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In particular, it allows us to evaluate naming systems based on how discriminating they are and the set ofnames for which they are sound and complete.The rest of this section motivates the preference hierarchy and discusses related work. Section 2 thenpresents some preliminary de�nitions and Section 3 describes how preference hierarchies can be used tospecify the structure of a naming system's inference mechanism. Finally, Section 4 demonstrates the utilityof preference hierarchies and Section 5 makes some concluding remarks.1.1 MotivationTo appreciate the impact and utility of the preference hierarchy, it is important to understand that thenaming system designer must accommodate two sets of constraints: the requirements placed on the namingsystem by the entities that use the system, and the conditions under which the naming system must operate.First, the clients of a naming system place a set of requirements on the system: The naming system mustaccept as a name whatever information its clients possess for the objects they want to identify and it mustrespond with the precision expected by those clients. For example, the client of a symbol table manager|inthis case another program|speci�es an object with an identi�er and expects at most one answer; a programthat uses the symbol table cannot accommodate ambiguous answers. In contrast, the clients of a white-pagesservice|in this case human users|often possess several pieces of information about the object they want toname and they are sometimes willing to tolerate ambiguous results as long as it contains the desired object.Second, the naming system is constrained by the conditions under which it is implemented; i.e., theproperties of the environment in which it must function. In many cases, there are no limitations; the namingsystem exists in a perfect world. For example, the parser for a compiler never fails to insert identi�ers inthe symbol table and the symbol table manager cannot fail independently of the entire compilation. Incontrast, many naming systems must function in an imperfect world. For example, a white-pages servicecan only resolve names that contain information put into the system by users. If a user does not enter aparticular fact in the naming system, then the system cannot respond to queries using that information. Asanother example, naming systems that are implemented in distributed environments may lose informationbecause independent components fail, or information may become out-of-date because of communicationdelays between the components that make up the system.The preference hierarchy de�ned in this paper can be used to guide the design of naming systems thatmust satisfy various requirements and constraints. While it is the case that the preference hierarchy ismost useful when applied to more complex descriptive naming systems, we have found the that preferencehierarchy provides insights into the design of more conventional naming systems as well. In fact, Section 5points out a naming system originally conceived as a conventional system, but which has evolved over timein a way that suggests the unconscious use of the preference hierarchy.1.2 Related WorkPrevious studies of naming focus on the operational aspects of naming systems, describing their architec-ture and the implementation of the architecture's base elements. For example, Fowler [Fowl85], Lampson[Lamp86], Mann [Mann87], Oppen and Dalal [Oppe81], and Terry [Terr87] each describe techniques for man-aging a decentralized naming service. In addition, studies by Comer and Peterson [Come89] and Watson[Wats81] give general characterizations of the resolution process. In contrast, this paper is concerned withthe functional aspects of naming. In other words, we consider the question of what objects are identi�ed bya given name rather than the question of how the system is structured.In addition to work that explicitly addresses the problem of naming, many of the underlying ideasfound in this paper can be traced to two other related areas. First, naming systems can be thought of2



as specialized database systems, where the process of resolving a name is conceptually similar to that ofsolving a database query [Gall84]. In particular, the preference hierarchy uni�es ideas from work beingdone in open-world and closed-world databases [Reit78], partial match retrieval [Ullm88], and incompleteinformation [Lips79, Lips81]. Second, one can view naming as a speci�c constraint-satisfaction problem[Born87]. More speci�c comparisons to these related topics are made throughout the rest of the paper.2 Basic ConceptsIn the abstract, naming systems answer queries about a universe of resources, each of which has certainproperties. If a resource possesses a particular property then the property is said to describe the resource.For example, if we are considering the universe of printers, then the properties any element of this set mightpossess include \fonts", \location", and \resolution". The speci�c property \location is Room 723" describesa particular printer.In practice, a naming system maintains and manipulates a database of syntactic information about a setof resources: It denotes each resource with a database object|an object is essentially a record|and eachproperty with an attribute|a tagged �eld in the record. For example, a naming system that knows aboutprinters might store facts of the sort \printer ip2 supports italic font and is located in room 723", \printerlw6 is of type laserwriter and has 300 dots per square inch resolution", and so on. The corresponding objectsin the naming system database would beh font:italic, location:723, uid:ip2 ih type:laserwriter, resolution:300, uid:lw6 iwhere font:italic is an example of an attribute. Each attribute consists of a tag and a value; denoted t:v.For example, the attribute font:italic consists of the tag font and the value italic. For convenience,we assume each object contains a uid attribute and we refer to the object by this attribute's value; e.g.,object ip2. Also, if an attribute a is entered in the naming system database for object x, then a is said tobe registered for x.The meaning of objects and attributes is given by a meaning function �: the resource represented byobject x is given by �(x) and the meaning �(a) of an attribute a is the property speci�ed by a. In theuniverse of printers, for example, �(font:italic) is the property of supporting the italic font. Furthermore,we say that a naming system is honest if an attribute a is registered for an object x implies that �(a)describes �(x). For example, if the attribute phone:621-1234 is registered for the object jones, then weexpect the referent of jones|presumably a person|to have the phone number 621-1234.Clients query a naming system with a set of attributes and the naming system responds with the set ofobjects that correspond, in some sense, to those attributes. Formally, a set of attributes N names object xif every attribute in N is registered for x. That is, names maps sets of attributes into sets of objects, wherenames(N) denotes the set of objects named by a set of attributes N. If x 2 names(N), then N is said tobe a name for x. The corresponding semantic notion is represents: a set of properties, �(N), represents aresource if every property in the set describes the resource.The relationship between the semantic and syntactic domains, and the parallel between working with asingle attribute and a set of attributes is schematically depicted in Figure 1. The top layer corresponds todatabase objects|i.e., operations on �elds and records|while the bottom layer corresponds to resources|i.e., operations real world entities such as a printer or a person. The dotted edges link single items with setsof items. Note that when a property describes a resource and the corresponding attribute is registered forthe corresponding object, we sometimes say that the attribute describes the object.Conventional naming systems that operate in a \perfect" world|e.g., symbol tables, virtual memorysystems|have only to implement a procedure that supports the names function. That is, they simply3



