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1 Introduction

A name is a syntactic entity that denotes an object and a naming system 1s a mechanism that answers queries
of the form “what object is denoted by this name?”. A naming system resembles a restricted database system
that infers the object(s) referenced by a name. The class of queries that can be handled by such a system
and the precision of the answers it returns depends directly on the power of its inference mechanism.

Conventional naming systems, such as those found in compilers [Pric71], virtual memory managers
[Fabr74], and file systems [Ritc74], are functionally simple: the database contains a table of name/value
pairs, clients submit a single name, and the system returns the corresponding value. More elaborate naming
systems, such as white-pages services used to identify users [ISO88, Pete88, Pick79, Solo82], yellow-pages
services used to identify network resources [Pete87, Sun86], and document preparation utilities for manag-
ing bibliographic data [Budd86], allow clients to identify an object by giving a collection of attributes that
describe the object; we refer to such systems as descriptive or attribute-based naming systems. For example,
a client may learn a user’s mailbox address by querying a white-pages service with a name of the form

“name=John Doe, phone=621-1234, org=State University”

Similarly, a client may learn the address of a cycle server by querying a yellow-page service with a name of
the form

“service=cycle, arch=vax, load<2, mips=max”

In both cases, the answer returned by the naming system depends on the information available in its database
and the power of its inference mechanism.

This paper defines a simple model, called a preference hierarchy, that provides a framework for using
the information available to a naming system to compute the object(s) identified by a given name. The
preference hierarchy therefore serves as a formal tool for designing and reasoning about naming systems.
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In particular, it allows us to evaluate naming systems based on how discriminating they are and the set of
names for which they are sound and complete.

The rest of this section motivates the preference hierarchy and discusses related work. Section 2 then
presents some preliminary definitions and Section 3 describes how preference hierarchies can be used to
specify the structure of a naming system’s inference mechanism. Finally, Section 4 demonstrates the utility
of preference hierarchies and Section 5 makes some concluding remarks.

1.1 Motivation

To appreciate the impact and utility of the preference hierarchy, it is important to understand that the
naming system designer must accommodate two sets of constraints: the requirements placed on the naming
system by the entities that use the system, and the conditions under which the naming system must operate.

First, the clients of a naming system place a set of requirements on the system: The naming system must
accept as a name whatever information its clients possess for the objects they want to identify and it must
respond with the precision expected by those clients. For example, the client of a symbol table manager—in
this case another program—specifies an object with an identifier and expects at most one answer; a program
that uses the symbol table cannot accommodate ambiguous answers. In contrast, the clients of a white-pages
service—in this case human users—often possess several pieces of information about the object they want to
name and they are sometimes willing to tolerate ambiguous results as long as it contains the desired object.

Second, the naming system is constrained by the conditions under which it is implemented; i.e., the
properties of the environment in which it must function. In many cases, there are no limitations; the naming
system exists in a perfect world. For example, the parser for a compiler never fails to insert identifiers in
the symbol table and the symbol table manager cannot fail independently of the entire compilation. In
contrast, many naming systems must function in an imperfect world. For example, a white-pages service
can only resolve names that contain information put into the system by users. If a user does not enter a
particular fact in the naming system, then the system cannot respond to queries using that information. As
another example, naming systems that are implemented in distributed environments may lose information
because independent components fail, or information may become out-of-date because of communication
delays between the components that make up the system.

The preference hierarchy defined in this paper can be used to guide the design of naming systems that
must satisfy various requirements and constraints. While it is the case that the preference hierarchy is
most useful when applied to more complex descriptive naming systems, we have found the that preference
hierarchy provides insights into the design of more conventional naming systems as well. In fact, Section 5
points out a naming system originally conceived as a conventional system, but which has evolved over time
in a way that suggests the unconscious use of the preference hierarchy.

1.2 Related Work

Previous studies of naming focus on the operational aspects of naming systems, describing their architec-
ture and the implementation of the architecture’s base elements. For example, Fowler [Fowl85], Lampson
[Lamp86], Mann [Mann87], Oppen and Dalal [Oppe81], and Terry [Terr87] each describe techniques for man-
aging a decentralized naming service. In addition, studies by Comer and Peterson [Come89] and Watson
[Wats81] give general characterizations of the resolution process. In contrast, this paper is concerned with
the functional aspects of naming. In other words, we consider the question of what objects are identified by
a given name rather than the question of how the system is structured.

In addition to work that explicitly addresses the problem of naming, many of the underlying ideas
found in this paper can be traced to two other related areas. First, naming systems can be thought of



as specialized database systems, where the process of resolving a name is conceptually similar to that of
solving a database query [Gall84]. In particular, the preference hierarchy unifies ideas from work being
done in open-world and closed-world databases [Reit78], partial match retrieval [Ullm88], and incomplete
information [Lips79, Lips81]. Second, one can view naming as a specific constraint-satisfaction problem
[Born87]. More specific comparisons to these related topics are made throughout the rest of the paper.

2 Basic Concepts

In the abstract, naming systems answer queries about a universe of resources, each of which has certain
properties. If a resource possesses a particular property then the property is said to describe the resource.
For example, if we are considering the universe of printers; then the properties any element of this set might
possess include “fonts”, “location”, and “resolution”. The specific property “location is Room 723” describes
a particular printer.

In practice, a naming system maintains and manipulates a database of syntactic information about a set
of resources: It denotes each resource with a database object—an object is essentially a record—and each
property with an attribute—a tagged field in the record. For example, a naming system that knows about
printers might store facts of the sort “printer ip2 supports italic font and is located in room 723”7, “printer
Iw6 is of type laserwriter and has 300 dots per square inch resolution”, and so on. The corresponding objects
in the naming system database would be

( font:italic, location:723, uid:ip2 )

( type:laserwriter, resolution:300, uid:1lwé )
where font:italic is an example of an attribute. Each attribute consists of a tag and a value; denoted t:v.
For example, the attribute font:italic consists of the tag font and the value italic. For convenience,
we assume each object contains a uid attribute and we refer to the object by this attribute’s value; e.g.,
object ip2. Also, if an attribute a is entered in the naming system database for object x, then a is said to
be registered for x.

The meaning of objects and attributes is given by a meaning function p: the resource represented by
object x is given by p(x) and the meaning p(a) of an attribute a is the property specified by a. In the
universe of printers, for example, p(font:italic) is the property of supporting the italic font. Furthermore,
we say that a naming system is honest if an attribute a is registered for an object x implies that p(a)
describes p(x). For example, if the attribute phone:621-1234 is registered for the object jones, then we
expect the referent of jones—presumably a person—to have the phone number 621-1234.

Clients query a naming system with a set of attributes and the naming system responds with the set of
objects that correspond, in some sense, to those attributes. Formally, a set of attributes N names object x
if every attribute in N is registered for x. That is, names maps sets of attributes into sets of objects, where
names(IN) denotes the set of objects named by a set of attributes N. If x € names(N), then N is said to
be a name for x. The corresponding semantic notion is represents: a set of properties, p(N), represents a
resource 1if every property in the set describes the resource.

The relationship between the semantic and syntactic domains, and the parallel between working with a
single attribute and a set of attributes is schematically depicted in Figure 1. The top layer corresponds to
database objects—i.e., operations on fields and records—while the bottom layer corresponds to resources—
i.e., operations real world entities such as a printer or a person. The dotted edges link single items with sets
of items. Note that when a property describes a resource and the corresponding attribute 1s registered for
the corresponding object, we sometimes say that the attribute describes the object.

