
Abstract Interpretation and Low-Level Code Optimization �Saumya DebrayDepartment of Computer ScienceUniversity of ArizonaTucson, AZ 85715AbstractAbstract interpretation is widely accepted as a natu-ral framework for semantics-based analysis of programproperties. However, most formulations of abstract in-terpretation are in terms of high-level semantic enti-ties that do not adequately address the needs of low-level optimizations. In this paper we discuss the roleof abstract interpretation in low-level compiler opti-mizations, examine some of its limitations, and considerways in which they might be addressed.1 IntroductionThe process of compilation, by which executable codeis generated from a source program, can be thought ofas a series of transformations and translations througha succession of languages, starting at the source lan-guage and ending at the target language. In this pic-ture, we can distinguish between two kinds of trans-formations: translations, which take a program in alanguage and produce a program in a di�erent (usu-ally \lower-level") language; and optimizations, whichtransform a program in a language to another programin the same language. As an example, a compiler thatwe have implemented for a logic programming languagecalled Janus [38] works by translating the input pro-grams into C, then invoking a C compiler to generateexecutable code. In this system, we can identify the fol-lowing language levels: (1) the source language; (2) theJanus virtual machine language; (3) C; (4) the inter-mediate representation(s) within the C compiler; and(5) the target machine language. In principle, optimiz-ing transformations can be applied at each of these �ve�This work was supported in part by the National Science Foun-dation under grant CCR-9123520.0

language levels; our current implementation applies op-timizations at levels 2 (the Janus virtual machine), 4(the intermediate representation(s) of the C compiler)and 5 (the target machine code), the last two withinthe C compiler. In each case, the optimizations canbe seen as program transformations at a particular lan-guage level. A fundamental requirement of the compila-tion process is that it should be \semantics-preserving"in the sense that the \meaning," or behavior, of theexecutable code should conform to what the semanticsof the source program says it should be. For this tohappen, it is necessary in general that both transla-tions and optimizations should be semantics-preservingin this sense. Since our primary focus is on optimiza-tions rather than translations, we will assume here thatour translations satisfy this requirement, and focus ourattention on optimizations.It is very often the case that an optimization is notuniversally applicable. In other words, in order to en-sure that an optimization does not alter the observablebehavior of a program in unacceptable ways, we haveto ensure that certain preconditions particular to thatoptimization are satis�ed. As an example, consider reg-ister allocation in a C compiler: the value of a variablecan be kept in a register only if certain conditions re-garding aliasing are ful�lled. In general, this means thatit may be necessary to examine a program and extractsome information about its behavior, which can thenbe used for optimization purposes. Further, in order toverify that the properties so inferred describe all possi-ble runtime behaviors of a program, it is necessary tobe able to relate the analyses to the semantics of thelanguage in a precise way.Semantics-based techniques such as abstract inter-pretation [23, 24, 25] provide a natural framework forsuch program analyses. The general idea is to rely onthe formal semantics of a program to specify all of itspossible computational behaviors, and to derive �nitely-computable descriptions of such behaviors by system-atically approximating the operational behavior of the



Benchmark Execution Time (�secs) Heap Usage (words)no-opt opt no-opt/opt no-opt opt no-opt/optaquad 55467 20569 2.67 30884 544 0.018bessel 12577 12364 1.02 689 452 0.656binomial 6055 5720 1.06 1208 6 0.005chebyshev 32234 8500 3.79 30002 6 0.0002e 13713 9832 1.39 6005 6 0.001fib 13839 4711 2.94 6389 5 0.001log 44967 35432 1.27 28870 6 0.0002mandelbrot 102517 23942 4.28 69533 654 0.009muldiv 16621 12705 1.31 5 5 1.000nrev 8525 8018 1.06 10507 10507 1.000pi 25565 12144 2.10 20007 6 0.0003sum 6503 1694 3.84 5 5 1.000tak 18043 5340 3.38 7121 5 0.001Geometric Mean : 2.02Table 1: Performance improvements due to low-level optimizations (jc on a Sparcstation-IPC)program. The correctness of an analysis can then bederived from the mathematical relationships betweenthe actual computational domain of the program andthe domain of descriptions manipulated by the analy-sis, and between the actual operations executed by theprogram and the approximations to those operationsused during the analysis.Optimizing program transformations can be viewedat many levels, corresponding to the di�erent levels oflanguages encountered during compilation. At a highlevel, for example, we have transformations such as �-nite di�erencing [55, 66], recursion removal (i.e., trans-formation of recursive programs to tail recursive form)[5, 29], deforestation [19, 73], transformations for par-allelization and vectorization (see, for example, [3, 12]),as well as various transformations described by Baconet al. [6]. At the level of \intermediate code" wehave machine-independent low-level optimizations suchas induction variable elimination [1], closure representa-tion optimization in functional languages [46, 47], anddereferencing optimizations in logic programming lan-guages [68, 71]. At a lower level still we have machine-dependent transformations such as register allocation[9, 15, 20] and instruction scheduling [36, 59]. Concep-tually, we can divide these various optimizations intotwo classes: high level optimizations, which correspondroughly to optimizations that can be expressed in termsof transformations on the source program (or its ab-stract syntax tree); and low-level optimizations, whichinvolve constructs and objects that are not visible at thesource level, and which therefore cannot be so expressed(this classi�cation is not absolute, of course: whether