return the set of objects for which all the given attributes are registered. In general, however, namingsystems do not operate in a perfect world. The information that a client uses to query a naming system maycontain imperfections. For example, the client may not possess enough information to uniquely identify thedesired objects or the information that the client does possess may be inaccurate. Likewise, the informationcontained in the naming system database may not be perfect|it may contain incomplete or out-of-dateinformation. Thus, a naming system must use information speci�ed by the client and registered in thedatabase to approximate the results that would be obtained by names if it operated in a perfect world. Thepreference hierarchy described in the next section suggests a method for deriving various procedures, calledresolution functions, that approximate the names mapping in an imperfect world.3 Preference HierarchyMany naming systems distinguish between the \quality" of di�erent kinds of information. For example,a descriptive naming system must be able to resolve names that contain a multiplicity of attributes. Indoing so, it is reasonable to give some attributes more importance than others. Suppose a user is tryingidentify John Smith at State University, where the user is quite sure the individual is at State University,but uncertain as to whether his �rst name is John. Such a user would prefer that the naming systemrespond with information about any Smith at State University rather than information about some JohnSmith not at State University. As another example, because naming systems implemented in a distributedenvironment such as the Domain Name System [Mock87] must accommodate out-of-date information, theygenerally prefer attributes that are guaranteed to be current over cached attributes that may have becomestale.In a perfect world, where the client accurately and completely identi�es a set of objects and there is nopossibility of missing or out-of-date information in the database, it su�ces to always use names to resolvea set of attributes. Indeed, this is essentially what is done when responding to queries in conventionaldatabase systems. In an imperfect world, however, the naming systemmust cope with two potential problems:inaccuracies in the attributes speci�ed by the client, and imperfect information in the database. Furthermore,rather than provide a single resolution function that compensates for these problems, a naming system mightsupport a number of di�erent resolution functions, each tailored for a certain class of attribute sets thedesigner considers interesting and the databases the designer expects to manipulate.Intuitively, each resolution function in a naming system uses certain assumptions about the quality ofinformation in the system and resolves names according to the most preferred set of assumptions. Formally,a preference, denoted by �, is a total order on a set of functions that approximate portions of a perfect-worldnaming system. Each of these approximation functions compensates for some imperfection believed to existin the naming system, either in the information speci�ed by the client (these are called client approximationfunctions) or in the information contained in the database (these are called database approximation functions).The preference encapsulates some meta-information about the system by describing the assumptions thatthe client believes are most reasonable. The most preferred approximations provide answers based on whatis believed to be the most reasonable and accurate information in the system. If that information fails todistinguish among a set of objects, then another approximation is tried.This section de�nes the notion of a preference hierarchy and describes the role it plays in resolving names.In particular, it introduces the intuition behind preference hierarchies and gives several example preferences,it establishes a framework for designing naming systems based on combinations of preferences, and it showshow that framework can be used to reason about naming systems. To better understand preferences and toappreciate how preferences are used in real attribute-based naming systems we provide several examples ofclient and database preferences de�ned in the Univers and Pro�le [Pete88] attribute-based name servers.4



3.1 Client PreferencesUsing the attributes speci�ed by the client, a client approximation function constructs a set of attributes thataccurately describes the objects sought by the client. Generally, these functions use information about theproperty denoted by an attribute in order to determine its accuracy. For example, an approximation mightconsider social security number attributes to be accurate because a client that speci�es a social securitynumber usually knows it accurately. Given a set of attributes, one kind of approximation function based ona preference for accurate attributes would remove those attributes that it believes to be inaccurate, returningthe accurate ones. This kind of function always returns a subset of the attributes it is given. Another kind ofclient approximation function may augment the attributes speci�ed by the client with additional attributesthat specify the type of object being described or the object's location. This function uses information fromthe client's speci�cation to add attributes to the description, i.e. it always returns a superset of the attributesit is given as an argument. Formally, a client approximation function is de�ned by:De�nition 3.1 (Client Approximation Function) A function f : 2A �! 2A over a domain of at-tributes A is a client approximation function if f is monotonic increasing, i.e. for all set of attributesM and N, M �N implies f(M) � f(N).A client preference is a �nite, totally ordered set of client approximation functions. Approximations high inthe order are those the client considers most likely to be accurate. For example, a client may specify thatan approximation that assumes that social security numbers are accurate is preferred to an approximationthat assumes that social security numbers are inaccurate. The selection of the approximation functions andthe order on them encapsulates information about the attributes supplied by the client. In practice, theselection of a speci�c preference depends on the client's assumptions about the information within a systemand on the kind of objects that the client intends to identify. For example, a client that intends to identifyprocessors will specify a di�erent preference than a client that intends to identify human users.The following informally describes several preferences that we have found useful in the naming systemswe have designed. This list illustrates some possible preferences; it is not intended to be complete. Formalde�nitions for several of the preferences are given in Section 4 when we consider speci�c resolution functionsin more detail.Universal Preference: The universal preference consists of a single function universal that maps every setof attributes to itself. This function is used most often when the client believes that all of the attributes itspeci�ed are accurate and are su�cient to distinguish the set of objects that are identi�ed. In other words,this function assumes that the client operates in a perfect world.Registered Preference: The registered preference, denoted �R, prefers attributes that are guaranteed tobe registered in the database over those that are not. It consists of the approximation functions open andclosed where open �R closedAn attribute with tag t is closed if every attribute constructed from t is guaranteed to be registered for everyobject it describes. For example, a naming system may guarantee that every object with a name will havethat name registered in the database. The client approximation function closed|which returns the closedattributes in a name|limits the scope of resolution to portions of the database with complete information.2An open attribute may not be registered for an object even though the corresponding property describes the2Many approximation functions use only a portion of an attribute in order to determine its accuracy. For example,the closed approximation function determines an attribute's accuracy solely by its tag. Other approximations, suchas the explicit approximation use the entire attribute. 5



resource the object denotes. The resolution of a name based on open attributes may not contain all of theobjects in the database that represent resources described by the attributes. This preference is particularlyuseful when users are responsible for maintaining some of the information in the naming system. For example,one user may decide to include a home phone number in the database but another user may choose to leaveit out. In this case, home phone number attributes are not closed and may provide incomplete answers. Notethat the registered preference order is similar to the idea of open/closed world databases [Reit78]. Insteadof making the closed-world assumption over an entire database, however, we make the distinction on anattribute by attribute basis.Mutability Preference: The mutability preference, denoted �U , considers the time interval over which anattribute describes an object, thereby accommodating changes in object properties over time. The mutabilitypreference may be de�ned as: dynamic �U staticThe static approximation function considers accurate those attributes that will always describe the objectsthat they currently describe. For example, the serial number and architecture of a processor remain constantthroughout its lifetime. Thus, static believes that any attribute describing a processor's serial number orarchitecture is accurate. In contrast, dynamic returns only those attributes that may change over time.Properties that involve a processor's location or a professor's class load may change over time. The infor-mation that a client possesses about these properties may become out-of-date. In this way, the mutabilitypreference encapsulates a client's belief that some of the speci�ed information once described the object itseeks but may not describe it any longer.Precision Preference: The precision preference, denoted �P , prefers attributes that match a very smallset of objects. Given a set of attributes, the unambiguous client approximation function returns the attributesthat are unambiguous, that is, those that are registered for at most one object in the database. Names basedon unambiguous attributes|for example, address:192.12.69.22|tend to be very precise. An attribute isambiguous if it is registered for more than one object. Ambiguous attributes generally match several objectsso that names based on them are less precise, e.g. hostname:pollux currently matches at least four di�erentmachines on the Internet. The ambiguous approximation function returns those attributes in a name thatare ambiguous. Thus, ambiguous �P unambiguousThe precision preference can be used to optimize queries|i.e. optimize the search for objects that matcha name. Unambiguous attributes match at most a single object so that the set of matching objects can becomputed more e�ciently.Yellow-Pages Preference: When a person wishes to locate an inexpensive plumber to �x his sink hesearches the yellow pages of the phone book looking for plumbers who advertise inexpensive rates. Withincomputer systems, clients often wish to locate a set of resources that provide a particular service. Forexample, a client might wish to locate a printer that supports a particular font and is located in a nearbybuilding. When a person looks for an inexpensive plumber he may be willing to accept a plumber that isexpensive, but he probably will not accept an inexpensive carpenter. In the same way, certain characteristicsof the object that a client seeks are absolutely necessary, though others may not be. For example, the clientmay specify that the printer \must" have a particular font and it would be \nice" if it were also in a certainbuilding. In this case, the naming system should �rst determine which printers have the speci�ed font, andfrom this set, select one in the speci�ed building if possible. In this example, one could de�ne a yellow pagespreference �Y as follows: 6



