Lower Bound Cost Estimation for Logic Programs *

Saumya Debray P. Lopez Garcia Manuel Hermenegildo
Department of Computer Science Dept. of Artificial Intelligence
University of Arizona Universidad Politecnica de Madrid
Tucson, AZ 85721, U.S.A. E-28600 Madrid, Spain
debray@cs.arizona.edu pedro@dia.fi.upm.es herme@.fi.upm.es,
Nai-Wei Lin

Department of Computer Science and Information FEngineering
National Chung Cheng University
Chiayi, 62107, Taiwan, R.0O.C.

naiwei@cs.ccu.edu.tw

April 4, 1997

Keywords: Cost Analysis, Lower bound estimation, Granularity Control, Parallelism.

Abstract

It is generally recognized that information about the runtime cost of computations
can be useful for a variety of applications, including program transformation, granularity
control during parallel execution, and query optimization in deductive databases. Most
of the work to date on compile-time cost estimation of logic programs has focused on the
estimation of upper bounds on costs. However, in many applications, such as parallel
implementations on distributed-memory machines, one would prefer to work with lower
bounds instead. The problem with estimating lower bounds is that in general, it is
necessary to account for the possibility of failure of head unification, leading to a trivial
lower bound of 0. In this paper, we show how, given type and mode information
about procedures in a logic program, it is possible to (semi-automatically) derive non-
trivial lower bounds on their computational costs. We also discuss the cost analysis
for the special and frequent case of divide-and-conquer programs and show how —as a
pragmatic short-term solution —it may be possible to obtain useful results simply by
identifying and treating divide-and-conquer programs specially.

1 Introduction

It is generally recognized that information about the runtime cost of computations can
be useful for a variety of applications. For example, it is useful for granularity control,
i.e., dynamic control of thread creation in parallel implementations of logic and functional
languages [12, 3, 8, 13], and for query optimization in deductive databases [4]. In the context
of logic programming, the work on cost estimation has generally focused on upper bound

*The work of S. Debray was supported in part by the National Science Foundation under grant CCR-
9123520. The work of M. Hermenegildo and P. Lépez-Garcia was supported in part by ESPRIT project
LTR 22532 “DiSCiP1” and CICYT proyect number TIC96-1012-C02-01.

cost analyses [5]. However, in many cases one would prefer to work with lower bounds
instead. As an example, consider a distributed memory implementation of Prolog: suppose
that the work involved in spawning a task on a remote processor takes 1000 instructions,
and that we infer that a particular procedure call in a program will execute no more than
5000 instructions. This suggests that it may be worth executing this call on a remote
processor, but provides no assurance that doing so will not actually produce a performance
degradation relative to a sequential execution (the call might terminate after executing only
a small number of instructions). On the other hand, if we know that a call will execute at
least 5000 instructions, we can be assured that spawning a task on a remote processor to
execute this call is worthwhile. Thus, while upper bound cost information is better than no
information at all, lower bounds may be more useful than upper bounds.

The biggest problem with the inference of lower bounds on the computational cost
of logic programs is the possibility of failure. Any attempt to infer lower bounds has to
contend with the possibility that a goal may fail during head unification, yielding a trivial
lower bound of 0. An obvious solution would be to try and rule out “bad” argument values
by considering the types of predicates. However, most existing type analyses provide upper
approximations, in the sense that the type of a predicate is a superset of the set of argument
values that are actually encountered at runtime. Unfortunately, straightforward attempts
to address this issue, for example by trying to infer lower approximations to the calling
types of predicates, fail to yield nontrivial lower bounds for most cases.

In [2], we showed how, given mode and (upper approximation) type information, we can
detect procedures and goals that can be guaranteed to not fail. Our technique is based on an
intuitively very simple notion, that of a (set of) tests “covering” the type of a variable. We
showed that the problem of determining a covering is undecidable in general, and is co-NP-
hard even if we have only finite types and simple equality tests. We then gave an algorithm
for checking whether a set of tests covers a type, that is eflicient in practice. Based on this
information, we show how to identify goals and procedures that can be guaranteed to not
fail at runtime. Note that this information is interesting in its own right, in the context of
program transformations (for example, we may want to execute possibly-failing goals ahead
of non-failing goals where possible) and in systems that exploit speculative parallelism.

The main contributions of this paper are as follows: (i) we show how non-failure infor-
mation can be used to infer lower bounds on the computational costs of goals; (¢7) discuss
how to bound the chromatic polynomial of a graph from below, and thereby show how to
infer lower bounds on the number of solutions a predicate can generate (this information is
useful, for example, for estimating communication costs in distributed-memory implemen-
tations); (i7¢) show how information about the number of solutions computed can be used
to improve lower bound estimates when all solutions to a goal are required; and (iv) show
how to obtain improved lower bound estimates for a simple but common class of divide-
and-conquer programs. We discuss the application of our ideas to granularity control for
parallel programs: in this case, the use of lower bound cost estimates guarantees that no
slowdowns will occur, even in systems with significant overheads associated with parallel
execution. Our ideas have been implemented within the CASLOG system, and the resulting
lower bound cost estimates, given in Section 7, can be seen to be quite precise, especially
for an automatic analysis tool. Experimental results with granularity control using lower
bound cost estimates indicate that significant performance improvements can be attained
using our approach.

