
On the Complexity of Flow-Sensitive Dataow Analyses �Robert Muth Saumya DebrayDepartment of Computer SieneUniversity of ArizonaTuson, AZ 85721, U.S.A.fmuth, debrayg�s.arizona.eduAbstratThis paper attempts to address the question of why er-tain dataow analysis problems an be solved eÆiently, butnot others. We fous on ow-sensitive analyses, and give asimple and general result that shows that analyses that re-quire the use of relational attributes for preision must bePSPACE-hard in general. We then show that if the lan-guage onstruts are slightly strengthened to allow a ompu-tation to maintain a very limited summary of what happensalong an exeution path, inter-proedural analyses beomeEXPTIME-hard. We disuss appliations of our results to avariety of analyses disussed in the literature. Our work elu-idates the reasons behind the omplexity results given by anumber of authors, improves on a number of suh omplex-ity results, and exposes oneptual ommonalities underly-ing suh results that are not readily apparent otherwise.1 IntrodutionProgram analysis involves keeping trak of properties of vari-ables at di�erent program points. In general, the proper-ties of di�erent variables may depend on eah other. Whentraking suh properties, we may hoose to keep trak ofdependenies between the properties of di�erent variables(leading to analysis information of the form \[x = a andy = b℄; or [x = and y = d℄"), or we may hoose to ignoresuh dependenies (leading to information of the form \[x =a or x = ℄; and [y = b or y = d℄"). Jones and Muhnik referto the former kind of analyses as relational-attribute analy-ses, and the latter kind as independent-attribute analyses [5℄.The tradeo� between these methods is that independent-attribute analyses are usually more eÆient but less preisethan relational-attribute analyses.When addressing a program analysis problem, it is usefulto onsider the omputational omplexity of obtaining a pre-� This work was supported in part by the National Siene Foun-dation under grants CDA-9500991, CCR-9711166, and ASC-9720738.
To appear in the 27th ACM Symposium on Priniplesof Programming Languages, January 2000.

ise (upto symboli exeution) solution to the problem.1 Ifa preise solution an be obtained \eÆiently," i.e., in poly-nomial time, it makes sense to try and �nd an algorithmthat obtains suh a solution. If, on the other hand, the exis-tene of eÆient algorithms to ompute preise solutions isunlikely, it makes sense to sari�e preision for eÆieny.Questions about the omputational omplexity of variousprogram analyses have been addressed by a number of au-thors (see Setion 5). The urrent state of knowledge result-ing from these works is, by and large, a set of isolated fatsabout the omplexities of various analyses. What is miss-ing are insights into the underlying reasons for these results.For example, Landi's results on the omplexity of pointer-indued alias analysis [7, 10℄ tell us that single-level pointersare, in some sense, easy to handle, but multi-level pointersare not: however, they don't explain exatly why multi-levelpointers are hard to deal with. The situation is further mud-dled by the results of Pande et al., who show that the preiseonstrution of inter-proedural def-use hains beomes dif-�ult in the presene of single-level pointers [14℄. In otherwords, single-level pointers ompliate some analyses butnot others, but we don't have any insights into why suhpointers are benign in some situations but problemati inothers. Moreover, these results are typially obtained usingredutions from problems with known omplexity: di�erentproblem hoies by di�erent authors, and di�erenes in thedetails of the redutions for di�erent analysis problems, of-ten make it diÆult to see whether there are any underlyingoneptual ommonalities between di�erent suh omplexityarguments.The main ontribution of this paper is to eluidate thefundamental reasons why ertain program analyses an bearried out eÆiently (i.e., in polynomial time), while othersare diÆult. We give a simple and general result that is ap-pliable to a wide variety of intra- and inter-proedural ow-sensitive analyses. This is able to explain, for example, whysingle-level pointers an be handled eÆiently in the ontextof pointer-indued alias analysis [7, 10℄ but not for def-usehains [14℄. With very little oneptual and notational ef-1The determination of whether some (nontrivial) property will a-tually hold at a partiular program point at runtime is, of ourse,undeidable. A standard assumption in the dataow analysis litera-ture is that all \realizable" paths in a program|by whih we mean allpaths subjet to the onstraint that proedure alls are mathed uporretly with returns|are exeutable, or, equivalently, that eitherbranh of any onditional an always be exeuted. This assumption,whih Barth referred to as preision \upto symboli exeution" [1℄, isommonly used to sidestep the problem of undeidability, and \pre-ision" of program analyses is typially de�ned with respet to thisassumption.

