
J. Symbolic Computation (1998) 22, 715{734A Methodology for Granularity Based Control ofParallelism in Logic ProgramsyP. LOPEZz, M. HERMENEGILDOz AND S. DEBRAY\zComputer Science Faculty, Technical University of Madrid (UPM)28660-Boadilla del Monte, Madrid-Spainpedro@dia.�.upm.es, herme@�.upm.es\ Department of Computer Science, University of ArizonaTucson, AZ 85721, U.S.A.debray@cs.arizona.edu(Received 31 May 1995)Several types of parallelism can be exploited in logic programs while preserving cor-rectness and e�ciency, i.e. ensuring that the parallel execution obtains the same resultsas the sequential one and the amount of work performed is not greater. However, suchresults do not take into account a number of overheads which appear in practice, suchas process creation and scheduling, which can induce a slow-down, or, at least, limitspeedup, if they are not controlled in some way. This paper describes a methodologywhereby the granularity of parallel tasks, i.e. the work available under them, is e�cientlyestimated and used to limit parallelism so that the e�ect of such overheads is controlled.The run-timeoverhead associatedwith the approach is usually quite small, since as muchwork is done at compile time as possible. Also, a number of run-time optimizations areproposed. Moreover, a static analysis of the overhead associated with the granularitycontrol process is performed in order to decide its convenience. The performance im-provements resulting from the incorporation of grain size control are shown to be quitegood, specially for systems with medium to large parallel execution overheads.Keywords: Granularity Analysis and Control, Parallelism, Cost Estimation.1. IntroductionIt has been shown | e.g. by Chassin and Codognet (1994), Hermenegildo and Rossi(1995) | that several types of parallelism can be exploited in logic programs while pre-serving correctness (i.e. the parallel execution obtains the same results as the sequential)and e�ciency (i.e. the amount of work performed is not greater or, at least, there is noy The work of S. K. Debray was supported in part by the National Science Foundation under grantCCR-9123520. The work of M. Hermenegildo and P. L�opez is supported in part by ESPRIT project 6707\PARFORCE" and CICYT project number TIC93-0976-CE.0747{7171/90/000000 + 00 $03.00/0 c 1998 Academic Press Limited

716 P. L�opez, M. Hermenegildo and S. Debrayslow-down). However such results assume an idealized execution environment in which anumber of practical overheads are ignored, such as those associated with task creation,possible migration of tasks to remote processors, the associated communication over-heads, etc. Due to these overheads, and if the granularity of parallel tasks, i.e. the \workavailable" underneath them, is too small, it may happen that the costs are larger than thebene�ts in their parallel execution. This makes it desirable to devise a method wherebythe granularity of parallel goals and their number can be controlled. Granularity con-trol has been studied in the context of traditional programming (Kruatrachue and Lewis1988, McGreary and Gill 1989), functional programming (Huelsbergen 1993, Huelsbergenet al. 1994), and also logic programming (Kaplan 1988, Debray et al. 1990, Zhong et al.1992, Debray and Lin 1993).The bene�ts from controlling parallel task size will obviously be greater for systemswith greater parallel execution overheads. In fact, in many architectures (e.g. distributedmemory multiprocessors, workstation \farms", etc.) such overheads can be very signi�-cant and, in them, automatic parallelization cannot in general be done realistically with-out granularity control. In some other architectures where the overheads for spawninggoals in parallel are small (e.g. in small shared memory multiprocessors) granularitycontrol is not essential but it can also achieve important improvements in speedup.The aim of granularity control is to change parallel execution to sequential executionor vice-versa based on some conditions related to grain size and overheads. However,granularity control itself can induce new overheads, which should obviously be minimized.Since granularity control cannot in general be done completely at compile-time, oneway to minimize its impact is to do as much work at compile-time as possible andrelegate some tests and �nal decisions to run-time. One way to do this is by generatingat compile-time cost functions which estimate grain size as a function of input datasize, which are then evaluated at run-time when such size is known. This was proposedby Debray et al. (1990) in the context of logic programs and by Rabhi and Manson(1990) in the context of functional programs. An alternative is to determine only therelative cost of goals (Zhong et al. 1992), which can be specially useful for optimizing anon-demand run-time scheduler, but may not be as e�ective in reducing task creation cost.These approaches are in contrast with others, such as that of Sarkar (1989) who baseshis algorithm on information obtained via runtime pro�ling rather than compile-timeanalysis. Goldberg and Hudak (1985) considers \serial combinators" with reasonablegrain sizes, but does not discuss the compile time analysis necessary to estimate theamount of work that may be done by a call.We address the problem by using the overall approach originally sketched by Debray etal. (1990) of computing complexity functions and performing program transformationsat compile-time based on such functions, so that the transformed program automaticallycontrols granularity. However, the central topic of such approach was really the problemof estimating upper bounds to task execution times, leaving as future work the deter-mination of how that information was to be used. The method described in this paperattempts to �ll this gap by illustrating and o�ering solutions for the many problemsinvolved, for both the cases when upper and lower bound information regarding taskgranularity is available, and for a generic execution model. Such problems include onone hand estimating the cost of goals, of the overheads associated with their parallelexecution, and of the granularity control technique itself. On the other hand there isalso the problem of devising, given that information, e�cient compile-time and run-timegranularity control techniques.

A Methodology for Granularity Based Control of Parallelism in LP 717We know of no other work which describes a complete granularity control system forlogic programs, discusses the many problems that arise (some of them more subtle thanthey appear at �rst sight) and provides solutions to them in the generality that we presentour work.We do not discuss in detail the di�erent types of overheads which may appear in aparallel execution when comparing it to a sequential execution, which may include notonly execution time-related overheads but also, for example, memory consumption over-heads, for conciseness, and because we are more concerned with speedups, we concentratemainly on time-related overheads. However, we conjecture that a similar treatment tothat which we propose can be applied to the analysis and control of memory-relatedoverheads. 2. A General ModelWe start by discussing the basic issues to be addressed in our general approach togranularity control, in terms of a generic execution model. In the following sections wewill particularize to the case of logic programs.2.1. Deriving Sufficient ConditionsWe �rst discuss how conditions for deciding between parallel and sequential executioncan be devised. We consider a generic execution model: let g = g1; : : : ; gn be a tasksuch that subtasks g1; : : : ; gn are candidates for parallel execution, Ts represents thecost (execution time) of the sequential execution of g, and Ti represents the cost of theexecution of subtask gi.There can be many di�erent ways to execute g in parallel, involving di�erent choicesof scheduling, load balancing, etc., each having its own cost (execution time). To simplifythe discussion, we will assume that Tp represents in some way all of the possible costs.More concretely, Tp � Ts should be understood as \Ts is greater or equal than anypossible value for Tp".In a �rst approximation, we assume that the points of parallelization of g are �xed.We also assume, for simplicity, and without loss of generality, that no tests | such as,perhaps, \independence" tests (Chassin and Codognet 1994, Hermenegildo and Rossi1995) | other than those related to granularity control are necessary.Thus, the purpose of granularity control will be to determine, based on some conditions,whether the gi's are to be executed in parallel or sequentially. In doing this, the objectiveis to improve the ratio between the parallel and sequential execution times. An interestinggoal is to ensure that Tp � Ts. In general, this condition cannot be determined beforeexecuting g, while granularity control should intuitively be carried out ahead of time.Thus, we are forced to use approximations. At this point one clear alternative is to giveup on strictly ensuring that Tp � Ts and use some heuristics that have good average casebehavior. On the other hand, it is not easy to �nd such heuristics and, also, it is of obviouspractical importance to be able to ensure that parallel execution will not take moretime than the sequential one. This suggests an alternative solution: evaluating a simplercondition which nevertheless can be proved to ensure that Tp � Ts. Such a condition canbe based on computing an upper bound for Tp and a lower bound for Ts. Ensuring Tp � Tscorresponds to the case where the action taken when the condition does not hold is torun sequentially, i.e. to a philosophy were tasks are executed sequentially unless parallel

