
Alias Analysis of Executable Code �Saumya Debray Robert Muth Matthew WeippertDepartment of Computer ScienceUniversity of ArizonaTucson, AZ 85721, U.S.A.fdebray, muth, weippertg@cs.arizona.eduAbstractRecent years have seen increasing interest in systemsthat reason about and manipulate executable code.Such systems can generally bene�t from informationabout aliasing. Unfortunately, most existing aliasanalyses are formulated in terms of high-level languagefeatures, and are unable to cope with features, suchas pointer arithmetic, that pervade executable pro-grams. This paper describes a simple algorithm thatcan be used to obtain aliasing information for exe-cutable code. In order to be practical, the algorithm iscareful to keep its memory requirements low, sacri�c-ing precision where necessary to achieve this goal. Ex-perimental results indicate that it is nevertheless ableto provide a reasonable amount of information aboutmemory references across a variety of benchmark pro-grams.1 IntroductionRecent years have seen increasing interest in reason-ing about and manipulating executable �les [5, 15, 20,25, 27, 30, 31, 33]. When working with an executable�le, we typically have information about the entireprogram|including, potentially, library functions|that is usually not available at compile time. Becauseof this, code manipulation and optimization at thislevel o�ers bene�ts that are di�cult or impossible toobtain using traditional compilers. As with the compi-lation of source-level programs, code transformationson executable code can bene�t greatly from pointeralias information. For example, inlining library rou-tines may open up opportunities for moving invariantload instructions out of loops, but alias information isneeded in order to identify such invariant load instruc-tions. To obtain the full bene�ts of a superscalar archi-�This work was supported in part by the Na-tional Science Foundation under grant CCR-9502826.Copyright 1998 ACM. To appear in the Proceedings ofthe 25th Annual ACM SIGPLAN-SIGACT Symposium onPrinciples of Programming Languages, January 1998.

tecture such as the DEC Alpha, link-time optimizerssuch as Spike [5], alto [10], and OM [30] need to carryout instruction scheduling again after link-time opti-mizations; without pointer alias information, however,the scheduler must be conservative in its treatment ofloads and stores, and this can limit the amount of codereordering that is possible. As a �nal example, it maybe possible to scavenge registers at link-time, e.g., byexamining the register usage of library functions, butthe ability to use such scavenged registers e�ectivelyis likely to be limited in the absence of pointer aliasinformation.There is an extensive body of work on pointer aliasanalysis of various kinds (see Section 6). In almost allcases, these are high level analyses, carried out on rep-resentations of source programs in terms of source lan-guage constructs, and typically disregarding \nasty"features such as type casts, pointer arithmetic, andout-of-bounds array accesses. Such analyses turn out,unfortunately, to be of limited utility at the machinecode level, because at this level all we have are thenasty features. The contents of registers and mem-ory words are untyped bit-strings, so the issue of typecasts is in some sense moot: everything is potentiallyan address. Memory accesses typically involve someaddress arithmetic to compute a base address into aregister, followed by the use of a displacement o� thebase address to carry out the actual memory refer-ence. Address arithmetic may also arise due to par-ticular language features, e.g., the use of \tag bits" indynamically typed languages to indicate the type ofthe value pointed at. Dereferencing operations in theexecutable code for such programs will involve nontriv-ial arithmetic involving the tag bits that is invisible|and irrelevant|at the source level (at the level of ex-ecutable programs, we can't tell what source languagea particular piece of code was derived from, and di�er-ent components of a program might have been writtenin di�erent source languages, so we must be able todeal with all such address arithmetic in a reasonable1

way). If the number of arguments to a function islarge enough, some of the arguments may have to bepassed on the stack. In such a case, the argumentspassed on the stack will typically reside at the top ofthe caller's stack frame, and the callee will \reach into"the caller's frame to access them: this is nothing but anout-of-bounds array reference. Finally, executable pro-grams may include library functions, in hand-writtenassembly code, that violate familiar and comfortablesource-level assumptions, e.g., that execution does notjump out of the middle of one function and into themiddle of another (this happens, for example, in someFortran library routines). To illustrate some of theproblems that arise, consider the fragment of C codeshown in Figure 1, together with the corresponding as-sembly code.1 The point to note is the extensive useof address arithmetic to access memory, even in thisvery simple program fragment. For example, in orderto determine whether instructions (10) and (11) mightwrite to the same memory location, we need to be ableto reason about the contents of registers r16 and r17,which are de�ned through the arithmetic operations ininstructions (5) and (6). As this example illustrates,pointer arithmetic cannot be ignored during alias anal-ysis at the machine code level.In this paper, we describe a low-level, ow-sensitive, context-insensitive interprocedural pointeralias analysis algorithm, designed and implemented inthe context of the alto link time optimizer [10], thatcan handle signi�cant pointer arithmetic and features,such as out-of-bound references, that are ignored bymost existing alias analysis algorithms.For simplicity in the discussion that follows, we as-sume a more or less canonical RISC instruction set.Memory is accessed only through explicit load andstore instructions, which have the form load rega,k(regb) and store rega, k(regb), where k is a con-stant, and have the e�ect of reading from, or writingto, the location whose address is k+contents of (regb).To model arithmetic we assume the instructions addsrc1, src2, dest and mult src1, src2, dest , wheredest is a destination register and src1 and src2 aresource registers; to simplify the discussion we abusenotation and allow either src1 or src2 to be an integerconstant, denoting an immediate operand. These in-structions compute, respectively, the sum and productof src1 and src2 into dest (many other operations can1The assembly code shown corresponds to that obtained us-ing gcc -O on a DEC Alpha workstation, with some edits toenhance readability. On the Alpha, arguments to functions aretypically passed in registers 16 . . . 21, and register 30 is used asthe stack pointer.

