
Compiler Optimizationsfor Low-level Redundancy Elimination:An Application of Meta-level Prolog PrimitivesSaumya K. DebrayDepartment of Computer ScienceUniversity of ArizonaTucson, AZ 85721, USAAbstractMuch of the work on applications of meta-level primitives in logic pro-grams focusses on high-level aspects such as source-level program trans-formation, interpretation, and partial evaluation. In this paper, we showhow meta-level primitives can be used in a very simple way for low-levelcode optimization in compilers. The resulting code optimizer is small,simple, e�cient, and easy to modify and retarget. An optimizer based onthese ideas is currently being used in a compiler that we have developedfor Janus [6].1 IntroductionMuch of the work on applications of meta-level primitives in logic programsfocuses on high-level aspects such as source-level program transformation, in-terpretation, and partial evaluation. In this paper, we consider instead the useof meta-level Prolog primitives in low-level code optimization in compilers. Weshow how such primitives can be used in a very simple way for a low-level codeoptimization called common subexpression elimination. The resulting code op-timizer is small, simple, e�cient, and easy to modify and retarget. Becauseit requires only a very simple logical description of the instruction set underconsideration, correctness is simple to guarantee.The application we describe is not profound|indeed, its primary appealto us is its simplicity (it happens also to be e�cient, e�ective, and easy toimplement). An experienced Prolog programmer might very well consider it tobe an \obvious hack," and if the only application we could �nd for it was inProlog compilers written in Prolog, then we would consider it to be too narrowan application to be much more than a curiosity. One of the contributions ofthis paper is to show that these ideas are applicable, not only to the compilationof logic programming languages, but also to compilers for traditional functionaland imperative languages. A related technique is dicussed by Komorowski inthe context of partial evaluation [8].

Conceptually, the optimization algorithm described here can be thought ofas a scheme to transform an intermediate representation of a program from atree to a DAG via some sort of value numbering scheme [1]. This, however, willbe true for essentially every algorithm for common subexpression elimination.First, almost any scheme for common subexpression elimination can be thoughtof in terms of merging distinct computations (\nodes") that are equivalent insome sense, i.e., in terms of a transformation from a tree to a DAG. Moreover,unless the implementation is entirely naive, checking whether two instructionsequences represent the computation of a common subexpression will be carriedout, wherever possible, without exhaustively comparing the two sequences: thiscan typically be formulated in terms of some kind of value numbering scheme.What we feel is interesting and elegant about the approach described in thispaper is that the use of uni�cation, together with meta-level primitives, allowsmuch of the low-level clutter associated with these operations to be avoided bythe compiler writer. As a result, the code generator produced is transparent,easy to understand, verify, modify, and retarget.2 Background2.1 Common SubexpressionsDuring compilation, a program is typically translated from the source languageto a lower level intermediate language. The program resulting from the transla-tion to intermediate code may contain common subexpressions. An occurrence ofan expression E is called a common subexpression if E was previously evaluated,and the values of variables occurring in E have not changed since the previouscomputation [1]. Common subexpressions may arise in a program either becausethere are multiple occurrences of an expression in the source program (which mayhappen, for example, after macro expansion), or because the translation to in-termediate code makes explicit lower-level operations that are not visible at thesource level. As an example, the Fortran code fragmentA[i] = A[i] + 1may translate, on a machine with 4-byte words, to the intermediate code se-quencet0 := 4*it1 := A[t0]t2 := t1+1t3 := 4*iA[t3] := t2.

