Compiler Optimizations
for Low-level Redundancy Elimination:
An Application of Meta-level Prolog Primitives

Saumya K. Debray
Department of Computer Science
University of Arizona

Tucson, AZ 85721, USA

Abstract

Much of the work on applications of meta-level primitives in logic pro-
grams focusses on high-level aspects such as source-level program trans-
formation, interpretation, and partial evaluation. In this paper, we show
how meta-level primitives can be used in a very simple way for low-level
code optimization in compilers. The resulting code optimizer is small,
simple, efficient, and easy to modify and retarget. An optimizer based on
these ideas is currently being used in a compiler that we have developed
for Janus [6].

1 Introduction

Much of the work on applications of meta-level primitives in logic programs
focuses on high-level aspects such as source-level program transformation, in-
terpretation, and partial evaluation. In this paper, we consider instead the use
of meta-level Prolog primitives in low-level code optimization in compilers. We
show how such primitives can be used in a very simple way for a low-level code
optimization called common subexpression elimination. The resulting code op-
timizer is small, simple, efficient, and easy to modify and retarget. Because
it requires only a very simple logical description of the instruction set under
consideration, correctness is simple to guarantee.

The application we describe is not profound—indeed, its primary appeal
to us is its simplicity (it happens also to be efficient, effective, and easy to
implement). An experienced Prolog programmer might very well consider it to
be an “obvious hack,” and if the only application we could find for it was in
Prolog compilers written in Prolog, then we would consider it to be too narrow
an application to be much more than a curiosity. One of the contributions of
this paper is to show that these ideas are applicable, not only to the compilation
of logic programming languages, but also to compilers for traditional functional
and i1mperative languages. A related technique is dicussed by Komorowski in
the context of partial evaluation [8].

Conceptually, the optimization algorithm described here can be thought of
as a scheme to transform an intermediate representation of a program from a
tree to a DAG via some sort of value numbering scheme [1]. This, however, will
be true for essentially every algorithm for common subexpression elimination.
First, almost any scheme for common subexpression elimination can be thought
of in terms of merging distinct computations (“nodes”) that are equivalent in
some sense, 1.e., in terms of a transformation from a tree to a DAG. Moreover,
unless the implementation is entirely naive, checking whether two instruction
sequences represent the computation of a common subexpression will be carried
out, wherever possible, without exhaustively comparing the two sequences: this
can typically be formulated in terms of some kind of value numbering scheme.
What we feel is interesting and elegant about the approach described in this
paper is that the use of unification, together with meta-level primitives, allows
much of the low-level clutter associated with these operations to be avoided by
the compiler writer. As a result, the code generator produced is transparent,
easy to understand, verify, modify, and retarget.

2 Background

2.1 Common Subexpressions

During compilation, a program is typically translated from the source language
to a lower level intermediate language. The program resulting from the transla-
tion to intermediate code may contain common subexpressions. An occurrence of
an expression F is called a common subexpression if I/ was previously evaluated,
and the values of variables occurring in £ have not changed since the previous
computation [1]. Common subexpressions may arise in a program either because
there are multiple occurrences of an expression in the source program (which may
happen, for example, after macro expansion), or because the translation to in-
termediate code makes explicit lower-level operations that are not visible at the
source level. As an example, the Fortran code fragment

Alil = Al + 1

may translate, on a machine with 4-byte words, to the intermediate code se-

quence
t0 := 4%i
t1 := A[t0]
t2 = ti1+1
t3 = 4%i

A[t3] := t2.

Here, the expression 4#*1i is a common subexpression: it arises because the low-
level details of array subscripting are not visible at the source level.

In general, the performance of a program can be improved by eliminating
code to recompute common subexpressions, and using the previously computed
value instead. In practice, common subexpression elimination incurs a cost,
since 1t may tie up a machine register to hold the value of the expression for
subsequent uses, or result in stores and loads of the saved value from memory. In
general, a compiler has to weigh the savings realized from common subexpression
elimination against the costs incurred to determine whether a particular common
subexpression is worth eliminating (e.g., see [14]). Thus, common subexpression
elimination involves

1. identifying common subexpressions;
2. deciding which of these are worth eliminating; and

3. transforming the code sequence to eliminate such common subexpressions.