fort, a number of omplexity results given in the literature[7, 10, 11, 12, 14℄ fall out diretly as orollaries of this re-sult. Moreover, for several of these analyses, we are ableto improve signi�antly on the known omplexity results re-ported in the literature [11, 12, 14℄. For example, we showthat the following analyses are EXPTIME-omplete: inter-proedural pointer alias analysis in the presene of two-levelpointers (previous best result: PSPACE-hardness [7℄), inter-proedural reahing de�nitions in the presene of single-levelpointers (previous best result: NP-hardness [14℄), and inter-proedural liveness analysis and available expressions in thepresene of referene parameters (previous best result: NP-hardness [12℄). In the proess, our work exposes oneptualommonalities underlying a variety of program analyses.To maintain ontinuity, the proofs of most of the resultsare given in the Appendix.2 PreliminariesFrom the perspetive of program analysis, we may be inter-ested in two di�erent kinds of information about programvariables. We may want to know something about a par-tiular variable at a partiular program point, e.g., in theontext of onstant propagation; or we may want to knowsomething about the relationships among some set of vari-ables, e.g., whether or not two variables an be guaranteedto have di�erent values at a partiular program point (use-ful for reasoning about pointers). We refer to the problemof determining the former kind of information as the sin-gle value problem, and that of determining the latter kind ofinformation as the simultaneous value problem. For the pur-poses of this paper, we fous on rather restrited lasses ofsuh problems, under the assumption, standard in dataowanalysis, that all paths in the program being analyzed areexeutable:De�nition 2.1 Suppose we are given a program P and aninitial assignment Einit of values for the variables of P . Letx; x1; : : : ; xn be variables in P , ; 1; : : : ; n be values, andlet p be a program point in P .A single value problem for P is a problem of the form: \isthere an exeution path from the entry node of P to p, withinitial variable assignment Einit , suh that \x = " holdswhen ontrol reahes p?"A simultaneous value problem for P is a problem of theform: \is there an exeution path from the entry node of Pto p, with initial variable assignment Einit , suh that \x1 =1 ^ x2 = 2 ^ � � � ^ xk = k" holds when ontrol reahes p?"In partiular, simultaneous value problems where all of theonstants 1; : : : ; k are either 0 or 1 are referred to as binarysimultaneous value problems.It seems intuitively obvious that solving a simultane-ous value problem will require a relational-attribute anal-ysis; we will show, however, that while an independent-attribute analysis is often adequate for a single value prob-lem, there are some situations where it is neessary to resortto relational-attribute analyses even for single value prob-lems.

3 Intra-proedural and Non-reursive Inter-proeduralAnalyses3.1 Intra-proedural AnalysisIn this setion we onsider a simple language Base wherevariables are all integer-valued, and a program onsists ofa single proedure ontaining (labelled) statements thatan be assignments, onditionals, or unonditional jumps.2Sine our primary interest is in dataow analyses, we makethe standard assumption that all paths in the program areexeutable, i.e., that either branh of a onditional may beexeuted at runtime, and omit the atual expression beingtested in a onditional, representing it by `-' instead. Tokeep the disussion simple and foused, we restrit our atten-tion to expressions that are variables or onstants (assumingthat an analysis is able to do arithmeti adds an indepen-dent soure of omplexity that an obsure the essene ofour results):Prog ::= StmtStmt ::= Var = Expr;j if (-) Stmt1 ...else if (-) Stmt i ...else Stmtnj Label: Stmtj goto Label;j fStmt1; ...; Stmtn;gExpr ::= Const j VarConst ::= 0 j 1The simplest analyses are those where there is no need tokeep trak of relationships between variables:Theorem 3.1 The single value problem for programs inBase an be solved in polynomial time, provided that prim-itive operations of the analysis an be arried out in polyno-mial time.We next onsider the omplexity of simultaneous valueproblems for Base. In this ontext, we mention the follow-ing result: this is not the entral result of this paper, butis of some historial interest beause its proof, given in Ap-pendix 6, is essentially isomorphi to similar NP-hardnessresults for ayli programs given by a number of authors[5, 7, 10, 11, 12, 14℄. Appliations of this theorem