be expressed in terms of these, e.g., subtraction andregister-to-register moves can be modelled in terms ofaddition: we do not consider these separately). In ad-dition to these we assume the usual complement oftests, conditional jumps, and direct and indirect un-conditional jumps: the only e�ect of these instructionsis to determine the control ow graph of the program,so we do not consider them explicitly in the contextof alias analysis. We also ignore operations on oat-ing point registers, since it seems unlikely that suchoperations would be used for address computations.2 Local Alias AnalysisA technique called instruction inspection, commonlyused in compile-time instruction schedulers, can beused to reason about memory references within a ba-sic block. Here, two memory reference instructions i1and i2 are taken to be non-conicting if either of thefollowing conditions hold:1. they use distinct o�sets from the same base reg-ister r, and r is not rede�ned between i1 and i2;or2. one of the instructions uses a register known topoint to the stack and the other uses a registerknown to point to the global data area.Unfortunately, this simple approach does not work ifinformationabout address arithmetic needs to be prop-agated across basic block boundaries. In the next sec-tion we describe a global analysis that can be used tohandle this.3 Residue-Based Global Alias Analysis3.1 The Basic IdeaAn alias analysis will in general associate each registerwith a set of possible addresses at each program point,so we need to abstract sets of addresses to descriptions,or \abstract address sets." These need to be easy tocompute and compactly representable, with operationssuch as union, intersection, checking containment, etc.,that are cheap enough to be practical for the analysis oflarge programs. A simple way to satisfy these criteriais to consider only some �xed number|say,m|of thelow order bits of an address. That is, addresses are rep-resented by their mod-k residues, where k = 2m. Theset of all mod-k residues is Zk = f0; : : : ; k � 1g. Anabstract address set can then be represented as a bitvector of length k; since m|and, therefore, k = 2m|is�xed, set operations such as union, intersection, check-2

Source Code Executable Codeint f()f add r30, -48, r30 # allocate stack frame (1)store r26, 0(r30) # save return address (2)int x, # x is at displacement 20 in f's stack frame (3)y; # y is at displacement 16 in f's stack frame (4)... ...g(&y, &x); add r30, 16, r16 # r16 := &y (5)add r30, 20, r17 # r17 := &x (6)bsr r26, g # r26 := return addr; goto g (7)... ...gint g(int *x, int *y) # arg1 in r16, arg2 in r17f add r30, -32, r30 # allocate stack frame (8)store r26, 0(r30) # save return address (9)*x = 1; store 1, 0(r16) (10)*y = 0; store 0, 0(r17) (11)...g Figure 1: A fragment of a C program and the corresponding assembly codeing containment, etc., can be carried out in O(1) bit-vector operations. This representation can cope withaddress arithmetic, e.g., as illustrated in Figure 1, sincesuch arithmetic translates in a straightforward way tomod-k arithmetic (see, for example, [17]). Finally,since x mod k 6= (x � �) mod k for 0 < � < 2m, therepresentation can distinguish between addresses in-volving distinct \small" displacements (i.e., less than2m) from a base register.It turns out that mod-k residues are not, by them-selves, adequate for our purposes. The problem is thatin many cases we won't be able to predict the actualvalue of a register r (e.g., the stack pointer) at a pro-gram point, which means we won't be able to say any-thing about a displacement k from r, i.e., the addresscorresponding to k(r), either. To deal with this prob-lem we extend abstract address sets to address descrip-tors, which take an additional component that refersto an instruction:De�nition 3.1 An address descriptor is a pair hI;M i,where I is either an instruction or one of the distin-guished values fnone, anyg, and M is a set of mod-kresidues. Given an address descriptor A � hI;M i, theinstruction I is said to be the de�ning instruction ofA, while M is called the residue set of A.The intuition is that given an address descriptorhI;M i, M denotes a set of mod-k residues relative towhatever value is computed by instruction I. A value

of none indicates that the corresponding residue setrepresents mod-k residues of absolute addresses, whilea value of any indicates that the address descriptordenotes all possible addresses. More formally, supposethat we are given an operational semantics for the in-struction set under consideration (such a semantics isconceptually simple, if somewhat tedious, to specify forthe simple instruction set considered here: we omit aformal speci�cation due to space constraints, and relyinstead on the informal description of the instructionsgiven at the end of Section 1). Given a program Pand an instruction I in P , let valP (I) denote the setof values w such that, for some input to P , there isan execution path from the entry point of P to theinstruction I that causes I to compute w into its des-tination register (valP (I) = ; if I does not computea value into a register, or if control never reaches I).Extend this to the special values none and any asfollows: for any program P , valP (none) = f0g, andvalP (any) is the set of all values. Then, for an analy-sis using mod-k residues, the set of addresses denotedby an address descriptor A � hI;M i in P|that is, the\concretization" of A in the context of P|is:concP (hI;M i) =fw + ik + x j w 2 valP (I); x 2M; i � 0g.As this indicates, di�erent values may be computed bydi�erent executions of a particular instruction. Thisimplies that, for the purposes of alias analysis, it isnot enough to consider address descriptors in isolation.3

This issue is addressed in more detail in Section 3.3.The relative precision of di�erent address descrip-tors can be characterized via the binary relation �:De�nition 3.2 An address descriptor hI2;M2i ismore precise than a descriptor hI1;M1i, writtenhI1;M1i � hI2;M2i, if and only if (i) I1 = any orM1 = Zk; or (ii) M2 = ;; or (iii) I1 = I2 andM2 �M1.It is straightforward to show that � is reexive andtransitive, i.e., a preorder. It can be extended to apartial order in the usual way: de�ne the relation 'as A1 ' A2 if and only if A1 � A2 and A2 � A1|it iseasy to show that this is an equivalence relation|andconsider the quotient of � with respect to '. The setof address descriptors forms a lattice with respect tothis partial order. In the remainder of this discussion,we abuse notation and write � to refer to the result-ing partial order. In particular, the equivalence classcontaining hI;Zki for all I, as well as hany;M i for allM , denotes a total lack of information, and is writtenas ?; the equivalence class containing hI; ;i for all I,denotes the empty set of addresses and is written as >.Our analysis associates an address descriptor with eachregister at each program point of interest.2 If a regis-ter r has an associated address descriptor hI;M i at aprogram point, we will sometimes abuse terminologyand refer to instruction I as the de�ning instructionfor r at that point.3.2 The Analysis Algorithm3.2.1 E�ects of Individual InstructionsAs mentioned earlier, the de�ning instruction compo-nent of an address descriptor allows us to refer to mod-k residues relative to \whatever value is computed bythe de�ning instruction." When examining an instruc-tion I with destination register r, if we can't say any-thing about the value of r after instruction I, theninstead of setting the address descriptor for r to ?, weuse I as the de�ning instruction for r and associatethe address descriptor hI; f0gi with r at the point im-mediately after I. To simplify the discussion, we as-sume that an immediate operand c yields an address2Strictly speaking, the analysis should map each register ateach program point to a set of address descriptors. For prag-matic reasons|see Section 3.2.2 for details|we use a wideningoperation [8] to ensure that at each program point, each registeris mapped to a singleton set of address descriptors. For sim-plicity, we do not distinguish between such a set and the singleaddress descriptor it contains.

