
Dynamic Path-Based Software Watermarking∗

C. Collberg E. Carter S. Debray A. Huntwork J. Kececioglu C. Linn M. Stepp
Department of Computer Science

University of Arizona
Tucson, AZ 85721, USA

{collberg,ecarter,debray,ash,kece,linnc,steppm}@cs.arizona.edu

Categories and Subject Descriptors
K.5.1 [Legal Aspects of Computing]: Hardware/Soft-
ware Protection—Proprietary rights

General Terms
Languages; Legal aspects, Security

Keywords
Software piracy, Software protection, Watermarking

ABSTRACT
Software watermarking is a tool used to combat software
piracy by embedding identifying information into a pro-
gram. Most existing proposals for software watermarking
have the shortcoming that the mark can be destroyed via
fairly straightforward semantics-preserving code transforma-
tions. This paper introduces path-based watermarking, a
new approach to software watermarking based on the dy-
namic branching behavior of programs. The advantage of
this technique is that error-correcting and tamper-proofing
techniques can be used to make path-based watermarks re-
silient against a wide variety of attacks. Experimental re-
sults, using both Java bytecode and IA-32 native code, indi-
cate that even relatively large watermarks can be embedded
into programs at modest cost.

1. INTRODUCTION
It is estimated that fully 40% of the software in use around

the world is pirated, with retail value of over $13 billion in
2002 [2]. It is therefore crucially important to be able to
protect software intellectual property rights. This means

∗The work of C. Collberg, E. Carter, A. Huntwork, and
M. Stepp was supported in part by the National Science
Foundation under grant CCR-0073483 and the Air Force
Research Lab under contract F33615-02-C-1146. The work
of S. Debray and C. Linn was supported in part by the
National Science Foundation under grants EIA-0080123 and
CCR-0113633.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI’04, June 9–11, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-807-5/04/0006 ...$5.00.

that the intellectual property owner of a piece of software
should be able to demonstrate that ownership if called upon
to do so; and in case of suspected piracy, it should be possible
to trace a piece of software back to the person who originally
obtained it prior to illegal distribution. Both of these goals
can be met using software watermarks.

A software watermark is, in essence, an identifier that is
embedded into a piece of software in order to encode some
identifying information. The utility of a software watermark
depends on its resilience to semantics-preserving code trans-
formations: if it is easy to destroy a watermark via simple
transformations, for example, by renaming identifiers in the
program, then it has relatively limited utility. It is generally
agreed that a sufficiently determined attacker will eventually
be able to defeat any watermark. The goal, then, is to de-
sign watermarking techniques that are “expensive enough”
to break—in time, effort, or resources—that for most at-
tackers, breaking them isn’t worth the trouble.

While a number of researchers have proposed schemes for
software watermarking [6, 8, 9, 17, 20], most of these are
not very difficult to break (see Section 6). For example,
watermarks that rely on static code properties, such as basic
block ordering [9] or register interference [17] can be defeated
using straightforward binary optimizers [10, 18]; watermarks
that use the topology of dynamically constructed data [6]
can be foiled via code obfuscations that modify the pointer
topology of such structures.

The primary contribution of this paper is a new approach
to software watermarking, path-based watermarking, which
embeds the watermark in the runtime branch structure of
the program. The idea is based on the intuition that the
branches executed by a program are an essential aspect of
its computation and part of what makes the program unique.
However, an obvious drawback is that the branch struc-
ture of a program can be modified quite extensively without
affecting program semantics, using well-known transforma-
tions such as basic block reordering, branch chaining (where
the target of a branch instruction is itself a branch to some
other location), loop unrolling, etc. In order for a path-
based watermark to be resilient against such transforma-
tions, we must be able to either cause any such transforma-
tion to change the program semantics, or devise embedding
techniques such that the watermark can survive such trans-
formations. As we will see, path-based watermarking lends
itself well to error-correction and tamper-proofing—more so
than most previously proposed watermarking schemes. Fi-
nally, since branches are ubiquitous in real programs, path-
based watermarks are less likely to be susceptible to statis-
tical attacks.

The remainder of this paper is organized as follows. Sec-

107



✞ �

int main ( int argc ) {
i f ( argc == 3)

p r i n t f ( ” s e c r e t \n” )
return 0 ;

}
✝ ✆

✞ �

int main ( int argc ) {
int a = 1 , b = 0;
i f ( argc == 3) {

i f ( b == 0) a = 0;
i f ( b ! = 0 ) a = 0;
i f ( b == 0) a = 0;
i f ( b ! = 0 ) a = 0;
i f ( b == 0) a = 0;
i f ( b ! = 0 ) a = 0;
i f ( b ! = 0 ) a = 0;
i f ( b == 0) a = 0;
p r i n t f ( ” s e c r e t \n” )

}
return 0 ;

}
✝ ✆

(a) Original program. (b) A trivial embedding of the bit-string 01010110

Figure 1: A simple example of path-based watermark embedding.

tion 2 gives some background on software watermarking and
describes the basic idea behind path-based watermarking.
Section 3 discusses how path-based watermarking can be ap-
plied to Java bytecode, and how error correcting codes can
be used to protect against attacks on such watermarks. Sec-
tion 4 discusses the application of path-based watermarking
to IA-32 executables using a very different approach called
branch functions, and describes how the resulting code can
be tamper-proofed. Section 5 gives experimental evaluations
of our approach. Section 6 discusses related work. Section
7 concludes.

2. PATH-BASED WATERMARKS
Software watermarking protocols are chiefly classified along

four axes:

static/dynamic: In a static algorithm the watermark rec-
ognizer directly examines the code or data segments of
the executable program. In contrast, a recognizer for a
dynamic algorithm will execute the watermarked pro-
gram on a particular (secret) input sequence and then
extract the watermark from the state of the program
at this point.

watermark/fingerprint: In a pure software watermark-
ing algorithm the recognizer returns a value represent-
ing the likelihood that the mark is present. In a fin-
gerprinting algorithm the recognizer returns the mark
itself (a number) which can be different for every dis-
tributed copy of the program.

blind/informed: In a blind watermarking algorithm the
recognizer is given the watermarked program and the
watermark key as input. In an informed algorithm
the recognizer also has access to the unwatermarked
program and/or the watermark itself.

embedding technique: Typical software watermarking al-
gorithms embed the marks by

1. reordering parts of the code where such reordering
can be shown to be semantics preserving;

2. inserting new (non-functional or never executed)
code that encodes a watermark number;

3. manipulating instruction frequencies.

In this paper we will describe a new approach to soft-
ware watermarking, path-based watermarking, where the ba-
sic idea is to embed the mark in the branching structure
of the program. This has several interesting consequences.
First, the branches that a program takes are an essential part
of what makes the program unique. This makes branches
inherently difficult to change or remove, making path-based
watermarks resilient to many distortive attacks. Second,
branches are inherently binary in nature (they are either
taken or not taken), making it easy to embed a bit-string.
Third, as we will see, path-based watermarking lends it-
self well to error-correction and tamper-proofing. Fourth,
branches are ubiquitous in real programs, hopefully making
path-based marks invulnerable to statistical attacks.