optional �Y mandatoryExplicit Preference: Finally, it is possible to have clients themselves partition the attributes in a nameinto several classes. Each partition corresponds to the result of applying an approximation function to theentire set of attributes in the name. Consider, for example, a user querying a bibliographic name server. Forone citation, the user may be certain of the author's name but somewhat unsure about the exact title of thepaper. For another citation, the user may be certain about the exact title, but not sure about the author orthe date of publication. It would be desirable for the user to be able to specify the preferences to be usedin each case: for the �rst citation, a paper that matches exactly on the author's name but partially on thetitle is to be preferred to one that matches exactly on the title but only partially on the author and for thesecond citation the preferences are reversed.3.2 Database PreferencesPreferences that consist of one or more client approximations provide information about the client's speci-�cation. Similarly, preferences that consist of database approximations encapsulate information about thedescriptions of a set of objects. In particular, a database approximation function accommodates imperfectinformation in the database by approximating the selection of objects from the perfect database. Ratherthan reconstruct a perfect database, these functions select objects from the existing database in a way thatmirrors the selection of objects from what the function believes to be the perfect database. This usually takesthe form of some strategy for handling partial matches although it may use more sophisticated techniquessuch as the statistical inference methods described in [Wong82].De�nition 3.2 (Database Approximation Function) A function m : 2A�2O �! 2O over a domainof attributes A and a domain of objects O is a database approximation function if m is a contraction,i.e. for any set of objects D, m(N;D) � D.Intuitively, the de�nition says that a database approximation function never adds new objects to thedatabase. Most useful database approximation functions have two other characteristics. First, most databaseapproximation functions return more complete answers with more information about the world. In otherwords, as the size of the database increases, the number of objects matching a name increases. More formally,a database approximation function m is monotonic increasing relative to the set of objects, i.e. for sets ofobjects C and D, C � D implies m(N;C) � m(N;D). The unique approximation described below is anexception to this rule; unique returns the single object that uniquely matches the set of attributes. Second,most database approximation functions cannot approximate the set of objects that the client intended toidentify without some information from the client; thus m(;;D) = ; for any set of objects D is true formost database approximation functions. One speci�c function that does not conform to this principle is adatabase approximation function called identity; identity always returns the set of objects that it is given nomatter what attributes the client speci�es.A database preference is a total order on a set of database approximation functions. As with clientpreferences, the selection of a particular preference supplies the naming system with information aboutthe assumptions that the client possesses regarding the database. A particular preference may supplyinformation about how to handle di�erent degrees of partial match or matches in di�erent locations. Thefollowing examples describe potential solutions to these problems.Match-Based Preference: The match-based preference, denoted �M provides approximations that matchattributes to objects at four di�erent precisions. The functions in this preference are ordered by7



possible �M partial �M exact �M uniqueThe least preferred approximation, possible, maps a set of attributes to the set of all objects that couldpossibly match. In other words, an object is selected as long as there is no con
ict between an attribute inthe name and in the object description contained in the database. For example, consider a database thatcontains descriptions for four users:h uid:cmb, office:737, department:cs ih uid:rao, office:737 ih uid:llp, office:725 ih uid:gmt iand a name that consists of the attributes office:737 and department:cs. In this case, possible returnscmb, rao, and gmt. This function computes k Q k� as de�ned by Lipski in the case where there is no partialinformation [Lips81, Lips79]. The second approximation, partial, returns all objects that possibly match andhave at least one attribute in common with the name. Partial would return cmb and rao, but not gmt in theexample. The third approximation, exact, returns all objects that are described by all of the attributes in aname. For this example, exact returns just cmb|it is the only object that is known to match both attributesin the name. Exact computes Lipski's k Q k�. The �nal approximation, unique, returns either the singleobject that exactly matches the name or the empty set|in this case cmb would be returned by unique butno objects would be returned for a name that consists of the single attribute office:737 because there isno unique match. This preference may be used when the accuracy of the database is not in question thoughit may not be complete. That is, no object will be returned if it con
icts with one of the attributes that theclient supplies. Note that this preference generalizes the idea of partial match retrieval [Ullm88].Voting Preference: The voting preference, denoted �V , views the attributes that are speci�ed as votesfor objects. The order is de�ned as:also-ran �V majority �V unanimousThe most preferred approximation, unanimous, prefers objects that receive all of the votes; i.e. all theattributes are registered for the objects. The majority approximation returns the set of objects that receivea majority of the votes. Finally, also-ran matches the set of attributes to any object that receives at leastone vote; i.e. any object for which one or more of the client speci�ed attributes are registered. In contrastwith the match-based preference, the voting preference does not assume that all of the information in thedatabase is correct. Rather, it attempts to return reasonable matches even though con
icts may exist withattributes speci�ed by the client.Temporal Preference: The temporal preference, denoted �T , di�ers from the voting and match-basedpreferences in that it does not attempt to match a set of attributes to an object. Rather, the approximationfunctions that constitute the temporal preference distinguish between objects based on the length of timeuntil the information contained in the database becomes stale. The temporal preference prefers objects thatare described by authoritative information|information that is guaranteed to be accurate|over informationthat has been cached. This provides one method for handling out-of-date information within the database.The temporal preference may be de�ned as:out-of-date �T cached �T authoritativeThe authoritative approximation assumes that the only accurate information in the database is authoritativeinformation. As such, the only objects that match a name are those with authoritative attributes registered8



for each trait that appears in the name. Both cached and authoritative allow an object to be describedby information that is cached. However, cached demands that the attributes registered for objects not bestale|the database expects that the attribute value still describes the object. Out-of-date allows informationto be in any condition: the value in the database described the object at one time and the assumption isthat even out-of-date information may provide hints about the correct value.Note that the temporal database preference bears close resemblance to the mutability client preference.However, the basic assumptions are di�erent. On one hand, the mutability preference assumes that thedatabase contains information that actually describes the object in question. In this case, the client possessesinformation that has become out-of-date. For example, a client may remember that a printer lw11was locatedin GS725. Since then, however, the printer has been moved to GS737 and the database has been updatedto re
ect the change. The information that the client possesses is out-of-date and will produce erroneousresults if used to identify the printer. On the other hand, the temporal preference assumes that the client'sinformation is accurate but that the value of an attribute in the database has become out-of-date. Thiscorresponds to the case where the client knows the actual location of lw11 but the location of lw11 wasnever updated within the database. Here, the database contains information that will keep the client fromidentifying lw11 by location.3.3 Resolution FunctionsA resolution function is de�ned by an ordering on a set of client and database preferences; this ordering iscalled a preference hierarchy. The preference hierarchy speci�es the relative importance of each preferencewhen resolving names. Functionally, this means that a resolution function selects an approximation functionfrom each preference, constructs a composition of the functions, and evaluates the composition relative tothe given name and database. It continues to select functions until one combination computes a non-emptyset of objects. The preferences specify the order in which approximation functions are selected and thepreference hierarchy speci�es the order of composition for the sets of approximations. In theory, if theassumptions made by each of the approximation functions are correct, then the set of objects selected bytheir composition should resemble the set that the client intended to identify.For example, consider the construction of a resolution function for a naming system with the followingthree assumptions. First, the client always presents the naming system with accurate information. Second,the database contains information that may be incomplete. Finally, some of the information in the databaseis authoritative|i.e., it is always up-to-date|and some is cached. For a naming system based on theseassumptions, three preferences seem most applicable:�R: open �R closed�T : cached �T authoritative�M : partial �M exactThis collection of preferences means that the resolution function can select from eight di�erent sets ofapproximations:h open , authoritative, exact i h open , authoritative, partial ih open , cached, exact i h open , cached, partial ih closed , authoritative, exact i h closed , authoritative, partial ih closed , cached, exact i h closed , cached, partial i9