Here, the expression 4*i is a common subexpression: it arises because the low-level details of array subscripting are not visible at the source level.In general, the performance of a program can be improved by eliminatingcode to recompute common subexpressions, and using the previously computedvalue instead. In practice, common subexpression elimination incurs a cost,since it may tie up a machine register to hold the value of the expression forsubsequent uses, or result in stores and loads of the saved value frommemory. Ingeneral, a compiler has to weigh the savings realized from common subexpressionelimination against the costs incurred to determine whether a particular commonsubexpression is worth eliminating (e.g., see [14]). Thus, common subexpressionelimination involves1. identifying common subexpressions;2. deciding which of these are worth eliminating; and3. transforming the code sequence to eliminate such common subexpressions.Since these three points are essentially orthogonal to each other, we will focuson points (1) and (3) in this paper.2.2 Static Single Assignment FormAs we will see, our compilation model views a variable as a logical entity thatcan be de�ned at most once. In an imperative language, it may happen thatthe source program contains multiple assignments to a variable. It is possible totransform such programs to static single assignment form [4, 5] to conform to ourcompilation model. In static single assignment form, a program is transformedso that the program text contains at most one assignment to any variable alongany execution path. The signi�cance of this transformation stems from thefact that (even in imperative languages) single-assignment source variables aredesirable for a number of optimizations, including parallelism detection [4, 10,13]. Dynamically, a program with loops may assign many times to the samevariable, even if only one assignment appears in the program text (a scheme toget around this problem, involving the creation of new variables dynamically,is discussed in [4]). In this section, we brie
y review the transformation of aprogram to static single assignment form, as described in [5].First, consider the transformation for a single basic block with multiple def-initions of a variable. The transformation simply renames all de�nitions of thevariable except for the �nal one, and their corresponding uses, as illustratedbelow:

Original RenamedX = ... /* define X */ X1 = ... /* define X1 */... ...= X /* use X */ = X1 /* use X1 */... ...X = ... /* define X */ X2 = ... /* define X2 */... ...= X /* use X */ = X2 /* use X2 */... ...X = ... /* define X */ X = ... /* define X */Since only the last de�nition of a variable within a block can be used outsidethat block, this transformation does not a�ect any use of that variable in otherbasic blocks. Within a basic block, each use of a variable must be renamed, ifnecessary, to match the corresponding de�nition.Next, consider a case where multiple de�nitions reach a use. In this case,we �rst identify the \join birthpoints" of variables in the control
ow graph,i.e., points in the control
ow graph where several de�nitions of a variable meeton di�erent incoming edges for the �rst time. Consider a join birthpoint fora variable X where k paths, each with a de�nition for X, meet. We transformthe program by renaming X along each path, ensuring that this renaming doesnot introduce the same name along di�erent paths. Suppose that for each pathi, 1 � i � k, the last de�nition of X has been renamed in this process to Xi.We then ensure that the original variable contains the correct value by addingan assignment X = �(X1; : : : ; Xn) for each path i, 1 � i � k: here, �(: : :) is aspecial form of assignment, called a join-de�nition, that assigns the appropriatevalue depending on which branch of the conditional was taken: in practice, thiscan be implemented in a fairly straightforward way (see [4]). The approach isillustrated by the following example:

Original RenamedX = A+B X1 = A+Bif (: : :) if (: : :)then X = X+1 then X2 = X1+1Z = 0 Z = 0else X = X+2 else X3 = X1+2X = �(X2, X3)... ...Y = 2*X Y = 2*XThis step eliminates multiple assignments to a variable in the absence of loops.A scheme to deal with loops, via dynamic creation of new variables, is describedin [4]: since we will be concerned primarily with loop-free programs, this willnot be discussed further here.3 Common Subexpression Elimination: The TraditionalApproachCommon subexpression elimination is usually carried out by analyzing the ab-stract syntax tree for a compilation unit (typically a procedure) to �nd identicalexpression subtrees. Suppose that E1 and E2 are two such identical subtrees,and E1 is guaranteed to be evaluated before E2. Then, if the variables in E2 canbe guaranteed to be unchanged since the evaluation of E1, then the subtree E2can be replaced by a pointer to the subtree E1. As a result, the syntax tree istransformed into a DAG in which nodes with more than one parent correspondto common subexpressions.Now suppose we are processing an expression tree E in a procedure. In anaive implementation, determining whether there is another subtree elsweherein the procedure identical to E might be carried out by actually matching Eagainst the various expression subtrees occurring in the procedure. This, ofcourse, would be hopelessly ine�cient in general, even if the search is restrictedto \previously computed" expression subtrees. In practice, therefore, a moresophisticated scheme called value numbering [3, 9, 10] is used. The essentialidea is to assign special symbolic names called value numbers to expressions.Then, if two expressions E1 � op1(t1; : : : ; tn) and E2 � op2(u1; : : : ; un) satisfy(i) op1 = op2, and (ii) the value number of ti is the same as that of ui, 1 � i � n,then E1 and E2 are guaranteed to compute the same value.The implementation of value numbering, however, can be considerably morecomplicated that this description might suggest. For example, [1] describesan implementation scheme that involves using a hash table to keep track of