inlude(intra-proedural) type inferene problems where the typeof a variable depends on the types of other variables (see,e.g., [5, 15℄). Theorem 3.4 and Corollary 4.2 give strongerresults for more general lasses of programs.Theorem 3.2 The (binary) simultaneous value problem forayli programs in Base is NP-omplete.The main result of this setion is for simultaneous valueproblems for all programs in Base. We show that this lassof problems is PSPACE-omplete: the idea is that givenan arbitary polynomial-spae-bounded Turing mahine, wean onstrut a simultaneous value problem over a programin Base that an be used to determine whether or not theTuring mahine aepts its input. Suppose we are given asingle tape deterministi polynomial-spae-bounded Turingmahine M = (Q;�;�; Æ; q0; F), where � is the input alpha-bet; � = f0; 1; : : : ; nsg is the tape alphabet, with 0 being2We hoose this syntax for simpliity: with a small amount of odedupliation, it is straightforward to express our programs in a subsetof C onsisting of assignments, onditionals, andwhile loops togetherwith break and ontinue statements.2

the blank symbol; Æ 2 Q � � �! Q � � � fL;Rg is thetransition funtion; q0 2 Q is the initial state; and F = fq1gis the set of �nal states, suh that M halts on all inputsx after using at most jxjk ells of the tape. For simpliitywe assume that M erases its tape before halting and thatthe tape is yli, i.e., after the last ell the tape \wrapsaround" to the �rst ell: these are not serious restritions,and it is not diÆult to see how a Turing mahine that doesnot satisfy these assumptions an be transformed into onethat does. The use of a yli tape allows us to simulate themovement of the tape head to the left (respetively, right)by rotating the tape to the right (respetively, left), so thatthe tape ell being sanned by the head is always ell 0:this simpli�es the simulation of the Turing mahine, sinewe don't have to keep trak of the position of the tape head.We onstrut a program PM;x that emulates M on an inputx. This program ontains three sets of (boolean) variables:1. Q0; : : : ; Qnq , where nq = jQj � 1: These variables repre-sent the urrent state of M : intuitively, Qi = 1 denotesthat M is in state i.2. T0;0; : : : ; Tnt;ns, where nt = jxjk � 1; ns = j�j � 1:These variables represent the ontents of M 's tape: in-tuitively, Ti;j = 1 denotes that ell i of M 's tape on-tains symbol j.3. X0; : : : ; Xns: these variables are temporaries for opyingthe tape ontents while we \rotate" the tape.A on�guration whereM is in state qk, the tape ontents ares0s1 : : : snt, and where M 's tape head is sanning the mthtape square, is desribed by the following variable settings:Qi = � 1 if i = k0 otherwiseXi = 0; for all iTi;j = � 1 if s(i�m) mod (nt+1) = j0 otherwiseThe ode orresponding to M 's move when it is state qiand sanning a ell ontaining a symbol sj , i.e., Æ(qi; sj), isrepresented by MOV i;j , and is de�ned as follows:Æ(qi; sj) = (qk; sm; L) Æ(qi; sj) = (qk; sm;R)Qi = Qk; Qi = Qk;Qk = 1; Qk = 1;T0;j = T0;m; T0;j = T0;m;T0;m = 1; T0;m = 1;goto opy left; goto opy right;The �rst two lines of this ode update the state variable,the next two lines update the ontents of the tape ell beingsanned, and the last line orresponds to the rotation of thetape, simulating the movement of the tape head.The program PM;x that emulatesM on input x is shownin Figure 1. After initializing the Ti;j variables appropriatelyfor the input x, the program goes into a loop, repeatedlyguessing the urrent state and the symbol under the tapehead, then updating the state and tape ell, and �nally ro-tating the tape appropriately in order to simulate the move-ment of the tape head. A wrong guess leads to a state wheremultiple Qi variables, or multiple Ti;j variables, are set to 1.One suh an \illegal" state is entered, the struture of theprogram ensures that the number of variables set to 1 does

not derease, whih means that subsequent states remain il-legal. This allows us to use a simultaneous value problem toidentify legal states in PM;x, i.e., those that orrespond tovalid on�gurations of M , and thene to determine whetherM aepts its input. For notational onveniene, we intro-due the following abbreviations:UnambiguousFinalState �(Q0 = 0 ^ Q1 = 1 ^ Q2 = 0 ^ � � � ^ Qnq = 0)TempsClear � (X0 = 0 ^ � � � ^ Xns = 0)TapeClear �((T0;0 = 1 ^ T1;0 = 1 ^ � � � ^ Tnt;0 = 1)^(T0;1 = 0 ^ T1;1 = 0 ^ � � � ^ Tnt;1 = 0) ^ � � � ^(T0;ns = 0 ^ T1;ns = 0 ^ � � � ^ Tnt;ns = 0)).Intuitively, UnambiguousFinalState is true if and only if theonly state variable that is 1 is Q1, orresponding to the �nalstate