results of the lower bound cost analyzer. The second column of the table showsthe cost function (which depends on the size of the input arguments) inferred by the analysis.Ttms is the time required by the type, mode, and size measure analysis (SPARCstation 10,55MHz, 64Mbytes of memory), Tnf the time required by the non-failure analysis, and Tcathe time required by the cost analysis (which includes a size analysis). Total is the totalanalysis time (Total = Ttms + Tnf + Tca). All times are given in milliseconds.13

Programs Cost function Ttms Tnf Tca Total�b �x:1:447� 1:618x+ 0:552� (�0:618)x � 1 90 20 70 180hanoi �x:x2x + 2x�1 � 2 860 60 210 1,130qsort �x:4x+ 1 440 80 200 720nrev �x:0:5x2+ 1:5x+ 1 100 10 90 200mmatrix �hx; yi:2xy + 2x+ 1 350 90 180 620deriv �x:x 940 80 300 1,320add poly �hx; yix+ 1 280 90 160 530append �x:x+ 1 130 60 70 260subst �hx; y; zi:x 120 60 140 320at �x:0:5x2+ 3:5x� 2 310 30 270 410intersect �hx; yi:x+ 1 140 70 130 340di� �hx; yi:x+ 1 170 100 180 450perm �x:0:5x2+ 1:5x+ 1 120 60 190 370Table 1: Accuracy and e�ciency of the lower bound cost analysis8 Application to Automatic ParallelizationAs briey mentioned in the introduction, one of the most attractive applications of lowerbound cost analysis is implementing granularity control in parallelizing compilers, an issueon which we expand in this section. The usefulness of granularity control is based on thefact that while logic programming languages o�er a great deal of scope for parallelism, justbecause something can be done in parallel does not necessarily mean, in practice, that itshould be done in parallel. This is because the parallel execution of a task incurs variousoverheads, e.g. overheads associated with process creation and scheduling, the possible mi-gration of tasks to remote processors and the associated communication overheads, etc. Ingeneral, a goal should not be a candidate for parallel execution if its granularity, i.e., the\work available" underneath it, is less than the work necessary to create a separate taskfor that goal. While the overheads for spawning goals in parallel in some architecturesare small (e.g. in small shared memory multiprocessors), in many other architectures (e.g.distributed memory multiprocessors, workstation \farms", etc.) they can be very signi�-cant. Automatic parallelization in general cannot be done realistically in the latter withoutgranularity control.Due to the considerations mentioned above it is desirable to devise a method wherebythe granularity of a goal may be estimated. All of the previous work that we know ofin this context involves estimating upper bounds on the cost of goals (see, for example,[3]). The use of upper bounds allows us to guarantee that, given a program that is alreadyparallelized, we can make it run more e�ciently by running some of the parallel goalssequentially. However, the problem faced by parallelizing compilers is in fact exactly theconverse of the one tackled above: what needs to be guaranteed is that the parallel executionwill be more e�cient than the sequential one, rather than the other way around. This typeof granularity control can be solved using essentially the same general approach, but weneed a lower bound on the cost of each goal. The techniques presented in the paper directlyaddress this problem, arguably more interesting in practice, and which could not be solvedwith the upper bound approximation of [3]. In fact, the usefulness of lower bounds was14