2 Lower-Bound Cost Analysis: The One-Solution Case

If only one solution is required of any computation, it suffices to know whether a compu-
tation will generate at least one solution, i.e., will not fail. Assuming that this information
is available, for example by using the technique mentioned in the previous section, cost
analysis for a particular predicate can then proceed as follows:

1. We first determine the relative sizes of variable bindings at different program points
in a clause by computing lower bounds on output argument sizes as functions of input
argument sizes. This is done by solving (or estimating lower bound solutions to) the
resulting difference equations: the approach is very similar to that discussed in [5],
the only difference being that whereas [5] estimated upper bounds on argument sizes
using the maz function across the output sizes of different clauses in a cluster, we use
the min function across clauses to estimate lower bounds on argument sizes.

2. The (lower bound) computational cost of a clause is then expressed as a function of
the input argument size, in terms of the costs of the body literals in that clause.

Consider a clause C =‘H :— By,...,B;,’. Let the input argument size for the head
of the clause be n, and let (lower bounds on) the input argument sizes for the body
literals By, ..., B, be ¢1(n), ..., ¢n(n) respectively. Assume that the cost of head
unification and tests for this clause is at least h(n), and let Costp,(z) denote a lower
bound on the cost of the body literal B;. Then, if By is the rightmost body literal
that is guaranteed to not fail, the following gives a lower bound on the cost Costc(n)
of the clause C' on an input of size n:

k
h(n)—l—ZCostBi(qbi(n)) < Coste(n).

=1

3. A lower bound on the cost Cost,(n) of a predicate p on an input of size n is then
given by

min{ Costc(n) | C'is a clause defining p} < Cost,(n).

As discussed in [5], recursion is handled by expressing the cost of recursive goals symbolically
as a function of the input size. From this, we can obtain a set of difference equations that
can be solved (or approximated) to obtain a lower bound on the cost of a predicate in terms
of the input size.

Given a predicate defined by m clauses (1, ..., C,,, we can improve the precision of this
analysis by noting that clause C; will be tried only if clauses C1,...,C;_; fail to yield a
solution. For an input of size n, let §;(n) denote the least amount of work necessary to
determine that clauses C'q,...,C;_; will not yield a solution and that C; must be tried: the
function §; obviously has to take into account the type and cost of the indexing scheme
being used in the underlying implementation. In this case, the lower bound for p can be
improved to:

min{ Costc,(n) + 6;(n) | 1 < i <m} < Costy(n).

The pruning operator can also be taken into account, so that clauses which are after
the first clause, say C;, which has a non-failing sequence of literals just before the cut, are

ignored, and the lower bound on the cost of the predicate is then the minimum of the costs
of the clauses preceding the clause C; and this clause itself.

3 Lower-Bound Cost Analysis: All Solutions

In many applications, it is reasonable to assume that all solutions are required. For exam-
ple, in a distributed memory implementation of a logic programming system, the cost of
sending or receiving a message is likely to be high enough that it makes sense for a remote
computation to compute all the solutions to a query and return them in a single message
instead of sending a large number of messages, each containing a single solution. For such
cases, estimates of the computational cost of a goal can be improved greatly if we have
lower bounds on the number of solutions—indeed, as the example of a distributed memory
system suggests, in some cases the number of solutions may itself be a reasonable measure
of cost.

If we obtain lower bounds on the number of solutions that can be generated by the
literals in a clause (this problem is addressed in next section), we can use this information
to improve lower bound cost estimates for the case where all solutions to a predicate are
required. Consider a clause ‘p(z) :— Bi,...,B,” where By is the rightmost literal that
is guaranteed to not fail. Let the input argument size for the head of the clause be n,
and let (lower bounds on) the input argument sizes for the body literals By, ..., B,, be
¢1(n), ..., dm(n) respectively. Assume that the cost of head unification and tests for this
clause is at least h(n), and let Costp,(z) denote a lower bound on the cost of the body
literal B;. Now consider a body literal B;, where 1 < 7 < k41, i.e., all the predecessors
of B; are guaranteed to not fail. The number of times B; will be executed is given by
the total number of solutions generated by its predecessors, i.e., the literals By,..., B;_;.
Let this number be denoted by N; : we can estimate N; using Theorem 5.1 (or extensions
thereof), e.g., by considering a clause whose body consists of the literals By, ..., B;_1, and
where the output variables in the head are given by vars(By, ..., Bj_1)Nvars(B;, ..., B,).
Assume that the cost of head unification and tests for this clause is at least h(n), and let
Costp,(z) denote a lower bound on the cost of the body literal B;. Then, a lower bound
on the execution cost of the clause to obtain all solutions is given by

k
h(n) + Z(NZ x Costp;(¢i(n)) < Coste(n).

=1
4 Number of Solutions: The Single-Clause Case

In this section we address the problem of estimating lower bounds on the number of solutions
which a predicate can generate.