or not an optimization is to considered \low-level" de-pends, among other things, on the language being con-sidered: for example, in a language with explicit con-structs for iteration, the implementation of a tail re-cursive procedure in terms of iteration could be consid-ered as a high-level optimization; in a language withoutsource-level iterative constructs, however, this would bea low-level optimization).There are two reasons why low-level optimizationsare important. The �rst is that they are beyond thereach of the user. The point is that when faced with acompiler that does not do much in the way of high-leveloptimizations, the determined user can, in principle,carry out the transformationsmanuallywhere necessaryin order to obtain code with good performance. With acompiler that does not perform low-level optimizations,however, there is little that even the most determined ofusers can do. In particular, this implies that in the ab-sence of low-level optimizations, even carefully craftedprograms written by skilled programmers will incur per-formance penalties over which they have little control.The second reason such optimizations are importantis that they can produce substantial performance im-provements. As an example of this, Table 1 gives someperformance numbers for jc, an implementation of adynamically typed logic programming language [38].The jc compiler currently performs only low-level opti-mizations: call forwarding [27], which is a form of jumpredirection at the intermediate code level; a simple formof inter-procedural register allocation for output valueplacement [7]; and representation optimization (i.e., us-ing unboxed values where possible) for numerical val-



ues [8]. As Table 1 indicates, for the benchmarks testedthese optimizations more than double the speed of theprograms on the average, and also lead to signi�cantimprovements in heap memory usage.1 The speed ofthe resulting code is competitive with that of optimizedC code written in a \natural" imperative style: on thebenchmarks shown, the Janus programs|which are dy-namically typed and use data
ow synchronization be-tween producers and consumers|is, on the average,only 13% slower than C code compiled with gcc2 -O2,about 25% faster than C compiled with cc -O2, and6% faster than C compiled with cc -O4. This indicatesthat low-level optimizations can be a valuable source ofperformance improvements.The appeal of semantics-based program manipula-tion techniques is that they allow us to reason formallyabout the manipulations themselves, and certify withsome con�dence that such manipulations will not cause\bad things" to happen. This paper considers the appli-cability and relevance of semantics-based program anal-ysis techniques such as abstract interpretation in thecontext of low-level code optimization. Speci�cally, weargue that \semantic mismatches" between the kindsof information typically produced by semantics-basedanalyses and the kinds of information needed by low-level optimizations limit the utility of such formally de-fensible analyses for these optimizations. Speci�cally,we consider two kinds of semantic mismatch: in Sec-tion 2 we consider the level at which the \concrete se-mantics" is considered; and in Section 3 we considerthe problem of estimating runtime execution frequen-cies and costs.2 Low-Level Semantics and Abstract In-terpretationIt is not di�cult to see that while the kinds of infor-mation provided by abstract interpretation (or othersemantics-based analyses) are perhaps necessary forcode optimization, they are by no means su�cient.Part of the problem is that the \concrete" semanticson which abstract interpretations are typically basedare, from the standpoint of low-level code optimization,not concrete enough. They usually have little to sayabout the registers and bit vectors and pointers andother such low-level entities that are actually manipu-lated during program execution. Indeed, the concretesemantics usually encountered can themselves be seenas abstractions of lower-level characterizations of pro-gram behavior, where some or all of the information1These numbers do not include the e�ects of tail call optimiza-tion, though strictly speaking that is a low-level optimization in ourcontext. If the e�ects of tail call optimization are included, the speedimprovement is by a factor of about 3.4.

about machine-level entities has been abstracted away.The problem, of course, is that usually we think of theprocess of abstraction as forgetting about \irrelevant"aspects of the behavior of a program, while in this caseit is precisely the most relevant aspects of the program'sbehavior that are being forgotten.The problem can be addressed by abstract interpre-tation based on a low-level semantics. While this doesnot seem di�erent from any other sort of abstract inter-pretation at a conceptual level, the practical details canbecome messy. As an example, it is very likely simplerand more convenient to manipulate a high-level repre-sentation of a program, such as an abstract syntax tree,for such analyses, since the number of di�erent kinds ofobjects and operations that have to be dealt with forsuch representations is relatively small. However, it isnot clear that a high level program representation canencode low-level information in a reasonable way with-out (implicit or explicit) assumptions about the behav-ior of the code generator. This, in turn, implies thatsuch analyses, while simple to implement initially, arepotentially fragile.2An example of this situation arises in the contextof dereference chain length analysis in Prolog systems.In general, variable-variable uni�cations during the ex-ecution of a Prolog program can cause pointer chainsto be set up, and these need to be dereferenced be-fore the value of a variable can be accessed. Deref-erencing arbitrary-length (tagged) pointer chains is afairly expensive operation, so static analyses to inferthe lengths of dereference chains can be very helpfulin improving program performance|in particular whenthey allow dereference operations to be omitted en-tirely [51, 69, 71]. However, high-level semantics forProlog typically do not have much to say about low-level aspects such as pointer-chain lengths: for exam-ple, when two variables are uni�ed, such semantics saynothing about how the pointers are oriented. Becauseof this, dereference chain length analyses that manip-ulate high-level representations of programs|such asthose of Van Roy [71] and Taylor [68, 69]|must eitherlimit their precision by refusing to handle any situationwhere the high-level semantics is not unambiguous, orexpose themselves to potential fragilities by making as-sumptions about the code generator. Closure analysisin the Orbit compiler for Scheme [46, 47] provides an-other example of the use of a high level representation2In our Janus system, for example, we found that an optimizationto eliminate unncessary dereference operations, based on an analysisthat used the abstract syntax tree of the program similar to analy-ses of Van Roy [71] and Taylor [68, 69], led to incorrect code beinggenerated when the mechanism for dealing with suspensions changed.It turned out that as an ill-advised \convenience hack" the analysismade implicit assumptions about whether or not the code genera-tor would return output values in registers. These assumptions wererendered invalid when the code generator was modi�ed to handle sus-pensions di�erently, but the analysis phase did not know about this.