We will present two realizations of this basic idea, one
for Java bytecode and one for IA-32 native executables.
For IA-32 code we tamper-proof the watermark branches,
and for Java bytecode we use error-correcting codes to in-
crease resilience to attack. Both our implementations are
dynamic blind fingerprinting techniques. That is, (1) every
distributed copy of a program encodes a unique integer; (2)
only the watermarked program itself is used during recog-
nition; and (3) during recognition the program is executed
with a special input sequence.

Figure 1 illustrates one possible realization of a basic path-
based watermarking technique. Figure 1(a) shows the origi-
nal program, and Figure 1(b) the code after bogus branches
have been inserted to embed the watermark w = 01010110.
The secret input to the program, in this case, is the number
of arguments it is given: if it is invoked with three argu-
ments (argc = 3), the watermark code is executed. This is
obviously a very simple example embedding that is trivial to
break: a simple attack would be, for example, to randomly
change the tests so that the branch and fall-through cases
are flipped.

We can address the issue of resilience against semantics-
preserving code transformations in a number of different
ways, including more sophisticated embedding techniques
and tamper-proofing of the code. These are discussed in
more detail in the next two sections.

108



   }

}
B4:println(b);

void main()  {
   int a=25,b=10,u=0,x=0x1a,c=8;
   while((a%b)!=0) {
      int t = b % a;
       b = a; a = t;
       if (t==a) u++;
       if (t==a) u++;
       if (a==10) u++;
       if (a==10) u++;
   }
   for(int i=0; i<c; i++, x>>=1)
      if ((x&1)==1) x|=1;

}
   println(b);

void main() {

      b = a;
      a = tmp;

B2:   int tmp = b % a;

   int a = 25,b = 10;

B3:

B1:while((a % b) != 0) {
C©⇒




w′
1 = 00112

w′
2 = 11002

⇑
I0, I1, . . .

I0, I1, . . .
⇓A©⇒w = 111100102

Trace Information
Location Variables

a b t
B1 25 10

B2 25 10

B3 10 25 10

B1 10 25

B2 10 25

B3 5 10 5

B1 5 10

B2 5 10

B3 10 5 10

B1 10 5

B4 10 5

B©⇒

⇓ D©
000110000000000011011

Figure 2: Overview of the embedding and recognition of a watermark w in a Java program

3. WATERMARKING JAVA BYTECODE
We have implemented path-based watermarking for Java

bytecode within the SandMark [5] software protection re-
search framework. It can be downloaded from sandmark.
cs.arizona.edu.

It is impossible to prevent code (or branch instruction) in-
sertion transformations in Java bytecode.1 Instead, the ro-
bustness of our implementation is the result of the dynamic
nature of the algorithm, and our use of error correction and
redundant insertion of the watermark.

Our implementation consists of three phases. In the trac-
ing phase, the dynamic behavior of the program is deter-
mined by tracing its execution path on a particular input
sequence (the secret watermarking key). In the embedding
phase, a watermark number is embedded in the input code
by modifying the sequence of branches taken and not taken
on the secret input sequence. In the recognition phase, the
program is traced again (using the same secret input), and
the branch sequence is checked for the watermark.

Figure 2 illustrates the watermarking process. In A© we
split the watermark number into two pieces. In B© the orig-
inal program is executed with a special input sequence (the
watermark key) in tracing mode. In C© the watermark pieces
are inserted into the original program in the form of added
branches. In D© the watermarked program is executed with
the special input sequence, resulting in a trace that will con-
tain the watermark pieces, in the form of branches that are
taken and not taken in a particular pattern. We will next
discuss these steps in detail.

3.1 Tracing
In the tracing phase, we instrument the input program

to write to a file the sequence of basic blocks it executes.
At each trace point we also store the value of every local
variable and every static and instance field of the containing
class. We then execute the instrumented program with the
secret input sequence I = I0, I1, . . . , In. The secret input

1In particular, using Java’s subroutine instructions jsr and
ret to implement the native code branch function scheme
presented in Section 4 is not possible. The reason is that
bytecode return addresses are a primitive type and cannot
be used in any computation. Furthermore, the Java byte-
code verifier requires that subroutines have a unique entry
point and exit point.

can consist of file IO, user interaction through a graphical
user interface, packets sent or received over a network, etc.
The only restriction is that the trace be reproducible during
recognition. The trace information collected from a program
that computes the greatest common divisor of 25 and 10 is
shown in Figure 2.

This trace aids code generation and is used to find ap-
propriate insertion positions in the embedding phase. For
purposes of embedding and recognition, we define the bit-
string corresponding to a particular trace. There are many
possible ways of doing this. For example, the binary rep-
resentation of the address of the first instruction in every
basic block could be written down. However, an attacker
could change many of the bits in the resulting string simply
by adding no-ops to the watermarked application. Alter-
natively, the bit-string could be formed by looking at every
branch instruction of the form if P goto Q else goto R
and writing down 0 if P is true and 1 otherwise. However, an
attacker can toggle bits by negating the P and exchanging
Q and R.

In order to survive these and other attacks that modify
static program characteristics, we have chosen an algorithm
that uses the dynamic behavior of branches to generate bits.
We define the bit-string corresponding to a trace as follows.
For each conditional branch instruction i that occurs in the
trace, we find its first occurrence, and find the block j that
immediately follows that occurrence in the trace. Then we
decode the trace into a string of bits by scanning the trace
from beginning to end and writing down a 0 whenever a
conditional branch is immediately followed by the same in-
struction by which it was first followed, and a 1 otherwise.

The resulting bit-string does not change if the input code
is reordered, if branch senses are inverted, or if instructions
other than conditional branches are inserted or deleted. Ad-
dition and removal of branches has only local effect on the
resulting bit-string.

3.2 Embedding
The embedding phase adds branches to the input code so

that the watermark number W can be extracted from the
bit-string corresponding to a trace of the basic blocks exe-
cuted on the input sequence I. To increase the stealth of
large watermark embeddings we split the mark into multi-
ple pieces which are spread over the program. To increase

109



W = 17 A©⇒
W ≡ 5 mod p1p2

W ≡ 7 mod p1p3

W ≡ 2 mod p2p3

B©⇒
5 = 5
p1p2 + 7 = 13
p1p2 + p1p3 + 2 = 18

C©⇒ insert into program

Figure 3: Splitting the watermark value W = 17 via the Generalized Chinese Remainder Theorem, with p1 = 2, p2 = 3, p3 = 5

robustness we make the pieces redundant so that finding a
subset of them will be enough to extract the watermark.
The embedding phase consists of two steps. In the first
step, the watermark value is turned into a set of values to
be embedded into the program. In the second step, this
set of values is embedded into the program in the form of
additional branch instructions and other code.