4.1 Simple Conditions for Lower Bound Estimation

It is tempting to try and estimate a lower bound on the number of solutions generated by
a clause ‘H :— By,...,B,;’ from lower bounds on the number of solutions generated by
each of the body literals B;, possibly using techniques analogous to those used in [5] for the
estimation of upper bounds on the number of solutions. Unfortunately, this does not work.

For example, given a clause ‘p(X) :— ¢(X),r(X)’, where X is an output variable, and
assuming that ¢ and r generate n, and n, bindings, respectively, for X, then min(ng, n,) is
not a lower bound on the number of solutions the clause can generate. To see this, consider
the situation where ¢ can bind X to either a or b, while r can bind X to either b or ¢: thus,
min(ng, n,) = min(2,2) = 2, but the number of solutions for the clause is 1.

The following gives a simple sufficient condition for estimating a lower bound on the
number of solutions generated by a clause.

Theorem 4.1 Let zq,...,xz, be distinct unaliased output variables in the head of a clause
such that each of the x; occurs at most once in the body of the clause, and x; and x; do not
occur in the same body literal for i # j. If n; is a lower bound on the number of bindings
that can be generated for x; by the clause body, then [['2; n; is a lower bound on the number
of solutions that can be generated by the clause.

This result can be generalized in various ways: we do not pursue them here due to space
constraints. The utility of this theorem is shown in Example 5.1.

4.2 Handling Equality and Disequality Constraints

This section presents a simple algorithm for computing a lower bound on the number of
solutions for predicates which can be “unfolded” into a conjunction of binary equality and
disequality constraints on a set of variables. The constraints are in the form of X =Y
or X # Y for any two variables X and Y. The types of the variables in a predicate are
assumed to be the same and to be given as a finite set of atoms. The problem of computing
the number of bindings that satisfy a set of binary equality and disequality constraints on
a set of variables with the same type can be transformed into the problem of computing
the chromatic polynomial of a graph G, denoted by C'(G, k), which is a polynomial in & and
represents the number of different ways G can be colored by using no more than k colors
(see [5]).

Unfortunately, the problem of computing the chromatic polynomial of a graph is NP-
hard, because the problem of k-colorability of a graph G is equivalent to the problem of
deciding whether C'(G, k) > 0 and the problem of graph k-colorability is NP-complete [10].
Therefore, we will develop an approximation algorithm to compute a lower bound on the
chromatic polynomial of a graph. The basic idea is to start with a subgraph that consists
of only a single vertex of the graph, then repeatedly build larger and larger subgraphs
by adding a vertex at a time into the previous subgraph. When a vertex is added, the
edges connecting that vertex to vertices in the previous subgraph are also added. At each
iteration, a lower bound on the number of ways of coloring the newly added vertex can
be determined by the number of edges accompanied with the vertex. Accordingly, a lower
bound on the chromatic polynomial for the corresponding subgraph can be determined using
the bound on the polynomial for the previous subgraph and the bound on the number of
ways of coloring the newly added vertex.

We now describe the algorithm more formally. The order of a graph G = (V, F),
denoted by |G|, is the number of vertices in V. Let G be a graph of order n. Suppose
w =vy,...,0, 18 an ordering of V. We define two sequences of subgraphs of GG according to
w. The first is a sequence of subgraphs Gy, ..., G, called accumulating subgraphs, where
Gy = (Vi, Fy), Vi = {v1,...,v}, and FE; is the set of edges of GG that join the vertices of

Let G = (V, F) be a graph of order n. The algorithm proceeds as follows:

begin

compute the degree for each vertex in V;

generate an ordering w = wvy,...,v, of V by sorting the vertices in decreasing order
on their degrees using the radix sort;

C(GL k) = k;

G1 = ({vi},0);

for i :=2 ton do
compute the order |GY| of the interfacing subgraph G’;
C(G, k) =C(G k) x (k—|GY);
construct the accumulating subgraph Gi;

od

end

Figure 1: An approximation algorithm for computing the chromatic polynomial of a graph

Vi, for 1 < ¢ < n, The second is a sequence of subgraphs G),..., G, called interfacing
subgraphs, where G, = (V/, El), V/ is the set of vertices of G;_; that are adjacent to vertex
v;, and I is the set of edges of G;_; that join the vertices of V/, for 2 < i < n.

The algorithm for computing the chromatic polynomial of a graph, based on the con-
struction of accumulating subgraphs and interfacing subgraphs, is shown in Figure 1. This
algorithm constructs the accumulating subgraphs according to an ordering of the set of ver-
tices. At each iteration, the number of ways of coloring the newly added vertex is computed

based on the order of the corresponding interfacing subgraph.

Theorem 4.2 Let G = (V, E) be a graph of order n and w be an ordering of V. Suppose
the interfacing subgraphs of G corresponding to w are G, ..., G" . Then:

kI (k = |GH) < C(GLE).

The proof of this theorem is given in [11]; we omit it here due to space constraints. Since the
bound obtained from this may depend on the ordering chosen for the vertices in the graph,
we use a heuristic to find a “good” ordering. The intuition behind the heuristic is that if
the maximum order of the interfacing subgraphs is smaller, then we can get a nontrivial
lower bound (# 0) on C'(G, k) for more values of k. Therefore, we use the ordering that
sorts the vertices in the decreasing order on the degrees of vertices.