already clear when the work presented in [3] was developed, but the determination of usefullower bounds was deemed too di�cult at the time. This approach allows us to guaranteethat, given a sequential program, it will run more e�ciently by running some of the goals inparallel. This in e�ect allows obtaining guaranteed speedups (or, at least, ensuring that noslow-downs will occur) from automatic parallelization, even in architectures (such as thosementioned above) for which parallel execution involves a signi�cant overhead. We know ofno other approach which can achieve this.programs seq ngc gc opt e1 e2unb matrix 0.579 16.247 0.511 0.057 +96.85 % +97.20 %�b 0.77 1.475 0.188 0.077 +87.24 % +92.04 %hanoi 1.440 1.467 0.592 0.144 +59.65 % +66.15 %qsort 0.476 0.472 0.293 0.047 +37.84 % +42.09 %Table 2: Granularity control results for benchmarks on ECLiPSe.We have performed a series of experiments in this granularity control application byusing the cost functions inferred by the proposed cost analysis. In this sense, we haveused the granularity control system described in [12] (which is integrated in the CIAOsystem, and has an annotator which transforms programs to perform granularity control).Table 2 presents results of granularity control (showing execution times in seconds) for somebenchmarks on the ECLiPSe system using 10 workers, and running on a SUN SPARC 2000SERVER with 10 processors. Results are given for the versions which perform granularitycontrol (gc), the sequential execution (seq) and the parallel execution without granularitycontrol (ngc) for comparison. opt is a lower bound on the optimal time, i.e. opt = seq10 .e1 and e2 are computed according to the following expressions: e1 = ngc�gcngc � 100, ande2 = ngc�gcngc�opt � 100. The program unb matrix performs the multiplication of 4 � 2 and2� 1000 matrices.The experiments performed show very promising results, in the sense that the granularitycontrol does improve speedups in practice.References[1] F. Benoy and A. King. Inferring Argument Size Relationships with CLP(R). Proc. 6th Interna-tional Workshop on Logic Program Synthesis and Transformation, Stockholm University/RoyalIntitute of Technology, 1996, pp. 134{153.[2] S. Debray, P. L�opez Garc��a, and M. Hermenegildo. Non-Failure Analysis for Logic Programs. In1997 International Conference on Logic Programming, Leuven, Belgium, June 1997. MIT Press,Cambridge, MA.[3] S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in Logic Programs.In Proc. of the 1990 ACM Conf. on Programming Language Design and Implementation, pages174{188. ACM Press, June 1990.[4] S.K. Debray and N.-W. Lin. Static estimation of query sizes in horn programs. In ThirdInternational Conference on Database Theory, Lecture Notes in Computer Science 470, pages515{528, Paris, France, December 1990. Springer-Verlag.15

[5] S.K. Debray and N.W. Lin. Cost analysis of logic programs. ACM Transactions on ProgrammingLanguages and Systems, 15(5):826{875, November 1993.[6] R. Giacobazzi, S.K. Debray, and G. Levi. Generalized Semantics and Abstract Interpretationfor Constraint Logic Programs. Journal of Logic Programming, 25(3):191{248, 1995.[7] M. Hermenegildo, F. Bueno, M. Garc��a de la Banda, and G. Puebla. The CIAO Multi-DialectCompiler and System: An Experimentation Workbench for Future (C)LP Systems. In Pro-ceedings of the ILPS'95 Workshop on Visions for the Future of Logic Programming, Portland,Oregon, USA, December 1995. Available from http://www.clip.dia.fi.upm.es/.[8] L. Huelsbergen, J. R. Larus, and A. Aiken. Using Run-Time List Sizes to Guide Parallel ThreadCreation. In Proc. ACM Conf. on Lisp and Functional Programming, June 1994.[9] Neil D. Jones and Steven S. Muchnick. Complexity of ow analysis, inductive assertion synthesis,and a language due to Dijkstra. In Steven S Muchnick and Neil D Jones, editors, Program FlowAnalysis: Theory and Applications, chapter 12, pages 380{393. Prentice-Hall, 1981.[10] R. M. Karp. Reducibility among Combinatorial Problems. Complexity of Computer Computa-tions, R. E. Miller and J. W. Thatcher (eds), Plenum Press, New York, 1972, pp. 85{103.[11] N.-W. Lin. Approximating the Chromatic Polynomial of a Graph. Proc. Nineteenth Interna-tional Workshop on Graph-Theoretic Concepts in Computer Science, Amsterdam, June 1993.[12] P. L�opez Garc��a, M. Hermenegildo, and S.K. Debray. A Methodology for Granularity BasedControl of Parallelism in Logic Programs. Journal of Symbolic Computation, Special Issue onParallel Symbolic Computation, 11(3{4):217{242, 1996. In press.[13] F. A. Rabhi and G. A. Manson. Using Complexity Functions to Control Parallelism in Func-tional Programs. Res. Rep. CS-90-1, Dept. of Computer Science, Univ. of She�eld, England,Jan 1990.

16