P 0 M 0\Approximate" Program \Abstract" Meaning
\Concrete" MeaningP MSource Program concrete semanticsconcrete semanticstransformation abstraction� �--? ?Figure 1: Program Analysis using Abstract Compilationfor analyzing low-level aspects of a program behavior:in this case, decisions about the low-level representationof closures are based on the structure of the abstractsyntax tree for the program.It may be possible to get around this problem insome cases by \lifting" implementation-level aspects ofa program to the source level and then treating theanalysis and optimization problems as high-level issues.This approach is taken in &-Prolog [40], a parallel Pro-log system, which extends the source language to al-low various lower-level parallelization and synchroniza-tion issues to be addressed at the source level. An-other example of such an approach can be seen in ex-posing low-level representational aspects of data, suchas whether they are boxed or unboxed, at the sourcelevel, and formulating representation optimizations interms of source-level program transformations [49, 57].However, it may not always be possible to capture low-level optimizations by lifting them to the source levelin this way (for example, it is not clear how the imple-mentation of aggregate updates in a single-assignmentlanguage via compiler-introduced destructive updates(see, for example, [35, 37, 42, 53]) could be expressedat the source level).The alternative is to use a lower level representa-tion, e.g., a sequence of intermediate code instructions.This has the advantage that the appropriate low-leveldetails have been made explicit and can be reasonedabout without having to resort to assumptions aboutthe behavior of other parts of the compiler. This is con-ceptually cleaner and more defensible than the previousapproach. However, there are two important practicalproblems that arise with this approach. First, the num-ber of operations that have to be accounted for is likelyto be considerably larger in a low-level representation

than in a high-level representation. Second, relation-ships between objects, e.g., whether or not two objectsoverlap in memory, may be harder to reconstruct byexamining a sequence of low-level operations.Because of the large number of di�erent operationsthat might be encountered in a low-level representationof a program, and the comparatively larger size of such arepresentation, one might expect a low level abstract in-terpretation to be considerably slower than a high levelone. This problem can be alleviated to some extent bya technique that, with tongue �rmly in cheek, we call\abstract compilation." The idea is the following: to re-duce the cost of program analysis, instead of repeatedlytraversing an internal representation of the program Pbeing analyzed, we partially evaluate an abstract inter-preter to with respect to P so as to produce a programP 0 which, when executed, yields the result of analyz-ing the original program P [30, 41]. In practice, forany particular analyses that we wish to implement in acompiler, we will know enough about the correspondingabstract interpreters that instead of invoking a generalpurpose partial evaluator on such an interpreter and theinput program P , we can simply make a single pass overP and produce P 0 (indeed, we initially thought of thisin terms of program transformation rather than partialevaluation): this is illustrated in Figure 1. The idea issimilar to the notion of \need expressions" proposed byMaurer [52] in the context of strictness analysis. McN-erney also uses a similar approach for an abstract inter-pretation to verify the correctness of low-level compileroptimizations [50].At �rst glance it might appear that such an approachis practical only in languages, such as Prolog and Lisp,where it is easy to create program fragments \on the
y" and execute them. For languages such as C, for ex-



ample, the traditional model for generating executablecode for a program would most likely incur much toomuch I/O overhead, in writing out a program (or ex-ecutable code) into a �le and then reading it back in,to make this worthwhile. However, recent work in dy-namic code generation for such languages [34, 45] indi-cates that the runtime overhead associated with creat-ing and executing code for such languages at runtimecan be made small enough to make such an approachpractical. The success of dynamic code generation inthe SELF system [16] also suggests that the \abstractcompilation"approach may be practically usable in gen-eral.The second problem referred to above is that re-lationships between objects that may be relativelystraightforward to detect at a high level may be muchharder to rediscover in a lower level analysis. For exam-ple, a value that is easily identi�able as a list or a tree ata high level may be visible only as a jumble of pointersduring a low level analysis, making it much more com-plicated to rediscover relationships between its compo-nents (e.g., compare high-level type inference as in [2]with comparable low-level analyses as in [18, 33]). Onthe other hand, not all structural relationships betweenobjects may be amenable to high-level analysis, e.g.,sharing relationships between objects may depend onspeci�c implementation decisions that are invisible ata high level [54]. We have found that combining high-and low-level analyses works well for this [38]. The ideais to �rst carry out a high-level analysis and annotatethe high-level representation of the program with thisinformation. When this is translated to a lower-levelrepresentation (e.g., from an abstract syntax tree to asequence of intermediate code instructions), the high-level properties are also translated into low-level termsalongside, and the low-level representation annotatedappropriately. Subsequent low-level optimizations canthen use the low-level information in a straightforwardway.3 Cost Models and Code OptimizationA fundamental problem in low-level code optimizationis that abstract interpretation can tell us only whether aparticular optimization is permissible: it has nothing tosay about whether or not it is desirable in a particularcontext. For example, we may discover, as a result ofalias analysis, that a variable may be kept in a registerover the course of a computation without a�ecting theresult. It may turn out, however, that this is not aworthwhile thing to do because it precludes the use ofthat register to hold another, more frequently accessed,variable. The kinds of information typically obtainedfrom abstract interpretation provide little guidance on

the latter point.One might feel that this is not, after all, such animportant issue because the primary technical problemin program analysis and optimization is to ensure that\bad things" do not happen, i.e., an optimization doesnot cause a program to behave incorrectly. It is unde-niably true that correctness is fundamentally more im-portant than performance, and that we should alwayschoose to compute a correct result|perhaps slowly|rather than an incorrect result quickly. It can be ar-gued, however, that identifying \bad things happening"with semantic incorrectness takes too narrow a view ofthe situation. Given two computations that both pro-duce the same correct solution to a problem, we wouldprobably choose the one that is faster, or uses less mem-ory, or is better according to some appropriate measureof performance. In such a setting, if the performance ofa program is adversely a�ected by the poor decisions ofan optimizer, one can certainly argue that \bad things"have happened.As an example of a perfectly plausible optimizationwhere inadequate attention to low-level details can leadto a performance degradation, consider subprogram in-lining (which is conceptually very similar to the \unfold-ing" transformation of Burstall and Darlington [13]).The mainmotivation behind this transformation, wherea call to a subroutine is replaced by (an appropriate in-stance of) the body of the called subroutine, is to reduceprogram execution time by eliminating the overheadassociated with calling the subroutine and eventuallyreturning from it. Davidson and Holler have shown,however, that register usage can be adversely a�ectedby inlining: �rst, the number of registers that haveto be saved and restored at a subroutine call may in-crease after inlining; and second, register allocation de-cisions may change as a result of inlining, causing somefrequently accessed variables to be stored in memory[26]. This can cause the inlined program to actuallyrun slower than the program without inlining. Cooperet al. report a similar experience|though for di�er-ent reasons|with subprogram inlining in Fortran [22].Richardson [62] describes a somewhat di�erent form of\bad things happening" in the context of this trans-formation: individual functions may grow enormouslyin size as a result of inlining (even though the overallgrowth of the size of the entire program may be rela-tively modest), leading to greatly increased time andspace requirements during compilation and optimiza-tion, and in the worst case causing compilation to faildue to inadequate memory.Another example of this phenomenon can be seenin stack allocation of closures in functional languages[46, 47]. The idea is that while closures need to be heapallocated in general, with enough information about the