of M ; TempsClear is true if and only if the variablesXi are all 0; and TapeClear is true if and only if the ontentsof the variables Ti;j orrespond to all the tape ells of Montaining a blank. The proofs of the following Lemmas aregiven in Appendix 6.Lemma 3.3 A given polynomial-spae-bounded Turing ma-hine M aepts its input x if and only if AeptingCon�gmay hold at the end of the program, whereAeptingCon�g �UnambiguousFinalState ^ TempsClear ^ TapeClear .It is easy to show that the program PM;x an be generatedusing O(log(jM j+ jxj)) spae (Lemma .1).Theorem 3.4 The (binary) simultaneous value problem forprograms in Base is PSPACE-omplete.Proof: (sketh) PSPACE-hardness follows diretly fromLemmas 3.3 and .1. To show that the simultaneous valueproblem is in PSPACE, we show that a given suh a prob-lem for a program P , we an onstrut a nondeterministimulti-tape polynomial-spae-bounded Turing mahine MPto solve the problem. Details are given in Appendix 6.In the ontext of program analysis, this is representative ofthe simplest kind of simultaneous value problem, where wehave two distint properties (here represented by \equal to0" and \equal to 1") of a language with a minimally interest-ing set of ontrol onstruts. The (hardness) result thereforeextends diretly to more omplex analysis problems. Unlikethe PSPACE-hardness result given by Jones and Muhnikfor relational-attribute analyses [5℄, our result does not re-quire interpreted onditionals. In other words, our resultomplies with the standard assumption of dataow analy-sis, namely, that all paths in a program are exeutable. Assuh, it is appliable to a wider variety of dataow analyses.3.2 Inter-proedural Analysis of Non-reursive ProgramsSuppose we extend the language Base with proedureswhere parameters are passed by value: let the resulting lan-guage be Base+Pro. For non-reursive programs in thislanguage, the omplexity of simultaneous value problemsdoes not hange:Theorem 3.5 Inter-proedural simultaneous values prob-lems for non-reursive programs in Base+Pro isPSPACE-omplete.3

/* Program PM;x to emulate a given polynomial spae-bounded Turing Mahine Mon input x *//* int Q0, ..., Qnq;int T0;0, ..., Tnt;ns;int X0, ..., Xns; */f T0;0 = � � �; ...; Tnt;ns = � � �; /* initialize Ti;j based on input string x */Q0 = 1; Q1 = 0; ...Qnq = 0; /* initial state */Start: /* emulation loop */X0 = 0; ...; Xns = 0; /* lear temps */Dispath: /* transitions based on urrent state and tape symbol */if (-)f /* Q0 == 1? */if (-) f /* T0;0 == 1? */ MOV 0;0; g...else if (-) f /* T0;i == 1? */ MOV 0;i; g...else if (-) f /* T0;ns == 1? */ MOV 0;ns; ggelse if (-) goto Done; /* Q1 == 1? : q1 = final state */else if (-)f /* Q2 == 1? */...g...else if (-)f /* Qnq == 1? */if (-) f /* T0;0 == 1? */ MOV nq;0; g...else if (-) f /* T0;i == 1? */ MOV nq;i; g...else if (-) f /* T0;ns == 1? */ MOV nq;ns; gg/* opy tape left or right */opy right:X0 = T0;0; ...; Xns = T0;ns;T0;0 = T1;0; ...; T0;ns = T1;ns;...Tnt;0 = X0; ...; Tnt;ns = Xns;goto Start;opy left:X0 = Tnt;0; ...; Xns = Tnt;ns;Tnt;0 = Tnt�1;0; ...; Tnt;ns = Tnt�1;ns;...T0;0 = X0; ...; T0;ns = Xns;goto Start;Done:X0 = 0; ...Xns = 0;End:g Figure 1: The program PM;x to emulate Turing mahine M on input x
4

3.3 Appliations to the Complexity of Dataow AnalysesThis setion disusses appliations of the results of the pre-vious setion to various program analyses disussed in theliterature.3.3.1 Intra-proedural Pointer Alias AnalysisWe �rst add single-level pointers to the Base language,yielding the language Base+1ptr. This language ontainstwo lasses of variables: base variables, whih range overintegers, and pointers to base variables, whih range overaddresses (whih are assumed to be disjoint from the set ofintegers). The new operations in this language, ompared toBase, are: taking the address of a (base) variable v, denotedby &v, and dereferening a pointer p, denoted by *p.It is not hard to see that the simultaneous value prob-lem in this ase is still in PSPACE, sine we an onstruta polynomial-spae-bounded Turing mahine to solve thisproblem in a manner similar to that in the proof of The-orem 3.4. By ontrast to the language Base, where thesingle value problem is in P, the omplexity of the singlevalue problem for Base+1ptr depends on whether we areonerned with base variables or pointers. For a single-valueproblem for a base variable, an independent-attribute anal-ysis is not suÆient. This is illustrated by the followingprogram fragment:a = 0;if (-){ p = &a; x = 0; }else{ p = &b; x = 1; }*p = x;Suppose we are interested in the single-value problem ofwhether a = 1 may