The process of turning W into a set of values to be em-
bedded into the program consists of several steps, illustrated
with an example in Figure 3:

1. Let p1, . . . , pr be pairwise relatively prime, where W <Qr
k=1 pk. W is split into up to r(r−1)

2
pieces, each

piece being of the form W ≡ xk mod pikpjk , where
0 ≤ xk < pikpjk . This is step A© in Figure 3. The Gen-
eralized Chinese Remainder Theorem [14] allows W to
be reconstructed from these statements in a straight-
forward manner, since the p’s are pairwise relatively
prime.

2. Each statement W ≡ xk mod pikpjk is turned into
a single integer by an enumeration scheme. In our
scheme,

wk = xk +

ik−1X
n=1

rX
m=n+1

pnpm +

jk−1X
m=1

pikpm.

This is step B©.

3. In step C©, each piece wk is put through a block cipher.
This step enables us to make randomness assumptions
about any corrupted data when decoding.

We next insert code that causes the bit-string correspond-
ing to the trace to contain each piece of the watermark. To
prevent pattern matching attacks, several methods of gen-
erating code should be available. For example, code could
be located so as to supplement bit-strings already occurring
in the program.

For simplicity, our current implementation inserts code
that generates an entire watermark piece. We insert code
for each piece in a random location weighted inversely with
respect to its frequency in the trace. Thus, code is less
likely to be inserted in program hotspots than in infrequently
executed code.

We generate two types of code to insert bits into the input
code’s bit-string. The first is based on loops, and the second
is based on simple tests using variable values collected as
part of the trace.

3.2.1 Loop Code Generation
Given a watermark piece wk, this technique generates a

loop with a body that contains a conditional branch. The
code generator generates a prologue to the loop and loop
body code that causes the inner branch to succeed and fail
in the order of the bits of wk. For example, the following
code is generated to insert the bits 0101 into the input code:

✞ �

int b i t s = 0 xa ;
int counter = 5 ;
int j = 0 ;
for ( int i =0; i<counter ; i ++,b i t s >>=1)

i f ( ( b i t s & 1)==1) j ++;
i f (PF ) l i v e v a r+=j ;

✝ ✆

Because the least significant bit of 0xa is 0, the test inside
the loop fails, thus indicating that future failures of this test
will produce a 0 and future successes of this test will produce
a 1. The remaining bits of 0xa in order from least to most
significant are 0, 1, 0, 1, which causes the test inside the loop
to fail, then succeed, then fail, and finally succeed. This test
result pattern generates the desired bits 0101. This code
generator inserts approximately 60 bytes of instructions per
64 bits of input.

The expression PF represents an opaquely false predi-
cate chosen from SandMark’s Opaque Predicate Library
(OPL). An opaque predicate [7] is a boolean-valued expres-
sion whose value (always-true, always-false, or sometimes-
true-sometimes-false) is difficult for an adversary to deter-
mine. For example, the predicate x(x − 1) ≡ 0 (mod 2) is
true for all values of x. The opaque predicate makes it diffi-
cult to determine through static analysis that the generated
loop has no semantic effect on the program.

3.2.2 Condition Code Generation
A second code generation technique inserts sequences of

predicates and branches at locations that are executed mul-
tiple times on the secret input sequence. The first execution
of the inserted code on the input sequence identifies which
branch direction should generate which bit, and the remain-
ing executions generate sequences of bits. Our embedder
generates code so that at least one of the executions after
the “priming” execution generates the desired bit-string.

Ideally, we would like the conditional branches we insert
to look inconspicuous so that they are less obvious targets
for an attacker. To accomplish this, we base our predicates
on existing program variables. This is the purpose of saving
variable values during tracing. By examining the values of
variables in the program, we can generate predicates that
will be true or false at a particular point of the program as
it is executed with the secret input sequence. In addition, for
any set of predicates we determine to be true at a particular
point in the program, we can logically AND them together
to produce compound conditions that will also be true. Thus
we can construct arbitrarily complex conditional statements
using existing program variables, making it difficult for an
attacker to know that these statements are safe to remove
while preserving correctness.

It is possible that some of the variable values may be
environment dependent. For example, the value of a vari-
able could represent the current time or the process ID. In
this case, the generated code would not generate the desired
branching pattern during recognition. We accept that possi-
bility and assume that it will not happen frequently enough
to destroy the watermark. The frequency of this kind of fault

110



5
13
17
0

A©⇒
W ≡ 5 mod p1p2

W ≡ 7 mod p1p3

W ≡ 1 mod p2p3

W ≡ 0 mod p1p2

B©⇒ 7 mod p1p3

5 mod p1p2

1 mod p2p3

0 mod p1p2

C©⇒
7 mod p1p3

5 mod p1p2 D©⇒ W ≡ 17 mod p1p2p3

Figure 4: Re-combining the watermark value W = 17, with p1 = 2, p2 = 3, p3 = 5

is likely to be less than the frequency of attacks against the
watermark pieces.

As an example, consider a trace that indicates that a cer-
tain location is executed twice on the secret input sequence.
Just before the first execution, a = b and c = d, and just
before the second execution, a = b and c 	= d. The following
code would be generated to produce the string 1010:

✞ �

int tmp = 0 ;
i f ( c == d ) tmp++;
i f ( a == b ) tmp++;
i f ( c == d ) tmp++;
i f ( a == b ) tmp++;
i f (PF ) l i v e v a r += tmp ;

✝ ✆

To prevent an optimizer from removing the inserted code,
we add a never executed assignment to a variable that is live
at the the point of insertion.

3.3 Recognition
The recognition phase collects a trace of the input pro-

gram’s execution on the secret input I and attempts to lo-
cate and to recombine pieces of the watermark in the corre-
sponding bitstring. Various attacks (such as inserting bogus
branches or reordering non-dependent branches) may have
distorted the trace bits. However, because the watermark
was split into many redundant pieces, it is enough for us to
find a subset of pieces that have not been perturbed. The
decoding algorithm is composed of three steps, illustrated
with an example in Figure 4. First, the bit-string b0b1 . . . bn

is split into a set of fixed-size blocks B0 = b0 . . . b63, B1 =
b1 . . . b64, . . . . These blocks are decrypted using the same
cryptosystem as in the embedding process. Finally, the
resulting 64-bit blocks Bd

0 = dk(B0), Bd
1 = dk(B1) . . . are

passed to an algorithm that attempts to find a group of
blocks that agree on the watermark.

In step A© of Figure 4, we invert our enumeration scheme
to turn these 64-bit blocks into statements about W of the
form W ≡ xk mod pikpjk . Some of these blocks may have
errors in them as a result of attacks (such as 18 in Figure 3
being changed to 17 in Figure 4), and there will be a very
large number of blocks that have nothing to do with the wa-
termark (such as, in the figure, the value 0). The remaining
steps of the recombination algorithm attempt to determine
which blocks to use for reconstructing the watermark.