expressions that are potentially common subexpressions. Moreover, if there canbe multiple assignments to a variable in the program, then this structure has tobe kept consistent with updates.4 Our Approach4.1 The Compilation ModelThe most signi�cant di�erence between our compilation model, and that usedin traditional compilers, is that we view a (source or temporary) variable asa logical entity whose value can be de�ned at most once. This turns out tosimplify signi�cantly the subsequent reasoning about, and optimization of, theintermediate code program, since there is no need to worry about the value of avariable changing due to multiple assignments to it.Traditional compilers typically attempt to conserve machine resources bydeallocating temporary variables when they are no longer needed, and reusingsuch deallocated temporaries later if possible. In our model, in contrast, no at-tempt is made to reuse temporary variables during intermediate code generation.The e�ects of such reuse are obtained later, during �nal code generation, whentemporary variables are mapped to machine resources such as memory locationsor registers: at this time, liveness information can be used to map variables withdisjoint lifetimes into the same register or memory location. Multiple assign-ments to variables in the source program can be handled by transformation tostatic single assignment form, as discussed earlier.We also assume that intermediate code instructions are recyclable, i.e., can bereused. The idea here is the following: suppose we have two instructions I1 andI2, with identical operands, in a basic block. From the assumption that variablesand temporaries are single assignment entities, this means that these instructionswill have identical operand values at runtime. The assumption of recyclabilitystates that in this case, the result from the �rst instruction I1 can be recycledand used in place of the second instruction I2. While the assumption seemsnot too unreasonable, it need not be satis�ed in practice, e.g., if the instructionunder consideration is nondeterministic, or if it involves side e�ects, e.g., for I/O.In practice, however, our scheme can be used even if not all instructions in thelanguage under consideration are recyclable, as long as we restrict our attentionto recyclable instructions.In the remainder of this paper, we consider common subexpression elimina-tion in loop-free code fragments only (this is not as bad as it may seem, sincemost compilers restrict themselves to common subexpression elimination withinbasic blocks or extended basic blocks): in this case, the transformation to static

single assignment form su�ces to ensure that our assumptions are satis�ed.For the remainder of the paper, intermediate code instructions will be rep-resented as follows unless explicitly mentioned: an instruction with opcode op,operands In1; : : : ; Inm, and results Out1; : : : ;Outn will be represented asop([In1; : : : ; Inm], [Out1; : : : ;Outn]).For example, the instruction add([R1, R2], [R3]) indicates that the sum ofR1 and R2 is assigned to R3. If an instruction has no operands, then the �rstargument is the empty list []: for example, an increment instruction might bewritten `inc([], [X])'. It is important to note that any entity that may be\read" by an instruction is expected to be listed explicitly as an operand, whileany entity that may be \written" by an instruction is expected to be listed asa result: this includes entities, such as stack or heap pointers, that are oftentreated as implicit operands. Further, the single assignment requirement appliesto all operands and results.4.2 Redundancy Elimination within a Basic BlockStrictly speaking, our approach aims to eliminate redundant instructions ratherthan common subexpressions. This includes common subexpression eliminationas a special case, since a common subexpression manifests itself as a sequence ofredundant instructions; however, it also removes certain kinds of redundancies,such as type tests, that might not be considered to be a common subexpressionin a traditional compiler. The principle underlying our algorithm is extremelysimple and quite obvious: two (deterministic) instructions that apply the sameoperator to identical operands will produce the same results. The determinacyrequirement, which says that the instructions compute functions, is important,but not very restrictive for our application: we do not know of any intermediaterepresentation language for compilers that does not satisfy this requirement. Itturns out that by using uni�cation and Prolog meta-level primitives, we areable to exploit this obvious fact in a clean and simple way, obtaining simpleand e�cient code optimizers without having to worry about any of the low-level clutter associated with common subexpression elimination in traditionalcompilers.Assume that the instructions in a basic block are represented as a list ofProlog terms (each instruction is a Prolog term of the form described at the endof the previous section). We assume that we have a set of instructions Seen thathave already been encountered. The essence of our algorithm is straightforward:given an instruction I � op(In; Out) in the basic block, if there is an instructionI 0 � op(In0; Out0) in Seen such that the operands In and In0 are identical, then