descriptor hnone; fc mod kgi in an analysis based onmod-k residues. Individual instructions are analyzedas shown in Figure 2. The reasoning behind these op-erations is as follows:{ For load instructions, our analysis currentlydoesn't keep track of the contents of memory lo-cations, except for read-only sections of the textand data segments.3 Otherwise, we can say noth-ing about the contents of r after the load in-struction, so the resulting address descriptor ishI; f0gi.{ A store instruction does not a�ect address de-scriptors since it does not a�ect the contents ofany register.{ For an instruction add srca, srcb, dest, Fig-ure 2 shows two cases. The correctness of the�rst case follows straightforwardly from the rulesfor mod-k arithmetic [17]; the second case isobviously safe, but merits some discussion: ifAa ' ?, Ab ' ?, or Ia 6= Ib, it's easy tosee that we can't say anything about the re-sult of the operation; if Ia = Ib = I0 for someI0, it's tempting to think that the resulting ad-dress descriptor could be given as hI0;M 0i, whereM 0 = f(xa + xb) mod k j xa 2 Ma; xb 2 Mbg,but this is not the case, sinceM 0 doesn't accountfor the fact that the values being added have, ascomponents, two (possibly di�erent) values fromvalP (I0).{ For an instruction mult srca, srcb, dest, Fig-ure 2 shows three cases. The correctness of the�rst case follows easily from the rules for mod-karithmetic; the second case can be thought of as\widening" Ab to hnone;Zki, which is obviouslysafe, and then applying the �rst case; the rea-soning for the third case is analogous to that forthe add instruction above.In typical RISC code, the most commonly encoun-tered address expression by far involves a �xed dis-placement o� a base register, which corresponds to theadd instruction discussed above. As such it is espe-cially important that this case be handled e�ciently.Suppose that the instruction under consideration isadd rega, c, regb. It turns out that given an ad-dress descriptor hI;M i for rega, with M represented3Our implementationuses the contents of these read-only sec-tions to obtain global addresses: these include global variables aswell as addresses of jump tables and functions called indirectlythrough function pointers.4

Input: An instruction I.Output: An address descriptor for the destination register of I.Method: case I ofload r, addr : If addr corresponds to a read-only memory location with contents val, then the addressdescriptor for r is hnone; fval mod kgi, otherwise it is hI; f0gi.store r, addr : this instruction does not have any e�ect on any address descriptors.add srca, srcb, dest : Let the address descriptors for srca and srcb immediately before instruction I beAa = hIa;Mai and Ab = hIb;Mbi respectively. There are two possibilities:(1) If Aa 6' ?, Ab 6' ?, and Ia = none (the situation where Ib = none is symmetric), let A0 = hIb;M 0i,where M 0 = f(xa + xb) mod k j xa 2 Ma; xb 2 Mbg. The address descriptor for dest is hI; f0gi ifA0 ' ?, and is A0 otherwise.(2) Otherwise, we can't say anything about the result of this operation, so the address descriptor fordest after I is taken to be hI; f0gi.mult srca, srcb, dest : Let the address descriptors for srca and srcb immediately before instruction I beAa = hIa;Mai and Ab = hIb;Mbi respectively. There are three possibilities:(1) If Aa 6' ?, Ab 6' ?, and both Ia and Ib are none, let Mc = f(xa � xb) mod k j xa 2Ma; xb 2Mbg,and A0 = hnone;Mci. The address descriptor for dest is hI; f0gi if A0 ' ?, and is A0 otherwise.(2) Otherwise, if Aa 6' ?, Ab 6' ?, and Ia = none (the case where Ib = none is symmetric), letMc = f(xa � xb) mod k j xa 2 Xa; xb 2 Zkg, and A0 = hnone;Mci. The address descriptor for destis hI; f0gi if A0 ' ?, and is A0 otherwise.(3) Otherwise, we can't say much about the result of the multiplication, so the address descriptor fordest after instruction I is hI; f0gi.esac Figure 2: Analysis of individual instructionsas a bit vector, the bit vector M 0 in the descriptorhI;M 0i for regb can be obtained simply by \rotatingup" the bit-vector for M by c bits, and this is easyto implement e�ciently. As an example, suppose thatM = f1; 5; 6g in a mod-8 residue analysis, and c = 3,then M 0 = f4; 8; 9g mod 8 = f4; 0; 1g. If we representthese sets as bit vectors with the smallest element onthe right, then X = 01100010; rotating up (i.e., to theleft) by 3 bits gives us the vector 0001 0011, which isprecisely the bit vector for M 0.3.2.2 Propagating Address DescriptorsConceptually, if we consider all possible executionpaths through a program, each register at each pro-gram point will correspond to a set of values; ab-stracting from this, one would expect an analysis tomap each register to a set of address descriptors at
each program point. Given the handling of individualinstructions as described in the previous section, theanalysis is now a conceptually straightforward forwarddataow analysis where we compute the meet-over-all-paths solution,4 with union as the meet operator [1].It turns out that if each register, at each programpoint, is mapped to a set of address descriptors, thememory requirements for the analysis can become ex-cessive for large programs. This is due partly becausefully linked executables tend to be considerably largerthan source language modules, and partly because rea-soning about address arithmetic is usually less precisethan, say, reasoning about aliasing at the source level.As a pragmatic measure, therefore, a widening opera-4Since our current implementation is not context-sensitive inits treatment of inter-procedural information ow, a meet-over-all-paths solution su�ces; a context-sensitive treatment wouldhave required a meet-over-all-valid-paths solution.5