lifetime of a closure in a program it may be possible toavoid this and allocate it on the stack instead (for adiscussion of various low-level considerations for stackvs. heap allocation, see [4]). Unless care is exercized,however, this can lead to an increase in the memoryrequirements of a program because dead variables instack-allocated closures are nevertheless traversed bythe garbage collector [17]. In extreme cases, this cancause a program to fail at runtime due to insu�cientmemory availability.The �nal example of potentially-pessimizing opti-mizations we consider is tabulation (also known asmemoization), where calls to a function or procedure,and the corresponding return values, are noted in a ta-ble [10]. The idea is that by consulting this table, subse-quent calls may be able to reuse a previously computedvalue and thereby avoid having to actually execute thecalled function. An oft-cited example of the bene�ts oftabulation is the naive exponential-time Fibonacci func-tion, which runs in linear time with tabulation. How-ever, if functions are tabulated without careful consid-eration of the relative costs and bene�ts of tabulation,the cost of table manipulation can overwhelm any ben-e�ts that accrue from it. As an example, in an exper-iment with tabulation using Ackermann's function, wefound that the computation generated so many entriesin the table that even though table lookups incurred agreat many successful \hits," the cost of table manage-ment led to an overall slowdown in the program. Thelarge number of table entries also led to a signi�cantincrease in the memory requirements of the program,raising again the specter of runtime failure due to in-su�cient memory.These examples illustrate two points: �rst, withoutcareful attention to low-level details, even apparentlyplausible optimizations can result in an overall degrada-tion in program performance; and second, such perfor-mance degradations should be taken seriously as a \badthing." In the worst case they can lead to execution fail-ure in correctly written programs, and this is no betterthan an incorrectly performed optimization. A funda-mental motivation behind program analysis frameworkssuch as abstract interpretation is to give such analysesa solid foundation on the mathematical semantics ofprogramming languages and thereby allow us to reasonformally about properties such as correctness. This, inturn, is driven by the desire to ensure that any transfor-mations that are performed do not change the behaviorof a program in undesirable ways. This suggests theneed for reasonable cost models that are able to accountfor low-level aspects of program execution in su�cientdetail that optimizations guided by them can reason-ably be expected to not \goof up" too badly (Dean andChambers [28] discuss the use of such cost models to

guide the subprogram inlining optimization discussedabove).Note that the need for low-level cost models does notgo away if we \lift" low-level operations to the sourcelevel, as is done for boxing and unboxing operations us-ing representation types [57]. For example, Hengleinand J�rgensen's notion of formally optimal boxing [39]does not take into account machine level costs (or execu-tion frequencies). Because of this, it may happen that aprogram that is compiled to formally optimal form maybe slower, at runtime, than one that is not optimal inthis sense, but which uses a low level cost model andexecution frequency information to guide the placementof boxing and unboxing operations (e.g., see [56]).Unfortunately, the construction of reasonable low-level cost models seems nontrivial for a number of rea-sons. First, it seems quite di�cult to predict the \con-crete" cost of a program, e.g., in terms of the numberof machine cycles it takes to execute the program on aparticular input, because even if we choose to ignore thecharacteristics and behavior of the underlying operat-ing system, we would have to account for machine-levelaspects of execution, such as cache behavior, in consid-erable detail. One possibility might be to abstract awayfrom such \really low-level" and more or less unpre-dictable aspects and use some kind of abstract machinedescription that nevertheless models some of the moreimportant aspects of an implementation. Such abstractcost models have been used successfully, for example,for data representation optimizations [65], for improv-ing data locality [14, 78], and register allocation (see,for example, [9, 15, 20]).However, even with simpli�cations to the machinemodel to make it tractable, we may need estimates ofexecution frequencies for di�erent parts of a programto give an estimate of its cost: this is crucial for op-timizations where a reduction in cost in one part of aprogram may be traded for a possible increase in cost inanother part. Where current systems use execution fre-quency estimates, however, they very often tend to relyon fairly simple-minded heuristics based on the staticloop nesting structure of the program. This can leadto estimates that are quite imprecise. As an exam-ple, a common heuristic used for register allocation incompilers is to assume that each loop is executed some�xed number of times, usually between 3 and 10 (see,for example, [9, 15, 20, 58, 70]). Wall's studies indi-cate, however, that the pro�les of basic block executionfrequency and procedure call frequency obtained usingthis technique can be surprisingly poor, being, in manycases, not much better than random pro�les [75]. Asusers, we have experienced this problem in the contextof our Janus compiler [38], which translates programsto C and invokes gcc: our lack of explicit control over