718 P. L�opez, M. Hermenegildo and S. Debrayexecution can be shown to be faster. This is useful when \parallelizing a sequentialprogram." This approach is discussed in the following section. The converse case of\sequentializing a parallel program", in which detecting when the opposite conditionTs � Tp holds is the objective, is considered in Section 2.1.2.2.1.1. Parallelizing a Sequential ProgramIn order to derive a su�cient condition for the inequality Tp � Ts, we derive upperbounds for its left-hand-side and lower bounds for its right-hand-side, i.e. a su�cientcondition for Tp � Ts is T up � T ls, where T up denotes an upper bound of Tp and T ls a lowerbound of Ts. We will use the superscripts l and u to denote lower and upper boundsrespectively throughout the discussion.Assume that there are p free processors in the system at the instant in which task gis about to be executed. Assume also that p � 2 (if there is only one processor, thenexecution is performed sequentially) and let m be the lowest integer which is greater orequal than n/p, i.e. the ceiling of np , denoted m = dnp e. We have that T up = Spawu+Cu,where Spawu is an upper bound on the cost of creating the n parallel subtasks, and Cuan upper bound on the execution of g itself. Spawu will be dependent on the particularsystem in which task g is going to be executed. It can be a constant, or a function ofseveral parameters, such as input data size, number of input arguments, number of tasks,etc. and can be experimentally determined. We now consider how Cu can be computed.Let Cui be an upper bound on the cost of subtask gi, and assume that Cu1 ; : : : ; Cunare ordered in descending order of cost. Two possible ways of computing Cu are thefollowing: Cu = Pmi=1 Cui ; or Cu = m Cu1 . Each Cui can be considered as the sum oftwo components: Cui = Schedui + T ui , Schedui denotes the time taken from the pointin which the parallel subtask gi is created until its execution is started by a processor(possibly the same processor that created the subtask), i.e. the cost of task preparation,scheduling, communication overheads, etc.y Tui denotes the time taken by the executionof gi disregarding all the overheads mentioned before. We assume that the tasks g1; : : : ; gnare guaranteed to not fail. We also assume that T ls can be computed as follows: T ls =T ls1 + � � �+ T lsn , where T lsi is a lower bound of the cost of the (sequential) execution ofsubtask gi.The following two lemmas summarize the previous discussion:Lemma 2.1. If Spawu +Pmi=1 Cui < T ls1 + � � �+ T lsn , then Tp � Ts.Proof. Trivial.2Lemma 2.2. If Spawu +m Cu1 < T ls1 + � � �+ T lsn then Tp � TsProof. Trivial.2As mentioned in the introduction, bounds on execution costs often need to be evaluatedtotally or partially at run-time, and thus also the condition above. It would be desirabley Note that in some parallel systems, such as &-Prolog (Hermenegildo and Greene 1991), Schedui canin some cases be zero, since there is no overhead associated with the preparation of a parallel task if itis executed by the same processor as the one which created the task.

A Methodology for Granularity Based Control of Parallelism in LP 719to make this evaluation be as e�cient as possible. There is clearly a tradeo� between theevaluation cost of such a su�cient condition and its accuracy. A su�cient condition witha simpler evaluation than those in lemmas 2.1 and 2.2 is given below, based on a seriesof reasonable further assumptions.Assume that it is ensured that the tasks g1; : : : ; gn will not take longer than they wouldin a sequential execution, ignoring the time to spawn them and all the associated parallelexecution overheadsy and that Schedu1 ; : : : ; Schedun are ordered in descending order ofcost. Let Thresu be a threshold computed using either one of the following expressions:Thresu = Spawu +m Schedu1 ; or Thresu = Spawu +Pmi=1 Schedui .Theorem 2.3. If there exist at least m + 1 tasks t1; : : : ; tm+1 among g1; : : : ; gn, suchthat for all i, 1 � i � (m + 1), Thresu � Tslti , where Tslti denotes a lower bound of thecost of the sequential execution of task ti, then Tp � Ts.Proof. Assume that Ts1 ; : : : ; Tsn are ordered in descending order of cost, where Tsidenotes the cost of the sequential execution of task gi. Consider the following condition:Tup � Ts1 + � � �+ Tsm + Tsm+1 + � � �+ Tsn (2.1)where T up = Thresu+Ts1 + � � �+Tsm . We have that if this condition holds then Tp � Ts,since its left hand side is an upper bound of Tp. Simplifying condition 2.1 we obtain:Thresu � Tsm+1 + � � �+ Tsn (2.2)If there are at least m + 1 tasks t1; : : : ; tm+1 among g1; : : : ; gn, such that for all i, 1 �i � (m + 1), Thresu � Tslti , then Thresu � Tsti (where Tsti denotes the cost of thesequential execution of task ti), and there is some ti, 1 � i � m + 1 which is equal tosome gj, m + 1 � j � n and condition 2.2 holds because Thresu � Tsj . 2We treat now a slightly more complex case in which we also consider other costs,including the cost of granularity control itself: assume now that the execution of gitakes Ti time steps, such that Ti = Tsi + Wi, where Wi is some \extra" work due toeither parallel execution itself (for example the cost of accessing remote references) orgranularity control or both of them. Let l (0 � l � n) be the tasks for which we knowthatWi 6= 0 (equivalently, Ti > Tsi). Assume thatW u1 ; : : : ;W ul are ordered in descendingorder of cost, and let r = min(l;m). Then, we can compute a new threshold, Thresuw,by adding W (Thresuw = Thresu +W) to the previous threshold (Thresu). W can becomputed in two possible ways: W =Pri=1Wui ; or W = r W u1 .Theorem 2.4. If there exist at least m + 1 tasks t1; : : : ; tm+1 among g1; : : : ; gn, suchthat for all i, 1 � i � (m + 1), Thresuw � Tslti , where Tslti denotes a lower bound of thecost of the sequential execution of task ti, then Tp � Ts.Proof. The proof is similar to that of theorem 2.3. Since Thresu+W +Ts1 + � � �+Tsm ,is also an upper bound of Tp, we can follow the same argument in this proof replacingcondition 2.1 by Thresu +W + Ts1 + � � �+ Tsm � Ts1 + � � �+ Tsm + Tsm+1 + � � �+ Tsn 2y This can be ensured for certain execution platforms, for example if the tasks are \independent".However in some cases, if the tasks are \dependent", theymay take longer than they would in a sequentialexecution.