B1

B2

B3 B4

B5 B8

B6

[18 instrs] [104 instrs]

[2 instrs]

[18 instrs]

[42 instrs]

[8 instrs]

(2)

(1)add r30,-272,r30

add r30,136,r21

(6)

B7

B9

B10

B11

[23 instrs]

[56 instrs]

[157 instrs]

[6 instrs]

[10 instrs]

(3)

(4)
(5)add r21,32,r21

store ..., 80(r30)
load ..., 0(r21)
add r21,32,r21Figure 3: Flowgraph for Example 3.1 [Program: ijpeg; function: jpeg idct ifast()]tion [8] is used to ensure that at each program point,each register is mapped to a singleton set of addressdescriptors|or, equivalently, a single address descrip-tor. As mentioned in Section 3.1, the set of addressdescriptors forms a lattice with respect to the precisionordering �. The widening operation5 is de�ned to besimply the meet operation with respect to �. In e�ect,what this does is that if a program point B has twopredecessors B0 and B1, such that the address descrip-tors for a register r at B0 and B1 are A0 = hI0;M0iand A1 = hI1;M1i respectively, where neither A0 norA1 are >, and I0 6= I1, then the address descriptor forr at B is A05A1 = ?.While this widening results in \less accurate" infor-mation in some sense|this is reected in the experi-mental results on the precision of our analysis shown inTable 1|it doesn't really change the alias relationshipsthat are determined. To see this, consider a basic blockB with two precedessors B0 and B1. Suppose that wehave a register ra whose address descriptors at the exitfromB0 and B1 are given by hI0a ;M0a i and hI1a ;M1ai re-spectively, and we want to determine whether this ispossibly aliased to a register rb, with address descriptorhIb;Mbi, at the entry to B. If the de�ning instructionsfrom two address descriptors are di�erent, we can't saymuch about any relationship that may hold betweenthem. This means that if I0a 6= I1a it will necessarilybe the case that Ib will be di�erent from at least oneof I0a and I1a , leading us to conclude that we cannotrule out aliasing between ra and rb: this is the same

conclusion as that from the result of the widening op-eration. Conversely, if I0a = I1a = Ib, then whether ornot ra and rb are possible aliases depends on whetheror notMb has a non-empty intersection withM0a [M1a :again, this is the same as with the widening operation.The resulting analysis is reasonably memory-e�cient: for each basic block we need two address de-scriptors per register, one for the in set, at the entry tothe block, and one for the out set, at the exit. Thus,for a given choice of k, the analysis requires 2RN (k+w)bits of memory for a program with N basic blocks ona machine with R registers, where w is the number ofbits per machine word.53.3 Reasoning about Alias RelationshipsGiven two address descriptors A1 � hI1;M1i andA2 � hI2;M2i at two points in a program, under whatconditions can we conclude that they de�nitely do notrefer to the same address? If I1 6= I2 we cannot saymuch about any relationship that may hold betweenA1 and A2, and so have to assume that they mayrefer to the same location. However, it is not su�-cient to require that I1 = I2 and M1 \M2 = ;, sincethe value computed by a particular instruction maybe di�erent when that instruction is executed at dif-ferent times. The following proposition gives a simplesu�cient condition for determining that two address5This can be reduced to RN(k+w) bits, as in our implemen-tation, by storing only out sets, since the in set of a block canbe computed fairly easily from the out sets of its predecessors.6

expressions denote disjoint sets of addresses:Proposition 3.1 Address descriptors A1 � hI;M1iat program point p1 and A2 � hI;M2i at program pointp2 denote disjoint sets of addresses if (i) I dominatesboth p1 and p2; (ii) either p1 dominates p2, or p2 dom-inates p1; and (iii) M1 \M2 = ;.Proof Conditions (i) and (ii) ensure that both theprogram points p1 and p2 see the same value computedby instruction I. Condition (iii) then ensures thatrelative to this value, the set of addresses referred toat p1 is disjoint from that referred to at p2. 2Example 3.1 As an example of the application of thisanalysis to a real program, Figure 3 shows the owgraph of the function jpeg idct ifast(), which im-plements a fast integer inverse discrete cosine trans-form, from the SPEC-95 benchmark program ijpeg.To reduce clutter, only a few relevant instructions areshown explicitly: the number in brackets at the lowerleft hand corner of each basic block indicates the totalnumber of instructions in that basic block. Registerr30 is the stack pointer, while r21 is used to walkthrough a local array of structures with a stride of 32bytes.Using the current implementation of our analysis,which uses mod-64 residues, the address descriptor forregister r21 immediately after instruction (2) in blockB6 is computed as h(1); f8gi, where (1) is the instruc-tion in block B1 that de�nes the value of r30. Eachiteration of the loop B7-B8-B9-B10 increments r21by 32, so the address descriptor for r21 on entry toblock B9 is h(1); f8; 40gi; however, register r30 is notchanged in the loop, so its address descriptor in B9 ish(1); f0gi. Since the requirements of Proposition 3.1are trivially satis�ed within block B9, we can concludefrom this that the store instruction (4), which assignsto location 80(r30), refers to a di�erent location thaninstruction (5), which accesses location 0(r21). 24 Alias Analysis in altoAlto (\Another Link-Time Optimizer"), a prototypelink-time optimizer we have implemented [10], uses acombination of an extended version of the local analy-sis described in Section 2, and the global analysis de-scribed in Section 3, to reason about aliases in exe-cutable code: we conclude that a pair of memory ref-erences will not access overlapping sets of locations ifeither analysis is able to determine that this is so. We