Conventional naming systems that operate in a “perfect” world—e.g., symbol tables, virtual memory
systems—have only to implement a procedure that supports the names function. That is, they simply



return the set of objects for which all the given attributes are registered. In general, however, naming
systems do not operate in a perfect world. The information that a client uses to query a naming system may
contain imperfections. For example, the client may not possess enough information to uniquely identify the
desired objects or the information that the client does possess may be inaccurate. Likewise, the information
contained in the naming system database may not be perfect—it may contain incomplete or out-of-date
information. Thus, a naming system must use information specified by the client and registered in the
database to approximate the results that would be obtained by names if it operated in a perfect world. The
preference hierarchy described in the next section suggests a method for deriving various procedures, called
resolution functions,; that approximate the names mapping in an imperfect world.

3 Preference Hierarchy

Many naming systems distinguish between the “quality” of different kinds of information. For example,
a descriptive naming system must be able to resolve names that contain a multiplicity of attributes. In
doing so, it is reasonable to give some attributes more importance than others. Suppose a user is trying
identify John Smith at State University, where the user is quite sure the individual is at State University,
but uncertain as to whether his first name is John. Such a user would prefer that the naming system
respond with information about any Smith at State University rather than information about some John
Smith not at State University. As another example, because naming systems implemented in a distributed
environment such as the Domain Name System [Mock87] must accommodate out-of-date information, they
generally prefer attributes that are guaranteed to be current over cached attributes that may have become
stale.

In a perfect world, where the client accurately and completely identifies a set of objects and there is no
possibility of missing or out-of-date information in the database, it suffices to always use names to resolve
a set of attributes. Indeed, this is essentially what is done when responding to queries in conventional
database systems. In an imperfect world, however, the naming system must cope with two potential problems:
inaccuracies in the attributes specified by the client, and imperfect information in the database. Furthermore,
rather than provide a single resolution function that compensates for these problems, a naming system might
support a number of different resolution functions, each tailored for a certain class of attribute sets the
designer considers interesting and the databases the designer expects to manipulate.

Intuitively, each resolution function in a naming system uses certain assumptions about the quality of
information in the system and resolves names according to the most preferred set of assumptions. Formally,
a preference, denoted by <, 1s a total order on a set of functions that approximate portions of a perfect-world
naming system. Each of these approximation functions compensates for some imperfection believed to exist
in the naming system, either in the information specified by the client (these are called client approzimation
functions) or in the information contained in the database (these are called database approzimation functions).
The preference encapsulates some meta-information about the system by describing the assumptions that
the client believes are most reasonable. The most preferred approximations provide answers based on what
is believed to be the most reasonable and accurate information in the system. If that information fails to
distinguish among a set of objects, then another approximation is tried.

This section defines the notion of a preference hierarchy and describes the role it plays in resolving names.
In particular, it introduces the intuition behind preference hierarchies and gives several example preferences,
it establishes a framework for designing naming systems based on combinations of preferences, and 1t shows
how that framework can be used to reason about naming systems. To better understand preferences and to
appreciate how preferences are used in real attribute-based naming systems we provide several examples of
client and database preferences defined in the Univers and Profile [Pete88] attribute-based name servers.



3.1 Client Preferences

Using the attributes specified by the client, a client approximation function constructs a set of attributes that
accurately describes the objects sought by the client. Generally, these functions use information about the
property denoted by an attribute in order to determine its accuracy. For example, an approximation might
consider social security number attributes to be accurate because a client that specifies a social security
number usually knows it accurately. Given a set of attributes, one kind of approximation function based on
a preference for accurate attributes would remove those attributes that it believes to be inaccurate, returning
the accurate ones. This kind of function always returns a subset of the attributes it is given. Another kind of
client approximation function may augment the attributes specified by the client with additional attributes
that specify the type of object being described or the object’s location. This function uses information from
the client’s specification to add attributes to the description, i.e. it always returns a superset of the attributes
it 1s given as an argument. Formally, a client approximation function is defined by:

Definition 3.1 (Client Approximation Function) A function f : 2% — 24 over a domain of at-
tributes A is a client approximation function if f is monotonic increasing, i.e. for all set of attributes

M and N, M C N implies f(M) C f(N).

A client preference is a finite, totally ordered set of client approximation functions. Approximations high in
the order are those the client considers most likely to be accurate. For example, a client may specify that
an approximation that assumes that social security numbers are accurate is preferred to an approximation
that assumes that social security numbers are inaccurate. The selection of the approximation functions and
the order on them encapsulates information about the attributes supplied by the client. In practice, the
selection of a specific preference depends on the client’s assumptions about the information within a system
and on the kind of objects that the client intends to identify. For example, a client that intends to identify
processors will specify a different preference than a client that intends to identify human users.

The following informally describes several preferences that we have found useful in the naming systems
we have designed. This list illustrates some possible preferences; it is not intended to be complete. Formal
definitions for several of the preferences are given in Section 4 when we consider specific resolution functions
in more detail.

Unwersal Preference: The universal preference consists of a single function universal that maps every set

of attributes to itself. This function is used most often when the client believes that all of the attributes it
specified are accurate and are sufficient to distinguish the set of objects that are identified. In other words,
this function assumes that the client operates in a perfect world.

Registered Preference: The registered preference, denoted <g, prefers attributes that are guaranteed to

be registered in the database over those that are not. It consists of the approximation functions open and
closed where

open < g closed

An attribute with tag t is closed if every attribute constructed from t i1s guaranteed to be registered for every
object it describes. For example, a naming system may guarantee that every object with a name will have
that name registered in the database. The client approximation function closed—which returns the closed
attributes in a name—Ilimits the scope of resolution to portions of the database with complete information.?

An open attribute may not be registered for an object even though the corresponding property describes the

2Many approximation functions use only a portion of an attribute in order to determine its accuracy. For example,
the closed approximation function determines an attribute’s accuracy solely by its tag. Other approximations, such

as the explicit approximation use the entire attribute.



resource the object denotes. The resolution of a name based on open attributes may not contain all of the
objects in the database that represent resources described by the attributes. This preference 1s particularly
useful when users are responsible for maintaining some of the information in the naming system. For example,
one user may decide to include a home phone number in the database but another user may choose to leave
it out. In this case, home phone number attributes are not closed and may provide incomplete answers. Note
that the registered preference order is similar to the idea of open/closed world databases [Reit78]. Instead
of making the closed-world assumption over an entire database, however, we make the distinction on an
attribute by attribute basis.

Mutability Preference: The mutability preference, denoted <7, considers the time interval over which an

attribute describes an object, thereby accommodating changes in object properties over time. The mutability
preference may be defined as:

dynamic <y static

The static approximation function considers accurate those attributes that will always describe the objects
that they currently describe. For example, the serial number and architecture of a processor remain constant
throughout its lifetime. Thus, static believes that any attribute describing a processor’s serial number or
architecture is accurate. In contrast, dynamic returns only those attributes that may change over time.
Properties that involve a processor’s location or a professor’s class load may change over time. The infor-
mation that a client possesses about these properties may become out-of-date. In this way, the mutability
preference encapsulates a client’s belief that some of the specified information once described the object it
seeks but may not describe it any longer.