720 P. L�opez, M. Hermenegildo and S. DebraySuppose now that we cannot ensure that for all i, 1 � i � n, gi is not going tofail. Assume that gk is the leftmost task for which non-failure is not ensured, for some1 � k � n. We can modify the previous lemmas (2.1 and 2.2) and theorems (2.3 and 2.4)slightly as follows.Lemmas 2.1 and 2.2 can be reformulated as:Lemma 2.5. If Spawu +Pmi=1 Cui < T ls1 + � � �+ T lsk , then Tp � Ts.Proof. Trivial.2Lemma 2.6. If Spawu +m Cu1 < T ls1 + � � �+ T lsk then Tp � TsProof. Trivial.2The only di�erence is that we consider T ls1 + � � �+ T lsk on the right hand side of therespective inequation instead of T ls1 + � � �+ T lsn .Theorems 2.3 and 2.4 can be reformulated by assuming as hypothesis that the taskswhich have the m greatest costs are among g1; : : : ; gk. The proofs are similar.Theorem 2.7. If there exist at least m+1 tasks t1; : : : ; tm+1 among g1; : : : ; gk, such thatfor all i, 1 � i � (m + 1), Thresu � Tslti , where Tslti denotes a lower bound of the costof the sequential execution of task ti, and the tasks with the m greatest costs are amongg1; : : : ; gk, then Tp � Ts.Theorem 2.8. If there exist at least m+1 tasks t1; : : : ; tm+1 among g1; : : : ; gk, such thatfor all i, 1 � i � (m + 1), Thresuw � Tslti , where Tslti denotes a lower bound of the costof the sequential execution of task ti, and the tasks with the m greatest costs are amongg1; : : : ; gk, then Tp � Ts.2.1.2. Sequentializing a Parallel ProgramAssume now that we want to detect when Ts � Tp holds, because we have a parallelprogram and want to pro�t from performing some sequentializations. In this case we cancompute T us and T lp. Let T li be a lower bound on the execution time of gi. T lp can bedetermined in several ways:1 If n � p then: T lp = Spawl + max(T l1; : : : ; T ln) else: T lp = Spawl +dnp emin(T l1; : : : ; T ln).2 T lp = Spawl +Pki=1 T li , where k = dnp e and T l1; : : : ; T ln are ordered in ascendingorder.3 T lp = Spawl + T ls1+���+T lsnpThe determination of T li will depend, of course, on the way gi is going to be exe-cuted. If the execution is going to be performed in parallel with no granularity control,with granularity control, or sequentially, we compute T lpi , T lgi , or T lsi respectively. Thedetermination of T lpi and T lgi is discussed in Section 8.

A Methodology for Granularity Based Control of Parallelism in LP 721We can choose the maximum of the di�erent possibilities for computing T lp. In general,if there are n di�erent choices x1; : : : ; xn for computing T lp (Tup , respectively) we willchoose T lp = max(x1; : : : ; xn) (T up = min(x1; : : : ; xn), respectively).2.2. Compile-time vs. Run-time ControlThe evaluation of the su�cient conditions proposed in the previous sections can inprinciple be performed totally at run-time, compile-time or partially at each of them. Forexample, it might be possible to determine at compile time if the condition expressed inTheorem 2.3 will always be true when evaluated at run-time. Let C l be a lower bound ofthe cost of each gi, 1 � i � n, then if Thresu � (n�m)C l the condition of the theoremholds, since (n �m)C l is a lower bound on Tsm+1 + � � �+ Tsn . Clearly, in this case it isnot necessary to perform any granularity control and tasks can always be executed inparallel. The converse case is also possible where tasks can be statically determined to bebetter executed sequentially. Thus, from the granularity control point of view programparts can be classi�ed as parallel (all the performed parallelizations are unconditional),sequential (there are no parallel tasks), and performing granularity control (tests basedon granularity information are performed at run-time in order to decide between parallelor sequential execution). Whether it is done at compile-time or at run-time, in orderto perform granularity control two basic issues have to be addressed: how the boundson the costs and overheads which are the parameters of the su�cient conditions arecomputed (cost and overhead analysis) and how the su�cient conditions are used tocontrol parallelism (granularity control). They are the subjects of the following sections.Both of these issues imply in general both compile-time and run-time techniques in ourapproach.2.2.1. Task Cost AnalysisSince task cost is not in general computable at compile-time, we are forced to resort toapproximations and, possibly, to performing some work at run-time. In fact, as pointedout by Debray et al. (1990), since the work done by a call to a recursive procedureoften depends on the size of its input, such work cannot in general be estimated in anyreasonable way at compile time and for such calls some run-time work is necessary. Thebasic approach used is as follows: given a call p, an expression �p(n) is computed that a)it is relatively easy to evaluate, and b) it approximates Costp(n), where Costp(n) denotesthe cost of computing p for an input of size n. The idea is that �p(n) is determined atcompile time. It is then evaluated at run-time, when the size of the input is known,yielding an estimate of the cost of the call. We point out that the evaluation of �p(n)will be simpli�ed as much as possible by the compiler. In many cases it will be possibleto simplify the cost function (or, more precisely, the test to be performed) to the point ofbeing able to statically derive a threshold size for one of the input size arguments. In thatcase, at runtime, such input size is simply compared against the (precomputed) threshold,and thus the function does not need to be evaluated. This simpli�cation is discussed inSection 6.1. If after simpli�cation, the resulting expression is costly to evaluate, thecompiler may decide to compute a safe approximation with a smaller evaluation cost.We would also like to point out that the cost of evaluating tests, and, in general, ofperforming granularity control, is also taken into account, as described in Section 7.

722 P. L�opez, M. Hermenegildo and S. DebrayIn the following we will refer to the compile-time computed expressions �p(n) as costfunctions.As mentioned in Section 2 the approximation of the condition used to decide betweenparallelization and sequentialization can be based either on some heuristics or on a safeapproximation (i.e. an upper or lower bound). For the latter approach we were able toshow su�cient conditions for parallel execution while preserving e�ciency. Because ofthese results, we will in general require �p(n) to be not just an approximation, but alsoa bound on the actual execution cost. Fortunately, as mentioned before, much work hasbeen presented on (time) complexity analysis of programs (Le M�etayer 1988, Wadler1988, Rosendhal 1989, Bjerner and Holmstrom 1989, Sarkar 1989, Zimmermann andZimmermann 1989, Flajolet et al. 1991). The most directly applicable are the methodspresented by Debray and Lin (1993) and Debray et al. (1994) for statically estimating costfunctions for predicates in a logic program. The two approaches have much in commonbut they di�er in the way the approximation is done. In the �rst one upper bounds oftask costs are computed, that is (8n)Costp(n) � �p(n), while in the second one, to bediscussed later, the converse approximation is done: (8n)Costp(n) � �p(n).Example 2.1. Consider the procedure q/2 de�ned as follows:q([],[]).q([H|T],[X|Y]):- X is H + 1, q(T,Y).where the �rst argument is an input argument. Assume that the cost unit is the numberof resolution steps. In a �rst approximation, and for simplicity, we suppose that the costof a resolution step (i.e., procedure call) is the same as that of the is/2 builtin. Withthese assumptions, the cost function of q/2 is Costq(n) = 2 n + 1, where n is the size(length) of the input list (�rst argument). 22.2.2. Parallelization Overhead AnalysisRegarding the determination of the overheads that appear together with the costs inthe su�cient conditions of Section 2.1.1, as mentioned there, this is a more or less trivialtask in systems where such costs can be considered constant. However, it is often the casethat such costs have, in addition to a constant component, other components which canbe a function of several parameters, such as input data size, number of input arguments,number of tasks, number of active processors in the system, type of processor, etc., inwhich case some run-time evaluation will be needed. For example, in a distributed system,task spawning cost is often proportional to data size, since in many models a completeclosure (a call plus its arguments) is sent to the remote processor. Thus, the evaluationof the overheads also implies in general the generation at compile-time of a cost function,to be evaluated at run-time when parameters (such as data size in our previous example)are known.2.2.3. Performing Granularity ControlLet us assume that techniques, such as those described in general terms above, fordetermining task costs and overheads are given. Then, the remainder of the granularitycontrol task is to devise a way to actually compute such costs and then control taskcreation using such information.