�rst carry out context-insensitive interprocedural con-stant propagation to identify references to global ad-dresses, followed by the global alias analysis describedearlier. The extended local analysis proceeds as fol-lows: two memory reference instructions i1 and i2 donot conict if one of the following holds:1. one of the instructions uses a register known topoint to the stack and the other uses a registerknown to point to the global data area (note thatbecause of the constant propagation carried outearlier, in this case i1 and i2 need not belong tothe same basic block); or2. i1 and i2, which use address expressions k1(r1)and k2(r2) respectively, are both in the same ba-sic block B; and there are two (possibly empty)chains of instructions whose e�ects are to com-pute the value c1 + contents of (r0) into registerr1 and c2+contents of (r0) into r2, for some reg-ister r0, such that either both chains use the samede�nition of r0 in the block B, or neither use anyde�nition of r0 in B; and c1 + k1 6= c2 + k2.5 Experimental ResultsWe evaluated our analysis on the SPEC-95 bench-marks as well as some non-SPEC applications: agrep,a pattern matching utility [37]; appbt and appsp, com-putational uid dynamics codes originally from NAS6;barnes-hut, a simulation program to compute n-bodygravitational interactions [2]; latex, a popular docu-ment formatting tool; and pseudoknot, a numericalbenchmark that �nds the 3-dimensional structure ofa nucleic acid molecule. The input programs werecompiled with the DEC C compiler V5.2-023 invokedas cc -O4 -Wl,-r -Wl,-d -Wl,-z -non shared (forthe C programs), and the DEC Fortran compiler ver-sion 3.8 invoked as f77 -O4 -Wl,-r -Wl,-d -Wl,-z-non shared (for the Fortran programs), resulting instatically linked executables. The measurements re-ported here were carried out after �rst removing deadand unreachable code from these executables, as wellas trivial loads, noops inserted for scheduling andalignment purposes, and redundant loads of the gp reg-ister, using alto [10]. The timings were obtained on aDEC Alpha workstation, with a 300 MHz Alpha 21164processor with 512 Mbytes of main memory, runningDigital Unix 4.0. Table 1 shows the precision of theanalysis, while Table 2 shows its the time and spacerequirements.6We used the sequential C versions available fromftp.cs.wisc.edu:/wwt/Misc/NAS.7

Program Total One Few Total Known Unknownapplu 38973 11083 [28.44%] 5075 [13.02%] 16158 [41.46%] 22814 [58.54%]apsi 46641 12344 [26.47%] 4930 [10.57%] 17274 [37.04%] 29366 [62.96%]compress 6375 2070 [32.47%] 235 [3.69%] 2305 [36.16%] 4070 [63.84%]fpppp 39777 12431 [31.25%] 3726 [9.37%] 16157 [40.62%] 23619 [59.38%]gcc 137389 44021 [32.04%] 6698 [4.88%] 50719 [36.92%] 86669 [63.08%]go 31596 7472 [23.65%] 5310 [16.81%] 12782 [40.45%] 18814 [59.55%]hydro2d 37855 9668 [25.54%] 4711 [12.45%] 14379 [37.98%] 23475 [62.01%]ijpeg 22179 8473 [38.20%] 1685 [7.60%] 10158 [45.80%] 12021 [54.20%]li 12466 3919 [31.44%] 307 [2.46%] 4226 [33.90%] 8240 [66.10%]m88ksim 17516 5271 [30.09%] 651 [3.72%] 5922 [33.81%] 11594 [66.19%]mgrid 35696 9150 [25.63%] 3840 [10.76%] 12990 [36.39%] 22705 [63.61%]perl 41039 14777 [36.01%] 1054 [2.57%] 15831 [38.57%] 25208 [61.42%]su2cor 38052 10434 [27.42%] 4515 [11.87%] 14949 [39.29%] 23103 [60.71%]swim 34187 9454 [27.65%] 4035 [11.80%] 13489 [39.46%] 20698 [60.54%]tomcatv 33829 9356 [27.66%] 3905 [11.54%] 13261 [39.20%] 20568 [60.80%]turb3d 37930 9857 [25.99%] 4187 [11.04%] 14044 [37.03%] 23885 [62.97%]vortex 59021 19310 [32.72%] 1295 [2.19%] 20605 [34.91%] 38413 [65.08%]wave5 44047 12113 [27.50%] 7553 [17.15%] 19666 [44.65%] 24381 [55.35%](a) SPEC-95 benchmarksProgram Total One Few Total Known Unknownagrep 11104 3581 [32.25%] 865 [7.79%] 4446 [40.04%] 6652 [59.91%]appbt 14582 5353 [36.71%] 3280 [22.49%] 8633 [59.20%] 5948 [40.79%]appsp 10575 3520 [33.29%] 1886 [17.84%] 5406 [51.12%] 5169 [48.88%]barnes-hut 9874 2215 [22.43%] 218 [2.21%] 2433 [24.64%] 7441 [75.36%]latex 28765 8673 [30.15%] 2008 [6.98%] 10681 [37.13%] 18083 [62.87%]pseudoknot 25196 14738 [58.49%] 307 [1.22%] 15045 [59.71%] 10151 [40.29%](b) Non-SPEC applicationsKey: Total : Total no. of load/store instructions [static counts]One : No. of load/store instructions whose mod-k residue set has cardinality 1.Few : No. of load/store instructions whose mod-k residue set has cardinality n, 1 < n < k.Total Known : One+Few.Unknown : Total � Total Known.Table 1: Precision of Analysis (load/store instructions)5.1 PrecisionTraditionally, the precision of alias analysis algorithmsis often presented in terms of the average size of points-to sets or alias sets. In our context, however, thereare no points-to or alias sets: a more meaningful mea-sure, perhaps, is the (relative) number of memoryreferences|i.e., load and store instructions|for whichthe analysis is able to provide information that wouldnot have been available otherwise. This information ispresented in Table 1. The numbers presented corre-spond to mod-k residues with k = 64 (this choice wasdetermined in part by the fact that the set of mod-kresidues for this choice of k corresponds to a bit vectorthat �ts exactly in one 64-bit machine word), combinedwith the local analysis described in Section 2.
It can be seen that in the programs tested, the anal-ysis is able to provide information for roughly 30%{60% of the memory reference instructions. Prelimi-nary investigations indicate that much of the loss inprecision occurs due to three reasons. First, since wedon't keep track of the contents of memory, informa-tion about a register is lost if it is saved to memory andsubsequently restored. Second, the widening operationdescribed in Section 3.2.2, which causes information tobe lost if a register can have di�erent de�ning instruc-tions at di�erent predecessors of a join point in thecontrol ow graph. The third reason, which is relatedto the second, is that since our analysis is context-insensitive at the inter-procedural level, pointer argu-ments to a procedure with multiple call sites will be-come widened to ?.8