It is reasonable to assume that the registered preference �R is more important than the match basedpreference �M and at least as important as the temporal preference �T . This assumption implies that therelative importance of the three preferences de�nes a preference hierarchy � as �M � �T � �R.The preference hierarchy has two e�ects on the evaluation of sets of approximations. First, the approxi-mations in any set must be applied in order from most important to least important. For example, the �rstset of approximations above must be evaluated in order: closed, authoritative, and exact because closed isthe approximation from the most important preference and exact is from the least important. Three rulesguide the evaluation of an ordered set of approximations f1; f2; : : : fn:1. If fi and fi+1 are database approximation functions then the composition of fi and fi+1 is a databaseapproximation function f de�ned as f(N;D) = fi(N;D) \ fi+1(N;D).2. If fi and fi+1 are client approximation functions then the composition of fi and fi+1 is a clientapproximation function f de�ned as f(N ) = ((fi(N ) [ fi+1(N )) �N ) [ (fi(N ) \ fi+1(N ) \N ).3. If fi is a client approximation and fi+1 is a database approximation then the composition of fi andfi+1 is a database approximation function f de�ned as f(N;D) = fi+1(fi(N ); D).The �rst two rules are applied until the ordered set alternates between database and client approximationfunctions. At this point the third rule is applied to construct a single approximation function. Thus thecomposition of h closed , authoritative, exact i |called a composite approximation function|is a functionf de�ned as f(N;D) = authoritative(closed(N ); D) \ exact(closed(N ); D).The second e�ect of the preference hierarchy is the order in which a set of composite approximationfunctions are applied to the name. A preference hierarchy speci�es an induced preference on a set ofcomposition functions. In this example, the resolution function attempts both exact and partial matches onthe closed attributes before attempting any match on open attributes. The preference hierarchy induces thefollowing preference on the sets of approximations:h open , cached, partial i � h open , cached, exact i �h open , authoritative, partial i � h open , authoritative, exact i �h closed , cached, partial i � h closed , cached, exact i �h closed , authoritative, partial i � h closed , authoritative, exact iIn other words, h closed , authoritative, exact i is the most preferred approximation. If this compositeapproximation function computes a non-empty set of objects, then that set is returned by the resolutionfunction. The resolution function evaluates compositions in order from most preferred to least preferred. Itreturns the �rst non-empty set computed by a composition.Formally, if we are given a set of preferences � = f�1; :::;�Ng, totally ordered by the preference hierarchy�, then for any two members �j and �k of �, we say that �k is more important than �j if �j � �k.Without loss of generality, assume that k < j implies that �k is more important than �j . Let the set ofapproximations of �j be given by �j. The preference, �, induced by h�;�i is de�ned to be the lexicographicorder on the following set of compositions: �1 � �2 � :::� �nGiven an induced preference on a set of compositions, the name resolution function computes the set ofobjects described by a name in a way that respects the induced preference. This means that a resolutionfunction may not return a set of objects using a composition function, ci, unless every more preferredcomposition|that is any composition cj where ci � cj|failed to compute a non-empty set of objects.Formally, 10



De�nition 3.3 (Name Resolution Function) An induced preference order � on a set of composite ap-proximation functions � = f�1; �2; : : : ; �ng de�nes a name resolution function � : 2A�2O �! 2O overa domain of attributes A and a domain of objects O by �(N;D) = �i(N;D) where1. �i(N;D) 6= ;2. 8�j 2 � [�i � �j implies that �j(N;D) = ;].Intuitively, a composition function supports several approximations of the perfect world system|one fromeach preference in the metaorder. The assumptions encapsulated in the set of approximations are considered\accurate" if the composition returns a non-empty set of objects. A resolution function computes the set ofobjects described by the name relative to the most preferred, \accurate" set of approximations.To complete the example, consider a resolution function de�ned by a Univers name server. This functionimplements the preference order �M � �C � �R. Several redundant compositions have been removed fromthis de�nition. For example, the approximations partial and exact compute the same set of objects for namesthat consist of closed attributes. Thus partial(closed(N ); D) is equivalent to exact(closed(N ); D).(define (lookup N D)(cond[(intersect (authoritative (closed N) D) (exact (closed N) D))][(intersect (cached (closed N) D) (exact (closed N) D))][(intersect (authoritative (open N) D) (exact (open N) D))][(intersect (authoritative (open N) D) (partial (closed N) D))][(intersect (cached (open N) D) (exact (open N) D))][(intersect (cached (open N) D) (partial (open N) D))]))3.4 Tools For Reasoning About Resolution FunctionsThe discussion in the previous section focused on the structure of the preference induced by a preferencehierarchy. This makes it possible to understand and reason about some aspects of the behavior of resolutionfunctions. This section describes the semantics of the preference hierarchy model and develops some toolsthat may be used to describe and reason about sets of related resolution functions. In the discussion thatfollows, we use � to denote the set of name/database pairs that serve as the domain of a resolution function.Speci�cally, � consists of pairs (N;D) where N is a set of attributes and D is a set of objects. � isdetermined by the characteristics of the naming system that will support the resolution function.3.4.1 Soundness and CompletenessClearly, it is possible to construct many resolution functions that di�er in how many (or how few) objectsthey return for a given set of attributes. In this context, two properties are of interest: Given a set ofattributes, it may be desirable that the resolution function (i) return only those objects named by theattributes; and (ii) return all those objects that are named by the attributes. In order to formalize theseproperties we postulate an oracle function that returns precisely the set of objects that the client intendedto identify. The objects that oracle returns are those that would be returned if the client had presentedits request to a naming system that contained perfect information. That is, oracle knows about all of theimperfections that exist in the system and compensates for them. We assume that every client attempts toidentify at least one object, therefore oracle always returns at least one object. Using the oracle function,soundness and completeness can be formalized as follows:11