Since these three points are essentially orthogonal to each other, we will focus
on points (1) and (3) in this paper.

2.2 Static Single Assignment Form

As we will see, our compilation model views a variable as a logical entity that
can be defined at most once. In an imperative language, it may happen that
the source program contains multiple assignments to a variable. It is possible to
transform such programs to static single assignment form [4, 5] to conform to our
compilation model. In static single assignment form, a program is transformed
so that the program text contains at most one assignment to any variable along
any execution path. The significance of this transformation stems from the
fact that (even in imperative languages) single-assignment source variables are
desirable for a number of optimizations, including parallelism detection [4, 10,
13]. Dynamically, a program with loops may assign many times to the same
variable, even if only one assignment appears in the program text (a scheme to
get around this problem, involving the creation of new variables dynamically,
is discussed in [4]). In this section, we briefly review the transformation of a
program to static single assignment form, as described in [5].

First, consider the transformation for a single basic block with multiple def-
initions of a variable. The transformation simply renames all definitions of the
variable except for the final one, and their corresponding uses, as illustrated
below:

Original Renamed

X=... /* define X */ X1 = ... /* define X1 */
=X /* use X */ ”‘=X1 /* use X1 %/

X = /* define X */ X'2”= /* define X2 */
=X /* use X */ ”‘=X2 /* use X2 %/

X = /* define X */ X‘ = /* define X */

Since only the last definition of a variable within a block can be used outside
that block, this transformation does not affect any use of that variable in other
basic blocks. Within a basic block, each use of a variable must be renamed, if
necessary, to match the corresponding definition.

Next, consider a case where multiple definitions reach a use. In this case,
we first identify the “join birthpoints” of variables in the control flow graph,
i.e., points in the control flow graph where several definitions of a variable meet
on different incoming edges for the first time. Consider a join birthpoint for
a variable X where k paths, each with a definition for X, meet. We transform
the program by renaming X along each path, ensuring that this renaming does
not introduce the same name along different paths. Suppose that for each path
7, 1 < i < k, the last definition of X has been renamed in this process to X;.
We then ensure that the original variable contains the correct value by adding
an assignment X = ¢(Xy,...,X,) for each path i, 1 < ¢ < k: here, ¢(...) is a
special form of assignment, called a join-definition, that assigns the appropriate
value depending on which branch of the conditional was taken: in practice, this
can be implemented in a fairly straightforward way (see [4]). The approach is
illustrated by the following example:

Original Renamed

X = A+B X1 = A+B
if (..) if (...
then X = X+1 then X2 = X1+1
Z=0 Z=0
else X = X+2 else X3 = X1+2
X = ¢(X2, X3)
Y = 2%X Y = 2%X

This step eliminates multiple assignments to a variable in the absence of loops.
A scheme to deal with loops, via dynamic creation of new variables, is described
in [4]: since we will be concerned primarily with loop-free programs, this will
not be discussed further here.

3 Common Subexpression Elimination: The Traditional
Approach

Common subexpression elimination is usually carried out by analyzing the ab-
stract syntax tree for a compilation unit (typically a procedure) to find identical
expression subtrees. Suppose that E; and E3 are two such identical subtrees,
and FE is guaranteed to be evaluated before Fs. Then, if the variables in £y can
be guaranteed to be unchanged since the evaluation of F;, then the subtree Es
can be replaced by a pointer to the subtree FE;. As a result, the syntax tree is
transformed into a DAG in which nodes with more than one parent correspond
to common subexpressions.