Precision Preference: The precision preference, denoted <p, prefers attributes that match a very small

set of objects. Given a set of attributes, the unambiguous client approximation function returns the attributes
that are unambiguous, that is, those that are registered for at most one object in the database. Names based
on unambiguous attributes—for example, address:192.12.69.22—tend to be very precise. An attribute is
ambiguous if 1t is registered for more than one object. Ambiguous attributes generally match several objects
so that names based on them are less precise, e.g. hostname:pollux currently matches at least four different
machines on the Internet. The ambiguous approximation function returns those attributes in a name that
are ambiguous. Thus,

ambiguous <p unambiguous

The precision preference can be used to optimize queries—i.e. optimize the search for objects that match
a name. Unambiguous attributes match at most a single object so that the set of matching objects can be
computed more efficiently.

Yellow-Pages Preference: When a person wishes to locate an inexpensive plumber to fix his sink he

searches the yellow pages of the phone book looking for plumbers who advertise inexpensive rates. Within
computer systems, clients often wish to locate a set of resources that provide a particular service. For
example, a client might wish to locate a printer that supports a particular font and is located in a nearby
building. When a person looks for an inexpensive plumber he may be willing to accept a plumber that is
expensive, but he probably will not accept an inexpensive carpenter. In the same way, certain characteristics
of the object that a client seeks are absolutely necessary, though others may not be. For example, the client
may specify that the printer “must” have a particular font and it would be “nice” if it were also in a certain
building. In this case, the naming system should first determine which printers have the specified font, and
from this set, select one in the specified building if possible. In this example, one could define a yellow pages
preference <y as follows:



optional <y mandatory

Baplicit Preference: Finally, it 1s possible to have clients themselves partition the attributes in a name

into several classes. Each partition corresponds to the result of applying an approximation function to the
entire set of attributes in the name. Consider, for example, a user querying a bibliographic name server. For
one citation, the user may be certain of the author’s name but somewhat unsure about the exact title of the
paper. For another citation, the user may be certain about the exact title, but not sure about the author or
the date of publication. It would be desirable for the user to be able to specify the preferences to be used
in each case: for the first citation, a paper that matches exactly on the author’s name but partially on the
title is to be preferred to one that matches exactly on the title but only partially on the author and for the
second citation the preferences are reversed.

3.2 Database Preferences

Preferences that consist of one or more client approximations provide information about the client’s speci-
fication. Similarly, preferences that consist of database approximations encapsulate information about the
descriptions of a set of objects. In particular, a database approximation function accommodates imperfect
information in the database by approximating the selection of objects from the perfect database. Rather
than reconstruct a perfect database, these functions select objects from the existing database in a way that
mirrors the selection of objects from what the function believes to be the perfect database. This usually takes
the form of some strategy for handling partial matches although it may use more sophisticated techniques
such as the statistical inference methods described in [Wong82].

Definition 3.2 (Database Approximation Function) A function m : 2% x 29 — 29 over a domain
of attributes A and a domain of objects O is a database approximation function if m is a contraction,
i.e. for any set of objects D, m(N,D) C D.

Intuitively, the definition says that a database approximation function never adds new objects to the
database. Most useful database approximation functions have two other characteristics. First, most database
approximation functions return more complete answers with more information about the world. In other
words, as the size of the database increases, the number of objects matching a name increases. More formally,
a database approximation function m i1s monotonic increasing relative to the set of objects, 1.e. for sets of
objects C and D, C C D implies m(N,C) C m(N,D). The unique approximation described below is an
exception to this rule; unique returns the single object that uniquely matches the set of attributes. Second,
most database approximation functions cannot approximate the set of objects that the client intended to
identify without some information from the client; thus m(f, D) = @ for any set of objects D is true for
most database approximation functions. One specific function that does not conform to this principle is a
database approximation function called identity; identity always returns the set of objects that it is given no
matter what attributes the client specifies.

A database preference is a total order on a set of database approximation functions. As with client
preferences, the selection of a particular preference supplies the naming system with information about
the assumptions that the client possesses regarding the database. A particular preference may supply
information about how to handle different degrees of partial match or matches in different locations. The
following examples describe potential solutions to these problems.

Match-Based Preference: The match-based preference, denoted <3s provides approximations that match

attributes to objects at four different precisions. The functions in this preference are ordered by



possible <pr partial <pp exact <pr unique

The least preferred approximation, possible, maps a set of attributes to the set of all objects that could
possibly match. In other words, an object is selected as long as there 1s no conflict between an attribute in
the name and in the object description contained in the database. For example, consider a database that
contains descriptions for four users:

( uid:cmb, office:737, department:cs )

( uid:rao, office:737 )

( uid:1lp, office:725 )

(uid:gmt )
and a name that consists of the attributes office:737 and department:cs. In this case, possible returns
cmb, rao, and gmt. This function computes || @ ||* as defined by Lipski in the case where there is no partial
information [Lips81, Lips79]. The second approximation, partial, returns all objects that possibly match and
have at least one attribute in common with the name. Partial would return cmb and rao, but not gmt in the
example. The third approximation, exact, returns all objects that are described by all of the attributes in a
name. For this example, exact returns just cmb—it is the only object that is known to match both attributes
in the name. FEzact computes Lipski’s || @ ||.. The final approximation, unique, returns either the single
object that exactly matches the name or the empty set—in this case cmb would be returned by unigue but
no objects would be returned for a name that consists of the single attribute office:737 because there is
no unique match. This preference may be used when the accuracy of the database is not in question though
it may not be complete. That is, no object will be returned if it conflicts with one of the attributes that the
client supplies. Note that this preference generalizes the idea of partial match retrieval [Ullm8&§].

Voting Preference: The voting preference, denoted <y, views the attributes that are specified as votes

for objects. The order is defined as:

also-ran <y majority <y unanimous

The most preferred approximation, unanimous, prefers objects that receive all of the votes; 1.e. all the
attributes are registered for the objects. The majority approximation returns the set of objects that receive
a majority of the votes. Finally, also-ran matches the set of attributes to any object that receives at least
one vote; i.e. any object for which one or more of the client specified attributes are registered. In contrast
with the match-based preference, the voting preference does not assume that all of the information in the
database is correct. Rather, it attempts to return reasonable matches even though conflicts may exist with
attributes specified by the client.

Temporal Preference: The temporal preference, denoted <7, differs from the voting and match-based

preferences in that it does not attempt to match a set of attributes to an object. Rather, the approximation
functions that constitute the temporal preference distinguish between objects based on the length of time
until the information contained in the database becomes stale. The temporal preference prefers objects that
are described by authoritative information—information that is guaranteed to be accurate—over information
that has been cached. This provides one method for handling out-of-date information within the database.
The temporal preference may be defined as:

out-of-date <p cached <7 authoritative

The authoritative approximation assumes that the only accurate information in the database is authoritative
information. As such, the only objects that match a name are those with authoritative attributes registered



for each trait that appears in the name. Both cached and authoritative allow an object to be described
by information that is cached. However, cached demands that the attributes registered for objects not be
stale—the database expects that the attribute value still describes the object. Qut-of-date allows information
to be in any condition: the value in the database described the object at one time and the assumption is
that even out-of-date information may provide hints about the correct value.

Note that the temporal database preference bears close resemblance to the mutability client preference.
However, the basic assumptions are different. On one hand, the mutability preference assumes that the
database contains information that actually describes the object in question. In this case, the client possesses
information that has become out-of-date. For example, a client may remember that a printer 1w11 was located
in GS725. Since then, however, the printer has been moved to GS737 and the database has been updated
to reflect the change. The information that the client possesses is out-of-date and will produce erroneous
results if used to identify the printer. On the other hand, the temporal preference assumes that the client’s
information is accurate but that the value of an attribute in the database has become out-of-date. This
corresponds to the case where the client knows the actual location of 1wil but the location of 1lwil was
never updated within the database. Here, the database contains information that will keep the client from
identifying 1wi1 by location.