register allocation in the C compiler,3 combined withits often imperfect execution frequency estimates, occa-sionally lead to the unexpected situation where trans-formations at the Janus virtual machine level that onewould reasonably expect to yield speed improvementsactually produced slowdowns in overall execution speed.As a concrete example, in a benchmark program toevaluate Chebyshev polynomials, when we turned o�garbage collection|expecting an improvement in exe-cution speed because of a reduction in the number ofexplicit over
ow checks on the heap pointer|we foundthat the change in the number and distribution of staticreferences to the heap pointer led to changes in the reg-ister allocation decisions in the C compiler that resultedin an overall slowdown of about 50%.The problem is not entirely that static analysis prob-lems such as the estimation of execution frequencies andcosts are not amenable to formal methods. Early workon these problems includes that of Cohen and Zucker-man, who consider cost analysis of Algol-60 programs[21]; Wegbreit, whose pioneering work on cost analy-sis of Lisp programs addressed the treatment of recur-sion [76]; and those of Ramshaw [60] and Wegbreit [77],who discuss the formal veri�cation of cost speci�cations.Since then, the question of cost analysis has been inves-tigated by a number of researchers: see, for example,[11, 32, 44, 48, 61, 63, 64, 67, 72, 74]. Many of theseuse semantics-based methods: for example, Rosendahl[63] uses abstract interpretation for cost analysis, andWadler [72] uses projection analysis. Despite this fact,the use of formally defensible semantics-based tech-niques for the estimation of execution frequencies orprogram costs does not seem very common in actualcompilers. This could possibly be due to a perceptionthat such techniques are interesting research tools buttoo expensive to be part of a compiler. Another reasonmay be that the information obtained from such anal-yses, which are typically propositions of the form \onan input of length N the function f requires (at most)0:5N2+1:5N +1 computational steps", are not directlyamenable to low-level code optimization applications,which would prefer to have more absolute informationof the form \variable x is accessed 23000 times".Some recent work on dynamic control of task cre-ation in parallel systems [31, 43] suggests how cost es-timates based on semantics-based methods might beincorporated into compilers. In essence, the idea in[31, 43] is to use polyvariant specialization at a low-levelto construct di�erent versions for each procedure: oneversion handles inputs that are large enough to justifythe overheads associated with the creation of parallel3While gcc version 2 provides extensions that provide some degreeof user control over hardware register allocation, we do not use themat this time for portability reasons.

tasks, and another handles inputs that are small enoughthat sequential execution is preferable. At runtime, theappropriate version of a function is selected dynami-cally by comparing the size of the input arguments witha system-dependent \threshold size" for that functionthat is determined at compile time. In principle, onecould imagine using a similar approach for other low-level optimizations as well: generate code for di�erentversions of a program fragment to account for di�er-ent various optimization scenarios, and choose the onethat is appropriate in any particular context, if nec-essary dynamically. Chambers [16] refers to this kindof application of polyvariant specialization to arbitrarypieces of a program (rather than being limited to, say,functions or procedures) as splitting. A straightforwardimplementation of this idea seems impractical becauseof the almost certain explosion in code size it would in-cur. Moreover, interactions between di�erent low-leveldecisions in di�erent versions would have to be takeninto account. It would be interesting to see whethersuch problems could be addressed well enough to makeit practical to incorporate semantics-based methods forexecution frequency and cost analysis into compilers.4 SummaryCompiler optimizations can be divided into two broadclasses: high-level optimizations, which correspond totransformations expressible in terms of source-level con-structs; and low-level optimizations, which are not soexpressible. While abstract interpretation is widely ac-cepted as a natural framework for semantics-based pro-gram analyses, we have found that in many cases, suchanalyses are not quite suitable for low-level optimiza-tions. There are two main reasons for this. The �rstis that there is often a \semantic mismatch" betweenthe kinds of information abstract interpretations pro-vide, and the kinds of information a compiler wantsfor its low-level optimizations: abstract interpretationsare typically formulated in high-level program seman-tics, while for low-level optimization we need informa-tion about machine-level entities like registers, pointersin memory, etc. The second reason is that in orderto carry out a low-level optimization, in general it isnot enough to know that the optimization is permis-sible: we need to know also that it is desirable. De-termining whether a particular optimization is desir-able in a particular context requires low-level cost mod-els, as well as knowledge about execution frequencies.While there has been a considerable body of work onsemantics-based methods for execution cost analysis ofprograms, these techniques do not seem to be used verymuch within actual compilers, which tend to use sim-ple and potentially imprecise heuristics. Again, this is



due in part to a semantic mismatch: semantics-basedcost analyses typically yield cost functions (or execu-tion frequency functions) that are expressed in terms ofinput size, while for optimization purposes it is easierto work with absolute values for execution frequenciesand costs.A fairly obvious solution to the �rst problem is to usea low-level concrete semantics that makes explicit theentities that are of interest in the context of low-leveloptimizations. The main pragmatic problem here isthat low-level program representations tend to be con-siderably larger than high-level representations, makinganalyses more expensive. A possible solution is to re-duce the overhead associated with interpreting a pro-gram over an abstract domain by using some form of\abstract compilation," i.e., by executing (an appro-priately modi�ed form of) the low-level representationof the program instead of interpreting its components.There is the additional issue that program propertiesthat are relatively easily inferrable at a high-level maybe obscured in a lower-level analysis, but this can behandled by initially analyzing the program at a highlevel, then translating the high-level program proper-ties into low-level terms during the translation of theprogram into a lower-level language.The second problem can be addressed, at least inprinciple, via polyvariant specialization at the low-level.This idea has been applied to controlling dynamic taskcreation in parallel systems, and appears to work rea-sonably well. However, a signi�cant problem that hasto be addressed when applying this to low-level codeoptimization is that of controlling code growth.The appeal of semantics-based program manipula-tion techniques is that they allow us to reason formallyabout the manipulations themselves, and certify withsome con�dence that such manipulations will not cause\bad things" to happen. Much of the current practice oflow-level optimizations seems guided by simple heuris-tics rather than careful semantic treatment. Because ofthis, it is not clear that much can be said about whetheror not \bad things"can happen: an indeed, we some-times do encounter situations where apparently plausi-ble \improvements" to a program can lead to a degra-dation in its performance. This is undesirable, but ifsemantics-based techniques can be adapted for low-leveloptimizations it may be possible to reduce or eliminatesuch anomalous situations in the future.AcknowledgementsNumerous valuable discussions with ManuelHermenegildo are gratefully acknowledged.