hold immediately after the assignment*p = x. An independen- attribute analysis would infer thatimmediately after the onditional, p an point to either a orb, and therefore that after the assignment `*p = x' the valueof a may or may not be 1. A relational-attribute analysis,on the other hand, would be able to infer that the value ofa annot be 1 after the indiret assignment. In other words,for a preise analysis we need relational attributes, i.e., theability to solve simultaneous value problems.Theorem 3.6 The single-value problem for pointer vari-ables in Base+1ptr an be solved in polynomial time. Thesingle-value problem for base variables in Base+1ptr isPSPACE-omplete.The key idea behind the PSPACE-hardness proof is to showhow pointers an be used to redue a simultaneous-valueproblem in Base to a single-value problem in Base+1ptr.Given a program P in Base, we generate a program P 0 inBase+1ptr suh that eah variable X in P orresponds toa pair of pointer variables X, X in P 0. P 0 also ontains apair of global variables Zero and One that are initialized to0 and 1 respetively: a value of 0 in P simulated using thepointer value &Zero in P 0, while a value of 1 is simulatedby &One. For eah variable X in P , the variable X in P 0spei�es what the value of X is, while X spei�es what it isnot (reall that a variable in a program in Base an onlytake on the values 0 and 1). Then, given a simultaneousvalue problem `X1 = 1^� � �^Xn = n' for P , we generate anadditional series of indiret assignments `*xi = 0' appendedto the end of P 0, where xi � X if i � 0, and xi � X if i � 1.

The original simultaneous value problem in P is true if andonly if all of these indiret assignments in P 0 write to thevariable Zero. Thus, by heking whether the single-valueproblem `One = 1' is satis�ed in P 0 we an solve the originalsimultaneous-value problem in P . The details of the proofare given in Appendix 6.As an example appliation of this, the following result isimmediate:Corollary 3.7 Preise intra-proedural onstant propaga-tion in Base+1ptr is PSPACE-omplete.Next, we onsider multi-level pointers. The simplest ase in-volving multi-level pointers is when we have two-level point-ers, i.e., pointers to pointers. In this ase we have threelasses of variables: base variables; pointers to base vari-ables, or 1-pointers; and pointers to 1-pointers (i.e., point-ers to pointers to base variables), or 2-pointers. We all thislanguage Base+2ptr.The role of 2-pointers with respet to 1-pointers in thelanguage Base+2ptr is exatly analogous to that of point-ers to base variables in the language Base+1ptr. In par-tiular, to determine the possible aliases of 1-pointers, weneed to determine the values that an be assigned to themthrough 2-pointers. By diret analogy with Theorem 3.6,therefore, we have the following result:Theorem 3.8 The single-value problem for 2-pointers inBase+2ptr is solvable in polynomial time. The single-valueproblem for 1-pointers in Base+2ptr is PSPACE-omplete.Landi's dissertation shows that intra-proedural pointeralias analysis is PSPACE-omplete if at least four levels ofindiretion are permitted [7℄; his proof an be adapted torequire only two levels of indiretion [9℄. Landi's onlusionis that the diÆulty with pointer alias analysis is aused bymultiple levels of indiretion. This is obviously a valid on-lusion, but does not get to the heart of the matter: whatis the fundamental di�erene between single-level and multi-level pointers that auses the analysis of multi-level pointersto beome so diÆult? The answer, as we have shown above,is that alias analysis in the presene of at most one level of in-diretion an be arried out using an independent-attributeanalysis, while the presene of even two levels of indiretionrequires a relational-attribute analysis.A similar line of reasoning an be used to derive a reentresult by Chatterjee et al. [3℄, namely, that intra-proeduralonrete type inferene for Java programs with single-leveltypes and exeptions without subtyping, and without dy-nami dispath, is PSPACE-hard.3.3.2 Intra-proedural Reahing De�nitions with Single-Level PointersConsider the problem of omputing intra-proedural reah-ing de�nitions in the language Base+1ptr, i.e., in the pres-ene of single-level pointers. The following example illus-trates that an independent-attribute analysis is not enoughfor a preise solution to this problem, and that a relational-attribute analysis is neessary:int a, b, *p, *q;...D: a = 0;if (-) { p = &a; q = &b; } else { q = &a; p = &b; }*p = 1;*q = 1;L:5