Since the trace can potentially be very long, it is helpful
to reduce the number of statements to consider. To this
end, we hold a vote on the value of W mod pi for each i.
If there is a clear winner (which we define as the first-place
vote-getter being strictly greater than twice second-place),
this winner is presumed to be the value of W mod pi, and all
statements contradicting this are removed from considera-
tion. This step has been empirically observed to greatly im-
prove the average-case running time of the algorithm, while
having a negligible effect on the probability of success.

Among the various pairs of statements, some are inconsis-
tent, some are consistent because the x’s agree mod pi for
some i, and some are consistent by the Chinese Remainder
Theorem since the 4 pi’s referred to are all distinct and the
pi’s are pairwise relatively prime. The gist of the algorithm
is that, if the p’s are large, it is unlikely for statements about
W to agree mod pi at random. Therefore, statements that
do agree mod pi are likely to be ones that were inserted
during the embedding of the watermark.

Let V = {v0, v1, . . . , vm} be the set of statements on W
we are given. In step B©, we construct two graphs, G and H,
on V . (Figure 4 only shows G.) Two vertices are adjacent
in G iff they are inconsistent. Two vertices are adjacent in
H iff they are consistent because the x’s agree mod pi for
some i, not if they are consistent by the Chinese Remainder
Theorem. For step C©, we initialize U := ∅ and repeat the
following steps until G has no edges:

1. Let v be some vertex in the set V − U of maximum
degree in H. This vertex is presumed to be a true
statement about W .

2. Let S be the set of v’s neighbors in G. Set G := G−S,
H := H − S, and U := U ∪ {v}.

Once G has no more edges, we have a set of statements
about W that are consistent and can be combined by the
Generalized Chinese Remainder Theorem in step D©.

In order for this algorithm to succeed in reconstructing
W , we need to know the value of W mod pi for each i. If
each pi is a node, we can think of each statement of the form
W ≡ x mod pipj as an edge between pi and pj . Then the
effect of attacks on the watermark can be modeled as edges
being deleted at random. If q is the probability that each
edge will be deleted and we start with the complete graph
on n nodes, then the probability that each node will still
have at least one incident edge is given by

nX
j=0

(−1)j

 
n

j

!
qj(n− j+1

2 ). (1)

This serves as a good approximation for the probability of
W being successfully reconstructed. Figure 5 shows the em-
pirical probability of recovering a 768-bit value for W with
a varying number of statements left intact versus the theo-
retical approximation of this probability as given by (1).

4. WATERMARKING NATIVE EXECUTA-
BLES

Native code executables offer significantly greater flexibil-
ity, compared to Java bytecode, in terms of the transforma-
tions that can be applied during watermarking. This makes
it possible to use techniques that cannot be used in the case
of bytecode. Here we discuss one such technique for imple-
menting path-based watermarking, using branch functions.

111



0 20 40 60 80 100

Number of intact pieces

0.0

0.2

0.4

0.6

0.8

1.0
P

ro
ba

bi
lit

y 
of

 S
uc

ce
ss

Theoretical
Empirical

Figure 5: Number of watermark pieces recovered intact ver-
sus the probability of successful watermark recovery

4.1 Branch Functions: An Overview
A branch function is a function that is called in the nor-

mal manner, but which manipulates its return address such
that, when it returns, control may be transferred to an ad-
dress different from the original call site [15]. Consider a
program containing a particular set of unconditional jumps
of interest, at locations a1, . . . , an, with targets b1, . . . , bn

respectively, i.e., the instruction at location ai is

ai : jmp bi 1 ≤ i ≤ n

With branch functions, we replace each of these jumps by a
call to the branch function f , resulting in code of the form:

ai : call f 1 ≤ i ≤ n

The function f uses the return address to figure out the
location ai(1 ≤ i ≤ n) it was called from, then uses this
information to change its return address to the value bi.
When it subsequently executes a ret instruction, therefore,
control is transferred to the original target bi. The situation
is illustrated in Figures 6(a) and 6(b).

The implementation of branch functions can be illustrated
by first considering a very simple-minded variation of the
idea above, where the call at location ai passes the offset
to its target address as an argument. The branch function
then simply adds its argument to the return address, then
returns. The corresponding code, on the Intel IA-32 archi-
tecture, has the form:

xchg %eax, 0(%esp) #I1
add %eax, 4(%esp) #I2
pop %eax #I3
ret #I4

Instruction I1 exchanges the contents of register %eax with
the word at the top of the stack, effectively saving the con-
tents of %eax and at the same time loading the return ad-
dress into %eax. Instruction I2 then has the effect of adding
the displacement to the target (passed as an argument on the
stack) to the return address; the sum—which is in fact the
target address bi—is now written to the location 4(%esp).
I3 restores the previously saved value of %eax, leaving the
address of the target on top of the stack. I4 then has the
effect of branching to the address computed by the function.

The straightforward implementation described above has
two shortcomings. The first is that it is not difficult to detect
a function that modifies its own return address. On archi-
tectures such as the Intel IA-32, the return address is passed

pushf # save flags
push %edx # register save
push %ecx # register save
push %eax # register save
mov 0x10(%esp,1),%edx
mov %edx,%eax
# begin perfect hash computation

shl $0xc,%eax
and $0x7ff,%edx
shr $0x15,%eax
movzwl 0x80d2bb0(%edx,%edx,1),%ecx
xor %ecx,%eax
# begin return address fix

imul $0xc,%eax,%eax
mov %eax,%edx
mov 0x80c3c04(%eax),%eax
xor %eax,0x10(%esp,1)
# begin tamper-proofing

lea 0x80c3c08(%edx),%eax
cmpl $0x0,(%eax)
je cleanup
mov 0x4(%eax),%edx
xor %edx,(%eax)
movl $0x0,0x4(%eax)

cleanup:
pop %eax # register restore
pop %ecx # restore restore
pop %edx # restore restore
popf # restore flags
ret

Figure 7: An example of branch function code

at some fixed offset from the stack pointer; on RISC archi-
tectures, the standard calling convention passes the return
address in some fixed register. In either case, an observant
attacker can detect when the location containing the return
address happens to be the destination of an arithmetic (or
move) instruction. The second shortcoming is that this sim-
ple scheme uses just a single straightforward arithmetic op-
eration for the return address modification, and so is not as
robust against reverse engineering as we would like.

We can address the first problem by using “helper” func-
tions with the branch function. The idea is as follows.
The branch function f does not itself do any tampering
with its return address: instead, it calls a helper function
f1, which might itself call another helper function f2, etc.
The helper function calls cause the original return address
to be saved on the stack regardless of whether the call-
ing convention passes the return address in a register or
on the stack. Moreover, because the chain of helper func-
tions f → f1 → · · · → fm is fixed in a given implementation
of branch functions, we know (based on knowledge of the
stack frame sizes for the helper functions f1, . . . , fm—note
that these stack frame sizes can be chosen randomly by the
implementation) how deep in the stack the original return
address is located. The last helper function then “reaches
into” the stack to modify the original return address.