Now suppose we are processing an expression tree E in a procedure. In a
naive implementation, determining whether there is another subtree elswehere
in the procedure identical to E might be carried out by actually matching F
against the various expression subtrees occurring in the procedure. This, of
course, would be hopelessly inefficient in general, even if the search 1is restricted
to “previously computed” expression subtrees. In practice, therefore, a more
sophisticated scheme called value numbering [3, 9, 10] is used. The essential
idea is to assign special symbolic names called value numbers to expressions.
Then, if two expressions Fy = op1(t1,...,4n) and Ea2 = opa(uy, ..., uy,) satisfy
(1) op1 = opa, and (i%) the value number of ¢; is the same as that of u;, 1 < i <n,
then 7 and Es are guaranteed to compute the same value.

The implementation of value numbering, however, can be considerably more
complicated that this description might suggest. For example, [1] describes
an implementation scheme that involves using a hash table to keep track of

expressions that are potentially common subexpressions. Moreover, if there can
be multiple assignments to a variable in the program, then this structure has to
be kept consistent with updates.

4 Our Approach
4.1 The Compilation Model

The most significant difference between our compilation model, and that used
in traditional compilers, is that we view a (source or temporary) variable as
a logical entity whose value can be defined at most once. This turns out to
simplify significantly the subsequent reasoning about, and optimization of, the
intermediate code program, since there is no need to worry about the value of a
variable changing due to multiple assignments to it.

Traditional compilers typically attempt to conserve machine resources by
deallocating temporary variables when they are no longer needed, and reusing
such deallocated temporaries later if possible. In our model, in contrast, no at-
tempt is made to reuse temporary variables during intermediate code generation.
The effects of such reuse are obtained later, during final code generation, when
temporary variables are mapped to machine resources such as memory locations
or registers: at this time, liveness information can be used to map variables with
disjoint lifetimes into the same register or memory location. Multiple assign-
ments to variables in the source program can be handled by transformation to
static single assignment form, as discussed earlier.

We also assume that intermediate code instructions are recyclable, i.e., can be
reused. The idea here is the following: suppose we have two instructions [; and
15, with identical operands, in a basic block. From the assumption that variables
and temporaries are single assignment entities, this means that these instructions
will have identical operand values at runtime. The assumption of recyclability
states that in this case, the result from the first instruction I; can be recycled
and used in place of the second instruction 7;. While the assumption seems
not too unreasonable, it need not be satisfied in practice, e.g., if the instruction
under consideration is nondeterministic, or if it involves side effects, e.g., for 1/0.
In practice, however, our scheme can be used even if not all instructions in the
language under consideration are recyclable, as long as we restrict our attention
to recyclable instructions.

In the remainder of this paper, we consider common subexpression elimina-
tion in loop-free code fragments only (this is not as bad as it may seem, since
most compilers restrict themselves to common subexpression elimination within
basic blocks or extended basic blocks): in this case, the transformation to static

single assignment form suffices to ensure that our assumptions are satisfied.

For the remainder of the paper, intermediate code instructions will be rep-
resented as follows unless explicitly mentioned: an instruction with opcode op,
operands Inq, ..., In,, and results Qutq, ..., Out, will be represented as

op(Liny,...,In,1, [Outy,..., Out,]).

For example, the instruction add([R1, R2], [R3]) indicates that the sum of
R1 and R2 is assigned to R3. If an instruction has no operands, then the first
argument is the empty list [1: for example, an increment instruction might be
written ‘inc([], [X])’. It is important to note that any entity that may be
“read” by an instruction 1s expected to be listed explicitly as an operand, while
any entity that may be “written” by an instruction is expected to be listed as
a result: this includes entities, such as stack or heap pointers, that are often
treated as implicit operands. Further, the single assignment requirement applies
to all operands and results.

4.2 Redundancy Elimination within a Basic Block

Strictly speaking, our approach aims to eliminate redundant instructions rather
than common subexpressions. This includes common subexpression elimination
as a special case, since a common subexpression manifests itself as a sequence of
redundant instructions; however, it also removes certain kinds of redundancies,
such as type tests, that might not be considered to be a common subexpression
in a traditional compiler. The principle underlying our algorithm is extremely
simple and quite obvious: two (deterministic) instructions that apply the same
operator to identical operands will produce the same results. The determinacy
requirement, which says that the instructions compute functions, is important,
but not very restrictive for our application: we do not know of any intermediate
representation language for compilers that does not satisfy this requirement. It
turns out that by using unification and Prolog meta-level primitives, we are
able to exploit this obvious fact in a clean and simple way, obtaining simple
and efficient code optimizers without having to worry about any of the low-
level clutter associated with common subexpression elimination in traditional
compilers.