Let the graph under consideration have n vertices and m edges. First, the computation
for the degrees of vertices in the graph can be performed in O(n + m). Second, since the
degrees of vertices in the graph are at most n— 1, we can sort the vertices using radix sort in
O(n). Third, The total cost for the construction of accumulating subgraphs G;, i < < n,
is O(n + m) because each edge in the graph is examined only twice. Finally, since only the
orders of the interfacing subgraphs are needed to compute the chromatic polynomial, it is
not necessary to construct the interfacing graphs. The orders of the interfacing subgraphs
can be obtained as a by-product of constructing the accumulating graphs. Therefore, the
complexity of the whole algorithm is O(n + m).

5 Number of Solutions: Multiple Clauses

The previous section discussed the estimation of lower bounds on the number of solutions
computed by a single clause. In this section we discuss how we can estimate the number of
solutions for a group of clauses.

Theorem 5.1 Consider a set of clauses S = {C4,...,C,} that all have the same head
unification and tests. If n; is a lower bound on the number of solutions generated by C,
1 <i<mn, then 3" | n; is a lower bound on the total number of (not necessarily distinct)
solutions generated by the set of clauses S.

The restrictions in this theorem can be relaxed in various ways: we do not pursue this here
due to space constraints. We can use the result above to estimate a lower bound on the
number of solutions generated by a predicate for an input of size n as follows: partition
the clauses for the predicate into clusters such that the clauses in each cluster have the
same head unification and tests, so that Theorem 5.1 is applicable, and compute lower
bound estimates of the number of solutions for each cluster. Then, if a number of different
clusters—say, clusters C', ..., C}, with number of solutions at least nq, ..., ng respectively,
may be applicable to an input of size n, then the number of solutions overall for an input of
size m is given by min(ny,...,ng). The utility of this approach is illustrated by the following
example.

Example 5.1 Consider the following predicate to generate all subsets of a set represented
as a list:

subset([]1, X) :- X = [].
subset([HIL], X) :- X = [H|X1], subset(L, X1).
subset([HIL], X) :- subset(L, X).

As discussed in Section 2, recursion is handled by initially using a symbolic representation
to set up difference equations, and then solving, or estimating solutions to, these equations.
In this case, let (a lower bound on) the number of solutions computed by subset/2 on an
input of size n be symbolically represented by S(n). The first clause for the predicate yields
the equation

S(0) = 1.

From Theorem 4.1, on an input of size n, n > 0, the second and third clauses each yield
at least S(n — 1) solutions. Since they have the same head unification and tests, Theorem
5.1 is applicable, and the number of solutions given by these two clauses taken together is
therefore at least S(n — 1) 4 S(n— 1) = 2S(n — 1). Thus, we have the equation

S(n) = 28(n - 1).

These difference equations can be solved to get the lower bound S(n) = 2" on the number
of solutions computed by this predicate on an input of size n. O

6 Cost Estimation for Divide-and-Conquer Programs

A significant shortcoming of the approach to cost estimation presented is its loss in precision
in the presence of divide-and-conquer programs in which the sizes of the output arguments
of the “divide” predicates are dependent. In the familiar quicksort program (see Section
6.1), for example, since either of the outputs of the partition predicate can be the empty
list, the straightforward approach computes lower bounds under the assumption that both
output can simultaneously be the empty list, and thereby significantly underestimates the
cost of the program. In some sense, the reason for this loss of precision is that the approach
outlined so far is essentially an independent attributes analysis [9]. However, even if we
came up with a relational attributes analysis that kept track of relationships between the
sizes of different output arguments of a predicate, it is not at all obvious how we might,
systematically and from first principles, use this information to improve our lower bound
cost estimates. For the quicksort program, for example, if the input list has length n, then
the two output lists of the partition predicate have lengths m and n — m — 1 for some m,
0 < m < n. The resulting cost equation for the recursive clause is of the form

Cn)=C(m)+C(n—m—-1)+... 0<m<n-1)

In order to determine a worst-case lower bound solution to this equation we need to deter-
mine the value of m that maximizes the function C'(n), and doing this automatically, when
we don’t even know what C'(n) looks like, seems nontrivial. As a pragmatic solution, we
argue that it may be possible to get quite useful results simply by identifying and treating
common classes of divide-and-conquer programs specially.

In many of these programs, the sum of the sizes of the input for the “divide” predicates in
the clause body is equal to the size of the input in the clause head minus some constant. This
size relationship can be derived is some cases by the approach presented in [5]. However,
this is not possible in other cases, since in this approach the size of each output argument
is treated as a function only of the input sizes, independently of the sizes of other output
arguments, and, as a result, relationships between the sizes of different output arguments are
lost (consider for example the partition/4 predicate defined in example 6.1). A possible
solution to gain in precision is to use one of the recently proposed approaches for inferring
size relationships for this class of programs [1, 6].