We want to know whether the de�nition labelled Dan reah the program point labelled L. An independent-attribute analysis would infer that p an point to either a orb after the onditional, and therefore that the assignment*p = 1 might not kill the de�nition D. A similar reason-ing would apply to q and the indiret assignment *q = 1.Suh an analysis would therefore onlude that de�nition Dould reah L. A relational-attribute analysis, by ontrast,would determine that one of p or q would point to a, sothat one of the assignments *p = 1 or *q = 1 would de�-nitely kill the de�nition D|i.e., de�nition D does not reahL. Thus, the independent-attribute analysis is not preise,and a relational-attribute analysis is neessary. The follow-ing theorem disusses the omplexity of preise analyses; itsproof uses a redution very similar to that for Theorem 3.6.Theorem 3.9 The determination of preise solutions forthe following intra-proedural analysis problems for basevariables in programs in Base+1ptr is PSPACE-omplete:(a) reahing de�nitions; (b) live variables; and () availableexpressions.Theorem 3.9 improves on a result due to Pande, Landiand Ryder, who show that the problem of omputing inter-proedural def-use hains in the presene of single-levelpointers is NP-hard [14℄.4 Inter-proedural Analysis of Reursive ProgramsTo study the omplexity of inter-proedural analyses in thepresene of reursion, we add a very limited enhanementto the ontrol ow onstruts of the language Base+Pro(i.e., the base language together with proedures). Eah pro-gram now has a distinguished global variable NoErr whosevalue is initially 1. We add a statement Error-if-Zero(�) thatbehaves as follows: when Error-if-Zero(x) is exeuted, NoErris set to 0 if x has the value 0, otherwise it is not modi�ed.In a general programming ontext, suh a onstrut ould beused to determine, for example, whether system alls suhas mallo() have exeuted without errors during exeution;in the ontext of this paper we use it in a muh more lim-ited way, though with a very similar overall goal, namely,to determine whether anything \goes wrong" in an exeu-tion path. We refer to the language obtained by adding thisfaility to Base+Pro as Base+Pro+Err.We show that the single-value problem for arbitrary pro-grams in Base+Pro+Err is omplete for deterministiexponential time. Our proof relies on a result of Chandraet al. [2℄, who show that APSPACE = EXPTIME, whereAPSPACE is the lass of languages aepted by polynomial-spae-bounded alternating Turing mahines, and EXPTIME= [�0DTIME[2n ℄ is deterministi exponential time.De�nition 4.1 An (single-tape) alternating Turing ma-hine M is a 6-tuple (Q;�;�; Æ; q0; �), where Q is a �niteset of states; � is the input alphabet; � is the tape alpha-bet; Æ : Q��! P(Q���fL;Rg) is the transition funtion;q0 2 Q is the initial state; and � : Q! faept; rejet; 8; 9gis a labelling funtion on states.33There is a more general formulation of alternating Turing ma-hines where states an also be labelled as \negating" states, whihare labelled by :. However, this adds nothing to their power (Theo-rem 2.5 of Chandra et al. [2℄), so for simpliity we restrit ourselvesto alternating Turing mahines without negating states.

To simplify the disussion that follows, we additionally as-sume that a state q that is existential (i.e., �(q) = 9) oruniversal (i.e., �(q) = 8) has exatly two suessor states forany given tape symbol; it is not hard to see how any ATMan be transformed to satisfy this restrition: if a state qhas a single suessor for some tape symbol we add a seondsuessor that is either an aepting state if q is universal,or a rejeting state if q is existential; if q has more than2 suessors for some tape symbol, we use a \binary treeof transitions" instead. As before, we assume that the tape\wraps around," so that the ell being sanned is always ell0. Thus, a on�guration of an ATM is of the form qx whereq is a state and x the tape ontents.The notion of aeptane for alternating Turing mahinesis a generalization of that for ordinary nondeterministi Tur-ing mahines: the main di�erene is that eah suessor of auniversal state is required to lead to aeptane. To de�nethis more formally, we use the notion of omputation treesdue to Ladner et al. [6℄. A omputation tree for an ATMMis a �nite, nonempty labelled tree with the following prop-erties: eah node of the tree is labelled with a on�gurationof M ; if p is an internal node of a tree with label qu and qis an existential state, then p has exatly one hild labelledq0u0 suh that qu ` q0u0; and if p is an internal node of a treewith label qu and q is a universal state with suessors q0and q00, suh that qu ` q0u0 and qu ` q00u00, then p has twohildren labelled q0u0 and q00u00. An aepting omputationtree is one where all the leaf nodes are aepting on�gura-tions, i.e., of the form qu where q is an aepting state. AnATM M with start state q0 aepts an input x if it has anaepting omputation tree whose root is labelled q0x.Let M = (Q;�;�; Æ; q0; �) be a p(n)-spae-boundedATM, where p(n) is some polynomial, and let x be an inputfor M . Let nt = p(jxj) � 1 and ns = j�j � 1. We gen-erate a program PM;x in Base+Pro+Err that simulatesthe behavior of M on input x. There is a funtion fq()for eah state q of M . Eah suh funtion has a tuple ofparameters T0;0 , . . . , Tnt;ns that represents the ontentsof M 's tape in a way that is oneptually similar to theonstrution desribed in Setion 3.1, the main di�erenebeing that these variable are now loals rather than glob-als. State transitions in M are simulated by funtion allsin PM;x: moves to the suessors of an existential state aresimulated using an if-then onstrut, while moves to thesuessors of a universal state are simulated by a sequeneof funtion alls. The ruial point in the onstrution isthat the Error-if-Zero(�) onstrut is used to keep trak ofwhether anything \goes wrong" along an exeution path: itsets the global variable NoErr, whih is initialized to 1 whenexeution starts, to 0 along an exeution path if either (i)the exeution path does not orrespond to a omputation ofM , beause PM;x guesses inorretly on the tape ell beingsanned by M ; or (ii) beause the path enounters a rejet-ing state of M . One NoErr has been set to 0 the strutureof the program ensures that it annot be reset to 1. Thus,at the end of the exeution path, the value of NoErr an beused to determine whether that path orresponds to a validaepting omputation of M .The ode neessary to simulate M 's ations when itmakes a transition from state qi to state qk upon san-ning a tape ell ontaining symbol sj is represented byTRANSITION(qi; sj ; qk) and is de�ned as follows:6

Æ(qi; sj) = (qk; sm;L) Æ(qi; sj) = (qk; sm;R)T0;0 = X0;0; T0;0 = X0;0;... ...Tnt;ns = Xnt;ns; Tnt;ns = Xnt;ns;Error-if-Zero(T0;j) ; Error-if-Zero(T0;j) ;T0;j = 0; T0;j = 0;T0;m = 1; T0;m = 1;COPY LEFT; COPY RIGHT;fqk (T0;0 ; : : : ; Tnt;ns); fqk (T0;0 ; : : : ; Tnt;ns);The �rst three lines of this ode, whih assign to Ti;j , restorethe ontents of the tape; the fourth line uses Error-if-Zero()to verify the that the symbol on the sanned tape ell is1; the next two lines update the tape. After this the tapeis rotated to simulate the movement of the tape head, withCOPY LEFT and COPY RIGHT orresponding to the odefragments labelled opy left and opy right respetivelyin Figure 1. Finally, a funtion all is used to simulate theomputation from the state to whih ontrol is transferred.Corresponding to eah state q 2 Q there is a funtion fqin PM;x that is de�ned as follows:1. qi is an aepting state. The funtion fqi is de�ned asfqi(T0;0 , ..., Tnt;ns) f /* do nothing */ g2. qi is a rejeting state. The funtion fqi is de�ned asfqi(T0;0 , ..., Tnt;ns) f Error-if-Zero(0) ; g3. qi is a universal state. Let the suessors of qi on tapesymbol sj be qj0 and qj00 (reall our assumption that qihas exatly two suessors on any given tape symbol).The funtion fqi is de�ned asfqi(T0;0 , ..., Tnt;ns)f loal X0;0 = T0;0, ..., Xnt;ns = Tnt;ns;if (-) f /* moves on sj */TRANSITION(qi; sj ; q0j);TRANSITION(qi; sj ; q00j);g...else f /* moves on sk */TRANSITION(qi; sk; q0k);TRANSITION(qi; sk; q00k);gg4. qi is an existential state. Let the suessors of qi ontape symbol sj be qj0 and qj00 . The funtion fqi isde�ned asfqi(T0;0 , ..., Tnt;ns)f loal X0;0 = T0;0, ..., Xnt;ns = Tnt;ns;if (-) f /* moves on sj */if (-)TRANSITION(qi; sj ; s0j)elseTRANSITION(qi; sj ; q00j)g...else if (-) f /* moves on sk */if (-)TRANSITION(qi; sk; q0k);elseTRANSITION(qi; sk; q00k) g;gg

The entry point of the program PM;x is the funtion main(),de�ned asmain()fStart:loal T0;0 , ..., Tnt;ns ;INIT TAPE; /* initialize Ti;j based on x */fq0 (T0;0 ; : : : ; Tnt;ns);End:gThe dynami analog of the all (multi-)graph of PM;x is thevalid all tree, whih is a �nite tree where eah vertex is la-belled with a proedure name and a tuple of arguments. Avertex (f; �u) in suh a tree has hildren (f1; �u1); : : : ; (fk; �uk)if there is an exeution path in PM;x, starting with theall f(�u) with the value of NoErr = 1, that exeutes theproedure alls f1(�u1); : : : ; fk(�uk) in f 's body and returnswith the value of NoErr still at 1 (the onditions on thevalue of NoErr ensure that nothing has gone wrong alongthe orresponding exeution path). The following resultsestablish the