Assume that the instructions in a basic block are represented as a list of
Prolog terms (each instruction is a Prolog term of the form described at the end
of the previous section). We assume that we have a set of instructions Seen that
have already been encountered. The essence of our algorithm is straightforward:
given an instruction I = op(In,Out) in the basic block, if there is an instruction
I’ = op(In’,0ut’) in Seen such that the operands In and In’ are identical, then

Input : A basic block B of intermediate code instructions.
Output : A modified basic block B with redundant instructions deleted.

Method :

Seen := ();
for each instruction I = op(In, Out) in B do
if 3 op(In’, Out’) € Seen such that In == In’ then
unify Out and Out’;
delete I from B;
else
add I to Seen,;
fi
od

Prolog Realization :

cse_elim(B_in, B_out) :- cse_elim(B_in, [], B_out).

cse_elim([1, s, [1).
cse_elim([I1|Rest], Seen, L) :-
(find(Seen, I2), eqvt(Il, I2)) ->
cse_elim(Rest, Seen, L)
; (L = [I1|Lrest], add(I1, Seen, Seen0),
cse_elim(Rest, SeenO, Lrest)

).

% eqvt(I1l, I2) is true iff the instuctions Il and I2 have
% identical inputs, i.e., are equivalent. In this case,
% their outputs are unified.

eqvt(Il, I2) :-
I1 =.. [0p,Ini1,0ut], I2 =.. [Op,In2,0ut], Inl == In2.

Figure 1: An Algorithm for Redundancy Removal within a Basic Block

their results Out and Out’ must be equal, so we can simply unify Out and Out’ (so
that future references to Out now also reference Out’) and delete I; otherwise, T
has not been encountered before, and should be added to Seen. The algorithm,
and Prolog code realizing it, is given in Figure 1. The efficiency of the Prolog
code may be improved by choosing the data structure for Seen more carefully,
e.g., by indexing it by opcode and passing the opcode of the instruction being
considered as a third argument to £ind.

Example 4.1 Consider the following source code statement in a Pascal-like
language:

ali, j1 := ali, j1 + 1;

Assume that the array a is stored in row-major order starting at location 1000,
that each array element occupies 4 bytes of memory, and that all of its subscripts
range over the interval [1..100]. Then, the address of ali, j] is given by the
following expression (see [1] for details):

1000 4+ 4 % 100 % (i — 1) +4(j — 1)
= 4(i* 100+ j) + 596.

Code generated directly, without common subexpression elimination, will repeat
this address computation:

(1) mult([100, I1, [T11) /% T1 := 100 * I %/
(2) add([T1, JI, [T2]) /¥ T2 :=T1 +J %/
(3) mult([4, T21, [T31) /% T3 := 4 % T2 %/
(a) add([T3, 5961, [T4l) /% T4 := T3 + 596 */
(5) indirect_load([T4], [T51) /* T6 := *T4 */
(6) add([Ts, 11, [T6l) /% T6 := T5 + 1 %/
(7) mult([100, I1, [T71) /% T7 := 100 * I %/
(8) add([T7, J1, [T81) /¥ T8 := TT +J */
(9) mult([4, T8, [T9l) /% T9 := 4 % T8 %/
(10) add([T9, 5961, [T10]1) /% T10 := T8 + 596 */
(11) indirect_store([T6], [T101) /* *T10 := T6 */

When our algorithm is executed on this code, no instruction will be eliminated
until instruction (7) is processed. Since the inputs to instruction (7) are identical
to those of (1), this results in the variables T7 and T1 becoming unified and
instruction (7) being discarded. The instruction sequence at this point, therefore,
is:

(1) mult([100, I, [T1]) /* T1 := 100 * I */

(2) add([T1, JI, [T2]) /¥ T2 :=T1 +J %/
(3) mult([4, T21, [T31) /% T3 := 4 % T2 %/
(a) add([T3, 5961, [T4l) /% T4 := T3 + 596 */
(5) indirect_load([T4], [T51) /* T6 := *T4 */
(6) add([Ts, 11, [T6l) /% T6 := T5 + 1 %/
(8) add([T1, JI, [T81) /¥ T8 :=T1 +J %/
(9) mult([4, T8, [T9l) /% T9 := 4 % T8 %/
(10) add([T9, 5961, [T10]1) /% T10 := T8 + 596 */
(11) indirect_store([T6], [T101) /* *T10 := T6 */

Notice now that as a result of the unification of T1 and T7 at the previous
step, the inputs to instructions (2) and (8) become identical. At the next step,
therefore, the variables T2 and T8 will become unified and instruction (8) will
be discarded. This process continues, and the code finally generated does not
repeat any of the address computation:

(1) mult([100, I1, [T11) /% T1 := 100 * I %/
(2) add([T1, JI, [T2]) /¥ T2 :=T1 +J %/
(3) mult([4, T21, [T31) /% T3 := 4 % T2 %/
(a) add([T3, 5961, [T4l) /% T4 := T3 + 596 */
(5) indirect_load([T4], [T51) /* T6 := *T4 */
(6) add([Ts, 11, [T6l) /% T6 := T5 + 1 %/
(11) indirect_store([T6], [T4]1) /* *T4 := T6 */

The algorithm, as described above, has two minor shortcomings:

1. It may sometimes fail to detect common subexpressions involving copy
statements, 1.e., assignments of the form

X = y.

This is illustrated by the following example: consider the instruction se-

quence
store([1], [X]) /* X =1 */
add([X, Y1, [Z]) /¥ 2 =X+ Y %/
add([1, Y1, [Ul) /¥ U =1+ 7Y %/

In this case, the algorithm fails to infer that 1 + Y in the instruction
add([1, Y], [U]) isa common subexpression. This problem can be taken

care of by carrying out copy propagation [1] before common subexpression
elimination. A point to note here is that join definitions, i.e. assignments
to a variable introduced at join birthpoints during the transformation to
static single assignment form, should not be considered during copy prop-
agation, since otherwise the resulting program may no longer be in static
single asstgnment form.

. The algorithm does not know about algebraic properties of operations, e.g.
that addition is commutative. As a result, it may sometimes fail to detect
some common subexpressions. This is illustrated by the following example:

add([1, Y1, [Z]) /¥ Z =1+ Y %/
add([z, 21, [X1) /¥ X =2 + 2 %/
add([Y, 11, [Ul) /¥ U :=Y + 1 %/
mult([U, 41, [V]) /¥ V :=U % 4 %/

In this case, the algorithm fails to infer that 1 + Y in the instruction
add([Y, 11, [U]) isa common subexpression. This problem can be taken
care of by augmenting the Prolog code to express the desired algebraic
properties, e.g. by adding clauses of the form

eqvt(Il, I2) :-
1 =.. [Op, [X1,Y1]l, Outl, I2 =.. [Op, [X2,Y2], Outl,
commutative(Op), X1 == Y2, X2 == Y1.

commutative(add).
commutative(mult).

Even though this 1s somewhat more complicated than the original defini-
tion given in Figure 1, notice that all that we are doing 1s elaborating, in
a clean and logical way, the notion of “equivalence” between two instruc-
tions. The point is that the overall algorithm—and anything that depends
on it—is not affected, all we are doing is refining the eqvt/2 relation. Ob-
viously, additional properties could be expressed by suitably elaborating
the definition of eqvt/2, without affecting any of the remainder of the
algorithm. In our experience, this ability to specify aspects of the instruc-
tion set in a clean and declarative way is very helpful for verification and
modification of the low-level code optimizer (its simplicity, modularity,
declarative reading, and ease of modification contrast very pleasantly with
the corresponding code that is typically found in traditional compilers).