Assuming that we have the mentioned size relationship for these programs, in the cost
analysis phase we obtain an expression of the form:

y(0) =C,
y(n) =y(n—1—-Fk)+y(k)+g(n) for n > 0, where k is an arbitrary value such
that 0 <k <n —1, Cis a constant and ¢(n) is any function.

in the cost analysis phase, where y(n) denotes the cost of the divide-and-conquer predicate
for an input of size n and ¢g(n) is the cost of the part of a clause body which does not
contain any call to the divide-and-conquer predicate.

For each particular computation, we obtain a succession of values for k. Each succession
of values for k yields a value for y(n).

In the following we discuss how we can compute lower/upper bounds for expressions
such as that for Costgsors(n).

Consider the expression:

—_—

n—1—k)+y(k) for n > 0, where k is an arbitrary value such that
— 1 and C is a constant.

IN
T
IN
3

A computation tree for such an expression is a tree in which each non-terminal node is
labeled with y(n), n > 0, and has two children y(n — 1 — k) and y(k) (left- and right-hand-
side respectively), where k is an arbitrary value such that 0 < k < n—1. Terminal nodes are
labeled with y(0) and have no children. Assume that we construct a tree for y(n) following
a depth-first traversal. In each non-terminal node, we (arbitrarily) chose a value for k such
that 0 < k < n — 1. We say that the computation succession of the tree is the succession of
values that have been chosen for k in chronological order, as the tree construction proceeds.

Lemma 6.1 Any computation tree corresponding to the expression:

y(0) =C,
y(n) =yn —1—k)+y(k) for n > 0, where k is an arbitrary value such that
0<k<n—1andC is a constant,

has n + 1 terminal nodes and n non-terminal nodes.

Proof By induction on n. For n = 0 the theorem holds trivially. Let us assume that
the theorem holds for all m such that 0 < m < n, then, we can prove that for all m
such that 0 < m < n+ 1 the theorem also holds by reasoning as follows: we have that
y(n+1) = y(n — k) + y(k), where k is an arbitrary value such that 0 < k& < n. Since
0 < k < n, we also have that 0 < n — k < n, and, by induction hypothesis, the number
of terminal nodes in any computation tree of y(n — k) (respectively y(k)) is n — k + 1
(respectively &k + 1). The number of terminal nodes in any computation tree of y(n + 1) is
the sum of the number of terminal nodes in the children of the node labeled with y(n + 1),
ie. (n—k+1)+(k+1) = n+2. Also, the number of non-terminal nodes in any computation
tree of y(n — k) (respectively y(k)) is n — k (respectively k). The number of non-terminal
nodes of any computation tree of y(n + 1) is the sum of the number of non-terminal nodes
of the children of the node labeled with y(n + 1) plus one (the node y(n + 1) itself, since it
is non-terminal) i.e. 14+ (n—k)+k=n+1. O

Theorem 6.2 For any computation tree corresponding to the expression:

y(n) =yn —1—k)+y(k) for n > 0, where k is an arbitrary value such that
0<k<n—1andC is a constant,

it holds that y(n) = (n+1) x C.

Proof By Lemma 6.1, any computation tree has n + 1 terminal nodes labeled with y(0)
and the evaluation of each of these terminal nodes is C'. O

Theorem 6.3 Given the expression:

y(0)=C,
y(n) =yn—1-k)+yk)+g(k) for n > 0, where k is an arbitrary value such
that 0 < k <n—1, C is a constant and g(k) a function,

for any computation tree corresponding to it, it holds that y(n) = (n+ 1) x C+ 37, g(k:),
where {k;}7_, is the computation succession of the tree.

Proof By Lemma 6.1, any computation tree has n+ 1 terminal nodes and n non-terminal
nodes. The evaluation of each terminal node yields the value C' and each time a non-terminal
node i is evaluated, g(k;) is added. O

In order to minimize (respectively maximize) y(n) we can find a succession {k;}",
that minimizes (respectively maximizes) > ", g(k;). This is easy when ¢(k) is a monotonic
function, as the following corollary shows.

Corollary 6.1 Given the expression:

y(0) =C,
y(n) =yn—1-k)+yk)+g(k) for n > 0, where k is an arbitrary value such
that 0 <k <n-—1, C is a constant and g(k) an increasing monotonic function,

Then, the succession {k;}"_,, where k; =0 (respectively k; = n — 1) for all 1 <1i < n gives
the minimum (respectively mazimum) value for y(n) of all computation trees.

Proof It follows from Theorem 6.3 and from the fact that g(k) is an increasing monotonic
function. O

It follows from Corollary 6.1 that the solution of the difference equation (obtained by
replacing & by 0):

y(0) =
y(n)

e. (n+1)xC+nxg(0) is the minimum of y(n), and the solution of the difference equation:
C,

y(0) =
y(n) = y(0) +y(n = 1) + g(n — 1) for n >0,

y(n—l)—l—y()+ ¢(0) for n > 0,

ie. (n+1)xC+nxg(n—1)is the maximum of y(n).

Note that we can replace ¢g(k) by any lower/upper bound on it to compute a lower/upper
bound on y(n). We can also take any lower/upper bound on each g(k;). For example, if ¢ (k)
is an increasing monotonic function then g(k;) < g(n — 1) and g(k;) > ¢(0) for 1 <7 < n,
thus, y(n) < (n+ 1) x C+nxg(n—1)and y(n) > (n+1) x C +n x g(0).