We address the second problem using perfect hashing [12].
Given the control flow mapping ϕ = {a1 �→ b1, . . . , an �→ bn}
we want the branch function to implement, we create a per-
fect hash function hϕ : {a1, . . . , an} �→ {1, . . . , n}. We then
construct a table T in the data section of the binary, that

112



bn

b1

b2

bn

jmp

jmp

jmp

. . .

:

:

:

an

a

a1

2

b

b

1

2

(a) Original code

b1

b2

bn

: call fa1

: call fa2

: call fan

. . .
f

(b) Code using a branch function

f

a 0

a1 a1

a2 a2

a3 a3

a4 a4

lend

01 1 1

bit encodings

a3

a4

a2

a 0

a1

lbegin

lend

call f

. . .
call f

. . .

. . .

. . .

. . .

call f

call f

call f

(c) An example of branch-function-based water-
marking (watermark = 1011)

Figure 6: Branch functions

contains the exclusive or of each (ai, bi) pair,2 as follows:

T [hϕ(ai)]← ai ⊕ bi.

Upon invocation, the branch function proceeds as follows.
It saves the appropriate registers; applies the perfect hash
function hϕ to its return address a to compute a hash value
hϕ(a); uses the table T to obtain the value T [hϕ(a)]; xors
this value into the return address, similarly to the scheme
described earlier; and finally, restores the saved registers and
returns. Figure 7 shows an example of branch function code,
taken from the SPECINT-2000 benchmark program parser
for a 512-bit watermark.

4.2 Using Branch Functions for Software Wa-
termarking

In order to use branch functions for software watermark-
ing, we have to specify how they should be used to encode
the bits in the watermark, how a watermark is to be em-
bedded within an executable, and how it can be extracted.
This section discusses these issues in more detail.

4.2.1 Bit Encoding
As discussed above, a branch function implements a con-

trol flow mapping {a1 �→ b1, . . . , an �→ bn}. We can choose
any subset—not necessarily proper—of the pairs in this map
to encode the watermark: i.e., the branch function imple-
menting the watermark can also be used to obfuscate other
control transfers, elsewhere in the program, that have noth-
ing to do with the watermark itself [15]. For simplicity of
exposition, however, we will assume, in the discussion that
follows, that all of the pairs in the branch function are used
for encoding the watermark.

Each pair of addresses ai �→ bi in the branch function map
encodes a single bit of the watermark. In principle, we can
use any property of these pairs that we want: for example,
we could, if we wished, use the parity of ai and bi, using
the predicate ‘parity(ai) = parity(bi).’ Our implementation
uses a forward jump (i.e., ai < bi) to encode a ‘1’ and a
backward jump (i.e., ai > bi) to encode a ‘0.’

2This is done so that the data section of the binary does
not contain a sequence of text section addresses, since such
a sequence of entries could be conspicuous to an attacker.

4.2.2 Watermark Embedding
To embed a k-bit watermark w = w0w1 · · ·wk−1 into an

executable, we start with an unconditional control flow edge
!begin → !end ; we will split this edge and insert the water-
mark code between !begin and !end . We first construct a list
of k + 1 branch function calls (a0, a1, . . . , ak) such that the
following hold:

1. for each ai, 0 < i ≤ k, the instruction immediately be-
fore ai is an unconditional jump, i.e., execution cannot
fall through to ai; and

2. the addresses of adjacent pairs of instructions (ai, ai+1),
0 ≤ i < k, encode bit wi of the watermark:

addr(ai) < addr(ai+1) if wi = 1
addr(ai) > addr(ai+1) if wi = 0.

To construct the list, a0 is inserted at address !begin . We
then iteratively construct ai+1 from the last instruction ai

added to the list: we use the value of wi, the ith bit of
the watermark w, to scan either forward (if wi = 1, i.e., ai

need to jump forward) or backward (if wi = 0, i.e., we need
to jump backward), until we find a location that satisfies
the first condition above, and insert a call instruction at
that location. This is repeated until all of the instructions
a0, . . . , ak have been constructed. The last branch function
call, ak, has !end as its target.

Once these branch function calls have been inserted into
the instruction stream, the address of each such instruction
is determined. Let bai denote the address of the instruction
ai, then the control transfer mapping for the branch function

is {ba0 �→ ba1,ba1 �→ ba2, · · · ,bak−1 �→ bak,bak �→ b!end}.
Figure 6(c) illustrates an example of a branch-function-

based embedding of the bit-string 1011 into a program.
Starting at a0, the first bit is 1, and is encoded by the for-
ward branch a0 → a1, which is realized via a call to the
branch function f(); the next bit, 0, is encoded by the back-
ward branch a1 → a2; the third bit is a 1, and is encoded
by the forward branch a2 → a3; and the last bit, which is
again a 1, is encoded by another forward branch, a3 → a4.
Finally, control returns from a4 to the end point !end of the
watermark.

113



4.2.3 Watermark Extraction
To extract a watermark, we start with the pair of ad-

dresses (!begin , !end) bracketing the watermark (currently,
these are supplied manually; however, we expect to aug-
ment the implementation in the near future to use a fram-
ing scheme that would allow these addresses to be identified
automatically). We use a tracer tool that uses hardware
single-stepping to obtain a dynamic trace of the instructions
executed between the time control reaches !begin and when
it subsequently reaches !end . This trace is then analyzed
to identify the branch function fw, by observing functions
that do not return to the instruction following the call in-
struction. Once the branch function has been identified, we
obtain, from the trace, the list of locations from which fw

is called, and for each such location ai the corresponding
location bi to which control returns from that call. By com-
paring the values ai and bi, we can determine whether it
corresponds to a forward or backward jump, and thereby
extract the corresponding bit of the watermark. This is
repeated until all instructions in the trace have been pro-
cessed; this corresponds to having execution return to !end .

4.3 Tamper-proofing Branch Functions
An important property of a software watermark is its ro-

bustness under semantics-preserving code transformations.
Since a branch function synthesizes a mapping between pairs
of absolute addresses, any transformation that causes code
addresses to change, but which does not at the same time
update the mapping implemented by the branch function,
will cause the resulting program to break. Moreover, the
perfect hash functions used to compute these mappings tend
to be quite cryptic and difficult to reverse engineer (e.g., see
Figure 7). For this reason, we believe that branch-function-
based watermarks are resilient against code transformations
that cause addresses within the text section to change; in
particular, this includes additive and distortive attacks.