3.3 Resolution Functions

A resolution function is defined by an ordering on a set of client and database preferences; this ordering is
called a preference hierarchy. The preference hierarchy specifies the relative importance of each preference
when resolving names. Functionally, this means that a resolution function selects an approximation function
from each preference, constructs a composition of the functions, and evaluates the composition relative to
the given name and database. It continues to select functions until one combination computes a non-empty
set of objects. The preferences specify the order in which approximation functions are selected and the
preference hierarchy specifies the order of composition for the sets of approximations. In theory, if the
assumptions made by each of the approximation functions are correct, then the set of objects selected by
their composition should resemble the set that the client intended to identify.

For example, consider the construction of a resolution function for a naming system with the following
three assumptions. First, the client always presents the naming system with accurate information. Second,
the database contains information that may be incomplete. Finally, some of the information in the database
is authoritative—i.e., it 18 always up-to-date—and some is cached. For a naming system based on these
assumptions, three preferences seem most applicable:

<R open <g closed
~<7: cached <7 authoritative

< partial <3 exact

This collection of preferences means that the resolution function can select from eight different sets of
approximations:

open , authoritative, exact ) open , authoritative, partial )

open , cached, exact ) open , cached, partial )

(
(
closed , authoritative, exact ) ( closed , authoritative, partial )
closed , cached, exact ) ( closed |, cached, partial )



It 1s reasonable to assume that the registered preference <pg is more important than the match based
preference <3; and at least as important as the temporal preference <7p. This assumption implies that the
relative importance of the three preferences defines a preference hierarchy <1 as <3 < <7 < <pg.

The preference hierarchy has two effects on the evaluation of sets of approximations. First, the approxi-
mations in any set must be applied in order from most important to least important. For example, the first
set of approximations above must be evaluated in order: closed, authoritative, and exact because closed 1s
the approximation from the most important preference and exact is from the least important. Three rules
guide the evaluation of an ordered set of approximations fi, fa,... fu:

1. If f; and f;41 are database approximation functions then the composition of f; and f;41 is a database
approximation function f defined as f(N, D) = f;(N, D) N fi41(N, D).

2. If f; and f;41 are client approximation functions then the composition of f; and fiy1 is a client

approximation function f defined as f(N) = ((fi(N) U fiz1(N)) = N)U (fi(N) N figx1(N) N N).

3. If f; is a client approximation and f;4; is a database approximation then the composition of f; and
fix1 is a database approximation function f defined as f(N, D) = fiy1(fi(N), D).

The first two rules are applied until the ordered set alternates between database and client approximation
functions. At this point the third rule is applied to construct a single approximation function. Thus the
composition of { closed , authoritative, exact ) —called a composite approximation function—is a function
f defined as f(N, D) = authoritative(closed(N), D) Nexact(closed(N), D).

The second effect of the preference hierarchy is the order in which a set of composite approximation
functions are applied to the name. A preference hierarchy specifies an induced preference on a set of
composition functions. In this example, the resolution function attempts both exact and partial matches on
the closed attributes before attempting any match on open attributes. The preference hierarchy induces the
following preference on the sets of approximations:

( open , cached, partial ) < { open , cached, exact ) ~<
( open , authoritative, partial ) < ( open , authoritative, exact ) ~<
( closed |, cached, partial ) =< ( closed , cached, exact ) ~<
( closed , authoritative, partial ) < { closed , authoritative, exact )

In other words, ( closed , authoritative, exact ) is the most preferred approximation. If this composite
approximation function computes a non-empty set of objects, then that set is returned by the resolution
function. The resolution function evaluates compositions in order from most preferred to least preferred. It
returns the first non-empty set computed by a composition.

Formally, if we are given a set of preferences I = { <, ..., <}, totally ordered by the preference hierarchy
<, then for any two members <; and < of II, we say that < is more important than <; if <; < <.
Without loss of generality, assume that & < j implies that < is more important than <;. Let the set of
approximations of <; be given by m;. The preference, <, induced by (II, <) is defined to be the lexicographic
order on the following set of compositions:

T X g X ... X Ty,

Given an induced preference on a set of compositions, the name resolution function computes the set of
objects described by a name in a way that respects the induced preference. This means that a resolution
function may not return a set of objects using a composition function, ¢;, unless every more preferred
composition—that is any composition ¢; where ¢; < c¢;—failed to compute a non-empty set of objects.
Formally,
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Definition 3.3 (Name Resolution Function) An induced preference order < on a set of composile ap-
prozimation functions Il = {my, 7a,..., 7, } defines a name resolution function p : 24 x 29 — 29 over
a domain of attributes A and a domain of objects O by p(N,D) = m;(N, D) where

1. m(N,D) #0
2. Vr; € U [m; < m; implies that n;(N, D) = (].

Intuitively, a composition function supports several approximations of the perfect world system—one from
each preference in the metaorder. The assumptions encapsulated in the set of approximations are considered
“accurate” if the composition returns a non-empty set of objects. A resolution function computes the set of
objects described by the name relative to the most preferred, “accurate” set of approximations.

To complete the example, consider a resolution function defined by a Univers name server. This function
implements the preference order <3 <1 <¢ <1 <g. Several redundant compositions have been removed from
this definition. For example, the approximations partial and exact compute the same set of objects for names
that consist of closed attributes. Thus partial(closed(N), D) is equivalent to exact(closed(N), D).

(define (lookup N D)
(cond

[(intersect (authoritative (closed N) D) (exact (closed N) D))]
[(intersect (cached (closed N) D) (exact (closed N) D))]
[(intersect (authoritative (open N) D) (exact (open N) D))]
[(intersect (authoritative (open N) D) (partial (closed N) D))]
[(intersect (cached (open N) D) (exact (open N) D))]
[(intersect (cached (open N) D) (partial (open N) D))]

3.4 Tools For Reasoning About Resolution Functions

The discussion in the previous section focused on the structure of the preference induced by a preference
hierarchy. This makes it possible to understand and reason about some aspects of the behavior of resolution
functions. This section describes the semantics of the preference hierarchy model and develops some tools
that may be used to describe and reason about sets of related resolution functions. In the discussion that
follows, we use A to denote the set of name/database pairs that serve as the domain of a resolution function.
Specifically, A consists of pairs (N,D) where N is a set of attributes and D is a set of objects. A is
determined by the characteristics of the naming system that will support the resolution function.

3.4.1 Soundness and Completeness

Clearly, it is possible to construct many resolution functions that differ in how many (or how few) objects
they return for a given set of attributes. In this context, two properties are of interest: Given a set of
attributes, it may be desirable that the resolution function (i) return only those objects named by the
attributes; and (i) return all those objects that are named by the attributes. In order to formalize these
properties we postulate an oracle function that returns precisely the set of objects that the client intended
to identify. The objects that oracle returns are those that would be returned if the client had presented
its request to a naming system that contained perfect information. That is, oracle knows about all of the
imperfections that exist in the system and compensates for them. We assume that every client attempts to
identify at least one object, therefore oracle always returns at least one object. Using the oracle function,
soundness and completeness can be formalized as follows:
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Definition 3.4 (Soundness) A name resolution function p is said to be sound for a name/database pair

(N, D) in A if and only if p(N,D) C oracle(N, D).

Definition 3.5 (Completeness) A name resolution function p is said to be complete for a name/database
pair (N, D) in A if and only if oracle(N,D) C p(N, D).