Let’s now assume that the function ¢ depends on n and k:

Corollary 6.2 Given the expression:

y(0) =C,
y(n) = yn—1—k)+y(k) + g(n, k) for n > 0, where k is an arbitrary value
such that 0 < k <n—1, C is a constant and g(n, k) a function.

Then, the solution of the difference equation:

f(0) =0,
f(n)=f(n—-1)4+C+L forn>0,

10

where L is a lower/upper bound on g(n, k), is a lower/upper bound on y(n) for alln > 0 and
for any computation tree corresponding to y(n). In particular, if g(n,k) is an increasing
monotonic function, then L = ¢(1,0) (respectively L = g(n,n — 1)) is a lower (respectively
upper) bound on g(n, k).

Example 6.1 Let us see how, using the described approach for divide-and-conquer pro-
grams, the lower-bound cost analysis can be improved. We first consider the analysis with-
out the incorporation of the optimization, and then we compare with the result obtained
when the optimization is used.

Consider the predicate gsort/2 defined as follows:

gsort([1, [1).

gsort([First|L1], L2) :-
partition(First, L1, Ls, Lg),
gsort(Ls, Ls2), gsort(Lg, Lg2),
append(Ls2, [Firstl|Lg2], L2).

partition(F,[1,[1,[1).

partition(F, [XIY],[XIY1],Y2) :-
X =< F,
partition(F,Y,Y1,Y2).

partition(F, [XIY],Y1,[X|Y2]) :-
X>F,
partition(F,Y,Y1,Y2).

append([],L,L).
append([H|L],L1,[H|R]) :- append(L,L1,R).

Let Costy(n) denote the cost (number of resolution steps) of a call to predicate p with
an input of size n.

The estimation of cost functions proceeds in a “bottom-up” way as follows:

The difference equation obtained for append/3 is:

CoStappena(0, m) = 1 (the cost of head unification),
CoStappenda(”, M) = 1 + CoStappena(n — 1, m).

The solution to this equation is: Costappena(n, m) = n + 1.
The difference equation for partition/4 is:

Costpartition(0) =1 (the cost of head unification),
COStpartition(n) =1+ COStpartition(n - 1)

The solution to this equation is: Costpartition(n) = n + 1.
For gqsort/2, we have:

Costgsort(0) = 1 (the cost of head unification),
COStqsort(n) =1+ COStpartition(n - 1) + COStqsort(O) + COStqsort(O) + COStappend(O)

because the computed lower bound for the size of the input to the calls to qsort and append
is 0. Thus, the cost function for gsort/2 is given by:

11

Costgsort(0) = 1,
Costgsort(n) = n + 4, for n > 0.

Now, we use the described approach for divide-and-conquer programs. Assume that we
use the expression:

Costgsort(0) = 1,

Costgsort(n) =
14 Costpartition(” — 1) + Costysors (k) + Costgsors(n — 1 — k) + Costappena(k),
for 0 <k<n-—1and n>0.

Replacing values, we obtain:
Costgsort() = 1+ n + Costgsore(k) + Costgsors(n — 1 — k) +k+1,for 0 <k <n—1.
Costgsort() = n + k 4+ 2 + Costgsort(k) + Costgsort(n — 1 — k), for 0 <k <n — 1.

According to Corollary 6.2, by giving to n and k& the minimum possible value, i.e. 1 and
0 respectively, we have that n + k + 2 > 3, and thus we replace n + k4 2 by 3 in order to
obtain a lower bound on the former expression, which yields:

Costgsort(n) = 3 + Costgsort(k) + Costgsort(n — 1 — k), for 0 <k <n — 1.
which is equivalent to the difference equation:
Costgsort() = 3+ 1+ Costgsort(n — 1), for n > 0.

The solution of this equation is Costgsert(n) = 47+ 1, which is an improvement on the
former lower bound. O

The previous results can be easily generalized to cover multiple recursive divide-and-
conquer programs and programs where the sum of the sizes of the input for the “divide”
predicates in the clause body is equal to the size of the input in the clause head minus some
constant which is not necessarily 1.

Example 6.2 Consider the predicate deriv/3 defined as:

deriv(U+V,X,DU+DV) :— deriv(U,X,DU), deriv(V,X,DV).
deriv(U-V,X,DU-DV) :— deriv(U,X,DU), deriv(V,X,DV).
deriv(UxV,X, DU*V+UxDV) :— deriv(U,X,DU), deriv(V,X,DV).
deriv(U/V,X, (DU*V-U*DV)/V"2) :- deriv(U,X,DU), deriv(V,X,DV).
deriv(U~N,X, DU*N*U"N1) :- integer(N), N1 is N-1, deriv(U,X,DU).
deriv(-U,X,-DU) :— deriv(U,X,DU).
deriv(exp(U),X,exp(U)*DU) :— deriv(U,X,DU).

deriv(log(U),X,DU/U) :— deriv(U,X,DU).

deriv(X,X,1) :— atom(X).

deriv(C,X,0) :— atom(C), C \= X.