4.3 Redundancy Elimination across Basic Block Bound-
aries

Recall that we are considering only loop-free program fragments. It therefore
suffices to consider two cases: (i) a fork point, i.e., where a basic block has more
than one successor; and (i7) a join point, i.e., where a basic block has more than
one predecessor.

Dealing with fork points is straightforward: if a block B has n successors
By, ..., By, then the initial Seen set at the entry to each of the blocks By,..., B,
is the Seen set at the exit from block B.

For join points, we have to ensure that instructions encountered along one
branch leading upto the join point, but not along another branch, are not con-
sidered to have been seen when the basic block at the join point is considered.
This is easy to handle: consider a basic block B with k predecessors By, ..., By,
and let the set of instructions seen at the end of a predecessor B; be Seen;,
1 < i < k. Then, the set Seen at the entry to B is given by

k
Seen = ﬂ Seen;.
i=1

With this change, the algorithm can be used for common subexpression elimi-
nation in any loop-free program.

5 Common Subexpression Elimination in the WAM

The kind of common subexpression most commonly encountered in Prolog pro-
grams involves redundant construction of terms [2]. For example, on most Prolog
implementations, the clause

p([£(X,Y)IL]) :- q(£(X,Y)), p(L).

will create two copies of the term £(X, Y) each time around the recursion when
executed. Since most high-performance Prolog systems are based on the WAM
[12], it would be nice if we could adapt our scheme to the WAM. This cannot
be done directly, for the following reasons:

1. WAM instructions use implicit arguments, and as a result are context
sensitive. For example, a get_1ist or get_structure instruction has the
registers S (the structure pointer) and H (the heap pointer), as well the
mode bit, as implicit outputs. This is not really a significant problem,

since it can be rectified by rewriting the instructions to make all operands
explicit.

2. WAM entities are not single assignment. For example, the various registers
can be destructively updated. Again, this does not seem to be a significant
problem, since in principle we could consider a transformation to static
single assignment form, similar to that discussed earlier for imperative
programs, before applying our algorithm.

Unfortunately, as far as we can see, our scheme remains inapplicable to reclaim-
ing common substructures even after these problems have been addressed. There
are two (related) reasons for this:

1. Consider a clause ‘p :— q(£(a), £(a))’. The WAM code for this, after
we have transformed the instruction set to make all operands explicit, and
further have transformed the resulting code to static single assignment
form, would be the following, where S; and H; denote different values of
the S and H registers respectively:

p/0: put_structure([f/1, Hol, [A1l, Hy, S11)
unify constant([a, Hy, S;, writemode], [Hs, S3]1)
put_structure([f/1, H.], [A2, Hs, S3])
unify constant([a, Hs, S3, writemode], [Hi, S4])
execute q/2

The two put_structure instructions cannot be identified to be equivalent
because the register H, which points to the top of the heap and is an input
to this instruction, i1s different for the two instructions. As a result, the
two occurrences of the common substructure £ (a) cannot be identified and
optimized.

2. Suppose, to get around this problem with failing to identify the common
substructure f(a), we ignore the value of the H register when determin-
ing whether two put_structure instructions are equivalent. In this case,
things become even worse: consider the clause

p :— q(f(a), £(b)).
The code for this is

p/0: put_structure([f/1, Hol, [A1l, Hy, S11)
unify constant([a, Hy, S;, writemode], [Hs, S3]1)
put_structure([f/1, H.], [A2, Hs, S3])
unify constant([b, Hs, S3, writemode], [Hi, S4])
execute q/2

By ignoring the different values of the H register in the two put_structure
instructions, we would erroneously infer that these two instructions are
equivalent, and optimize away the second. This would yield the following
code:

p/0: put_structure([f/1, Hol, [A1l, Hy, S11)
unify constant([a, Hy, S;, writemode], [Hs, S3]1)
unify constant([b, Hy, S;, writemode], [Hi, S4])
execute q/2

This 1s clearly incorrect: register A2 is not set at all any more, and the
constant a written onto the heap by the second instruction is immediately
overwritten by the constant b as a result of executing the third instruction.