References[1] A. V. Aho, R. Sethi and J. D. Ullman,Compilers {Principles, Techniques and Tools, Addison-Wesley,1986.[2] A. Aiken, E. L. Wimmers, and T. K. Lakshman,\Soft Typing with Conditional Types", Proc. 21st.ACM Symposium on Principles of ProgrammingLanguages, Portland, Oregon, Jan. 1994, pp. 163{173.[3] R. Allen and K. Kennedy, \Automatic Translationof FORTRAN Programs to Vector Form", ACMTransactions on Programming Languages and Sys-tems vol. 9 no. 4, Oct. 1987, pp. 491{542.[4] A. W. Appel and Z. Shao, \An Empirical and Ana-lytical Study of Stack vs. Heap Cost for Languageswith Closures", Research Report CS-TR-450-94,Dept. of Computer Science, Princeton University,March 1994.[5] J. Arsac and Y. Kodrato�, \Some Techniquesfor Recursion Removal from Recursive Functions",ACM Transactions on Programming Languagesand Systems vol. 4 no. 2, Apr. 1982, pp. 295{322.[6] D. F. Bacon, S. L. Graham, and O. J. Sharp,\Compiler Transformations for High-PerformanceComputing",Computing Surveys vol. 26 no. 4, Dec.1994, pp. 345{420.[7] P. A. Bigot, D. Gudeman, and S. K. Debray, \Out-put Value Placement in Moded Logic Programs",Proc. Eleventh Int. Conf. on Logic Programming,June 1994, pp. 175{189. MIT Press.[8] P. A. Bigot and S. K. Debray, \A Simple Approachto Supporting Untagged Objects in DynamicallyTyped Languages", Draft Report, Dept. of Com-puter Science, University of Arizona, Tucson, Nov.1994.[9] D. Bernstein, M. C. Golumbic, Y. Mansour, R.Y. Pinter, D. Q. Goldin, H. Krawczyk, and I.Nahshon, \Spill Code Minimization Techniques forOptimizing Compilers", Proc. SIGPLAN '89 Con-ference on Programming Language Design and Im-plementation, Portland, June 1989, pp. 258{263.[10] R. S. Bird, \Tabulation Techniques for RecursivePrograms", Computing Surveys vol. 12 no. 4, Dec.1980, pp. 403{417.[11] B. Bjerner and S. Holmstr�om, \A CompositionalApproach to Time Analysis of First Order LazyFunctional Programs", Proc. ACM Conference on



Functional Programming Languages and ComputerArchitecture, 1989, pp. 157{165.[12] F. Bueno, M. Garc��a de la Banda andM. Hermenegildo, \E�ectiveness of Global Anal-ysis in Strict Independence-Based Automatic Pro-gram Parallelization, Proc. International Sympo-sium on Logic Programming, Nov. 1994, pp. 320{336. MIT Press.[13] R. M. Burstall and J. Darlington, \A Transforma-tion System for Developing Recursive Programs",Journal of the ACM vol. 24 no. 1, Jan. 1977, pp.44-67.[14] S. Carr, K. S. McKinley, and C.-W. Tseng, \Com-piler Optimizations for Improving Data Locality",Proc. Sixth International Conference on Architec-tural Support for Programming Languages and Op-erating Systems, San Jose, California, Nov. 1994,pp. 252{262. SIGPLAN Notices vol. 29 no. 11.[15] G. J. Chaitin, \Register Allocation via Graph Col-oring", Proc. 1982 ACM Conference on CompilerConstruction, Boston, June 1982, pp. 98{104.[16] C. Chambers, The Design and Implementation ofthe SELF Compiler, an Optimizing Compiler forObject-Oriented Programming Languages, Ph.D.Dissertation, Stanford University, 1992.[17] D. R. Chase, \Safety Considerations for StorageAllocation Optimizations", Proc. SIGPLAN '88Conference on Programming Language Design andImplementation, Atlanta, June 1988, pp. 1{10.[18] D. R. Chase, M. Wegman, and F. K. Zadeck,\Analysis of Pointers and Structures", Proc. ACMSIGPLAN '90 Conference on Programming Lan-guage Design and Implementation, White Plains,NY, June 1990, pp. 296{310.[19] W.-N. Chin, \Safe Fusion of Functional Expres-sions", Proc. ACM Conference on Lisp and Func-tional Programming, San Francisco, June 1992, pp.11{20.[20] F. C. Chow and J. L. Hennessy, \The Priority-Based Coloring Approach to Register Allocation",ACM Transactions on Programming Languagesand Systems vol. 12 no. 4, Oct. 1990, pp. 501{536.[21] J. Cohen and C. Zuckerman, \Two Languages forEstimating Program E�ciency", Communicationsof the ACM vol. 17 no. 6, June 1974, pp. 301{308.[22] K. D. Cooper, M. W. Hall, and L. Torczon, \Un-expected Side E�ects of Inline Substitution", ACMLetters on Programming Languages and Systemsvol. 1 no. 1, March 1992, pp. 22{32.