De�nition 3.4 (Soundness) A name resolution function � is said to be sound for a name/database pair(N;D) in � if and only if �(N;D) � oracle(N;D).De�nition 3.5 (Completeness) A name resolution function � is said to be complete for a name/databasepair (N;D) in � if and only if oracle(N;D) � �(N;D).We denote the set of name/database pairs in � for which � is sound by �� and the set of name/databasepairs for which � is complete by ��.Often, the designer of a naming system must ensure that the resolution functions the system providessatisfy constraints about soundness or completeness. For example, our experience suggests that clientsgenerally want a white-pages naming system that allows clients to search for and name users to be complete.In contrast, clients want a yellow-pages naming system that allows clients to locate system services to besound. In the �rst case, clients are willing to discard extra objects but they want the desired object to becontained in the result, while in the second case, the client often depends on all of the answers being equallyvalid; e.g. if a client asks for a processor with a 68020 architecture then an answer that contains a processorthat has a di�erent architecture cannot be tolerated.Suppose we are given a resolution function de�ned by a preference hierarchy < �;� >. Then, giveninformation about the soundness or completeness of each approximation function in the preferences of �, itis necessary to be able to reason about the soundness or completeness of the induced resolution function.For instance, Pro�le supports several white-pages resolution functions that attempt to handle databasesthat may contain incomplete information and clients that may specify inaccurate descriptions [Pete88]. Itis important that the Pro�le functions be complete on many name/database pairs where the database isincomplete and the name contains some inaccuracies. The following results help a system designer determinethe extent to which such a resolution function meets its goals for soundness and completeness.A resolution function that consists of a single composite approximation function is sound only if thecomposition returns a subset of the objects the client intends to identify. Similarly, the resolution functionis complete only if the objects that client seeks are contained in the set that the composition returns. Thisobservation leads to the de�nition of soundness and completeness for a composite approximation function:a composite approximation function c is sound on a set �c if a resolution function constructed from just cis sound on �c; c is complete on �c if the resolution function is complete on �c.Proposition 3.1 The composition c � d of two monotonic database approximation functions c and d, wherec is sound on �c and d is sound on �d, is sound on �c [�d.Proof: Recall that database approximation functions always return a subset of the objects in the database.If d is sound on (N;D) then c�dmust be sound because c cannot add any objects|a database approximationalways returns a subset of the objects in the database. Since c and d are monotonic increasing relative tothe database, (N;D) 2 �c implies that every subset of D is also in �c. Therefore, if c is sound on (N;D)then c � d is sound on (N;D). 2Proposition 3.2 The composition c � d of two composite approximation functions c and d, where c iscomplete on �c, d is complete on �d and c is a point-wise function|c has the property that c(N;D) = fx 2D j x = c(N; fxgg for all sets of objects D|is complete on �c \ �d.Proof: If d is complete on (N;D) then it returns at least the objects that the client seeks. If c is point-wisedetermined and complete on (N;D) then it is complete on every subset of D that contains oracle(N;D).Thus, c � d is complete on all name/database pairs in �c \ �d. 2These two propositions allow a system designer to determine when a composite approximation thatconsists of several client and database approximations is sound and complete. For example, it is easy12



to show that a composite approximation de�ned by h closed, unanimous, open, also-ran i is complete on�hopen;also�rani \ �hclosed;unanimousi. In particular, this composite approximation is complete when thedatabase is accurate but potentially incomplete and the client's description contains at least one accu-rate open attribute and a non-empty set of closed attributes, all of which are accurate. Since every nameresolution function consists of one or more composite approximation functions ordered by an induced pref-erence, we may use the sets on which the composite functions are sound and complete to construct a set ofname/database pairs on which the resolution function is sound or complete.In general, we are concerned with the entire resolution function. A resolution function determines the setof objects described by a name relative to an induced preference on a set of composite approximations basedon the failure of inaccurate approximations. Recall that an approximation fails when it computes an emptyset of objects. The set of name/database pairs on which any composite approximation c fails is contained in�c|the set of name/database pairs where c is sound. In fact, �c may be partitioned into two disjoint setsPc and Ec where c computes a non-empty set of objects for every (N;D) in Pc and an empty set of objectsfor every (N;D) in Ec. Given a resolution function � consisting of an induced order on several compositepreferences, �� and �� may be computed using information about the name/database pairs in Pc and in Ecfor each composite approximation c according to the following propositions.Proposition 3.3 A name resolution function � de�ned by the induced preference cn � cn�1 � : : : � c1 issound on �� = P1 [ (E1 \ (P2 [ (E2 \ : : :�n)))where ci is sound on �i = Pi [Ei and cn is sound on �n.Proposition 3.4 A name resolution function � de�ned by the induced preference cn � : : : c2 � c1 is completeon �� = �1 [ (E1 \ (�2 [ (E2 \ : : :�n)))where ci is complete on �i and empty on Ei.If it is the case that E1 \ E2 \ : : : \ Ei � Pi+1 for all i in the induced preference, then �� is just theunion of all Pi. In fact, the union is a good approximation for �� whenever Pi is very small relative to Ei. Asimilar approximation may be made for ��. That is, when �i is very small relative to Ei, then �� is simplythe union of all �i. These simpli�cations provide an adequate estimate of �� and �� for most resolutionfunctions that we have written.3.4.2 DiscriminationAn important criterion when considering related naming systems is that of how many (or how few) objectsthey return for a given set of attributes. A more discriminating resolution function always returns a smallerset of objects for a given set of attributes relative to a particular database. This may be formalized asfollows:De�nition 3.6 Given two resolution functions �1 and �2 and a set ofname/database pairs �, if �1(N;D) � �2(N;D), for all (N;D) 2 � then �2 is said to be less discrimi-nating than �1 on � (written �2 v� �1).LetResolve�denote the set of all resolution functions de�ned on �, partially ordered byv�. Resolve�isa complete lattice, whose bottom element is the function that always returns the set of all objects, and whosetop element is the function that always returns the empty set. Di�erent resolution functions can therefore be13



compared and reasoned about based on their power of discrimination. For example, consider two resolutionfunctions �1 and �2 where �1 is de�ned by a single composite approximation h universal, possible i and �2is de�ned by a single composite approximation h universal, exact i . It is easy to show that�1 v� �2for � containing all name/database pairs.In general, the choice of a particular resolution function from the family Resolve� depends on a con-sideration of tradeo�s between the computational cost and the precision of resolution o�ered by alternativefunctions. Elements of Resolve�that are low in the lattice de�ned by v� are relatively e�cient, but typ-ically not very discriminating. In other words, they may return multiple objects that the user then has tosift through. On the other hand, elements of Resolve�that are high in the lattice may be computationallymore expensive, but are typically more discriminating. These functions, however, run the risk of being overlydiscriminating in that they may not return the object the user wants. Our experience is that in practice,useful resolution functions are tuned experimentally and strongly in
uenced by the client requirements andthe underlying system constraints.4 ApplicationsThe preference hierarchy provides a framework for precisely specifying and reasoning about naming systems.This section shows how the preference hierarchy can be applied to several existing naming systems. It alsodemonstrates how the preference hierarchy can be used as a prescriptive model for designing new namingsystems. This section concludes with of discussion of how di�erent naming systems can be compared to eachother. The appendix contains procedures that implement each resolution function.4.1 Pro�le Resolution FunctionsThe Pro�le naming system [Pete88] provides a white-pages service that is used to identify users and organi-zations. Pro�le supports a suite of resolution functions that were designed with three assumptions in mind.First, Pro�le assumes that the database is honest, but that the data it contains is potentially incomplete.Pro�le automatically generates some of the information in the database. These attributes are consideredclosed because they are entered by a reliable system administrator. The remainder of the information isadded to the database by the system's clients. These attributes are considered open because one client mightenter di�erent information than another. Second, the attributes contained in a name may be inaccurate,because people may forget or incorrectly remember information about other people. Third, as mentionedearlier, clients of the Pro�le system are generally interested in complete answers|that is, ones that de�nitelycontain the objects the client intended to identify. This section shows how the �rst two assumptions a�ectthe completeness of the resolution functions in Pro�le.The preferences used to construct the Pro�le resolution functions consist of three client approximationfunctions and four database approximation functions. Although based on the example approximation func-tions informally presented in Section 3, we de�ne these functions formally so that we may reason about theresolution functions that use them.De�nition 4.1 (Pro�le Client Approximation Functions) The client approximation functions used bythe Pro�le naming system are:� universal(N) = N 14