A Methodology for Granularity Based Control of Parallelism in LP 723We take again the approach of doing as much of the work as possible at compile-time.We propose performing a transformation of the program in such a way that the costcomputations and spawning decisions are encoded in the program itself, and in the moste�cient way possible. The idea is to postpone the actual computations and decisions untilrun-time when the parameters missing at compile-time, such as data sizes or processorload, are available. In particular, the transformed programs will perform the followingtasks: compute input data sizes; use those sizes to evaluate the cost functions; estimatethe spawning and scheduling overheads; decide whether to schedule tasks in parallel orsequentially; decide whether granularity control should be continued or not, etc.3. Cost Analysis in Logic ProgrammingWe now further discuss the cost analysis problem in the context of logic programs. Wedistinguish between the cases of and-parallelism and or-parallelism.3.1. Cost Analysis for And-parallelismIn (goal level) and-parallelism the units being parallelized are goals. We have developeda lower bound goal cost analysis (which also includes a non-failure analysis) which webriey sketch | see the work of Debray et al. (1994) for details. The problem whenestimating lower bounds is that in general it is necessary to account for the possibilityof failure of head uni�cation, leading a naive analysis to always derive a trivial lowerbound of 0. Given (an upper approximation of) mode and type information, the analysiscan detect procedures and goals which can be guaranteed not to fail. The technique isbased on an intuitively very simple notion, that of a (set of) tests \covering" the typeof a variable. Conceptually, we can think of a clause as consisting of a set of primitivetests on the actual parameters of the call, followed by body goals. The tests at thebeginning determine whether the clause should be executed or not, and in general mayinvolve pattern matching, arithmetic tests, type tests, etc. A type refers to a set of terms.For any given clause, we refer to the conjunction of the primitive tests that determinewhether it will be executed as \the tests of the clause". The disjunction of all the testsof the clauses that de�ne a particular predicate will be referred to as \the test of thatpredicate." Informally, the test of a predicate covers the type of a variable if binding thisvariable to any value in the type, the test of the predicate succeeds (the extension of thisnotion to tuples of variables is straightforward).An upper-bound cost analysis of goals has been described by Debray and Lin (1993).It is very similar and simpler than that of lower bounds, since the fact that an upperbound on the actual run-time cost is being computed allows assuming that each literalin the body of the clause succeeds and also that all clauses are executed (independentlyof whether all solutions are required or not).3.2. Cost analysis for Or-parallelismThe case of or-parallelism is similar to that of and-parallelism except that the unitsbeing parallelized are branches of the computation rather than goals. However, the costanalyses of the previous sections can be adapted by simply taking into account the\continuation" of the choice points being considered. As an example, consider a clauseh :� : : : ; L; L1; : : : ; Ln:. Assume that the predicate of literal L is p, and the de�nition

724 P. L�opez, M. Hermenegildo and S. Debrayof predicate p contains \c" \eligible" clauses fCl1; : : : ; Clcg, where Cli = hi :� bi.In the or-parallel execution of literal L, the \c" choices (each one corresponding to aclause of predicate p) and their continuations (the rest of the Li, 1 � i � n, and theother goals Ln+1 to Lk that may appear after them in the resolvent at the time L isleftmost) are executed in parallel. Let Costcli (x) and CostLi(x) denote the cost of clauseCli and literal Li respectively, then the cost of the choice corresponding to clause Cli,denoted by Costchi can be computed as follows: if we are computing lower bounds wehave that Costlchi (x) = Costlcli (x) + mPj=1CostlLj (x), if non-failure is ensured for clauseCli and m is the leftmost literal for which non-failure is not ensured; or, alternatively,Costlchi(x) = Costlcli (x), if non-failure is not ensured for clause Cli. On the other hand,when computing upper bounds we have that Costuchi (x) = Costucli (x) + kPj=1CostuLj (x).The determination of Ln+1 to Lk, the continuations of the clause under consideration,cannot be obtained directly from the call graph in the presence of last call optimization.The problem is that while non-tail-calls in the body of a procedure return to the caller,because of last call optimization, a tail call does not return to its caller, but rather to thenearest ancestor procedure that made a non-tail call. Thus, while for non-tail calls thetransfer of control from the caller to the callee and back is evident from the program'scall graph, this is not the case for tail calls. To address this problem, given a programwe construct a context-free grammar as follows: for each program clausep(�t) :� Guard j q1(�t1); : : : ; qn(�tn)the grammar contains a productionp �! q1 L1 q2 L2 : : : Ln�1 qn, where the Li, which are labels corresponding to procedure continuations, are the terminalsymbols of the grammar. We then compute FOLLOW sets for this grammar (Aho et al.1986): for any predicate p, FOLLOW(p) gives the set of possible continuations for p.4. Granularity Control in Logic Programming: the And-Parallelism CaseWe use an example to explain the basic program transformation intuitively since aformal presentation would unnecessarily make it more complex.yExample 4.1. Consider the predicate q/2 de�ned in Example 2.1, the predicate r/2de�ned as follows:r([],[]).r([X|RX],[X2|RX1]) :- X1 is X * 2, X2 is X1 + 7, r(RX,RX1).and the parallel goal: ..., q(X,Y) & r(X), ..., in which literals q(X,Y) andr(Z) are executed in parallel, as described by the & (parallel conjunction) connec-tive (Hermenegildo and Greene 1991).The cost functions of q/2 and r/2 are Costq(n) = 2 n + 1 and Costr(n) = 3 n + 1respectively. Assume a number of processors p � 2. According to Theorem 2.3, theprevious goal can safely be transformed into the following one:y Although presenting the technique proposed in terms of a source-to-source transformation is conve-nient for clarity and also a viable implementation technique, the transformation can also obviously beimplemented at a lower level in order to reduce the run-time overheads involved even further.