Program Basic Blocks Instructions Analysis Time (sec) Memory used (Mbytes)applu 24939 117247 20.28 9.13apsi 27334 135270 21.55 10.01compress 4425 18489 2.93 1.62fpppp 24778 118183 18.68 9.07gcc 79037 321986 64.65 28.94go 15734 74361 12.48 5.76hydro2d 26048 115957 20.24 9.54ijpeg 10928 57447 8.96 4.00li 7856 31572 4.51 2.88m88ksim 10012 44489 5.48 3.67mgrid 25025 109260 18.98 9.16perl 22270 99789 13.86 8.16su2cor 24827 115547 19.21 9.09swim 23491 104674 17.66 8.60tomcatv 23264 103406 17.73 8.52turb3d 25687 114888 20.51 9.41vortex 28240 129092 11.26 10.34wave5 26309 132299 21.50 9.63(a) SPEC-95 benchmarksProgram Basic Blocks Instructions Analysis Time (sec) Memory used (Mbytes)agrep 6744 32450 5.65 2.47appbt 5935 39981 4.96 2.17appsp 4427 27289 3.48 1.62barnes-hut 7551 29792 5.02 2.76latex 14350 66011 8.56 5.26pseudoknot 4090 37078 2.38 1.50(b) Non-SPEC applicationsTable 2: Cost of Analysis5.2 CostTable 2 gives the time and space costs of our analy-sis. Columns 2 and 3 give the size of each benchmark,measured, respectively, in the total number of basicblocks and instructions in the program. Column 4 thengives the total analysis time in seconds, while column5 gives the total memory requirements of the analy-sis in Mbytes. The analysis times range from about 2seconds to 20 seconds, with the gcc program an out-lier with a total analysis time of a little over a minute.These numbers are somewhat higher than we wouldlike, but the reason for this is that every instructionwithin a basic block is examined whenever that basicblock is processed. As Figure 4 indicates, the timetaken to analyze a program in practice varies essen-tially linearly as the number of instructions in the pro-gram. The memory requirement of the analysis typi-cally varies from about 1.5 Mbytes to 10 Mbytes, withgcc having a high requirement of about 29 Mbytes.
Because of the widening operation described in Sec-tion 3.2.2, the memory requirements of the analysisare linear in the number of basic blocks in the inputprogram: we feel that this is essential if the analysis isto be usable for large programs.5.3 UtilityAt this point, the only optimization for which we havehad the time to evaluate the utility of the alias analysisdescribed here involves reducing the number of loadoperations executed: by using scavenged registers toeliminate some unnecessary load instructions, movingloop-invariant load instructions|typically arising dueto inlining|out of loops, and via partial redundancyelimination. Preliminary results are shown in Table3, which gives dynamic counts of the number of loadinstructions for some of our benchmarks. The columnNoalias gives the number of load operations executedin the absence of any alias analysis at all, i.e., whereany pair of references to memory were considered to9

,
0

10

20

30

40

50

60

70

50 100 150 200 250 300
A

na
ly

si
s

T
im

e
(s

ec
s)

Program Size (no. of instructions x 1000)Figure 4: Variation of analysis time with input sizeProgram Load Operations Executed (�106) Improvement (%)Noalias Inspect Alto Inspect Altoappbt 210.75 208.44 196.70 1.10 6.67appsp 105.96 105.23 104.12 0.69 1.73barnes-hut 575.72 575.69 563.53 0.00 2.12compress 11343.45 11343.45 11103.02 0.00 2.12fpppp 42145.26 42053.67 40168.10 0.22 4.70ijpeg 6968.07 6965.63 6967.98 0.04 0.00li 16812.97 16790.96 16482.99 0.14 1.97m88ksim 14409.69 14409.69 14377.77 0.00 0.23perl 6645.09 6643.39 6581.56 0.03 0.89pseudoknot 93.82 93.82 91.87 0.00 2.09wave5 7540.10 7540.10 7475.55 0.00 0.86Table 3: Utility of Analysis: Deletion of unnecessary load instructionspotentially access the same locations; the Inspectcolumn gives the number of load operations when weused simple inspection, as described in Section 2, forintra-block load optimizations; and the Alto columngives the number of load operations executed whenprograms were optimized using our analyses to disam-biguate memory references. Since all other optimiza-tions, such as deletion of dead/unreachable code, inlin-ing, etc., are carried out in the same way by all threeversions considered, with the only di�erence arisingout of the way in which potential conicts in memoryaccesses were identi�ed, Noalias forms a fair basisfor comparisons. The last two columns give the per-centage reduction in the number of load operations ob-tained using local inspection, measured as (Noalias{ Inspect)/Noalias, and global analysis, measuredas (Noalias { Alto)/Noalias, respectively.It can be seen, from Table 3, that improvementsdue to purely local alias analysis are small to nonex-istent. This does not come as a surprise, since at op-timization level -O4, global register allocation has al-
ready been carried out by the compiler, leaving fewloads available for easy removal. Global analysis givesbetter results, including 4.7% of the total number ofload instructions removed for the fpppp benchmark,and 6.7% for appbt. The reason for the improvementfor fpppp is that it contains a very heavily executedbasic block that is so large that the register pressureforces the compiler to spill a number of variables tomemory; alto is able to scavenge some registers atlink time and use them to retain some of the spilledvariables in registers, thereby allowing the spill code tobe deleted. The overall percentage improvements are,nevertheless, relatively modest; this is consistent withthe results of Cooper and Lu [7]. To a great extent,the reasons for this are twofold: �rst, the compilerhas already done a good job of removing memory op-erations via global register allocation; and second, inmany cases, a lack of free registers prevented us fromoptimizing away load operations that our alias analysishad inferred as optimizable. To some extent, impreci-sion in our analysis, arising from the sources discussedin Section 5.1, also a�ected the number of memory10