12

Let Costgeriv(n) denote the computational cost (number of resolution steps) of a call to
deriv/3, where the size of the first argument (which is an input argument) is n. The size
measure used is the number of nodes (function symbols) in a term.

Roughly, the analysis proceeds as follows:

From clauses 9 and 10 we derive the boundary condition Costgeriv(1) = 1. For the rest
of the clauses we derive difference equations, so that we choose the minimum of the solution
functions to these equations:

e For clauses 1 to 4 we yield the equation:

Equation: Costgeriv(n) = 14 Costgeriv(n — 1 — k) + Costgeriv(k),
whose solution is Costgeriv(n) = n.

e For clause 5:

Equation: Costgeriv(n) =14 14 1+ Costgeriv(n — 2).
Solution: Costgeriv(n) =3n+2+ 1.

e For clauses 6 and 7:

Equation: Costgeriv(n) = 1 4 Costgeriv(n — 1).
Solution: Costgeriv(n) = n.

Thus, the cost function inferred is Costgeriv(n) = n, for all n > 1, which is the best
lower bound.

Now suppose we do not use the described approach for divide and conquer programs:

For clauses 1 to 4 we have:

Equation: Costgeriv(n) =14 Costgeriv(l) + Costgeriv(l).
Solution: Costgeriv(n) = 3.

This cost function is not very useful (the problem here is that the lower bounds computed
for the size of the input of the two recursive calls is trivial).

For the rest of the clauses we obtain the same results as before, but when we choose the
minimum of these functions we have that the final cost function is: Costgeriv(1) = 1, and
Costgeriv(n) = 3, for n > 1 (which is not very useful). O

7 Implementation

We have implemented a prototype of a lower bound size/cost analyzer, by recoding the
version of CASLOG [5] currently integrated in the CIAO system [7]. The analysis is fully
automatic, and only requires type information for the program entry point. Types, modes
and size measures are automatically inferred by the system. Table 1 shows some accuracy
and efficiency results of the lower bound cost analyzer. The second column of the table shows
the cost function (which depends on the size of the input arguments) inferred by the analysis.
Tims is the time required by the type, mode, and size measure analysis (SPARCstation 10,
55MHz, 64Mbytes of memory), T, the time required by the non-failure analysis, and T,
the time required by the cost analysis (which includes a size analysis). Total is the total
analysis time (Total = Tips 4+ Tp + Teq). All times are given in milliseconds.

13

Programs Cost function Tims | Tnp | Tea | Total
fib Az.1.447 x 1.618" + 0.552 x (—0.618)" — 1 90 20 | 70 180
hanoi Ax.x2% + 271 -2 860 60 | 210 | 1,130
gsort Ardz + 1 440 80 | 200 720
nrev Az.0.5z7 + 1.5+ 1 100 10 90 200
mmatrix AMe,y)2ey+ 20+ 1 350 90 | 180 620
deriv Az.x 940 80 | 300 | 1,320
add_poly Az, yye + 1 280 90 | 160 530
append Ar.e + 1 130 60 70 260
subst Mz, y, 2).x 120 60 | 140 320
flat Az.0.5x7 + 3.5 — 2 310 30 | 270 410
intersect M, yy.e+1 140 70 | 130 340
diff M, yy.e+1 170 | 100 | 180 450
perm Az.0.5z7 + 1.5+ 1 120 60 | 190 370

Table 1: Accuracy and efficiency of the lower bound cost analysis

8 Application to Automatic Parallelization

As briefly mentioned in the introduction, one of the most attractive applications of lower
bound cost analysis is implementing granularity control in parallelizing compilers, an issue
on which we expand in this section. The usefulness of granularity control is based on the
fact that while logic programming languages offer a great deal of scope for parallelism, just
because something can be done in parallel does not necessarily mean, in practice, that it
should be done in parallel. This is because the parallel execution of a task incurs various
overheads, e.g. overheads associated with process creation and scheduling, the possible mi-
gration of tasks to remote processors and the associated communication overheads, etc. In
general, a goal should not be a candidate for parallel execution if its granularity, i.e., the
“work available” underneath it, is less than the work necessary to create a separate task
for that goal. While the overheads for spawning goals in parallel in some architectures
are small (e.g. in small shared memory multiprocessors), in many other architectures (e.g.
distributed memory multiprocessors, workstation “farms”, etc.) they can be very signifi-
cant. Automatic parallelization in general cannot be done realistically in the latter without
granularity control.