We denote the set of name/database pairs in A for which p is sound by X, and the set of name/database
pairs for which p is complete by 7 ,.

Often, the designer of a naming system must ensure that the resolution functions the system provides
satisfy constraints about soundness or completeness. For example, our experience suggests that clients
generally want a white-pages naming system that allows clients to search for and name users to be complete.
In contrast, clients want a yellow-pages naming system that allows clients to locate system services to be
sound. In the first case, clients are willing to discard extra objects but they want the desired object to be
contained in the result, while in the second case, the client often depends on all of the answers being equally
valid; e.g. if a client asks for a processor with a 68020 architecture then an answer that contains a processor
that has a different architecture cannot be tolerated.

Suppose we are given a resolution function defined by a preference hierarchy < II,<1 >. Then, given
information about the soundness or completeness of each approximation function in the preferences of II, it
1s necessary to be able to reason about the soundness or completeness of the induced resolution function.
For instance, Profile supports several white-pages resolution functions that attempt to handle databases
that may contain incomplete information and clients that may specify inaccurate descriptions [Pete88]. It
is important that the Profile functions be complete on many name/database pairs where the database is
incomplete and the name contains some inaccuracies. The following results help a system designer determine
the extent to which such a resolution function meets its goals for soundness and completeness.

A resolution function that consists of a single composite approximation function is sound only if the
composition returns a subset of the objects the client intends to identify. Similarly, the resolution function
is complete only if the objects that client secks are contained in the set that the composition returns. This
observation leads to the definition of soundness and completeness for a composite approximation function:
a composite approximation function ¢ is sound on a set Y. if a resolution function constructed from just ¢
1s sound on X.; ¢ is complete on 7. if the resolution function is complete on 7 ..

Proposition 3.1 The composition cod of two monotonic database approximation functions ¢ and d, where
¢ 1s sound on Y. and d is sound on X4, 1s sound on L. U Xg4.

Proof: Recall that database approximation functions always return a subset of the objects in the database.
If d is sound on (N, D) then cod must be sound because ¢ cannot add any objects—a database approximation
always returns a subset of the objects in the database. Since ¢ and d are monotonic increasing relative to
the database, (N, D) € X, implies that every subset of D is also in X.. Therefore, if ¢ is sound on (N, D)
then ¢ od is sound on (N, D). O

Proposition 3.2 The composition ¢ o d of two composite approximation functions ¢ and d, where ¢ is
complete on 7., d is complete on 7 4 and ¢ is a point-wise function—c has the property that ¢(N,D) = {x €
D |x = ¢(N,{x}} for all sets of objects D—is complete on 7. N7 4.

Proof: If d is complete on (N, D) then it returns at least the objects that the client seeks. If ¢ is point-wise
determined and complete on (N, D) then it is complete on every subset of D that contains oracle(N, D).
Thus, ¢ o d is complete on all name/database pairs in 7. N7 4. O

These two propositions allow a system designer to determine when a composite approximation that
consists of several client and database approximations is sound and complete. For example, 1t is easy
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to show that a composite approximation defined by ( closed, unanimous, open, also-ran ) is complete on
7 (open, also—ran) 1V 7 (closed, unanimous)- 10 particular, this composite approximation is complete when the
database is accurate but potentially incomplete and the client’s description contains at least one accu-
rate open attribute and a non-empty set of closed attributes, all of which are accurate. Since every name
resolution function consists of one or more composite approximation functions ordered by an induced pref-
erence, we may use the sets on which the composite functions are sound and complete to construct a set of
name/database pairs on which the resolution function is sound or complete.

In general, we are concerned with the entire resolution function. A resolution function determines the set
of objects described by a name relative to an induced preference on a set of composite approximations based
on the failure of inaccurate approximations. Recall that an approximation fails when it computes an empty
set of objects. The set of name/database pairs on which any composite approximation ¢ fails is contained in
Y .—the set of name/database pairs where ¢ is sound. In fact, . may be partitioned into two disjoint sets
P. and F, where ¢ computes a non-empty set of objects for every (N, D) in P, and an empty set of objects
for every (N, D) in F.. Given a resolution function p consisting of an induced order on several composite
preferences, ¥, and 7, may be computed using information about the name/database pairs in P, and in E.
for each composite approximation ¢ according to the following propositions.

Proposition 3.3 A name resolution function p defined by the induced preference ¢, < ¢p_1 < ... < ¢y i
sound on
L, =PUEN(PUEN.. . E,))

where ¢; 1s sound on X; = P, U E; and ¢, s sound on X,.

Proposition 3.4 A name resolution function p defined by the induced preference ¢, < ...co < c¢1 is complete
on
T, =T1U(E1N (72U (EaN...75)))

where ¢; 1s complete on 7; and empty on Ej;.

If it is the case that £y N Ea N ... N E; C Py for all ¢ in the induced preference, then X, is just the
union of all £;. In fact, the union is a good approximation for ¥, whenever F; is very small relative to F;. A
similar approximation may be made for 7 ,. That is, when 7; is very small relative to F;, then 7, is simply
the union of all 7;. These simplifications provide an adequate estimate of X, and 7, for most resolution
functions that we have written.

3.4.2 Discrimination

An important criterion when considering related naming systems is that of how many (or how few) objects
they return for a given set of attributes. A more discriminating resolution function always returns a smaller
set of objects for a given set of attributes relative to a particular database. This may be formalized as
follows:

Definition 3.6 Given two resolution functions p1 and P2 and a set of
name/database pairs A, if p1 (N, D) C p2(N, D), for all (N,D) € A then ps is said to be less discrimi-
nating than p1 on A (written pa Ca p1).

Let Resolveadenote the set of all resolution functions defined on A, partially ordered by Ca. Resolveais
a complete lattice, whose bottom element is the function that always returns the set of all objects, and whose
top element is the function that always returns the empty set. Different resolution functions can therefore be
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compared and reasoned about based on their power of discrimination. For example, consider two resolution
functions p; and ps where pp is defined by a single composite approximation ( universal, possible ) and ps
is defined by a single composite approximation { universal, exact ) . It is easy to show that

1 Ea pa

for A containing all name/database pairs.

In general, the choice of a particular resolution function from the family Resolvea depends on a con-
sideration of tradeoffs between the computational cost and the precision of resolution offered by alternative
functions. Elements of Resolveathat are low in the lattice defined by Ca are relatively efficient, but typ-
ically not very discriminating. In other words, they may return multiple objects that the user then has to
sift through. On the other hand, elements of Resolveathat are high in the lattice may be computationally
more expensive, but are typically more discriminating. These functions, however, run the risk of being overly
discriminating in that they may not return the object the user wants. Our experience is that in practice,
useful resolution functions are tuned experimentally and strongly influenced by the client requirements and
the underlying system constraints.

4 Applications

The preference hierarchy provides a framework for precisely specifying and reasoning about naming systems.
This section shows how the preference hierarchy can be applied to several existing naming systems. It also
demonstrates how the preference hierarchy can be used as a prescriptive model for designing new naming
systems. This section concludes with of discussion of how different naming systems can be compared to each
other. The appendix contains procedures that implement each resolution function.

4.1 Profile Resolution Functions

The Profile naming system [Pete88] provides a white-pages service that is used to identify users and organi-
zations. Profile supports a suite of resolution functions that were designed with three assumptions in mind.
First, Profile assumes that the database is honest, but that the data it contains is potentially incomplete.
Profile automatically generates some of the information in the database. These attributes are considered
closed because they are entered by a reliable system administrator. The remainder of the information is
added to the database by the system’s clients. These attributes are considered open because one client might
enter different information than another. Second, the attributes contained in a name may be inaccurate,
because people may forget or incorrectly remember information about other people. Third, as mentioned
earlier, clients of the Profile system are generally interested in complete answers—that 1s, ones that definitely
contain the objects the client intended to identify. This section shows how the first two assumptions affect
the completeness of the resolution functions in Profile.