Input : A basic block B of intermediate code instructions.Output : A modi�ed basic block B with redundant instructions deleted.Method :Seen := ;;for each instruction I � op(In, Out) in B doif 9 op(In0, Out0) 2 Seen such that In == In0 thenunify Out and Out0;delete I from B;elseadd I to Seen;�odProlog Realization :cse_elim(B_in, B_out) :- cse_elim(B_in, [], B_out).cse_elim([], S, []).cse_elim([I1|Rest], Seen, L) :-(find(Seen, I2), eqvt(I1, I2)) ->cse_elim(Rest, Seen, L); (L = [I1|Lrest], add(I1, Seen, Seen0),cse_elim(Rest, Seen0, Lrest)).% eqvt(I1, I2) is true iff the instuctions I1 and I2 have% identical inputs, i.e., are equivalent. In this case,% their outputs are unified.eqvt(I1, I2) :-I1 =.. [Op,In1,Out], I2 =.. [Op,In2,Out], In1 == In2.Figure 1: An Algorithm for Redundancy Removal within a Basic Block

their results Out and Out0 must be equal, so we can simply unify Out and Out0 (sothat future references to Out now also reference Out0) and delete I; otherwise, Ihas not been encountered before, and should be added to Seen. The algorithm,and Prolog code realizing it, is given in Figure 1. The e�ciency of the Prologcode may be improved by choosing the data structure for Seen more carefully,e.g., by indexing it by opcode and passing the opcode of the instruction beingconsidered as a third argument to find.Example 4.1 Consider the following source code statement in a Pascal-likelanguage:a[i, j] := a[i, j] + 1;Assume that the array a is stored in row-major order starting at location 1000,that each array element occupies 4 bytes of memory, and that all of its subscriptsrange over the interval [1..100]. Then, the address of a[i, j] is given by thefollowing expression (see [1] for details):1000+ 4 � 100 � (i� 1) + 4(j� 1)= 4(i � 100+ j) + 596.Code generated directly, without common subexpression elimination, will repeatthis address computation:(1) mult([100, I], [T1]) /* T1 := 100 * I */(2) add([T1, J], [T2]) /* T2 := T1 + J */(3) mult([4, T2], [T3]) /* T3 := 4 * T2 */(4) add([T3, 596], [T4]) /* T4 := T3 + 596 */(5) indirect_load([T4], [T5]) /* T5 := *T4 */(6) add([T5, 1], [T6]) /* T6 := T5 + 1 */(7) mult([100, I], [T7]) /* T7 := 100 * I */(8) add([T7, J], [T8]) /* T8 := T7 + J */(9) mult([4, T8], [T9]) /* T9 := 4 * T8 */(10) add([T9, 596], [T10]) /* T10 := T8 + 596 */(11) indirect_store([T6], [T10]) /* *T10 := T6 */When our algorithm is executed on this code, no instruction will be eliminateduntil instruction (7) is processed. Since the inputs to instruction (7) are identicalto those of (1), this results in the variables T7 and T1 becoming uni�ed andinstruction (7) being discarded. The instruction sequence at this point, therefore,is:

(1) mult([100, I], [T1]) /* T1 := 100 * I */(2) add([T1, J], [T2]) /* T2 := T1 + J */(3) mult([4, T2], [T3]) /* T3 := 4 * T2 */(4) add([T3, 596], [T4]) /* T4 := T3 + 596 */(5) indirect_load([T4], [T5]) /* T5 := *T4 */(6) add([T5, 1], [T6]) /* T6 := T5 + 1 */(8) add([T1, J], [T8]) /* T8 := T1 + J */(9) mult([4, T8], [T9]) /* T9 := 4 * T8 */(10) add([T9, 596], [T10]) /* T10 := T8 + 596 */(11) indirect_store([T6], [T10]) /* *T10 := T6 */Notice now that as a result of the uni�cation of T1 and T7 at the previousstep, the inputs to instructions (2) and (8) become identical. At the next step,therefore, the variables T2 and T8 will become uni�ed and instruction (8) willbe discarded. This process continues, and the code �nally generated does notrepeat any of the address computation:(1) mult([100, I], [T1]) /* T1 := 100 * I */(2) add([T1, J], [T2]) /* T2 := T1 + J */(3) mult([4, T2], [T3]) /* T3 := 4 * T2 */(4) add([T3, 596], [T4]) /* T4 := T3 + 596 */(5) indirect_load([T4], [T5]) /* T5 := *T4 */(6) add([T5, 1], [T6]) /* T6 := T5 + 1 */(11) indirect_store([T6], [T4]) /* *T4 := T6 */2 The algorithm, as described above, has two minor shortcomings:1. It may sometimes fail to detect common subexpressions involving copystatements, i.e., assignments of the formx := y.This is illustrated by the following example: consider the instruction se-quencestore([1], [X]) /* X := 1 */add([X, Y], [Z]) /* Z := X + Y */add([1, Y], [U]) /* U := 1 + Y */In this case, the algorithm fails to infer that 1 + Y in the instructionadd([1, Y], [U]) is a common subexpression. This problem can be taken

care of by carrying out copy propagation [1] before common subexpressionelimination. A point to note here is that join de�nitions, i.e. assignmentsto a variable introduced at join birthpoints during the transformation tostatic single assignment form, should not be considered during copy prop-agation, since otherwise the resulting program may no longer be in staticsingle assignment form.2. The algorithm does not know about algebraic properties of operations, e.g.that addition is commutative. As a result, it may sometimes fail to detectsome common subexpressions. This is illustrated by the following example:add([1, Y], [Z]) /* Z := 1 + Y */add([Z, 2], [X]) /* X := Z + 2 */add([Y, 1], [U]) /* U := Y + 1 */mult([U, 4], [V]) /* V := U * 4 */In this case, the algorithm fails to infer that 1 + Y in the instructionadd([Y, 1], [U]) is a common subexpression. This problem can be takencare of by augmenting the Prolog code to express the desired algebraicproperties, e.g. by adding clauses of the formeqvt(I1, I2) :-1 =.. [Op, [X1,Y1], Out], I2 =.. [Op, [X2,Y2], Out],commutative(Op), X1 == Y2, X2 == Y1.commutative(add).commutative(mult).Even though this is somewhat more complicated than the original de�ni-tion given in Figure 1, notice that all that we are doing is elaborating, ina clean and logical way, the notion of \equivalence" between two instruc-tions. The point is that the overall algorithm|and anything that dependson it|is not a�ected, all we are doing is re�ning the eqvt/2 relation. Ob-viously, additional properties could be expressed by suitably elaboratingthe de�nition of eqvt/2, without a�ecting any of the remainder of thealgorithm. In our experience, this ability to specify aspects of the instruc-tion set in a clean and declarative way is very helpful for veri�cation andmodi�cation of the low-level code optimizer (its simplicity, modularity,declarative reading, and ease of modi�cation contrast very pleasantly withthe corresponding code that is typically found in traditional compilers).