operations deemed suitable for optimization.6 Related WorkWhile a number of systems have been described forlink-time code optimization [5, 15, 16, 27, 30, 31, 33],to the best of our knowledge, any alias analysis carriedout by these systems is limited to fairly simple localanalyses.There is an extensive body of work on pointer aliasanalysis of various kinds (see, for example, [3, 4, 6, 9,11, 12, 13, 14, 18, 19, 21, 22, 23, 24, 26, 28, 29, 32, 34,35]). The work most closely related to ours is that ofWilson and Lam [35], who describe a low-level pointeralias analysis for C programs. Their work attemptsto deal with \nasty" features of real programs andcan handle simple pointer increments and decrements,but is unable to cope with the more complex addressarithmetic common in executable code (see Example3.1). Also, it restricts itself to C language features,and so cannot handle arithmetic arising from idiosyn-cracies of other languages, e.g., manipulation of point-ers with \tag bits," that may be encountered in exe-cutable code. Their algorithm is context-sensitive atthe inter-procedural level, however, while our currentimplementation is context-insensitive (conceptually, itwould not be too di�cult to obtain a context-sensitiveversion of our algorithm, but we have not had timeto implement this yet). The remaining analyses citedare all high level analyses that typically disregard typecasts, pointer arithmetic, out-of-bounds array accesses,etc. As argued earlier, such analyses are of limited util-ity at the machine code level.Also related is the work on dependence analysisin the scienti�c computing literature (see, for exam-ple, [36, 38]). While the goals of this work are con-ceptually similar to ours|namely, disambiguating ar-ray references whose indices can involve arithmeticexpressions|the algorithms used for dependence anal-ysis are very di�erent from that described here. Sincedependence analysis is typically formulated as a sourcelevel intra-procedural analysis, the analysis problemstend to be relatively small in size. Because of this, de-pendence analyses are able to use relatively more so-phisticated, but also more expensive, algorithms thanours. We do not know of any attempts to apply suchalgorithms for whole-program analysis, and it is notobvious to us that the algorithms involved would scaleup to problems of this size.

7 ConclusionsRecent years have seen increasing interest in reasoningabout and manipulating executable �les. Such manip-ulations can bene�t greatly from information aboutaliasing. Unfortunately, there is a fundamental mis-match between the features present in executable pro-grams and the features handled by existing pointeralias analyses: such analyses are typically formulatedin terms of source-level constructs, and do not handlefeatures such as pointer arithmetic and out-of-boundarray references, whereas these are precisely the fea-tures encountered in executable programs. This pa-per describes a simple algorithm that can handle thesefeatures, and which can be used for alias analysis ofexecutable programs. In order to be practical, the al-gorithm is careful to keep its memory requirementslow, sacri�cing precision where necessary to achievethis goal. Experimental results indicate that it is nev-ertheless able to provide nontrivial information aboutroughly 30%{60% of the memory references across avariety of benchmark programs.AcknowledgementsComments from the anonymous reviewers helped im-prove the paper signi�cantly.References[1] A. V. Aho, R. Sethi and J. D. Ullman, Compil-ers { Principles, Techniques and Tools, Addison-Wesley, 1986.[2] J. E. Barnes and P. Hut, \A HierarchicalO(N logN) Force Calculation Algorithm", Na-ture, 324, 1986.[3] D. R. Chase, M. Wegman, and F. K. Zadeck,\Analysis of Pointers and Structures", Proc. SIG-PLAN '90 Conference on Programming LanguageDesign and Implementation, June 1990, pp. 296{310.[4] J.-D. Choi, M. Burke, and P. Carini, \E�cientFlow-Sensitive Interprocedural Computation ofPointer-Induced Aliases and Side E�ects", Proc.20th ACM Symposium on Principles of Program-ming Languages, Jan. 1993, pp. 232{245.[5] R. Cohn, D. Goodwin, P. G. Lowney, and N.Rubin, \Spike: An Optimizer for Alpha/NT Ex-ecutables", Proc. USENIX Windows NT Work-shop, Aug. 1997.11

[6] K. D. Cooper and K. Kennedy, \Fast Interpro-cedural Alias Analysis", Proc. 16th ACM Sym-posium on Principles of Programming Languages,Jan. 1989, pp. 49{59.[7] K. D. Cooper and J. Lu, \Register Promotion inC Programs", Proc. SIGPLAN '97 Conference onProgramming Language Design and Implementa-tion, June 1997, pp. 308{319.[8] P. Cousot and R. Cousot, \Abstract Interpreta-tion: A Uni�ed Lattice Model for Static Analysisof Programs by Construction or Apporoximationof Fixpoints", Proc. Fourth ACM Symposium onPrinciples of Programming Languages, 1977, pp.238-252.[9] D. Coutant, \Retargetable High-Level Alias Anal-ysis", Proc. 13th ACM Symposium on Principlesof Programming Languages, Jan. 1986, pp. 110{118.[10] K. De Bosschere and S. K. Debray, \alto : ALink-Time Optimizer for the DEC Alpha", Tech-nical Report 96-15, Dept. of Computer Science,The University of Arizona, June 1996.[11] A. Deutsch, \On determining lifetime and alias-ing of dynamically allocated data in higher-orderfunctional speci�cations", Proc. 17th ACm Sym-posium on Principles of Programming Languages,Jan. 1990, pp. 157{168.[12] A. Deutsch, \Interprocedural May-Alias Analysisfor Pointers: Beyond k-limiting",Proc. SIGPLAN'94 Conference on Programming Language Designand Implementation, June 1994, pp. 230{241.[13] A. Diwan, K. S. McKinley and J. E. B.Moss, \Type-Based Alias Analysis", Manuscript,Dept. of Computer Science, University of Mas-sachusetts, Amherst, 1996.[14] M. Emami, R. Ghiya and L. J. Hendren,\Context-Sensitive Interprocedural Points-toAnalysis in the Presence of Function Pointers",Proc. SIGPLAN '94 Conference on ProgrammingLanguage Design and Implementation, June 1994,pp. 242{256.[15] M. F. Fern�andez, \Simple and E�ective Link-Time Optimization of Modula-3 Programs", Proc.SIGPLAN '95 Conference on Programming Lan-guage Design and Implementation, June 1995,pp. 103{115.