A Methodology for Granularity Based Control of Parallelism in LP 725..., length(X, LX), Cost_q is LX*2+1, Cost_r is LX*3+1,(Cost_q > 15, Cost_r > 15 -> q(X,Y) & r(X); q(X,Y), r(X)), ...where a value for the threshold (Thresu) of 15 units of computation is assumed, thevariables Cost q and Cost r denote the cost of the (sequential) execution of goal q(X,Y)and r(Z) respectively, and LX denotes the length of the list X. 25. Granularity Control in Logic Programming: the Or-Parallelism CaseConsider the clause body : : : ; L; L1; : : : ; Ln: in the example in Section 3.2. This bodycan be transformed in order to perform granularity control as follows: : : : ; (cond -> L0; L); L1; : : : ; Ln: Where L0 is the parallel version of L, and is created by replacing thepredicate name of L (p) by another one, say p0, such that p0 is the parallel version of p,and is obtained from p by replacing predicate name p with p0 in all clauses of p. p0 isthen declared as \parallel" by means of the appropriate directive. If cond holds, then theliteral L0 (parallel version of L) is executed otherwise L is executed.A problem with the use of a predicate level parallelism directive is that either all ornone of its clauses are executed in parallel. Since there can be di�erences of costs betweenclauses, this can lead to worse load-balancing, so a better choice can be the use of somedeclaration which allows us to specify clusters of clauses such that within each clusterclauses are executed sequentially, and the di�erent clusters are executed in parallel. Thatway, we can have several parallel versions of a predicate, each of them executed if aparticular condition holds. This is illustrated in the following example, where a call to pin ...,p, q, r. and predicate p are transformed as follows:..., (cond_1 -> p1 ; cond_2 -> p2; p), q, r.p:- q1, q2, q3. p1:- q1, q2, q3 // p2:- q1, q2, q3 //p:- r1, r2. p1:- r1, r2 // p2:- r1, r2.p:- s1, s2. p1:- s1, s2. p2:- s1, s2.p. p1. p2.Here, the directive // declares three clusters for the predicate p1: the �rst and secondones composed of the �rst and second clauses respectively, and the third cluster composedof the third and fourth clauses (these two clauses are executed or explored sequentially).Also, for the predicate p2 we have two clusters: the �rst one composed of the �rst clauseand the second one composed of the second, third and fourth clauses.6. Reducing Granularity Control OverheadThe transformations proposed inevitably introduce some new overheads in the execu-tion. It would be desirable to reduce this run-time overhead as much as possible. Wepropose optimizations which include test simpli�cation, improved term size computa-tion, and stopping granularity control, where if it can be determined that a goal will notproduce tasks which are candidates for parallel execution, then a version which does notperform granularity control is executed.In order to discuss the optimizations we need to introduce some terms. We �rst recallthe notion of \size" of a term. Various measures can be used to determine the \size"of an input, e.g., term-size, term-depth, list-length, integer-value, etc. (Debray and Lin1993). The measure(s) appropriate in a given situation can generally be determined

726 P. L�opez, M. Hermenegildo and S. Debrayby examining the operations performed in the program. Let j � jm : H ! N? be afunction that maps ground terms to their sizes under a speci�c measure m, where H isthe Herbrand universe, i.e. the set of ground terms of the language, and N? the set ofnatural numbers augmented with a special symbol ?, denoting \unde�ned". Examplesof such functions are \list length", which maps ground lists to their lengths and allother ground terms to ?; \term size", which maps every ground term to the numberof constants and function symbols appearing in it; \term depth", which maps everyground term to the depth of its tree representation; and so on. Thus, j[a; b]jlist length = 2,but jf(a)jlist length = ?. We extend the de�nition of j � jm to tuples of terms in theobvious way, by de�ning the function Sizm : Hn 7! N?n, such that Sizm((t1; : : : ; tn)) =(jt1jm; : : : ; jtnjm). Let I and I 0 denote two tuples of terms, � a set of substitutions and� a substitution. We also de�ne the set of states corresponding to a certain clause pointas those states whose leftmost goal corresponds to the literal after that program point.We de�ne the set of substitutions at a clause point in a similar way.Definition 6.1. [Comp function] Given a state s1 corresponding to a clause point p1,the current substitution � corresponding to that state, and another clause point p2, wede�ne comp(�; p2) as the set of substitutions at point p2 which correspond to states thatare in the same derivation as s1.Definition 6.2. [Directly computable sizes] Consider a set � of substitutions at a clausepoint p1 and another clause point p2. Sizm(I 0) is directly computable at p2 from Sizm(I)with respect to � if exists a (computable) function such that for all �, �0, � 2 �, and�0 2 comp(�; p2), Sizm(I�) is de�ned and Sizm(I 0�0) = (Sizm (I�)).Definition 6.3. [Equivalence of expressions] Two expressions E and E0 are equivalentwith respect to the set of substitutions � if for all � 2 � E� yields the same value as E0�when evaluated. 6.1. Test SimplificationInformally, we can view test simpli�cation as follows: the starting point is an expressionwhich is a function of the size of a set of terms. We try to �nd an expression which isequivalent to it but which is a function of a smaller set of terms. Also, we apply standardarithmetic simpli�cations to this expression. Since this new expression will have lessvariables, simpli�cation will be easier and the corresponding simpli�ed expression will beless costly to compute.Let us now formally describe the notion of simpli�cation of expressions. Consider theset of substitutions �0 at clause point p2, just before execution of goal g. Assume that wehave an expression E(Sizm(I0)) to evaluate at p2. The objective is to �nd a program pointp1 and a tuple of terms I such that Sizm(I 0) is directly computable at p2 from Sizm(I)with respect to � with the function , where � is the set of substitutions at clause pointp1 and either p1 = p2 or p1 precedes p2 and E(Sizm(I 0)) appear after p1. We have thatE((Sizm(I)) is equivalent to E(Sizm(I 0)) with respect to �0. Then we can compute anexpression E0 which is equivalent to E((Sizm (I)) (by means of simpli�cations) withrespect to �0 and its evaluation cost is less than that of E((Sizm (I)). The followingexample illustrates this kind of optimization.

A Methodology for Granularity Based Control of Parallelism in LP 727Example 6.1. Consider the goal ..., q(X,Y) & r(X), ... in Example 4.1. In thisexample I = I 0 = (X); Siz(I 0) is directly computable from Siz(I) with respect to �with , where is the identity function. Siz(I�) is de�ned for all � in �, since X isbound to a ground list. Thus, we have that for all � 2 � and for all �0 2 comp(�; p2),Siz(I 0�0) = (Siz(I�)). E(Siz(I)) � max(2 Siz(X)+1; 3 Siz(X)+1)+15 � 2 Siz(X)+1+ 3 Siz(X) + 1. Let us now compute E0. We have that for all � 2 �, max(2 Siz(X) +1; 3 Siz(X)+1) � 3 Siz(X)+1, so we have 3 Siz(X)+1+15 � 2 Siz(X)+1+3 Siz(X)+1which is simpli�ed to 15 � 2 Siz(X) + 1 and then to 7 � Siz(X) which is E0. Using thisexpression we get a more e�cient transformed program than in Example 4.1:..., length(X, LX), (LX > 7 -> q(X, Y) & r(X) ; q(X, Y), r(X)), ...2In some cases test simpli�cation avoids evaluating cost functions, so that term sizesare compared directly with some threshold. Assume that we have a test of the formCostp(n) > G where G is a number and Costp(n) is a monotone cost function on onevariable for some predicate p. In this case, a value k can be found such that Costp(k) � Gand Costp(k + 1) > G, so that the expression Costp(n) > G can be simpli�ed to n > k.6.2. Stopping Granularity ControlAn important optimization aimed at reducing the cost of granularity control is basedon detecting when an invariant holds recursively on the condition to perform paralleliza-tion/sequentialization and executing in those cases a version of the predicate which doesnot perform granularity control and executes in the appropriate way which correspondsto the invariant.Example 6.2. Consider the predicate qsort/2 de�ned as follows:qsort([], []).qsort([First|L1], L2) :- partition(First, L1, Ls, Lg),(qsort(Ls, Ls2) & qsort(Lg, Lg2)),append(Ls2, [First|Lg2], L2).The following transformation will perform granularity control based on the conditiongiven in Theorem 2.3 and the detection of an invariant (tests have already been simpli�ed|we omit details| so that the input data sizes are directly compared with a threshold):g_qsort([], []).g_qsort([First|L1], L2) :-partition(First, L1, Ls, Lg),length(Ls, SLs), length(Lg, SLg),(SLs > 20 -> (SLg > 20 -> g_qsort(Ls, Ls2) & g_qsort(Lg, Lg2);g_qsort(Ls, Ls2) , s_qsort(Lg, Lg2)); (SLg > 20 -> s_qsort(Ls, Ls2) , g_qsort(Lg, Lg2);s_qsort(Ls, Ls2) , s_qsort(Lg, Lg2))),append(Ls2, [First|Lg2], L2).