� closed(N) = ft : v 2N j for all u, �(t : u) describes �(x) implies that t : u is registered for xg� open(N) = N � closed(N)De�nition 4.2 (Pro�le Database Approximation Functions) The database approximation functionsused by the Pro�le naming system are:� identity(N;D) = D� also-ran(N;D) = fx 2D j there exists an a 2N such that a is registered for xg� unanimous(N;D) = fx 2D j for every a 2 N, a is registered for xg� unique(N;D) = if junanimous(N;D)j = 1 then unanimous(N;D) otherwise ;.We now formally de�ne each of the four resolution functions that comprise the Pro�le naming system.For each function, we give an intuitive overview of the function, the preferences used by the function, andthe importance order on the preferences.Pro�le1: Returns all objects that match any of the given attributes. Pro�le1 is de�ned by �V � �U onthe following preferences:�U : universal�V : also-ranPro�le2: Computes the conjunction of the given attributes, given preference to closed attributes overopen attributes. Pro�le2 is de�ned by �V � �R on the following preferences:�R: open �R closed�V : also-ran �V unanimousPro�le3: Like pro�le2 except it uses open attributes to reduce the set of objects returned. Pro�le3 isde�ned by �v � �r � �V � �R on the following preferences:�R: open �R closed�V : also-ran �V unanimous �V unique�r : open�v: identity �v also-ran �v unanimousPro�le4: Matches at most one object. Pro�le4 is de�ned by �V � �R on the following preferences:�R: closed�V : uniqueGiven these de�nitions, it is easy to show that a discrimination orderv� exists for Pro�le's resolutionfunctions. The order is as follows:Proposition 4.1 For � containing all name/database pairs:pro�le1 v� pro�le2 v� pro�le3 v� pro�le415



Before considering the completeness of these resolution functions, we make the following assumption tosimplify the analysis: an inaccurate attribute in the client speci�cation|one that does not describe any ofthe objects that the client intends to identify|does not match any object within the database. While inpractice the assumption cannot be guaranteed, it is unlikely that a client will specify an inaccurate attributethat actually describes another object.3 That is, the information in the naming system is sparse in the samesense that error detection codes such as parity and Hamming codes use the distance between reasonablevalues to detect the presence errors in binary information.The following claims about completeness are valid under this assumption:Proposition 4.2 The function pro�le1 is complete for all sets of attributes that contain at least one attributethat is registered for each object that the client intended to identify.Proposition 4.3 Pro�le2 is complete on names that contain a non-empty set, C, of closed attributes thatare accurate|that is, each attribute in C describes every object that the client intends to identify.Proof: Consider �cu = f(N;D)jx 2 oracle(N;D) implies that �(closed(N)) represents �(x)g. If x 2oracle(N;D) then �(closed(N)) represents �(x). By the de�nition of closed, each of these attributes isregistered in D. Since h closed, unanimous i returns the objects that match all of the closed attributes itreturns x. Therefore, x 2 oracle(N;D) implies that x 2 unanimous(closed(N);D) and h closed, unanimousi is complete on �cu.Let �ca = f(N;D)j there exists a non-empty set C � closed(N) such that x 2 oracle(N;D) implies that�(C) represents �(x)g. If x 2 oracle(N;D) then there is a non-empty set of closed attributes, C, thatrepresent x. By de�nition, each attribute in C is registered for x in D. also-ran(closed(N),D) is the setof objects in D for which at least one of the closed attributes is registered. Therefore, x is contained inalso-ran(closed(N),D) if x is in oracle(N;D) and h closed, also-ran i is complete on �ca.Ecu consists of the name/database pairs that have either no closed attributes or at least one erroneousclosed attribute and �cu � �ca. At this point it is trivial to show that Proposition 3.4 implies that �cu [(Ecu \ �ca) = �ca � �profile2 . Thus, Proposition 4.3 holds. 2We previously de�ned a closed attribute as one that is guaranteed to be registered for every object itdescribes. A resolution function that uses open attributes may be incomplete if some open attribute in thename is not registered for some objects that the client intends to identify. For example, h open, unanimous ireturns a set of objects that match every attribute in the name. However, one of the attributes in the namemay not be registered for an object that the client seeks and so that object does not match every attributein the name according to the database. This leads to the following de�nition: An attribute a is relevant toa set of objects D if for every object x in D, �(a) describes �(x) implies a is registered for x. (Thus, anattribute is closed if it is relevant to the entire database). Using this de�nition, it is possible to show that:Proposition 4.4 Pro�le2 is complete on names where all open attributes in the name are accurate andrelevant to the set of objects that the client intends to identify.Proof: Let �ou = f(N;D)jx 2 oracle(N;D) implies that �(open(N)) represents �(x) and each attributein open(N) is registered for xg. If x 2 oracle(N;D) then �(open(N)) represents �(x) and each attribute inopen(N) is registered for x in D. Recall that, h open, unanimous i returns the objects that match all ofthe open attributes. Therefore, x 2 unanimous(open(N);D) if x 2 oracle(N;D) so that according to thede�nition of completeness h closed, unanimous i is complete on �ou.3It is possible to formally argue the completeness of resolution functions without this assumption, however, it isfar more cumbersome to describe the set of name/database pairs where an approximation fails.16



When pro�le2 resolves names using h open, unanimous i both of the earlier composite approximationreturned empty sets. This occurs whenever all of the closed attributes are inaccurate; i.e. Ecu \ Eca is theset of all (N;D) where closed(N) contains no closed attributes that describe the objects the client intendedto identify. �cu [ (Ecu \ �ca) includes any name that contains a non-empty set of closed attributes thatdescribe the client's objects. �ou may be partitioned into two disjoint sets|one where the names containa accurate closed attributes and one where they do not contain any accurate closed attributes. It is trivialto show that the former is contained in �cu [ (Ecu \ �ca) and the latter in (Ecu \ Eca \ �ou). Thus,�ou � �cu [ (Ecu \ �ca) [ (Ecu \ Eca \ �ou). Proposition 3.4 implies that �ou � �profile2 . Therefore,pro�le2 is complete on �ou and Proposition 4.4 holds. 2Proposition 4.5 Pro�le2 is complete on names that contain at least one inaccurate, open attribute and anon-empty set of accurate, open attributes such that at least one attribute in this set is registered for everyobject that the client intended to identifyProof: Let �oa = f(N;D)jx 2 oracle(N;D) implies that there exists a non-empty set O � open(N) suchthat �(O) represents �(x) and each attribute in O is registered for xg. If x 2 oracle(N;D) then there isa non-empty set of open attributes, O, that represent x and each attribute in O is registered for x in D.Also-ran(open(N),D) is the set of objects inD for which at least one open attributes is registered. Therefore,x is contained in also-ran(open(N),D) if x is in oracle(N;D) and h open, unanimous i is complete on �oa.If every name N contains at least one inaccurate attribute then �ou is empty. In this case, �cu [ (Ecu \�ca)[ (Ecu \Eca \ �ou)[ (Ecu \Eca \Eou \ �oa) is equivalent to �cu [ (Ecu \�ca)[ (Ecu \Eca \�oa). Asbefore, this expression contains �oa. Therefore, pro�le2 is complete on �oa and Proposition 4.5 holds. 2Since pro�le3 uses the open attributes to \trim" the set of objects returned, it may not always becomplete. However, we can give su�cient conditions for its completeness. First, notice that if there areno open attributes present in a set of attributes submitted by the client, then no �ltering is possible, andpro�le3 is identical to pro�le2. Thus, we haveProposition 4.6 Pro�le3 is complete on names that do not contain any open attributes but do contain anon-empty set of closed attributes that describe the objects the client intends to identify.We can, however, do better than this. Proposition 4.6 is based on the fact that if there are no open attributesin the set, then they cannot contribute to the discarding of an intended object. Thus, the reason for anypossible incompleteness is that some open attribute in the given set of attributes was not registered for theintended object. Thus, if an open attribute is relevant to the objects that the client intends to identify thenit does not contribute to the discarding of an intended object.Proposition 4.7 Pro�le3 is complete on names that contain a non-empty set of accurate attributes that arerelevant to the set of objects that the client intends to identify.Note that Proposition 4.6 is as a special case of Proposition 4.7 because a closed attribute is by de�nitionrelevant to all objects.The resolution functions provided by the Pro�le naming system attempt to respond with complete an-swers. The analysis presented in this section points out one design decision that adversely a�ects this goal.The composite function, h open, unanimous i , selects objects that match all open attributes in a name. Thisfunction is complete only if every open attribute in the name is relevant to all of the objects that the clientidenti�es. Because the very de�nition of an open attribute is one that is not relevant to a large portion of thedatabase, it is unlikely that more than one or two open attributes will be relevant to the set of objects thata client attempts to identify. Based on this understanding, it is possible to design a new function similar topro�le2 that does not use a precise match on open attributes, and thus, avoids this problem. The function,called pro�lenew, is de�ned on the following preferences:17