Due to the considerations mentioned above it is desirable to devise a method whereby
the granularity of a goal may be estimated. All of the previous work that we know of
in this context involves estimating upper bounds on the cost of goals (see, for example,
[3]). The use of upper bounds allows us to guarantee that, given a program that is already
parallelized, we can make it run more efficiently by running some of the parallel goals
sequentially. However, the problem faced by parallelizing compilers is in fact exactly the
converse of the one tackled above: what needs to be guaranteed is that the parallel execution
will be more efficient than the sequential one, rather than the other way around. This type
of granularity control can be solved using essentially the same general approach, but we
need a lower bound on the cost of each goal. The techniques presented in the paper directly
address this problem, arguably more interesting in practice, and which could not be solved
with the upper bound approximation of [3]. In fact, the usefulness of lower bounds was

14

already clear when the work presented in [3] was developed, but the determination of useful
lower bounds was deemed too difficult at the time. This approach allows us to guarantee
that, given a sequential program, it will run more efficiently by running some of the goals in
parallel. This in effect allows obtaining guaranteed speedups (or, at least, ensuring that no
slow-downs will occur) from automatic parallelization, even in architectures (such as those
mentioned above) for which parallel execution involves a significant overhead. We know of
no other approach which can achieve this.

programs seq nge gc | opt e e
unb_matrix | 0.579 | 16.247 | 0.511 | 0.057 | +96.85 % | +97.20 %
fib 0.77 | 1.475 | 0.188 | 0.077 | +87.24 % | +92.04 %
hanoi 1.440 | 1.467 | 0.592 | 0.144 | 459.65 % | +66.15 %
gsort 0.476 | 0.472 | 0.293 | 0.047 | +37.84 % | +42.09 %

Table 2: Granularity control results for benchmarks on ECLPS®.

We have performed a series of experiments in this granularity control application by
using the cost functions inferred by the proposed cost analysis. In this sense, we have
used the granularity control system described in [12] (which is integrated in the CIAO
system, and has an annotator which transforms programs to perform granularity control).
Table 2 presents results of granularity control (showing execution times in seconds) for some
benchmarks on the ECL'PS® system using 10 workers, and running on a SUN SPARC 2000
SERVER with 10 processors. Results are given for the versions which perform granularity
control (gc), the sequential execution (seq) and the parallel execution without granularity

seq

control (ngc) for comparison. opt is a lower bound on the optimal time, i.e. opt = b

e; and e are computed according to the following expressions: e; = % x 100, and
e = ﬁ x 100. The program unb_matrix performs the multiplication of 4 x 2 and
2 x 1000 matrices.

The experiments performed show very promising results, in the sense that the granularity

control does improve speedups in practice.

References

[1] F. Benoy and A. King. Inferring Argument Size Relationships with CLP(R). Proc. 6th Interna-
tional Workshop on Logic Program Synthesis and Transformation, Stockholm University /Royal
Intitute of Technology, 1996, pp. 134-153.

[2] S. Debray, P. Lépez Garcia, and M. Hermenegildo. Non-Failure Analysis for Logic Programs. In
1997 International Conference on Logic Programming, Leuven, Belgium, June 1997. MIT Press,
Cambridge, MA.

[3] S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in Logic Programs.
In Proc. of the 1990 ACM Conf. on Programming Language Design and Implementation, pages
174-188. ACM Press, June 1990.

[4] S.K. Debray and N.-W. Lin. Static estimation of query sizes in horn programs. In Third
International Conference on Database Theory, Lecture Notes in Computer Science 470, pages
515-528, Paris, France, December 1990. Springer-Verlag.

15

[5]

S.K. Debray and N.W. Lin. Cost analysis of logic programs. ACM Transactions on Programming
Languages and Systems, 15(5):826-875, November 1993.

R. Giacobazzi, S.K. Debray, and G. Levi. Generalized Semantics and Abstract Interpretation
for Constraint Logic Programs. Journal of Logic Programming, 25(3):191-248, 1995.

M. Hermenegildo, F. Bueno, M. Garcia de la Banda, and G. Puebla. The CTAO Multi-Dialect
Compiler and System: An Experimentation Workbench for Future (C)LP Systems. In Pro-
ceedings of the ILP5°95 Workshop on Visions for the Future of Logic Programming, Portland,
Oregon, USA | December 1995. Available from http://www.clip.dia.fi.upm.es/.

L. Huelsbergen, J. R. Larus, and A. Aiken. Using Run-Time List Sizes to Guide Parallel Thread
Creation. In Proc. ACM Conf. on Lisp and Functional Programming, June 1994.

Neil D. Jones and Steven S. Muchnick. Complexity of flow analysis, inductive assertion synthesis,
and a language due to Dijkstra. In Steven S Muchnick and Neil D Jones, editors, Program Flow
Analysis: Theory and Applications, chapter 12, pages 380-393. Prentice-Hall, 1981.

[10] R. M. Karp. Reducibility among Combinatorial Problems. Complexity of Computer Computa-

tions, R. E. Miller and J. W. Thatcher (eds), Plenum Press, New York, 1972, pp. 85-103.

[11] N.-W. Lin. Approximating the Chromatic Polynomial of a Graph. Proc. Nineteenth Interna-

tional Workshop on Graph-Theoretic Concepts in Computer Science, Amsterdam, June 1993.

[12] P. Lépez Garcia, M. Hermenegildo, and S.K. Debray. A Methodology for Granularity Based

Control of Parallelism in Logic Programs. Journal of Symbolic Computation, Special Issue on
Parallel Symbolic Computation, 11(3-4):217-242, 1996. In press.

[13] F. A. Rabhi and G. A. Manson. Using Complexity Functions to Control Parallelism in Func-

tional Programs. Res. Rep. CS-90-1, Dept. of Computer Science, Univ. of Sheffield, England,
Jan 1990.

16