728 P. L�opez, M. Hermenegildo and S. Debrays_qsort([], []).s_qsort([First|L1], L2) :-partition(First, L1, Ls, Lg),s_qsort(Ls, Ls2), s_qsort(Lg, Lg2),append(Ls2, [First|Lg2], L2).Note that if the input size is less than the threshold (20 units of computation in thiscasey) then a (sequential) version which does not perform granularity control is executed.This is based on the detection of a recursive invariant: in subsequent recursions this goalwill not produce tasks with input sizes greater or equal than the threshold, and thus,for all of them, execution should be performed sequentially and obviously no granularitycontrol is needed. Giannotti and Hermenegildo (1991) presented techniques for detectingsuch invariants. 26.3. Reducing Term Size Computation OverheadWith regard to term size computation, the standard approach is to explicitly traverseterms, using builtins such as length/2. However such computation can also be carriedout in other ways which can potentially reduce run-time overhead:1 In the case where input data sizes to the subgoals in the body that are candidatesfor parallel execution are directly computable from those in the clause head (anexample of this is the classical \Fibonacci" benchmark { see Example 8.1) suchsizes can be computed by evaluating an arithmetic operation. Clause heads cansupply their input data size through additional arguments.2 Otherwise term size computation can be simpli�ed by transforming certain proce-dures in such a way that they compute term sizes \on the y" (Hermenegildo andL�opez 1995).3 In the cases where term sizes are compared directly with a threshold it is notnecessary to traverse all the terms involved, but rather only to the point at whichthe threshold is reached.7. Taking Into Account the Cost of Granularity ControlAs a result of the simpli�cations proposed in the previous sections three di�erenttypes of specialized versions of a predicate can be generated: sequential, parallel withno granularity control, and parallel with granularity control. In this section we addressthe issue of how to select among these versions. We can view this as a reconsideration ofthe original problem of deciding between parallel and sequential execution, addressed inSection 2, but where we add the new issue of deciding whether to perform granularitycontrol or not. Let Ts, Tp, and Tg denote the execution time of the sequential, parallel, andgranularity control versions for the predicate corresponding to a given call. The originalproblem tackled in Section 2 can be viewed as determining min(Ts; Tp; Tg). Again, thisis not computable ahead of the execution of the goals and we are once more forced tocompute an approximation based on heuristics or su�cient conditions. We again takethe latter approach, i.e. using su�cient conditions, which we would in principle try toy This threshold is determined experimentally, by taking the average value resulting from several runs.

A Methodology for Granularity Based Control of Parallelism in LP 729compute for each of the six possible cases involved: Tg � Ts, Tp � Ts, Tp � Tg , Ts � Tg,Ts � Tp and Tg � Tp. Since we can only approximate these conditions an important issueis the decision taken when none of such conditions can be proved to hold. One solutionis to have a pre-determined order relation which is used unless another relation can beproven to be true. This corresponds to the two cases of \sequentializing by default" or\parallelizing by default" studied in Section 2, where only one condition was considered.For example, a default ordering might be: Tg � Ts � Tp, which essentially expressesa default assumption that the optimal execution time is achieved when execution isperformed in parallel with granularity control unless the contrary is proven. Goals arealso executed sequentially unless parallel execution is proven to take less time. If the \no-slowdown" condition is to be enforced, i.e. it is required that the sequential executiontime not be exceeded, then, in all pre-determined order relations we must have thatTs � Tg and Ts � Tp.Note that these pre-determined order relations can be partial. In that case at somepoint a heuristic has to be applied. The order between two costs T1 and T2 can then bedetermined as follows: If T1 and T2 are related in the pre-determined order relation, thencompute a su�cient condition to prove the opposite order; otherwise, if some su�cientcondition to prove either of the relations T1 � T2 or T2 � T1 holds then we choose thecorresponding one; otherwise the order can be determined by means of some heuristics.A good heuristic can be to use the average of the lower and upper bound which arealready computed or take the average of the computed costs of the di�erent clauses of apredicate. 8. Determining Tp and Tg of a callThe determination of a bound for Ts has already been addressed in the previous sec-tions. There, Tp was simply assumed to be the same as Ts, taking as its approximationthe opposite bound to that used for Ts. We now address the issue of determining Tp moreprecisely and also determining Tg. For conciseness, we present the techniques by meansof an example.Example 8.1. Let us consider a transformed version gfib/2 of the fib/2 predicatewhich performs run-time granularity control:gfib(0, 0).gfib(1, 1).gfib(N, F):- N1 is N - 1, N2 is N - 2,(N > 15 -> gfib(N1, F1) & gfib(N2, F2); sfib(N1,F1), sfib(N2,F2)),F is F1 + F2.sfib(0, 0).sfib(1, 1).sfib(N, F):- N > 1, N1 is N - 1, N2 is N - 2,sfib(N1, F1), sfib(N2, F2),F is F1+F2.2