4.3 Redundancy Elimination across Basic Block Bound-ariesRecall that we are considering only loop-free program fragments. It thereforesu�ces to consider two cases: (i) a fork point, i.e., where a basic block has morethan one successor; and (ii) a join point, i.e., where a basic block has more thanone predecessor.Dealing with fork points is straightforward: if a block B has n successorsB1; : : : ; Bn then the initial Seen set at the entry to each of the blocks B1; : : : ; Bnis the Seen set at the exit from block B.For join points, we have to ensure that instructions encountered along onebranch leading upto the join point, but not along another branch, are not con-sidered to have been seen when the basic block at the join point is considered.This is easy to handle: consider a basic block B with k predecessors B1; : : : ; Bk,and let the set of instructions seen at the end of a predecessor Bi be Seeni,1 � i � k. Then, the set Seen at the entry to B is given bySeen = k\i=1 Seeni.With this change, the algorithm can be used for common subexpression elimi-nation in any loop-free program.5 Common Subexpression Elimination in the WAMThe kind of common subexpression most commonly encountered in Prolog pro-grams involves redundant construction of terms [2]. For example, on most Prologimplementations, the clausep([f(X,Y)|L]) :- q(f(X,Y)), p(L).will create two copies of the term f(X, Y) each time around the recursion whenexecuted. Since most high-performance Prolog systems are based on the WAM[12], it would be nice if we could adapt our scheme to the WAM. This cannotbe done directly, for the following reasons:1. WAM instructions use implicit arguments, and as a result are contextsensitive. For example, a get list or get structure instruction has theregisters S (the structure pointer) and H (the heap pointer), as well themode bit, as implicit outputs. This is not really a signi�cant problem,

since it can be recti�ed by rewriting the instructions to make all operandsexplicit.2. WAM entities are not single assignment. For example, the various registerscan be destructively updated. Again, this does not seem to be a signi�cantproblem, since in principle we could consider a transformation to staticsingle assignment form, similar to that discussed earlier for imperativeprograms, before applying our algorithm.Unfortunately, as far as we can see, our scheme remains inapplicable to reclaim-ing common substructures even after these problems have been addressed. Thereare two (related) reasons for this:1. Consider a clause `p :� q(f(a), f(a))'. The WAM code for this, afterwe have transformed the instruction set to make all operands explicit, andfurther have transformed the resulting code to static single assignmentform, would be the following, where Si and Hi denote di�erent values ofthe S and H registers respectively:p/0 : put structure([f/1, H0], [A1, H1, S1])unify constant([a, H1, S1, write mode], [H2, S2])put structure([f/1, H2], [A2, H3, S3])unify constant([a, H3, S3, write mode], [H4, S4])execute q/2The two put structure instructions cannot be identi�ed to be equivalentbecause the register H, which points to the top of the heap and is an inputto this instruction, is di�erent for the two instructions. As a result, thetwo occurrences of the common substructure f(a) cannot be identi�ed andoptimized.2. Suppose, to get around this problem with failing to identify the commonsubstructure f(a), we ignore the value of the H register when determin-ing whether two put structure instructions are equivalent. In this case,things become even worse: consider the clausep :� q(f(a), f(b)).The code for this isp/0 : put structure([f/1, H0], [A1, H1, S1])unify constant([a, H1, S1, write mode], [H2, S2])put structure([f/1, H2], [A2, H3, S3])unify constant([b, H3, S3, write mode], [H4, S4])execute q/2