To guard against subtractive attacks, our basic idea is to
have the branch function carry out a computation that is
essential for the subsequent execution of the program. Re-
call that the branch function is entered starting at a location
!begin . We begin by taking an unconditional branch at a lo-
cation ! such that !begin dominates !. We then transform
the branch instruction at ! to an indirect branch through
a memory location M , such that M contains the correct
target address if and only if the branch function has been
executed. For this, M is initialized to some random text
section address, and code is added within the branch func-
tion to update the contents of M to the correct target ad-
dress. In general, this update can occur incrementally, such
that each time the branch function executes, some set of
bits of the target address are computed. This is done for
multiple jump instructions: in our current implementation,
when embedding a k-bit watermark we attempt to find up
to k candidate branches that can be tamper-proofed in this
manner; each branch function call updates a different such
candidate (a branch is considered to be a candidate if it oc-
curs in an infrequently executed portion of the code and is
not part of a loop; the last requirement is to avoid excessive
performance degradation on inputs that may cause different
execution characteristics than the training inputs). With
this, if the branch function is identified and “snipped out”
of the execution by an attacker, the control flow behavior of
the program will no longer be correct.

5. EXPERIMENTAL RESULTS
In this section we present our evaluation of the Java byte-

code and the native code implementations of the path-based
watermark. We have measured the cost of embedding the
watermark in terms of the time and space overhead incurred
by the inserted watermark code and the resiliency of the wa-
termark to attacks. Because the implementations are very
different, so are the attacks that we evaluate.

5.1 Java Bytecode
We evaluated the watermarking scheme for Java bytecode

described in Section 3 using an implementation built on top
of SandMark, a collection of obfuscation and watermark-
ing algorithm implementation for Java bytecode. The sys-
tem reads in Java archives (jar-files), applies one or more
obfuscations or watermarks, and writes the resulting code to
another Java archive. We used two programs for our exper-
iments. The first is the CaffeineMark benchmark suite [3].
CaffeineMark contains several microbenchmarks that test
the performance of integer and floating point arithmetic op-
erations, loops, logical operations, and method calls. A high
percentage of the instructions in CaffeineMark are executed
frequently. The second program we used was Jess [13], a
language interpreter included as part of the SpecJVM [1]
benchmarking suite. We did not use the entire SpecJVM
suite because the resulting trace files become very large.

All tests were run using Sun’s JVM version 1.4.0 and Red-
hat Linux 9.0. Our hardware was a 2.4 GHz Pentium 4
system with 1 GB RAM.

5.1.1 Cost
We evaluated the space and time cost of the path-based

watermark using 128, 256, and 512 bit watermarks. Fig-
ure 8(a) shows that this watermark can slow down performance-
critical code code similar to CaffeineMark by up to 80 per-
cent. It is likely that performance does not suffer when few
watermark pieces are inserted because the weighted random
location choice described in Section 3.2 selects infrequently
executed locations as insertion points. As more pieces are
inserted, the probability that some frequently executed lo-
cation will be chosen increases; when this eventually occurs,
there is a dramatic performance degradation. As many more
pieces are inserted, more are inserted in “hot” locations, re-
sulting in further performance degradation.

In contrast, Jess contains more code (300KB as opposed to
9KB for CaffeineMark) and a lower percentage of frequently
executed code. It appears that our random insertion posi-
tion algorithm successfully avoided the frequently executed
portions of Jess, and therefore caused an insignificant slow-
down.

Figure 8(b) shows that embedding carries a fixed cost of
approximately 5 percent of the program size, plus a variable
cost of 25 bytes per watermark piece.

5.1.2 Resilience
SandMark implements 40 distortive attacks against wa-

termarks, including basic block copying, statement reorder-
ing, and method and class splitting and merging. Only class
encryption and branch insertion were able to destroy the wa-
termark.

In the class encryption attack, every class file in an appli-
cation is replaced with an encrypted version of itself. The
startup code for the application is then replaced by a new
program that decodes and runs the encrypted classes. While
this attack has no effect on the branch sequence taken by

114



0 100 200 300 400 500

Number of Pieces Inserted

0.0

0.5

1.0
Sl

ow
do

w
n 

(F
ra

ct
io

n)

Jess
CaffeineMark

(a) CaffeineMark and Jess slowdown resulting from
the insertion of a varying number of watermark
pieces

0 100 200 300 400 500

Number of Pieces Inserted

0

5

10

15

20

25

Si
ze

 I
nc

re
as

e 
(K

ilo
by

te
s)

Jess
CaffeineMark

(b) CaffeineMark and Jess size increases resulting
from the insertion of a varying number of wa-
termark pieces

100 200 300 400 500

Number of Pieces Inserted

0

50

100

150

Su
rv

iv
ab

le
 B

ra
nc

h 
In

se
rt

io
n 

(%
)

128 bits
256 bits
512 bits

Watermark size

(c) The path-based watermark can survive the ad-
dition of a percentage of branches that increases
with the number of watermark pieces inserted
and the size of the watermark

0 1 2 3 4

Branch Increase (Fraction)

0.0

0.2

0.4

0.6

0.8
Sl

ow
do

w
n 

(F
ra

ct
io

n)

(d) Adding branches to code causes a slowdown
that varies with the number of branches added

Figure 8: Java bytecode implementation evaluation results

the program, it does prevent instrumentation by denying
the instrumenter access to the bytecode. When instrumen-
tation fails, a trace cannot be collected and recognition fails.
While this is an interesting attack, it does not reveal an in-
herent flaw in our algorithm because the trace need not be
collected through the use of instrumentation. We could in-
stead collect a trace by using standard Java interfaces for
profiling and debugging. Because the JVM necessarily has
access to the unencoded form of the bytecode, this tracing
method would be resilient to all forms of bytecode encoding.

The branch insertion attack randomly inserts branches
into a program. If an attacker inserts a branch instruction
at a random place in the program, he may cause random
changes in the decoded bit-string. If he inserts many random
branches into the program, he is likely to cause widespread
random changes in the decoded bit-string. Because of the

error correcting qualities of our watermark encoding scheme,
our implementation can withstand a level of random branch
insertion that varies with the number of watermark pieces
embedded in the program and with the size of the water-
mark. This is shown in Figure 8(c).

The performance penalty associated with this attack is
likely to vary widely based on the code inserted to generate
each branch. We have measured the performance penalty of
this code (where x is an integer variable):

✞ �

i f ( x ∗ ( x − 1) % 2 != 0) x++;
✝ ✆

The resulting slowdown is shown in Figure 8(d). Fig-
ures 8(c) and 8(d) show that an adversary can destroy a
512-bit watermark by increasing the number of branches in

115



a program by 150 percent, but that this attack comes at a
cost of slowing down the program by 50 percent.

Like all other known software watermarking schemes, our
implementation provides no protection against additive at-
tacks. We also have no inherent protection against collu-
sive attacks. However, collusive attacks can be prevented
by obfuscating the program before it is watermarked, and
thus producing a highly diverse program population. Any
attempt to find the watermark code through comparison of
multiple watermarked copies of the program will be thwarted
by this defense because the differences between any two
copies of the program will contain much more than just the
watermark code.