730 P. L�opez, M. Hermenegildo and S. Debray8.1. Cost of parallel execution without granularity control: Tp8.1.1. Upper boundsIn general it is di�cult to give a non-trivial upper bound on the cost of the parallelexecution of a given set of tasks, since it is di�cult to predict the number of free processorsthat will be available to them at execution time. Note that a trivial upper bound can becomputed in some cases by assuming that all the potentially parallel goals are createdas separate tasks but they are all executed by one processor.Consider the predicate fib/2 de�ned in Example 8.1. Let Is denote the size of the input(�rst argument) and Tp(Is) the cost of the parallel execution without granularity controlof a call to predicate fib/2 for an input of size Is. The following di�erence equation canbe set up for the recursive clause of fib/2: T up (Is) = Cub (Is)+Spawu(Is)+Schedu(Is)+Tup (Is�1)+T up (Is�2)+Cua (Is) for Is > 1, where Cb(Is) and Ca(Is) represent the costsof the sequential execution of the literals before and after the parallel call respectively,that is, Cb(Is) represents the cost of N1 is N-1,N2 is N-2 and Ca(Is) the cost of F isF1+F2. The solution to this di�erence equation gives the cost of a call to fib/2 for aninput of size Is. The following boundary conditions for the equation are obtained fromthe base cases: T up (0) = 1 and T up (1) = 1.8.1.2. Lower boundsA trivial lower bound | taking non-failure into account, as discussed by Debray et al.(1994) | can be computed as follows: T lp(Is) = W lp(Is)p , where W lp represents the workperformed by the parallel execution with no granularity control of a call to predicatefib/2 for an input of size Is, and can be computed by solving the following di�erenceequation:W lp(Is) = C lb(Is)+Spawl (Is)+Schedl (Is)+W lp(Is�1)+W lp(Is�2)+C la(Is)for Is > 1, with the boundary conditions: W lp(0) = 1 and W lp(1) = 1.As an alternative, another value for T lp(Is) can be obtained by solving the followingdi�erence equation: T lp(Is) = C lb(Is) + Spawl(Is) + Schedl(Is) + T lp(Is � 1) + C la(Is)for Is > 1, with the boundary conditions: T lp(0) = 1 and T lp(1) = 1. In this case, anin�nite number of processors is considered. Since in each \fork" there are two branches,the longest of them (T up (Is � 1)) is chosen.8.2. Cost of the execution with granularity control: Tg8.2.1. Upper boundsThe following di�erence equation can be set up for the recursive clause of fib/2:Tug (Is) = Cub (Is)+Testu(Is)+Spawu(Is)+Schedu(Is)+T ug (Is�1)+T ug (Is�2)+Cua (Is)for Is > 15. We assume that all the potentially parallel goals are created as separate tasksbut they are all executed by one processor, as is done in Section 8.1.1.For a call with Is = 15 there is no overhead associated with parallel execution sinceit is performed sequentially, so that the following boundary conditions are obtained:Tug (15) = Testu(15) + T us (15); and T ug (Is) = T us (15) for Is � 15, where T us (15) denotesan upper bound on the sequential execution time of a call to fib/2 with an input of size15.

A Methodology for Granularity Based Control of Parallelism in LP 7318.2.2. Lower boundsA trivial lower bound (taken non-failure into account) can be computed as follows:T lg(Is) = W lg(Is)g , where W lg represents the work performed by the execution with gran-ularity control of a call to fib/2 for an input of size Is, which can be computed bysolving the following di�erence equation: W lg(Is) = C lb(Is) + Testl(Is) + Spawl(Is) +Schedl(Is)+W lg(Is�1)+W lg(Is�2)+C la(Is) for Is > 15, with the boundary conditions:W lg(15) = Testl(15) + T ls(15), and W lg(Is) = T ls(15) for Is � 15, where T ls(15) denotes alower bound on the sequential execution time of a call to fib/2 with an input of size 15.Another value for T lg(Is) can be obtained by solving the following di�erence equation:T lg(Is) = C lb(Is)+Testl (Is)+Spawl (Is)+Schedl(Is)+T lg (Is�1)+C la(Is) for Is > 15,with the boundary conditions: T lg(15) = Testl(15) + T ls(15), and T lg(Is) = T ls(15) forIs � 15. Table 1. Experimental results for benchmarks on &-Prolog.programs seq ngc gc gct gcts gctss�b(19) 1.839 0.729 1.169 0.819 0.819 0.549(O=m) 1 -60% -12% -12% +24%�b(19) 1.839 0.970 1.389 1.009 1.009 0.639(O=5) 1 -43% -4.0% -4.0% +34%hanoi(13) 6.309 2.509 2.829 2.419 2.399 2.399(O=m) 1 -12.8% +3.6% +4.4% +4.4%hanoi(13) 6.309 2.690 2.839 2.439 2.419 2.419(O=5) 1 -5.5% +9.3% +10.1% +10.1%unb matrix 2.099 1.009 1.339 1.259 0.870 0.870(O=m) 1 -32.71% -24.78% +13.78% +13.78%unb matrix 2.099 1.039 1.349 1.269 0.870 0.870(O=5) 1 -29.84% -22.14% +16.27% +16.27%qsort(1000) 3.670 1.399 1.790 1.759 1.659 1.409(O=m) 1 -28% -20% -19% -0.0%qsort(1000) 3.670 1.819 2.009 1.939 1.649 1.429(O=5) 1 -11% -6.6% +9.3% +21%9. Experimental ResultsWe have developed a partial prototype of a granularity control system based on theideas presented. The current prototype has some shortcomings: it only covers the case of(independent, goal level) and-parallelism and the builtin type analyzer is comparatively

732 P. L�opez, M. Hermenegildo and S. DebrayTable 2. Experimental results for benchmarks on Muse.programs seq ngc gctss opt e1 e2queens(8) 17.019 2.090 1.759 1.702 +15.84 % +86.83 %domino(12) 37.049 4.459 4.139 3.705 +7.18 % +42.43 %series 22.429 7.360 4.860 2.243 +33.97 % +48.86 %farmer 17.929 2.170 2.149 1.793 +0.97 % +5.57 %simple. Despite this, it can achieve e�ective fully automatic granularity control on threeout of the four and-parallel benchmarks (�b, hanoi, and qsort). The results are given inTable 1. For the other benchmarks (unb matrix) and for or-parallelism we have hand-annotated the programs following the algorithms presented and assuming state of theart type inference technology. The results are given in Tables 1 and 2. We believe thatby completing the prototype implementation, and incorporating existing analysis tech-nology, the development of a fully automatic granularity control system is possible, andthat our results show that such a system can result in substantial bene�t in executiontime.We have �rst tested the granularity control system with &-Prolog (Hermenegildo andGreene 1991), a parallel Prolog system, on a Sequent Symmetry multiprocessor using4 processors. Table 1 presents results of granularity control (showing execution timesin seconds) for four representative benchmarks and for two levels of task creation andspawning overhead (O): minimal (m), representing the default overhead found in the &-Prolog shared memory implementation (which is very small { a few microseconds), andan overhead (the &-Prolog system allows adding arbitrary overheads to task creation viaa run-time switch) of 5 milliseconds (5), which should be representative of a hierarchicalshared memory system or of an e�cient implementation on a multicomputer with a veryfast interconnect. The program unb matrix performs the multiplication of 4 � 2 and2�1000 matrices. Results are given for several degrees of optimization of the granularitycontrol process: naive granularity control (gc), adding test simpli�cation (gct), addingstopping granularity control (gcts), and adding \on-the-y" computation of data size(gctss). Results are also given for the sequential execution (seq) and the parallel execu-tion without granularity control (ngc) for comparison. The obtained speedups have beencomputed with respect to ngc. The importance of the optimizations proposed is under-lined by the fact that they result in steadily increasing performance as they are added.Also, except in the case of qsort on a very low overhead system, the fully optimizedversions show substantial improvements w.r.t. performing no granularity control. Notethat the situations studied are on a small shared memory machine and actually implyvery little parallel task overhead, i.e. the conditions under which granularity control of-fers the least advantages. Thus the results can be seen as lower bounds on the potentialimprovement. Obviously, on systems with higher overheads, such as distributed systems,the bene�ts can be much larger.Regarding or-parallelism, Table 2 presents results of granularity control (showing ex-