[23] P. Cousot and R. Cousot, \Abstract Interpretation:A Uni�ed Lattice Model for Static Analysis of Pro-grams by Construction or Apporoximation of Fix-points", Proc. Fourth ACM Symposium on Princi-ples of Programming Languages, 1977, pp. 238-252.[24] P. Cousot, and R. Cousot, \Systematic Design ofProgram Analysis Frameworks", Proc. Sixth ACMSymposium on Principles of Programming Lan-guages, 1979, pp. 269-282.[25] P. Cousot, \Semantic Foundations of ProgramAnalysis", in Program Flow Analysis: Theory andApplications, eds. S. S. Muchnick and N. D. Jones,Prentice-Hall, 1981.[26] J. W. Davidson and A. M. Holler, \SubprogramInlining: A Study of its E�ects on Program Execu-tion Time", IEEE Transactions on Software Engi-neering vol. 18 no. 2, Feb. 1992, pp. 89{102.[27] K. De Bosschere, S. K. Debray, D. Gudeman, andS. Kannan, \Call Forwarding: A Simple Interpro-cedural Optimization Technique for DynamicallyTyped Languages", Proc. 21st. ACM Symposiumon Principles of Programming Languages, Port-land, Oregon, Jan. 1994, pp. 409{420.[28] J. Dean and C. Chambers, \Towards Better In-lining Decisions using Inlining Trials", Proc. 1994ACM Conference on Lisp and Functional Program-ming, Orlando, Florida, June 1994, pp. 273{282.[29] S. K. Debray, \Optimizing Almost-Tail-RecursiveProlog Programs", Proc. Functional ProgrammingLanguages and Computer Architecture, Nancy,France, Sept. 1985.[30] S. K. Debray and D. S. Warren, \Automatic ModeInferencing for Logic Programs", J. Logic Program-ming vol. 5 no. 3, Sept. 1988, pp. 207-229.[31] S. K. Debray, N. Lin and M. Hermenegildo, \TaskGranularity Analysis in Logic Programs," Proc.ACM SIGPLAN'90 Conference on ProgrammingLanguage Design and Implementation, June 1990,pp. 174{188.[32] S. K. Debray and N.-W. Lin, \Cost Analysis ofLogic Programs", ACM Transactions on Program-ming Languages and Systems, vol. 15 no. 5, Nov.1993, pp. 826{875.[33] A. Deutsch, \On Determining Lifetime and Alias-ing of DynamicallyAllocated Data in Higher OrderFunctional Speci�cations", Proc. 17th ACM Sym-posium on Principles of Programming Languages,Jan. 1990, pp. 157{168.



[34] D. R. Engler and T. A. Proebsting, \DCG: AnE�cient, Retargetable Dynamic Code GenerationSystem", Proc. Sixth International Conference onArchitectural Support for Programming Languagesand Operating Systems, San Jose, California, Nov.1994, pp. 263{271. SIGPLAN Notices vol. 29 no.11.[35] I. Foster and W. Winsborough, \Copy Avoidancethrough Compile-Time Analysis and Local Reuse",Proc. 1991 International Symposium on Logic Pro-gramming, San Diego, Nov. 1991, pp. 455{469.MIT Press, Cambridge.[36] P. B. Gibbons and S. S. Muchnick, \E�cient In-struction Scheduling for a Pipelined Architecture",Proc. ACM SIGPLAN '86 Conference on CompilerConstruction, June 1986, pp. 11{16.[37] K. Gopinath and J. Hennessy, \Copy Eliminationin Functional Languages", Proc. Sixteenth ACMSymposium on Principles of Programming Lan-guages, Austin, TX, Jan. 1989, pp. 303{314.[38] D. Gudeman, K. De Bosschere, and S.K. Debray,\jc: An E�cient and Portable Sequential Imple-mentation of Janus", Proc. Joint Int. Conf. andSymp. on Logic Programming, Nov. 1992, pp. 399{413. MIT Press.[39] F. Henglein and J. J�rgensen, \Formally OptimalBoxing", Proc. 21st. ACM Symposium on Prin-ciples of Programming Languages, Portland, OR,Jan. 1994, pp. 213{226.[40] M. Hermenegildo and K. Greene, \The &-Prolog System: Exploiting Independent And-Parallelism", New Generation Computing vol. 9nos. 3{4, 1991, pp. 233{257.[41] M. Hermenegildo, R. Warren and S. K. Debray,\Global Flow Analysis as a Practical CompilationTool", Journal of Logic Programming, vol. 13 no.4, Aug. 1992.[42] P. Hudak and A. Bloss, \The Aggregate UpdateProblem in Functional Languages", Proc. TwelfthACM Symposium on Principles of ProgrammingLanguages, 1985, pp. 300{314.[43] L. Huelsbergen, J. R. Larus, and A. Aiken, \UsingRun-Time List Sizes to Guide Parallel Thread Cre-ation", Proc. ACM Conference on Lisp and Func-tional Programming, June 1994, pp. 79{90.[44] S. Kaplan, \Algorithmic Complexity of Logic Pro-grams", Proc. Fifth International Conference onLogic Programming, Seattle, 1988, pp. 780{793.MIT Press.

[45] D. Keppel, S. J. Eggers, and R. R. Henry, \A Casefor Runtime Code Generation", Technical Report91-11-04, Department of Computer Science, Uni-versity of Washington, 1991.[46] D. Krantz, ORBIT: An Optimizing Compilerfor Scheme, Ph.D. Dissertation, Yale Univer-sity, 1988. (Also available as Technical ReportYALEU/DCS/RR-632, Dept. of Computer Sci-ence, Yale University, Feb. 1988.)[47] D. Krantz, R. Kelsey, J. Rees, P. Hudak, J. Philbin,and N. Adams, \ORBIT: An optimizing Compilerfor Scheme", Proc. SIGPLAN '86 Symposium onCompiler Construction, pp. 219{233.[48] D. Le M�etayer, \ACE: An Automatic ComplexityEvaluator", ACM Transactions on ProgrammingLanguages and Systems vol. 10 no. 2, April 1988,pp. 248{266.[49] X. Leroy, \Unboxed objects and polymorphic typ-ing", Proc. 19th. ACM Symposium on Principles ofProgramming Languages, Albuquerque, NM, Jan.1992, pp. 177{188.[50] T. S. McNerney, \Verifying the Correctness ofCompiler Transformations on Basic Blocks us-ing Abstract Interpretation", Proc. Symposium onPartial Evaluation and Semantics-Based ProgramManipulation, New Haven, CT, June 1991, pp.106{115.[51] A. Mari�en, G. Janssens, A. Mulkers, and M.Bruynooghe, \The Impact of Abstract Interpre-tation on Code Generation: an Experiment inCode Generation", Proc. Sixth International Con-ference on Logic Programming, Lisbon, Portugal,June 1989. MIT Press.[52] D. Maurer, \Strictness computation using special�-expressions", in Programs as Data Objects, Oct.1985, pp. 136{155. Springer Verlag LNCS vol. 217.[53] A. Mulkers, W.Winsborough, and M. Bruynooghe,\Analysis of Shared Data Structures for Compile-Time Garbage Collection in Logic Programs",Proc. Seventh International Conference on LogicProgramming, Jerusalem, June 1990, pp. 747{762.MIT Press.[54] A. Mulkers, W.Winsborough, and M. Bruynooghe,\Live-Structure Data
ow Analysis for Prolog",ACM Transactions on Programming Languagesand Systems vol. 16 no. 2, March 1994, pp. 205{258.