[16] D. W. Goodwin, \Interprocedural Dataow Anal-ysis in an Executable Optimizer", Proc. SIG-PLAN '97 Conference on Programming LanguageDesign and Implementation, June 1997, pp. 122{133.[17] R. L. Graham, D. E. Knuth, and O. Patashnik,Concrete Mathematics, Addison-Wesley, 1989.[18] S. Horwitz, P. Pfei�er, and T. Reps, \DependenceAnalysis for Pointer Variables", Proc. SIGPLAN'89 Conference on Programming Language Designand Implementation, June 1989, pp. 28{40.[19] J. Hummel, L. J. Hendren, and A. Nicolau,\A General Data Dependence Test for Dynamic,Pointer-Based Data Structures", Proc. SIGPLAN'94 Conference on Programming Language Designand Implementation, June 1994, pp. 218{229.[20] M. S. Johnson and T. C. Miller, \E�ectiveness ofa Machine-Level Global Optimizer", Proc. SIG-PLAN '86 Symposium on Compiler Construction,June 1986, pp. 99{108.[21] N. D. Jones and S. S. Muchnick, \Flow analysisand optimization of LISP-like structures", in Pro-gram Flow Analysis, eds. S. S. Muchnick and N.D. Jones, Prentice Hall, 1981, pp. 102{131.[22] N. D. Jones and S. S. Muchnick, \A exible ap-proach to interprocedural data ow analysis andprograms with recursive data structures", Proc.9th ACM Symposium on Principles of Program-ming Languages, Jan. 1982, pp. 66{74[23] W. Landi and B. G. Ryder, \Pointer-inducedAliasing: A Problem Classi�cation", Proc. 18thACM Symposium on Principles of ProgrammingLanguages, Jan. 1991, pp. 93{103.[24] W. Landi and B. G. Ryder, \A Safe ApproximateAlgorithm for Interprocedural Pointer Aliasing",Proc. SIGPLAN '92 Conference on ProgrammingLanguage Design and Implementation, June 1992,pp. 235{248.[25] J. R. Larus and E. Schnarr, \EEL: Machine-independent Executable Editing", Proc. SIG-PLAN '95 Conference on Programming LanguageDesign and Implementation, June 1995, pp. 291{300.[26] J. R. Larus and P. N. Hil�nger, \Detecting Con-icts Between Structure Accesses", Proc. SIG-PLAN '88 Conference on Programming Language12

Design and Implementation, June 1988, pp. 21{34.[27] T. Romer, G. Voelker, D. Lee, A. Wolman,W. Wong, H. Levy, B. N. Bershad, and J.B. Chen, \Instrumentation and Optimization ofWin32/Intel Executables", 1997 USENIX Win-dows NT Workshop (to appear).[28] E. Ruf, \Context-Insensitive Alias Analysis Re-considered", Proc. SIGPLAN '95 Conference onProgramming Language Design and Implementa-tion, June 1995, pp. 13{22.[29] M. Shapiro and S. Horwitz, \Fast and AccurateFlow-Insensitive Points-To Analysis", Proc. 24th.ACM Symposium on Principles of ProgrammingLanguages, Jan. 1997, pp. 1{14.[30] A. Srivastava and D. W. Wall, \A PracticalSystem for Intermodule Code Optimization atLink-Time", Journal of Programming Languages,pp. 1{18, March 1993.[31] A. Srivastava and D. W. Wall, \Link-time Opti-mization of Address Calculation on a 64-bit Ar-chitecture", Proc. SIGPLAN '94 Conference Pro-gramming Language Design and Implementation,June 1994, pp. 49{60.[32] B. Steensgaard, \Points-to Analysis in AlmostLinear Time", Proc. 23th. ACM Symposium onPrinciples of Programming Languages, Jan. 1996,pp. 32{41[33] D. W. Wall, \Global Register Allocation at LinkTime", Proc. SIGPLAN '86 Symposium on Com-piler Construction, July 1986, pp. 264{275.[34] W. E. Weihl, \Interprocedural data ow analysisin the presence of pointers, procedure variables,and label variables", Proc. ACM Symposium onPrinciples of Programming Languages, Jan. 1980,pp. 83{94.[35] R. P. Wilson and M. S. Lam, \E�cient Context-Sensitive Pointer Analysis for C Programs", Proc.SIGPLAN '95 Conference on Programming Lan-guage Design and Implementation, June 1995,pp. 1{12.[36] M. Wolfe, Optimizing Supercompilers for Super-computers, MIT Press, Cambridge, Mass., 1989.[37] S. Wu and U. Manber, \Agrep | A Fast Ap-proximate Pattern-Matching Tool", Usenix Win-ter 1992 Technical Conference, San Francisco,Jan. 1992, pp. 153{162.

[38] H. Zima and B. Chapman, Supercompilers forParallel and Vector Computers, ACM Press, NewYork, 1991.

13