6 Conclusions

Common subexpression elimination is an important low-level compiler optimiza-
tion. Traditional approaches to implementing this optimization, typically via
value numbering schemes, are complicated by a large amount of low-level clut-
ter involved with the maintenance of information about value numbers. In this
paper we propose a much simpler scheme for this transformation, using Prolog
meta-language features and unification. The scheme is simple and easy to un-
derstand, and easy to implement, modify, and extend, and efficient in practice.
It considers loop-free programs and assumes that variables are single-assignment
entities: thus, if applied to imperative language programs, it requires that they
be transformed to static single assignment form. However, since the static single
assignment form is useful for a variety of other optimizations, this need not be a
great burden. Our scheme is also very flexible in the sense that, unlike common
subexpression elimination in most traditional compilers, it is applicable not only
to arithmetic, but also to instructions that test types, bounds, etc.

Acknowledgements: Comments by Mats Carlsson and Jan Komorowski were
very helpful in improving the contents of the paper. This work was supported
in part by the National Science Foundation under grant number CCR-8901283.

References

[1] A. V. Aho, R. Sethi and J. D. Ullman, Compilers — Principles, Techniques
and Tools, Addison-Wesley, 1986.

[2] M. Carlsson, personal communication, Jan. 1992.

[3]

[14]

J. Cocke and J. T. Schwartz, Programming Languages and their Compilers:
Preliminary Notes, Second Revised Version, Courant Institute of Mathe-
matical Science, New York, 1970.

R. Cytron and J. Ferrante, “What’s in a Name? or, The Value of Renaming
for Parallelism Detection and Storage Allocation”, Proc. 1987 International
Conference on Parallel Processing, St. Charles, IL, Aug. 1987.

R. Cytron, J. Ferrante, B. Rosen, and M. Wegman, “Efficiently Computing
Static Single Assignment Form and the Control Dependence Graph”, ACM
Transactions on Programming Languages and Systems vol. 13 no. 4, pp.

451-490.

S. K. Debray, “QD-Janus: A Prolog Implementation of Janus”, research
report, Dept. of Computer Science, The University of Arizona, Tucson,

May 1991.

A. Houri and E. Shapiro, “A Sequential Abstract Machine for Flat Concur-
rent Prolog”, in Concurrent Prolog: Collected Papers, vol. 2, ed. E. Shapiro,
pp- H13-574. MIT Press, 1987.

H. J. Komorowski, “Partial Evaluation as a Means for Inferencing Data
Structures in an Applicative Language: A Theory and Implementation in
the Case of Prolog”, Proc. Ninth ACM Symposium on Principles of Pro-
gramming Languages, Albuquerque;, NM, Jan. 1982.

J. H. Reif and H. R. Lewis, “Symbolic Evaluation and the Global Value
Graph”, Proc. Fourth ACM Symp. on Principles of Programming Lan-
guages, Jan. 1977, pp. 104-118.

B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Global Value Numbers
and Redundant Computations”, Proc. 1988 ACM Symp. on Principles of
Programming Languages, San Diego, CA, Jan. 1988, pp. 12-27.

V. A. Saraswat, K. Kahn, and J. Levy, “Janus: A step towards distributed
constraint programming”, in Proc. 1990 North American Conference on
Logic Programmang, Austin, TX, Oct. 1990, pp. 431-446. MIT Press.

D. H. D. Warren, “An Abstract Prolog Instruction Set”, Technical Note
309, SRI International, Menlo Park, CA, Oct. 1983.

M. N. Wegman and F. K. Zadeck, “Constant Propagation with Conditional
Branches”, ACM Transactions on Programming Languages and Systems
vol. 13 no. 2, April 1991, pp. 181-210.

W. Wulf, R. K. Johnsson, C. B. Weinstock, S. O. Hobbs, and C. M. Geschke,
The Design of an Optimizing Compiler, American Elsevier, New York, 1975.