[55] R. Paige and S. Koenig, \Finite Di�erencing ofComputable Expressions", ACM Transactions onProgramming Languages and Systems vol. 4 no. 3,July 1982, pp. 402{454.[56] J. C. Peterson, \Untagged Data in Tagged En-vironments: Choosing Optimal Representationsat Compile Time", Proc. Functional ProgrammingLanguages and Computer Architecture, London,Sept. 1989, pp. 89{99.[57] S. Peyton Jones and J. Launchbury, \Unboxed val-ues as �rst class citizens in a non-strict functionallanguage", Proc. Functional Programming Lan-guages and Computer Architecture 1991, pp. 636{666.[58] M. L. Powell, \A Portable Optimizing Compilerfor Modula-2", Proc. SIGPLAN '84 Symposium onCompiler Construction, Montreal, Canada, June1984, pp. 310{318.[59] T. A. Proebsting and C. N. Fischer, \Linear-timeOptimal Code Scheduling for Delayed-Load Archi-tectures", Proc. ACM SIGPLAN '91 Conferenceon Programming Language Design and Implemen-tation, Toronto, June 1991, pp. 256{267.[60] L. H. Ramshaw, Formalizing the Analysis of Al-gorithms, Ph.D. Thesis, Stanford University, 1979.(Also available as Report SL-79-5, Xerox Palo AltoResearch Center, Palo Alto, California, 1979.)[61] B. Reistad and D. Gi�ord, \Static DependentCosts for Estimating Execution Time", Proc. 1994ACM Conference on Lisp and Functional Program-ming, Orlando, Florida, June 1994, pp. 65{78.[62] S. E. Richardson, Evaluating InterproceduralCode Optimization Techniques, Ph.D. Dissertation,Stanford University, 1991. (Also available as Tech-nical Report CSL-TR-91-460, Computer SystemsLaboratory, Stanford University, Feb. 1991.)[63] M. Rosendahl, \Automatic Complexity Analysis",Proc. ACM Conference on Functional Program-ming Languages and Computer Architecture, 1989,pp. 144{156.[64] D. Sands, \Complexity Analysis for a Lazy Higher-Order Language", Proc. 3rd European Symposiumon Programming, May 1990, pp. 361{376. Springer-Verlag LNCS vol. 432.[65] E. Schonberg, J. T. Schwartz, and M. Sharir, \AnAutomatic Technique for Selection of Data Repre-sentations in SETL Programs",ACM Transactionson Programming Languages and Systems vol. 3 no.2, April 1981, pp. 126{143.

[66] M. Sharir, \Some Observations Concerning For-mal Di�erentiation of Set Theoretic Expressions",ACM Transactions on Programming Languagesand Systems vol. 4 no. 2, April 1982, pp. 196{225.[67] J. Shultis, \On the Complexity of Higher-OrderPrograms", Technical Report CU-CS-288, Univer-sity of Colorado, Feb. 1985.[68] A. Taylor, \LIPS on a MIPS: Results from a PrologCompiler for a RISC", Proc. Seventh InternationalConference on Logic Programming, Jerusalem, Is-rael, June 1990.[69] A. Taylor, High Performance Prolog Implementa-tion, Ph.D. thesis, University of Sidney, Australia,1991.[70] K. Thompson, \A New C Compiler", Proc. Sum-mer 1990 UKUUG Conference, London, July 1990,pp. 41{51.[71] P. Van Roy, Can Logic Programming Execute asFast as Imperative Programming? PhD thesis, Uni-versity of California at Berkeley, 1990.[72] P. Wadler, \Strictness Analysis Aids Time Analy-sis", Proc. 15th. ACM Symposium on Principles ofProgramming Languages, Jan. 1988, pp. 119{132.[73] P. Wadler, \Deforestation: Transforming programsto eliminate trees", Proc. European Symposiumon Programming, Nancy, France, March 1988, pp.344{358. Springer-Verlag LNCS vol. 300.[74] T. A. Wagner, V. Maverick, S. L. Graham, and M.A. Harrison, \Accurate Static Estimators for Pro-gram Optimization", Proc. ACM SIGPLAN '94Conference on Programming Language Design andImplementation, Orlando, Florida, June 1994, pp.85{96.[75] D. W. Wall, \Predicting Program Behavior UsingReal or Estimated Pro�les", Proc. SIGPLAN '91Conference on Programming Language Design andImplementation, Toronto, Canada, June 1991, pp.59{70.[76] B. Wegbreit, \Mechanical Program Analysis",Communications of the ACM vol. 18 no. 9, Sept.1975, pp. 528{539.[77] B. Wegbreit, \Verifying Program Performance",Journal of the ACM vol. 23 no. 4, Oct. 1976, pp.691{699.[78] M. E. Wolf and M. S. Lam, \A Data Locality Op-timizing Algorithm", Proc. SIGPLAN '91 Confer-ence on Programming Language Design and Imple-mentation, Toronto, Canada, June 1991, pp. 30{44.