�R: closed�V : identity �V also-ran �V unanimous�r : open�v: identity �v also-ranwhere �v � �r � �V � �R. The following two propositions hold for pro�lenew:Proposition 4.8 Function pro�lenew is more discriminating than pro�le2 except when:1. Every open attribute in the name is accurate and relevant to every object that the client identi�es.2. Every attribute in the name is either inaccurate or irrelevant to every object that the client identi�es.Proposition 4.9 Function pro�lenew is complete if for every object that the client intends to identify thereis an accurate, open attribute in the name that is relevant to it.This example shows that the preference hierarchy can help a system designer understand how well aresolution function meets its goals. Pro�le2 sacri�ces completeness for a substantial set of name/databasepairs because it uses an exact match on open attributes, whereas pro�lenew overcomes this weakness at theexpense of being less discriminating for certain unlikely sets of attributes.4.2 Lookup Resolution FunctionConsider a naming system where the database contains accurate but potentially incomplete information andthe set of attributes speci�ed by the client are accurate but may match more objects than the client intended.For these assumptions it seems unreasonable to use database approximation functions that return any objectthat con
icts with the client's description. For example, if the client speci�es two accurate attributes: hname:pollux, domain:as.arizona.edu i, also-ran maymatch an object with the attributes h name:toto,domain:as.arizona.edu i, even though name:toto con
icts with part of the client's speci�cation. In thiscase, since by de�nition a processor may have only one name, the object that is returned cannot be one thatthe client intends to identify.We de�ne a new resolution function, lookup, speci�cally for this situation. Lookup uses partial and possiblein conjunction with closed attributes to guarantee that no object that is returned con
icts with attributesspeci�ed by the client. Formally, partial and possible are de�ned as follows:De�nition 4.3 (Possible Database Approximation Function) possible(N;D) = fx 2 Dj for everyt : v 2N either t : v is registered for x or no attribute with tag t is registered for x gDe�nition 4.4 (Partial Database Approximation Function) partial(N;D) = fx 2 possible(N;D)jthere is a a 2N such that a is registered for xgThe lookup resolution function is de�ned by the following preferences:�P : ambiguous �P unambiguous�R: open �R closed�M : partial �M exact 18



�p: ambiguous�r : open�m: possible �m partial �m exactwhere �m � �r � �p � �M � �R � �P . If the assumptions about the information in the system arevalid, then lookup never returns objects that are known to con
ict with the client's speci�cation. In general,it prefers objects that are known to match the client's description over those that are not known to con
ictwith the description.4.3 Other Non-Trivial Resolution FunctionsThis section discusses several other non-trivial resolution functions.4.3.1 Yellow-PagesA yellow-pages resolution function allows clients to discriminate among a set of similar computationalresources|such as printers, processors, databases, network services, and so on|according to their particularcharacteristics. The descriptive yellow-pages function [Pete87], denoted yp is de�ned as follows.The set of attributes presented to yp are partitioned into mandatory and optional subsets, denoted byNm and No respectively, where the optional attribute set is ordered; i.e., No = fa1; a2; :::ang. The mostpreferred answer matches the mandatory attributes and all of the optional attributes; however, if no suchmatch exists then a match based on optional attribute ai is preferred over a match based on attribute aj ifi < j. Thus, n optional attributes de�ne n + 1 di�erent client approximation functions o0; o1; : : : on whereoi returns the mandatory attributes and the �rst i optional attributes. Thus, for a given set of attributes,yp is de�ned by �M � �A, where �A and �M are given by:�A: o0 �A o1 �A : : : �A on�M : exactFor example, yp allows a client to ask for a processor that has a 68020 architecture and supports a Pascalcompiler, and of all processors that possess those properties, select those with a load less than 1.5, shouldany exist.4.3.2 CSNETConsider the CSNET name server that is used to identify users and organizations [Solo82]. Like yp, theCSNET name server de�nes a client approximation in which a given set of attributes are partitioned intomandatory and optional subsets. The resolution function used by the CSNET name server, denoted csnet,is de�ned by �m � �f � �M � �F on following preferences:�F : mandatory�M : exact �M unique�f : optional�m: identity �m maximumwhere maximum implies the set of objects that match the maximum number of attributes. The function-based preference is given priority over the match-based preference.19