5.2 Native Code
We evaluated the branch-function watermarking scheme

described in Section 4.2, using an implementation built on
top of PLTO, a binary rewriting system developed for Intel
IA-32 executables [11]. The system reads in statically linked
executables, disassembles the input binary, and constructs
a control flow graph, which can then either be instrumented
to obtain execution profiles, or modified to have a given wa-
termark embedded into it. We used ten programs in the
SPECint-2000 benchmark suite for our experiments. Two
benchmarks, eon and perl were omitted from our tests due
to problems building the harness. Our experiments were
run on an otherwise unloaded 2.4 GHz Pentium IV system
with 1 GB of main memory running RedHat Linux 9.0. The
programs were compiled with gcc version 3.2.2 at optimiza-
tion level -O3. The programs were profiled using the SPEC
training inputs and these profiles were used to identify any
hot spots during our transformations. The final performance
of the transformed programs were then evaluated using the
SPEC reference inputs. Each execution time reported was
derived by running five trials, discarding the highest and
lowest run times so obtained, and computing the average of
the remaining three times.

5.2.1 Cost
We evaluated the space and time cost of path-based wa-

termarking using watermarks of three sizes: 128 bits, 256
bits, and 512 bits.

Figure 9(a) shows the relative increase in total size (text
+ data sections) incurred due to watermarking. All in all,
the increases are fairly modest, ranging from about 5% for
crafty to about 16% for mcf. The rate of growth in size is also
fairly small. The mean increase in size ranges from 10.8%,
for 128-bit watermarks, to 11.4% for 512-bit watermarks.

The runtime slowdowns experienced as a result of water-
marking are shown in Figure 9(b). For most of the programs
tested, the slowdown is quite small (less than 2%), and sev-
eral of the programs actually speed up by about 2–3%, pre-
sumably due to cache effects. The mean slowdowns range
from -0.65%, for 128-bit watermarks, to 0.85% for 512-bit
watermarks.

5.2.2 Resilience
To evaluate the resilience of our watermarks against at-

tacks, we subjected the watermarked programs to a number
of code transformations of the sort that might be encoun-
tered in a standard binary manipulation tool. We tried the
following transformations:

1. No-op insertion. This is intended to simulate a dis-
tortive attack where the attacker tries to inject addi-

tional code into the program, e.g., using a code obfus-
cator.

As discussed in Section 4.3, the use of branch func-
tions gives us a “lock-down” on a range of program
addresses, such that a change to any of these addresses
will cause the program to malfunction. The effect of
such insertions is to change text addresses. Every one
of our test programs breaks when even a single no-op
is added to a watermarked binary.

2. Branch sense inversion. This involves inverting the
sense of conditional branches and rearranging basic
blocks accordingly to maintain program semantics, so
that the roles of the “branch-taken” and “branch-not-
taken” targets get reversed. This is intended to simu-
late a distortive attack of the sort that might occur if
an attacker applies code optimization or binary rewrit-
ing techniques to a watermarked binary. For the same
reason as for no-op insertion, every one of our test pro-
grams breaks when branch senses are inverted.

3. Double watermarking. This involves taking a water-
marked program and running it through the water-
marker again. This simulates an additive attack where
the attacker hopes to overwrite or obscure part or all
of the original watermark by a second round of water-
marking. As for the previous two attacks, this causes
text addresses to change, and causes each of our test
programs to break.

4. Bypassing the branch function. This involves overwrit-
ing some number of calls to the branch function with a
jump instruction of exactly the same size (in bytes), so
that there is no net change to any addresses; the tar-
get of this new jump instruction is the actual address
that the branch function would transfer control to for
that particular call. This has the effect of realizing the
control transfer that the branch function would real-
ize, but bypassing the actual branch function code. It
simulates a subtractive attack.

As discussed in Section 4.3, calls to the branch function
also have the effect of updating the contents of memory
locations that are used for indirect jumps. When the
branch function is bypassed, therefore, some such loca-
tions are not properly updated, and therefore contain
incorrect addresses. This causes execution to break.

5. Rerouting Branch Function Entries. This involves re-
placing a call to the branch function with a call to a
different location 3 which then transfers control to the
branch function. Consider the following transforma-
tion from the original branch function call in (a) to
the sequence in (b), where bf is the branch function,
and Y is the address of the end of the text.

(a) (b)
X: call bf X: call Y

... ...
Y: jmp bf

3This may require the header of the file to also be modified,
but does not necessarily require any relocation to take place
within the binary. If relocation was needed the attack be-
comes much more difficult because of known static analysis
challenges with respect to native executables.

116



bzip2 crafty gap gcc gzip mcf parser twolf vortex vpr Mean

Program

0.0

5.0

10.0

15.0

20.0

si
ze

 in
cr

ea
se

 (
%

) 128 bits
256 bits
512 bits

Watermark size

(a) Space cost of watermarking native code

bzip2 crafty gap gcc gzip mcf parser twolf vortex vpr Mean
-5.0

0.0

5.0

sl
ow

do
w

n 
(%

)

-5.0

0.0

5.0

sl
ow

do
w

n 
(%

)

128 bits

256 bits

512 bits

Watermark size

(b) Time cost of watermarking native code

Figure 9: Native code implementation evaluation results

This particular transformation allows the program to
execute properly, since the branch function in (b) still
sees X as the hash input just as it would have in (a).4

A tracer which relies on looking at the address transfer-
ring control to the branch function to determine eachbai, such as our simple tracer, is disabled in (b) since it
would deduce the bai to be Y instead of X. This attack
can be obviated, however, simply by using a slightly
more intelligent tracer that is constructed as follows.

As explained above, one of the reasons that this partic-
ular attack works is that the return address, i.e., the
hash input, remains unchanged and therefore main-
tains the integrity of the tamper-proofing. From this
fact we can see that each time the branch function ex-
ecutes, it must still be using the address of the instruc-
tion just after the bai as it’s hash input. By construct-
ing a tracer that tracks the value of the hash input to
the branch function each time it executes (as opposed
to inspecting the address of the invoking instruction) ,
the original mapping {ba0 �→ ba1,ba1 �→ ba2, · · · ,bak−1 �→bak,bak �→ b!end} can be easily retrieved and the water-
mark can successfully be reconstructed.

6. RELATED WORK
Qu and Potkonjak[17] embed the watermark in register in-

terference graphs. The data-rate is minimal and the scheme
is easily subverted by a register renumbering transforma-
tion [16].

Venkatesan et al. [20] embed the watermark in an extra
control flow graph that is added to the program. To distin-
guish the watermark graph from the original flow graphs, its

4The value it will see is actually X + 5 to account for the
length of the call instruction

basic blocks are “marked,” for example by inserting identify-
ing instructions, reordering instructions, etc. The data-rate
is high but the scheme is vulnerable to transformation which
affect the basic block marks, such as basic block splitting and
instruction reordering [4].