The preferences used to construct the Profile resolution functions consist of three client approximation
functions and four database approximation functions. Although based on the example approximation func-
tions informally presented in Section 3, we define these functions formally so that we may reason about the
resolution functions that use them.

Definition 4.1 (Profile Client Approximation Functions) The client approzimation functions used by
the Profile naming system are:

o universal(N) = N
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o closed(N) ={t: v € N| for all u, u(t :u) describes u(x) implies that t : u is registered for x}
e open(N) = N — closed(N)

Definition 4.2 (Profile Database Approximation Functions) The database approzimation functions
used by the Profile naming system are:

e identity(N,D) =D

o also-ran(N, D) = {x € D | there erists an a € N such that a is registered for x}
o unanimous(N,D) = {x € D| for every a € N, a is registered for x}

o unique(N, D) = if [unanimous(N,D)| = 1 then unanimous(N, D) otherwise §.

We now formally define each of the four resolution functions that comprise the Profile naming system.
For each function, we give an intuitive overview of the function, the preferences used by the function, and
the importance order on the preferences.

Profile;: Returns all objects that match any of the given attributes. Profile; is defined by <y <1 <y on
the following preferences:

<7 universal
<y also-ran

Profiles: Computes the conjunction of the given attributes, given preference to closed attributes over
open attributes. Profiles is defined by <y <1 <g on the following preferences:

<R open <g closed
<y also-ran <y unanimous

Profiles: Like profiles except it uses open attributes to reduce the set of objects returned. Profiles is
defined by <, < <, << <y <1 <g on the following preferences:

<R open <g closed
<y also-ran <y unanimous <y unique
<,: open
<y tdentity <, also-ran <, unanimous
Profiles: Matches at most one object. Profiles is defined by <y <1 <g on the following preferences:
~<p: closed
<y unique

Given these definitions, it is easy to show that a discrimination orderCa exists for Profile’s resolution
functions. The order is as follows:

Proposition 4.1 For A containing all name/database pairs:

profile; T profile, Ca profileg Ca profile,
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Before considering the completeness of these resolution functions, we make the following assumption to
simplify the analysis: an inaccurate attribute in the client specification—one that does not describe any of
the objects that the client intends to identify—does not match any object within the database. While in
practice the assumption cannot be guaranteed, it is unlikely that a client will specify an inaccurate attribute
that actually describes another object.® That is, the information in the naming system is sparse in the same
sense that error detection codes such as parity and Hamming codes use the distance between reasonable
values to detect the presence errors in binary information.

The following claims about completeness are valid under this assumption:

Proposition 4.2 The function profile; is complete for all sets of attributes that contain at least one attribute
that s registered for each object that the client intended to identify.

Proposition 4.3 Profile; s complete on names that contain a non-empty set, C, of closed attributes that
are accurate—that is, each attribute in C' describes every object that the client intends to identify.

Proof: Consider 7., = {(N,D)|x € oracle(N,D) implies that p(closed(N)) represents p(x)}. If x €
oracle(N, D) then p(closed(IN)) represents p(x). By the definition of closed, each of these attributes is
registered in D. Since { closed, unanimous ) returns the objects that match all of the closed attributes it
returns x. Therefore, x € oracle(N, D) implies that x € unanimous(closed(N), D) and ( closed, unanimous
) is complete on 7 ¢y.

Let 7 .o = {(N, D)| there exists a non-empty set C' C closed(N) such that x € oracle(N, D) implies that
u(C) represents pu(x)}. If x € oracle(N,D) then there is a non-empty set of closed attributes, C, that
represent x. By definition, each attribute in C' is registered for x in D. also-ran(closed(N),D ) is the set
of objects in D for which at least one of the closed attributes is registered. Therefore, x is contained in
also-ran(closed(N ),D } if x is in oracle(N,D) and ( closed, also-ran ) is complete on 7 .,.

E., consists of the name/database pairs that have either no closed attributes or at least one erroneous
closed attribute and 7., C 7.,. At this point it is trivial to show that Proposition 3.4 implies that 7., U
(Eew N7?ca) = 7ca C 7 profite,. Thus, Proposition 4.3 holds. O

We previously defined a closed attribute as one that is guaranteed to be registered for every object it
describes. A resolution function that uses open attributes may be incomplete if some open attribute in the
name is not registered for some objects that the client intends to identify. For example, { open, unanimous )
returns a set of objects that match every attribute in the name. However, one of the attributes in the name
may not be registered for an object that the client seeks and so that object does not match every attribute
in the name according to the database. This leads to the following definition: An attribute a is relevant to
a set of objects D if for every object x in D, u(a) describes p(x) implies a is registered for x. (Thus, an
attribute is closed if it is relevant to the entire database). Using this definition, it is possible to show that:

Proposition 4.4 Profiles is complete on names where all open attributes in the name are accurate and
relevant to the set of objects that the client intends to identify.

Proof: Let 74, = {(N,D)|x € oracle(N,D) implies that p(open(N)) represents pu(x) and each attribute
in open(N) is registered for x}. If x € oracle(N, D) then p(open(N)) represents p(x) and each attribute in
open(N) is registered for x in D. Recall that, { open, unanimous ) returns the objects that match all of
the open attributes. Therefore, x € unanimous(open(N), D) if x € oracle(N, D) so that according to the
definition of completeness ( closed, unanimous ) is complete on 7 4.

1t is possible to formally argue the completeness of resolution functions without this assumption, however, it is

far more cumbersome to describe the set of name/database pairs where an approximation fails.
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When profiles resolves names using { open, unanimous ) both of the earlier composite approximation
returned empty sets. This occurs whenever all of the closed attributes are inaccurate; i.e. FE., N F., 18 the
set of all (N, D) where closed(IN) contains no closed attributes that describe the objects the client intended
to identify. 7.y U (Fey N 7¢q) includes any name that contains a non-empty set of closed attributes that
describe the client’s objects. 7., may be partitioned into two disjoint sets—one where the names contain
a accurate closed attributes and one where they do not contain any accurate closed attributes. It is trivial
to show that the former is contained in 7., U (Fey N 7eq) and the latter in (Fey N Eeqg N 7oy). Thus,
Tou € Teu U (Beu N7ea) U (Bew N Eeg N7 ou). Proposition 3.4 implies that 7o, C 7 pp0fie,. Therefore,
profiles is complete on 7 ,, and Proposition 4.4 holds. O

Proposition 4.5 Profiles is complete on names that contain at least one inaccurate, open attribute and a
non-empty set of accurate, open attributes such that at least one attribute in this set is registered for every
object that the client intended to identify

Proof: Let 7,4 = {(N, D)|x € oracle(N, D) implies that there exists a non-empty set O C open(N) such
that 1(O) represents p(x) and each attribute in O is registered for x}. If x € oracle(N,D) then there is
a non-empty set of open attributes, O, that represent x and each attribute in O is registered for x in D.
Also-ran{open(N ),D ) is the set of objects in D for which at least one open attributes is registered. Therefore,
x is contained in also-ran(open(N ),D ) if x is in oracle(N, D) and { open, unanimous ) is complete on 7 ,4.