By ignoring the di�erent values of the H register in the two put structureinstructions, we would erroneously infer that these two instructions areequivalent, and optimize away the second. This would yield the followingcode:p/0 : put structure([f/1, H0], [A1, H1, S1])unify constant([a, H1, S1, write mode], [H2, S2])unify constant([b, H1, S1, write mode], [H4, S4])execute q/2This is clearly incorrect: register A2 is not set at all any more, and theconstant a written onto the heap by the second instruction is immediatelyoverwritten by the constant b as a result of executing the third instruction.6 ConclusionsCommon subexpression elimination is an important low-level compiler optimiza-tion. Traditional approaches to implementing this optimization, typically viavalue numbering schemes, are complicated by a large amount of low-level clut-ter involved with the maintenance of information about value numbers. In thispaper we propose a much simpler scheme for this transformation, using Prologmeta-language features and uni�cation. The scheme is simple and easy to un-derstand, and easy to implement, modify, and extend, and e�cient in practice.It considers loop-free programs and assumes that variables are single-assignmententities: thus, if applied to imperative language programs, it requires that theybe transformed to static single assignment form. However, since the static singleassignment form is useful for a variety of other optimizations, this need not be agreat burden. Our scheme is also very
exible in the sense that, unlike commonsubexpression elimination in most traditional compilers, it is applicable not onlyto arithmetic, but also to instructions that test types, bounds, etc.Acknowledgements: Comments by Mats Carlsson and Jan Komorowski werevery helpful in improving the contents of the paper. This work was supportedin part by the National Science Foundation under grant number CCR-8901283.References[1] A. V. Aho, R. Sethi and J. D. Ullman, Compilers { Principles, Techniquesand Tools, Addison-Wesley, 1986.[2] M. Carlsson, personal communication, Jan. 1992.

[3] J. Cocke and J. T. Schwartz, Programming Languages and their Compilers:Preliminary Notes, Second Revised Version, Courant Institute of Mathe-matical Science, New York, 1970.[4] R. Cytron and J. Ferrante, \What's in a Name? or, The Value of Renamingfor Parallelism Detection and Storage Allocation", Proc. 1987 InternationalConference on Parallel Processing, St. Charles, IL, Aug. 1987.[5] R. Cytron, J. Ferrante, B. Rosen, and M. Wegman, \E�ciently ComputingStatic Single Assignment Form and the Control Dependence Graph", ACMTransactions on Programming Languages and Systems vol. 13 no. 4, pp.451{490.[6] S. K. Debray, \QD-Janus: A Prolog Implementation of Janus", researchreport, Dept. of Computer Science, The University of Arizona, Tucson,May 1991.[7] A. Houri and E. Shapiro, \A Sequential Abstract Machine for Flat Concur-rent Prolog", in Concurrent Prolog: Collected Papers, vol. 2, ed. E. Shapiro,pp. 513-574. MIT Press, 1987.[8] H. J. Komorowski, \Partial Evaluation as a Means for Inferencing DataStructures in an Applicative Language: A Theory and Implementation inthe Case of Prolog", Proc. Ninth ACM Symposium on Principles of Pro-gramming Languages, Albuquerque, NM, Jan. 1982.[9] J. H. Reif and H. R. Lewis, \Symbolic Evaluation and the Global ValueGraph", Proc. Fourth ACM Symp. on Principles of Programming Lan-guages, Jan. 1977, pp. 104-118.[10] B. K. Rosen, M. N. Wegman, and F. K. Zadeck, \Global Value Numbersand Redundant Computations", Proc. 1988 ACM Symp. on Principles ofProgramming Languages, San Diego, CA, Jan. 1988, pp. 12-27.[11] V. A. Saraswat, K. Kahn, and J. Levy, \Janus: A step towards distributedconstraint programming", in Proc. 1990 North American Conference onLogic Programming, Austin, TX, Oct. 1990, pp. 431-446. MIT Press.[12] D. H. D. Warren, \An Abstract Prolog Instruction Set", Technical Note309, SRI International, Menlo Park, CA, Oct. 1983.[13] M. N. Wegman and F. K. Zadeck, \Constant Propagation with ConditionalBranches", ACM Transactions on Programming Languages and Systemsvol. 13 no. 2, April 1991, pp. 181-210.[14] W.Wulf, R. K. Johnsson, C. B.Weinstock, S. O. Hobbs, and C. M. Geschke,The Design of an Optimizing Compiler, American Elsevier, New York, 1975.