Davidson and Myhrvold [9] embed the watermark by re-
ordering basic blocks. It is easily subverted by permuting
the order of the blocks.

Stern et al. [19] embed the watermark in the relative fre-
quencies of instructions using a spread spectrum technique.
The data-rate is low and the scheme is easily subverted by
inserting redundant instructions, code optimization, etc.

Dynamic software watermarking was first proposed by
Collberg and Thomborson [6]. Their scheme embeds the
watermark in the topology of a data structure that is built
on the heap at runtime given some secret input sequence to
the program. This scheme is vulnerable to any attack that is
able to modify the pointer topology of the program’s funda-
mental data types. In the general case such transformations
are difficult because of the hardness of alias analysis.

Cousot and Cousot [8] embed the watermark in values as-
signed to designated integer local variables during program
execution. These values can be determined by analyzing
the program under an abstract interpretation framework,
enabling the watermark to be detected even if only part
of the watermarked program is present. This scheme can
be attacked by obfuscating the program such that the local
variables representing the watermark cannot be located or
such that the abstract interpreter cannot determine what
values are assigned to those local variables.

This scheme also depends on keeping a variable v at a
constant value mod n for some n throughout program ex-
ecution. This constant congruence class represents the wa-
termark, and the watermarked program can vary v’s value

117



within this congruence class in order to make the values ap-
pear random. However, if the sequence of values assigned to
v is 〈v0, v1, v2, . . . , vk〉, then n will divide gcd(v1 − v0, v2 −
v0, . . . , vk−v0). This allows the variables being used for wa-
termarking to be identified, since n has to be fairly large for
the watermarking scheme to work and the gcd of random
values that would be assigned to variables not being used
for watermarking is likely to be small.

7. CONCLUSIONS
Software watermarking is an important tool for combating

software piracy. It is important that software watermarks
be resilient against semantics-preserving code transforma-
tions. Unfortunately, most existing proposals for software
watermarking turn out to be vulnerable to fairly straight-
forward code transformations. This paper introduces a new
approach to watermarking, called path-based watermarking,
that embeds the watermark in the dynamic branch structure
of the program, and shows how error-correcting and tamper-
proofing techniques can be used to make path-based water-
marks resilient against a wide variety of attacks.

Experimental results, using both Java bytecode and IA-32
native code, indicate that the cost of watermarking is rela-
tively modest, even for relatively large watermarks (ranging
from 128 to 512 bits). For Java bytecode, we see that if the
number of pieces that the watermark is broken into is kept
small, the runtime overhead of watermarking is essentially
negligible. As the number of pieces increase, making it more
difficult for an attacker to destroy the watermark, there is a
concomitant increase in runtime overhead. The space cost
of watermarking Java bytecode is independent of the size of
the application being watermarked, and is quite small: it
varies roughly linearly with the size of the watermark, and
requires about 8 Kilobytes for a 512-bit watermark. Native
code watermarking on an Intel IA-32 platform incurs mean
size increases of about 12–13% and mean runtime slowdowns
of about 3.5%.

8. REFERENCES
[1] Specjvm98. http://www.specbench.org/osg/jvm98,

1998.
[2] Business Software Alliance. Eighth annual BSA global

software piracy study: Trends in software piracy
1994–2002, June 2003. http:
//global.bsa.org/globalstudy/2003_GSPS.pdf.

[3] Caffeinemark.
http://www.benchmarkhq.ru/cm30/info.html, 1997.

[4] Christian Collberg, Andrew Huntwork, Edward
Carter, and Gregg Townsend. Graph theoretic
software watermarks: Implementation, analysis, and
attacks. In 6th International Information Hiding
Workshop, 2004.

[5] Christian Collberg, Ginger Myles, and Andrew
Huntwork. SandMark — A tool for software
protection research. IEEE Magazine of Security and
Privacy, 1(4), July-August 2003.

[6] Christian Collberg and Clark Thomborson. Software
watermarking: Models and dynamic embeddings. In
In Conference Record of POPL ’99: The 26th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (Jan. 1999), 1999.

[7] Christian Collberg, Clark Thomborson, and Douglas
Low. Manufacturing cheap, resilient, and stealthy

opaque constructs. In Principles of Programming
Languages 1998, POPL’98, San Diego, CA, January
1998.

[8] Patric Cousot and Radhia Cousot. An abstract
interpretation-based framework for software
watermarking. In POPL’04, Venice, Italy, 2004.

[9] Robert L. Davidson and Nathan Myhrvold. Method
and system for generating and auditing a signature for
a computer program. US Patent 5,559,884, September
1996. Assignee: Microsoft Corporation.

[10] Saumya K. Debray, Robert Muth, Scott Watterson,
and Koen De Bosschere. ALTO: A link-time optimizer
for the Compaq Alpha. Software — Practice and
Experience, 31:67–101, January 2001.

[11] Saumya K. Debray, Ben Schwarz, Gregg R. Andrews,
and Matthew Legendre. PLTO: A link-time optimizer
for the Intel IA-32 architecture. In Proc. 2001
Workshop on Binary Rewriting (WBT-2001),
September 2001.

[12] Michael L. Fredman, Janos Komlós, and Endre
Szemerédi. Storing a sparse table with O(1) worst case
access time. Journal of the ACM, 31(3):538–544, July
1984.

[13] Jess. http://web.njit.edu/all_topics/Prog_Lang_
Docs/html/jess51/intro.html, 1997.

[14] Donald E. Knuth. Seminumerical Algorithms,
volume 2 of The Art of Computer Programming.
Addison-Wesley, Reading, MA, USA, third edition,
1997.

[15] Cullen .M. Linn and Saumya K. Debray. Obfuscation
of executable code to improve resistance to static
disassembly. In Proc. 10th. ACM Conference on
Computer and Communications Security (CCS 2003),
pages 290–299, October 2003.

[16] Ginger Myles and Christian Collberg. Software
watermarking through register allocation:
Implementation, analysis, and attacks. In ICISC’203,
2003.

[17] Gang Qu and Miodrag Potkonjak. Analysis of
watermarking techniques for graph coloring problem.
In IEEE/ACM International Conference on Computer
Aided Design, pages 190–193, November 1998.

[18] Amitabh Srivastava and David W. Wall. A practical
system for intermodule code optimization at link-time.
Journal of Programming Languages, 1(1):1–18, March
1993.

[19] Julien P. Stern, Gaël Hachez, Franois Koeune, and
Jean-Jacques Quisquater. Robust object
watermarking: Application to code. In 3rd
International Information Hiding Workshop, pages
368–378, 1999.

[20] Ramarathnam Venkatesan, Vijay Vazirani, and
Saurabh Sinha. A graph theoretic approach to
software watermarking. In 4th International
Information Hiding Workshop, Pittsburgh, PA, April
2001.

118