If every name N contains at least one inaccurate attribute then 7, is empty. In this case, 7 ¢y U (Eey N
?ea) U(Feu N Eea N7 0y ) U (Few N Eeg N Eoy N7 44) is equivalent t0 7oy U (Fey N7 cq) U (Bey N Eea N7 0q). As
before, this expression contains 7 ,,. Therefore, profiles is complete on 7 ,, and Proposition 4.5 holds. O

Since profiles uses the open attributes to “trim” the set of objects returned, it may not always be
complete. However, we can give sufficient conditions for its completeness. First, notice that if there are
no open attributes present in a set of attributes submitted by the client, then no filtering is possible, and
profiles is 1dentical to profiles. Thus, we have

Proposition 4.6 Profiles is complete on names that do not contain any open attributes but do contain a
non-empty set of closed attributes that describe the objects the client intends to identify.

We can, however, do better than this. Proposition 4.6 is based on the fact that if there are no open attributes
in the set, then they cannot contribute to the discarding of an intended object. Thus, the reason for any
possible incompleteness is that some open attribute in the given set of attributes was not registered for the
intended object. Thus, if an open attribute is relevant to the objects that the client intends to identify then
it does not contribute to the discarding of an intended object.

Proposition 4.7 Profiles is complete on names that contain a non-empty set of accurate attributes that are
relevant to the set of objects that the client intends to identify.

Note that Proposition 4.6 is as a special case of Proposition 4.7 because a closed attribute is by definition
relevant to all objects.

The resolution functions provided by the Profile naming system attempt to respond with complete an-
swers. The analysis presented in this section points out one design decision that adversely affects this goal.
The composite function, { open, unanimous ) , selects objects that match all open attributes in a name. This
function is complete only if every open attribute in the name is relevant to all of the objects that the client
identifies. Because the very definition of an open attribute is one that is not relevant to a large portion of the
database, it is unlikely that more than one or two open attributes will be relevant to the set of objects that
a client attempts to identify. Based on this understanding, it is possible to design a new function similar to
profile; that does not use a precise match on open attributes, and thus, avoids this problem. The function,
called profiley ey, 18 defined on the following preferences:
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~<p: closed
<y identity <y also-ran <y unanimous
<, open
<y tdentity <, also-ran
where <, < <, < <y < <g. The following two propositions hold for profile, e, :

Proposition 4.8 Function profile,ey is more discriminating than profiles except when:
1. Every open attribute in the name ts accurate and relevant to every object that the client tdentifies.

2. Buvery attribute in the name s either inaccurate or irrelevant to every object that the client identifies.

Proposition 4.9 Function profile, e, is complete if for every object that the client intends to identify there
1s an accurate, open attribute in the name that is relevant to it.

This example shows that the preference hierarchy can help a system designer understand how well a
resolution function meets its goals. Profiles sacrifices completeness for a substantial set of name/database
pairs because it uses an exact match on open attributes, whereas profile,c., overcomes this weakness at the
expense of being less discriminating for certain unlikely sets of attributes.

4.2 Lookup Resolution Function

Consider a naming system where the database contains accurate but potentially incomplete information and
the set of attributes specified by the client are accurate but may match more objects than the client intended.
For these assumptions it seems unreasonable to use database approximation functions that return any object
that conflicts with the client’s description. For example, if the client specifies two accurate attributes: (
name:pollux, domain:as.arizona.edu ), also-ran may match an object with the attributes ( name:toto,
domain:as.arizona.edu ), even though name:toto conflicts with part of the client’s specification. In this
case, since by definition a processor may have only one name, the object that is returned cannot be one that
the client intends to identify.

We define a new resolution function, lookup, specifically for this situation. Lookup uses partial and possible
in conjunction with closed attributes to guarantee that no object that is returned conflicts with attributes
specified by the client. Formally, partial and possible are defined as follows:

Definition 4.3 (Possible Database Approximation Function) possible(N, D) = {x € D| for every
t:v €N either t : v is registered for x or no attribute with tag t is registered for x }

Definition 4.4 (Partial Database Approximation Function) partial(N,D) = {x € possible(N, D)|
there is a a € N such that a is registered for x}

The lookup resolution function is defined by the following preferences:

<p: ambiguous <p unambiguous
<R open <g closed

< partial <3 exact
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<p: ambiguous
<. open
<m: possible <., partial <., eract

where <, < <, < <, < <y < <p < <p. If the assumptions about the information in the system are
valid, then lookup never returns objects that are known to conflict with the client’s specification. In general,
it prefers objects that are known to match the client’s description over those that are not known to conflict
with the description.

4.3 Other Non-Trivial Resolution Functions

This section discusses several other non-trivial resolution functions.

4.3.1 Yellow-Pages

A yellow-pages resolution function allows clients to discriminate among a set of similar computational
resources—such as printers, processors, databases, network services, and so on—according to their particular
characteristics. The descriptive yellow-pages function [Pete87], denoted yp is defined as follows.

The set of attributes presented to yp are partitioned into mandatory and optional subsets, denoted by
N,, and N, respectively, where the optional attribute set is ordered; i.e., N, = {aj,as, ...a,}. The most
preferred answer matches the mandatory attributes and all of the optional attributes; however, if no such
match exists then a match based on optional attribute a; is preferred over a match based on attribute a; if
t < j. Thus, n optional attributes define n + 1 different client approximation functions og, 01, ...0, where
o; returns the mandatory attributes and the first ¢ optional attributes. Thus, for a given set of attributes,
yp 18 defined by <as <1 <4, where <4 and <3 are given by:

~< AL 0g <A 01 <A ...=<4A Op
~<a: exact

For example, yp allows a client to ask for a processor that has a 68020 architecture and supports a Pascal
compiler, and of all processors that possess those properties, select those with a load less than 1.5, should
any exist.

4.3.2 CSNET

Consider the CSNET name server that is used to identify users and organizations [Solo82]. Like yp, the
CSNET name server defines a client approximation in which a given set of attributes are partitioned into
mandatory and optional subsets. The resolution function used by the CSNET name server, denoted csnet,
is defined by <., <0 <y < <y < < on following preferences:

<. mandatory

<ar: exacl <pp unique

~<t: optional

<m: tdentity <., marimum

where mazimum implies the set of objects that match the maximum number of attributes. The function-
based preference is given priority over the match-based preference.
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4.3.3 NIC

The NIC name server (also called WHOIS) limits queries to a single attribute and defines a resolution function
that returns all objects partially matched by that attribute [Pick79]. The resolution function is therefore
functionally equivalent to profile;. The NIC name server also enforces a restriction that an unambiguous
attribute, called a handle, be registered for each object, such that if a client gives a handle, the naming
system is guaranteed to return at most one object. Handles are implemented by attaching a unique prefix
to a registered attribute so as to to ensure its uniqueness.

4.4 Resolution Functions for Conventional Naming Systems

While descriptive naming systems such as Profile, the CSNET name server, and the NIC name server take
advantage of the full expressive power of the preference hierarchy, understanding preferences provides insight
into more conventional systems.

Conventional naming systems support a simple inference system: They restrict the database to accurate,
unambiguous attributes and they restrict queries to names containing a single, accurate attribute. This
implies that all matches are unique. As a consequence, conventional naming systems are trivially given by
resolution function conv, which returns the the set of objects uniquely matched by the set of unambiguous
attributes in the name. Given this definition, it is easy to see the following:

Proposition 4.10 The function conv is sound for all singleton sets of attributes.