A Methodology for Granularity Based Control of Parallelism in LP 733ecution times in seconds) for some benchmarks on the Muse (Ali and Karlsson 1990)system using 10 workers, and running on a Sequent Symmetry multiprocessor with 10processors. queens(8) computes all the solutions to the 8 queens problem. domino(12)computes all the legal sequences of 12 dominoes. series computes a series whose expres-sion is a disjunction of series. farmer is the \farmer, wolf, goat/goose, cabbage/grain"puzzle fromECRC. Results are given for the fully optimized versions which perform gran-ularity control (gctss), the sequential execution (seq) and the parallel execution withoutgranularity control (ngc) for comparison. opt is a lower bound on the optimal time, i.e.opt = seq10 . e1 = ngc�gctssngc � 100, and e2 = ngc�gctssngc�opt � 100 indicate the percentage ofthe saved time, with respect to the parallel execution time without granularity controland the ideal parallel execution time respectively, when granularity control is performed.Note that some programs do not exhibit the necessary inherent parallelism to achievethis ideal execution time even if there were no overheads associated with their parallelexecutions. The reason for introducing these two metrics is that the Muse system showedvery good performance in the execution of the selected benchmarks. This is because theMuse scheduler performs an implicit control of parallelism depending on the load of thesystem. Thus, the potential bene�ts from applying our granularity control techniques tothese benchmarks were more limited. This metric allows us to conclude that our resultsare in fact quite good, since in general they achieve a signi�cant portion of the potentialbene�ts. Note also that the situations studied are on a small shared memory machine,and, thus, the results, as in the and-parallelism case, can be seen as lower bounds on thepotential improvement. 10. ConclusionsWe have presented a complete granularity control system for logic programs, discussedthe many problems that arise (for both the cases when upper and lower bound infor-mation regarding task granularity is available, and for a generic execution model) andprovided solutions to them. We believe that the results are general enough to be ofinterest to researchers working on other parallel languages. We have also assessed thedeveloped granularity control techniques for and-parallelism and or-parallelism on the&-Prolog and Muse systems respectively, and have obtained what we believe are quiteencouraging results.It appears from the sensitivity of the results that we have observed in our experimentsthat it is not essential to be absolutely precise in inferring the best grain size for aproblem: there is a reasonable amount of leeway in how precise this information has tobe. This suggests that granularity control can usefully be performed automatically by acompiler.We can conclude that granularity analysis/control is a particularly promising techniquebecause it has the potential of making feasible to automatically exploit low-cost parallelarchitectures, such as workstations on a (possibly high speed) local area network.ReferencesAho, A.V., Sethi, R., Ullman, J. D. (1986). Compilers { Principles, Techniques and Tools. Addison-Wesley.Ali, K.A.M., Karlsson, R. (1990). The Muse Or-Parallel Prolog Model and its Performance. 1990North American Conference on Logic Programming, 757{776, MIT Press.

734 P. L�opez, M. Hermenegildo and S. DebrayBjerner, B., Holmstrom, S. (1989). A Compositional Approach to Time Analysis of First OrderLazy Functional Programs. In Proc. ACM Functional Programming Languages and ComputerArchitecture, ACM Press, 157{165.Chassin, J., Codognet, P. (1994) Parallel Logic Programming Systems. Computing Surveys, ACM,26(3):295{336.Debray, S. (1994). Inference of Procedure Return Points in the Presence of Last Call Optimization.Manuscript.Debray, S., L�opez, P., Hermenegildo, M., Lin, N. (1994). Lower Bound Cost Estimation for LogicPrograms. Technical Report TR Number CLIP4/94.0, T.U. of Madrid (UPM), Facultad Inform�aticaUPM, 28660-Boadilla del Monte, Madrid-Spain, March.Debray, S., Lin, N., Hermenegildo. M. (1990). Task Granularity Analysis in Logic Programs. In Proc.of the 1990 ACM Conf. on Programming Language Design and Implementation, 174{188. ACMPress, June.Debray, S., Lin, N. (1993). Cost analysis of logic programs. ACM Transactions on ProgrammingLanguages and Systems, 15(5):826{875.Flajolet, P., Salvy, B., Zimmermann, P. (1991). Automatic Average-Case Analysis of Algorithms.Theor. Comp. Sci., (79):37{109.Giannotti, F., Hermenegildo, M. (1991). A Technique for Recursive Invariance Detection and SelectiveProgram Specialization. In Proc. 3rd. Int'l Symposium on Programming Language Implementationand Logic Programming, 323{335. Springer-Verlag.Goldberg, B., Hudak, P. (1985). Serial Combinators:Optimal Grains of Parallelism. In Proc. FunctionalProgramming Languages and Computer Architecture, Nancy, France, 201, 382{399.Springer-VerlagLNCS, Aug.Hermenegildo, M., L�opez, P. (1995). E�cient Term Size Computation for Granularity Control. InProc. of the Twelfth International Conference on Logic Programming. The MIT Press.Hermenegildo, M., Greene, K. (1991). The &-prolog System: Exploiting Independent And-Parallelism.New Generation Computing, 9(3,4):233{257.Hermenegildo, M., Rossi, F. (1995). Strict and Non-Strict Independent And-Parallelism in LogicPrograms: Correctness, E�ciency, and Compile-Time Conditions. Journal of Logic Programming,22(1):1{45.Huelsbergen, L. (1993). Dynamic Language Parallelization. Technical Report 1178, Computer ScienceDept. Univ. of Wisconsin, September.Huelsbergen, L., Larus, J. R., Aiken, A. (1994). Using Run-Time List Sizes to Guide Parallel ThreadCreation. In Proc. ACM Conf. on Lisp and Functional Programming, June.Kaplan, S. (1988). Algorithmic Complexity of Logic Programs. In Logic Programming, Proc. FifthInternational Conference and Symposium, (Seattle, Washington), pages 780{793.Kruatrachue, B., Lewis, T. (1988). Grain Size Determination for Parallel Processing. IEEE Software,January.McGreary, C., Gill, H. (1989). Automatic Determination of Grain Size for E�cient Parallel Processing.Communications of the ACM, 32.Le M�etayer, D. (1988). ACE: An Automatic ComplexityEvaluator.ACM Transactions on ProgrammingLanguages and Systems, 10(2), April.Rabhi, F. A., Manson, G. A. (1990). Using Complexity Functions to Control Parallelism in FunctionalPrograms. Res. Rep. CS-90-1, Dept. of Computer Science, Univ. of She�eld, England, Jan.Rosendhal, M. (1989). Automatic Complexity Analysis. In Proc. ACM Conference on FunctionalProgramming Languages and Computer Architecture, pages 144{156. ACM, New York.Sarkar, V. (1989). Partitioning and Scheduling Parallel Programs for Multiprocessors. MIT Press,Cambridge, Massachusetts.Wadler, P. (1988). Strictness analysis aids time analysis. In Proc. Fifteenth ACM Symposium onPrinciples of Programming Languages, pages 119{132. ACM Press.Zhong, X., Tick, E., Duvvuru, S., Hansen, L., Sastry, A.V.S. Sundararajan, R. (1992). Towardsan E�cient Compile-Time Granularity Analysis Algorithm. In Proc. of the 1992 InternationalConference on Fifth Generation Computer Systems, pages 809{816. Institute for New GenerationComputer Technology (ICOT), June.Zimmermann,P., Zimmermann,W. (1989). The Automatic ComplexityAnalysis of Divide-and-ConquerPrograms. Res. Rep. 1149, INRIA, France, December.