4.3.3 NICThe NIC name server (also calledWHOIS) limits queries to a single attribute and de�nes a resolution functionthat returns all objects partially matched by that attribute [Pick79]. The resolution function is thereforefunctionally equivalent to pro�le1. The NIC name server also enforces a restriction that an unambiguousattribute, called a handle, be registered for each object, such that if a client gives a handle, the namingsystem is guaranteed to return at most one object. Handles are implemented by attaching a unique pre�xto a registered attribute so as to to ensure its uniqueness.4.4 Resolution Functions for Conventional Naming SystemsWhile descriptive naming systems such as Pro�le, the CSNET name server, and the NIC name server takeadvantage of the full expressive power of the preference hierarchy, understanding preferences provides insightinto more conventional systems.Conventional naming systems support a simple inference system: They restrict the database to accurate,unambiguous attributes and they restrict queries to names containing a single, accurate attribute. Thisimplies that all matches are unique. As a consequence, conventional naming systems are trivially given byresolution function conv, which returns the the set of objects uniquely matched by the set of unambiguousattributes in the name. Given this de�nition, it is easy to see the following:Proposition 4.10 The function conv is sound for all singleton sets of attributes.Notice, however, that that the restriction that only unambiguous attributes may be registered implies thatsuch systems cannot be complete for attribute sets other than those that contain a single, unambiguousattribute. Thus,Proposition 4.11 The function conv is complete for all sets of attributes that contain no ambiguous at-tributes.Consider a common scenario in which the naming system is used to map a symbolic name into a machine-readable address. In this case, the symbolic name registered for a particular object is an always attribute|onethat always describes the object|and the object's machine-readable address is either a now attribute|onethat currently describes the object|in which case the system must be designed to 
ush the binding if thereis any chance that it has become stale, or it is a sometime attribute|one that described the object at onetime but may not describe it now|in which case users of the naming system must be able to accommodateout-of-date information. The later case is commonly referred to as a hint [Terr87].It is important to note that conventional naming systems, because of the requirements placed on them,generally sacri�ce completeness for the sake of soundness. Descriptive naming systems, on the other hand,often sacri�ce soundness for the sake of completeness. To accomplish this, conventional (low-level) system arelikely to deal exclusively with preference classes that are high in the preference hierarchy (e.g., unambiguous,unique and always attributes), whereas descriptive (high-level) systems are likely to accept preference classesthat are low in the hierarchy (e.g., ambiguous and sometime attributes). Moreover, while high-level namingsystems are more likely to accommodate multiple preference classes, even low-level naming systems thataccommodate only one preference class have implicitly made a decision regarding that preference. That is,they mandate a certain preference class.4.5 Comparing SystemsThe preference hierarchy provides a handle on comparing naming systems. For example, because conventionalnaming systems assume unambiguous attributes and unique matches, and both these preference classes are20



present in the preference hierarchy upon which Pro�le is based, one can to directly compare Pro�le's mostdiscriminating resolution function with conv as follows:pro�le4 v� convfor all sets of name/database pairs in �. In other words, it is accurate to view conv as a restrictive memberof the Pro�le family of resolution functions.While it is the case that we cannot compare naming systems unless the preference hierarchy of one canbe embedded in that of the other, being able to conclude that the naming systems are inherently di�erent isitself useful information. For example, one might be interested in knowing if white-pages and yellow-pagesservices are fundamentally di�erent, or if they are simply synonyms for the same thing. The answer, at leastrelative to the systems with which we have experience, is that they are fundamentally di�erent: white-pagesservices are based on open and closed preference classes, while yellow-pages services are based on mandatoryand optional preference classes.Furthermore, our experience strongly suggests that these preference classes correctly represent the envi-ronment in which the two systems operate and the requirements placed on the two systems by the clients thatuse them. In the case of white-pages services, the fact that not all useful information about users is known tothe naming system is a signi�cant constraint on the system; the resolution functions must be designed in away that accommodates missing information. Also, because clients of a white-pages system generally have aparticular object in mind when they submit a name, it is implied that the object identi�ed by the attributesshould possess all the attributes in the name; i.e., the distinction between mandatory and optional attributesis not relevant. In the case of yellow-pages services, it is possible to ensure all the necessary information bestored in the database|a program is responsible for registering attributes|the distinction between openand closed attributes is not an issue. Moreover, the client that names a computational resource is mostinterested in distinguishing between similar resources; i.e., clients generally do not care which processor theyget as long as it has the appropriate blend of attributes. Thus, the �ne-grain control a�orded by partitioningthe name into mandatory and optional attributes is useful.5 Concluding RemarksThis paper reasons about naming systems as specialized inference mechanisms. It de�nes a preferencehierarchy that is used to specify the resolution function(s) associated with a given naming system, includingboth conventional and descriptive systems. The preference hierarchy has proven powerful enough to describethe naming systems we have encountered. We have implemented a general name server that explicitly enforcesthis model and we are using it to implement many of the naming systems described in this paper.In addition to providing a formal model for understanding existing naming systems, we have also foundthe preference hierarchy to be a prescriptive tool that can be use when designing new naming systems. Forexample, the Pro�le naming system introduced in Section 3 was designed before we had formally de�ned thepreference hierarchy, but clearly, an intuitive understanding of preferences guided the design. It is interestingto note that the formal speci�cation of the preference hierarchy led us to understand and correct a subtle
aw in the original de�nition of pro�le3. It also led to the de�nition of the new function pro�lenew given inSection 4.1As another example, after having de�ned the preference hierarchy, we were able to apply it to the prob-lem of designing a yellow-pages service used to identify computational resources such as printers, processors,databases, network servers, and so on [Pete87]. In particular, we wanted a descriptive yellow-pages ser-vice that would allow users to discriminate among a set of similar resources; i.e., resources that providedapproximately the same service. The result was the resolution function yp given in Section 4.3.21



As a �nal example, we have observed that the domain naming system (DNS) [Mock87] evolved in away that suggests an implicit understanding of the preference hierarchy. Speci�cally, the domain namingsystem provides the same functionality as conventional systems: it maps host names into network addresses.Unlike simpler systems, however, the domain system is implemented in a network environment in which thedatabase is distributed over multiple hosts. Several years of experience with the system led its designers tounderstand that the DNS mechanism must be able to correctly deal with out-of-date data. In particular, anupdated speci�cation of the system reads: \Cached data should never be used in preference to authoritativedata...". This informal de�nition directly corresponds to the temporal preference sometime �t now . Theimportant point is that even in functionally simple systems that maps names into addresses, it is possiblefor the environment in which the system is implemented to impose constraints on the system, and that thetechnique used to deal with these constraints can, in turn, be expressed in terms of the preference hierarchy.AppendixThis appendix contains several Scheme function de�nitions used to implement the name resolution functionsdescribed in Section 4. This is how we actually de�ne resoulution functions in the Univers name server. Thesefunctions may be included as part of the query or they may be stored in the Univers server and referencedby the query. Note that serveral optimizations have been made in order to avoid redundant computationsof composite approximation functions.(define (profile1 N D)(also-ran (universal N) D))(define (profile2 N D)(cond[(unanimous (closed N) D)][(also-ran (closed N) D)][(unanimous (open N) D)][(also-ran (open N) D)]))(define (profile3 N D)(cond[(unique (closed N) D)][(unanimous (open N) (unamimous (closed N) D))][(also-ran (open N) (unamimous (closed N) D))][(unanimous (closed N) D)][(unanimous (open N) (also-ran (closed N) D))][(also-ran (open N) (also-ran (closed N) D))][(also-ran (closed N) D)][(unanimous (open N) D)][(also-ran (open N) D)])) 22



(define (profile4 N D)(unique (closed N) D))(define (profile-new N D)(cond[(also-ran (open N) (unanimous (closed N) D))][(unanimous (closed N) D)][(also-ran (open N) (also-ran (closed N) D))][(also-ran (closed N) D)][(also-ran (open N) D)][D]))(define (lookup N D)(cond[(exact (closed (unambiguous N)) D)][(partial (open (unambiguous N)) D)][(exact (ambiguous N) D)][(partial (open (ambiguous N)) (exact (closed (ambiguous N)) D))][(possible (open (ambiguous N)) (exact (closed (ambiguous N)) D))][(exact (open (ambiguous N)) D)][(partial (open (ambiguous N)) D)]))(define (yp M O D)(if (null? O)(exact M D)(cond[(exact O (exact M D))][(yp M (cdr O) D)])))(define (csnet N D)(cond[(unique (mandatory N) D)][(maximum (optional N) (exact (mandatory N) D))][(exact (mandatory N) D)])) 23
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