Notice, however, that that the restriction that only unambiguous attributes may be registered implies that
such systems cannot be complete for attribute sets other than those that contain a single, unambiguous
attribute. Thus,

Proposition 4.11 The function conv is complete for all sets of attributes that contain no ambiguous at-
tributes.

Consider a common scenario in which the naming system is used to map a symbolic name into a machine-
readable address. In this case, the symbolic name registered for a particular object is an always attribute—one
that always describes the object—and the object’s machine-readable address is either a now attribute—one
that currently describes the object—in which case the system must be designed to flush the binding if there
is any chance that it has become stale, or it is a sometime attribute—one that described the object at one
time but may not describe it now—in which case users of the naming system must be able to accommodate
out-of-date information. The later case is commonly referred to as a hint [Terr87].

It is important to note that conventional naming systems, because of the requirements placed on them,
generally sacrifice completeness for the sake of soundness. Descriptive naming systems, on the other hand,
often sacrifice soundness for the sake of completeness. To accomplish this, conventional (low-level) system are
likely to deal exclusively with preference classes that are high in the preference hierarchy (e.g., unambiguous,
unique and always attributes), whereas descriptive (high-level) systems are likely to accept preference classes
that are low in the hierarchy (e.g., ambiguous and sometime attributes). Moreover, while high-level naming
systems are more likely to accommodate multiple preference classes, even low-level naming systems that
accommodate only one preference class have implicitly made a decision regarding that preference. That is,
they mandate a certain preference class.

4.5 Comparing Systems

The preference hierarchy provides a handle on comparing naming systems. For example, because conventional
naming systems assume unambiguous attributes and unique matches, and both these preference classes are
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present in the preference hierarchy upon which Profile is based, one can to directly compare Profile’s most
discriminating resolution function with conv as follows:

profile, Ca conv

for all sets of name/database pairs in A. In other words, it is accurate to view conv as a restrictive member
of the Profile family of resolution functions.

While it is the case that we cannot compare naming systems unless the preference hierarchy of one can
be embedded in that of the other, being able to conclude that the naming systems are inherently different is
itself useful information. For example, one might be interested in knowing if white-pages and yellow-pages
services are fundamentally different, or if they are simply synonyms for the same thing. The answer, at least
relative to the systems with which we have experience, is that they are fundamentally different: white-pages
services are based on open and closed preference classes, while yellow-pages services are based on mandatory
and optional preference classes.

Furthermore, our experience strongly suggests that these preference classes correctly represent the envi-
ronment in which the two systems operate and the requirements placed on the two systems by the clients that
use them. In the case of white-pages services, the fact that not all useful information about users is known to
the naming system is a significant constraint on the system; the resolution functions must be designed in a
way that accommodates missing information. Also, because clients of a white-pages system generally have a
particular object in mind when they submit a name, it is implied that the object identified by the attributes
should possess all the attributes in the name; i.e., the distinction between mandatory and optional attributes
is not relevant. In the case of yellow-pages services, it is possible to ensure all the necessary information be
stored in the database—a program is responsible for registering attributes—the distinction between open
and closed attributes is not an issue. Moreover, the client that names a computational resource is most
interested in distinguishing between similar resources; i.e., clients generally do not care which processor they
get as long as it has the appropriate blend of attributes. Thus, the fine-grain control afforded by partitioning
the name into mandatory and optional attributes is useful.

5 Concluding Remarks

This paper reasons about naming systems as specialized inference mechanisms. It defines a preference
hierarchy that is used to specify the resolution function(s) associated with a given naming system, including
both conventional and descriptive systems. The preference hierarchy has proven powerful enough to describe
the naming systems we have encountered. We have implemented a general name server that explicitly enforces
this model and we are using it to implement many of the naming systems described in this paper.

In addition to providing a formal model for understanding existing naming systems, we have also found
the preference hierarchy to be a prescriptive tool that can be use when designing new naming systems. For
example, the Profile naming system introduced in Section 3 was designed before we had formally defined the
preference hierarchy, but clearly, an intuitive understanding of preferences guided the design. It is interesting
to note that the formal specification of the preference hierarchy led us to understand and correct a subtle
flaw in the original definition of profiles. It also led to the definition of the new function profile, ¢y given in
Section 4.1

As another example, after having defined the preference hierarchy, we were able to apply it to the prob-
lem of designing a yellow-pages service used to identify computational resources such as printers, processors,
databases, network servers; and so on [Pete87]. In particular, we wanted a descriptive yellow-pages ser-
vice that would allow users to discriminate among a set of similar resources; i.e., resources that provided
approximately the same service. The result was the resolution function yp given in Section 4.3.
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As a final example, we have observed that the domain naming system (DNS) [Mock87] evolved in a
way that suggests an implicit understanding of the preference hierarchy. Specifically, the domain naming
system provides the same functionality as conventional systems: it maps host names into network addresses.
Unlike simpler systems, however, the domain system is implemented in a network environment in which the
database is distributed over multiple hosts. Several years of experience with the system led its designers to
understand that the DNS mechanism must be able to correctly deal with out-of-date data. In particular, an
updated specification of the system reads: “Cached data should never be used in preference to authoritative
data...”. This informal definition directly corresponds to the temporal preference sometime <; now. The
important point is that even in functionally simple systems that maps names into addresses, it is possible
for the environment in which the system is implemented to impose constraints on the system, and that the
technique used to deal with these constraints can, in turn, be expressed in terms of the preference hierarchy.

Appendix

This appendix contains several Scheme function definitions used to implement the name resolution functions
described in Section 4. This is how we actually define resoulution functions in the Univers name server. These
functions may be included as part of the query or they may be stored in the Univers server and referenced
by the query. Note that serveral optimizations have been made in order to avoid redundant computations
of composite approximation functions.

(define (profilel N D)
(also-ran (universal N) D)

)

(define (profile2 N D)
(cond
[(unanimous (closed N) D)]
[(also-ran (closed N) D)]
[(unanimous (open N) D)]
[(also-ran (open N) D)]
)

(define (profile3 N D)
(cond

[(unique (closed N) D)]
[(unanimous (open N) (unamimous (closed N) D))]
[(also-ran (open N) (unamimous (closed N) D))]
[(unanimous (closed N) D)]
[(unanimous (open N) (also-ran (closed N) D))]
[(also-ran (open N) (also-ran (closed N) D))]
[(also-ran (closed N) D)]
[(unanimous (open N) D)]
[(also-ran (open N) D)]
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(define (profile4 N D)
(unique (closed N) D)
)

(define (profile-new N D)

(cond
[(also-ran (open N) (unanimous (closed N) D))]
[(unanimous (closed N) D)]
[(also-ran (open N) (also-ran (closed N) D))]
[(also-ran (closed N) D)]
[(also-ran (open N) D)]
(D]

(define (lookup N D)
(cond

[(exact (closed (unambiguous N)) D)]
[(partial (open (unambiguous N)) D)]
[(exact (ambiguous N) D)]
[(partial (open (ambiguous N)) (exact (closed (ambiguous N)) D))]
[(possible (open (ambiguous N)) (exact (closed (ambiguous N)) D))]
[(exact (open (ambiguous N)) D)]
[(partial (open (ambiguous N)) D)]

(define (yp M O D)
(if (null? O)
(exact M D)
(cond
[(exact O (exact M D))]
[(yp M (cdr O) D)]
)
)
)

(define (csnet N D)
(cond
[(unique (mandatory N) D)]
[(maximum (optional N) (exact (mandatory N) D))]
[(exact (mandatory N) D)]J
)
)
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(define (conv N D)
(unique (unambiguous N) D)

)
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