onnetion between the behaviors of the al-ternating Turing mahine M and the program PM;x. Here,Ti;j � u denotes that the values of the tuple of variables(T0;0; : : : ; Tnt;ns) in PM;x orretly reet the tape ontentsu in M . The proofs are given in Appendix 6.Theorem 4.1 PM;x has a valid all tree with root (fq ; Ti;j)if and only if M has an aepting omputation tree with rootqu, where Ti;j � u.From this, it is straightforward to show that M aepts xif and only if PM;x has an exeution path at the end ofwhih we have NoErr = 1. It is easy to show, moreover, thatPM;x an be generated using O(log jM j+log jxj) spae. Thefollowing result is then immediate:Corollary 4.2 The inter-proedural single-value problemfor Base+Pro+Err is EXPTIME-hard.It is interesting and instrutive to ompare this result withTheorem 3.4. For the intra-proedural ase onsidered inTheorem 3.4, we an use ordinary assignments to programvariables to keep trak of whether or not an exeution pathin the program orresponds to a valid aepting ompu-tation of the Turing mahine being simulated. We don'tknow whether the same tehnique works in the ase of inter-proedural analysis of reursive programs: spei�ally, whensimulating an alternating Turing mahine, the handling ofuniversal states seems problemati. Instead, we use a lan-guage mehanism|the Error-if-Zero(�) onstrut|that al-lows us to aumulate a highly onstrained summary of anexeution path into a variable. This allows us to deter-mine, from the value of this variable, whether or not any-thing went wrong at any point in an exeution path. Notiethat even though Corollary 4.2 gives a omplexity result forsingle-value problems in Base+Pro+Err, the availabilityof the Error-if-Zero(�) onstrut in fat allows us to inre-mentally aumulate (in a limited way) the values of a num-ber of variables along an exeution path. In fat, while the(intra-proedural) single-value problem for Base is solvablein polynomial time, adding the Error-if-Zero(�) onstrutmakes it PSPACE-hard (this an be used to simplify theproof of the 1-pointer ase in Theorem 3.8).7

4.1 Appliations to the Complexity of Inter-proeduralDataow Analysis4.1.1 Inter-proedural Pointer Alias AnalysesThe following theorem gives the omplexity of single-valueproblems for arbitrary programs in Base+Pro+1ptr.The proof, whih is given in Appendix 6, relies on using anindiret assignment through a pointer to set a global vari-able to 0 if anything \goes wrong" along an exeution path,and thereby simulate the Error-if-Zero(�) onstrut.Theorem 4.3 The inter-proedural single-value problemfor base variables in Base+Pro+1ptr is EXPTIME-omplete.Corollary 4.4 The omplexity of preise inter-proeduralpointer alias analysis in the presene of 2-level pointers isEXPTIME-omplete.Corollary 4.5 The determination of preise solutions forthe following inter-proedural analysis problems for basevariables in Base+Pro+1ptr is EXPTIME-omplete:(a) reahing de�nitions; (b) live variables; and () availableexpressions.4.1.2 Inter-proedural Analysis of Proedures with Refer-ene FormalsConsider extending the language Base along another di-retion: instead of allowing expliit pointers, as in Setion3.3.1, we allow (non-reursive) funtions with referene for-mal parameters. It does not ome as a surprise that anindependent-attribute analysis is inadequate for solving thesingle value problem in this ase. To see this, onsider thefollowing program:var a, b, x: integer;main(){ a = 0;if (...) { x = 0; q(a,x); }else { x = 1; q(b,x); }}pro q(u: ref integer; v: integer){ u = v;}We want to know whether or not a = 1 an hold immedi-ately after the onditional in main(). We need a relational-attribute analysis of q's arguments in order to determinethat q's �rst argument, u, annot be a referene to a if itsseond argument v has the value 1. Thus, an independent-attribute analysis is inadequate for this single value problem.We have the following results, whose proofs are given inAppendix 6:Theorem 4.6 The single value problem for Base extendedwith proedures with referene parameters is PSPACE-omplete for non-reursive programs and EXPTIME-omplete for arbitrary programs.Corollary 4.7 Preise inter-proedural liveness analysisand available expressions analysis for Base extended withproedures with referene parameters are both PSPACE-omplete for non-reursive programs, and EXPTIME-omplete for arbitrary programs.

This result orrets a minor aw in Myers' original proofof the diÆulty of suh analysis problems [12℄. Myers on-sidered inter-proedural analyses in the presene of refer-ene parameters, and laimed to show NP-ompleteness forliveness analysis and o-NP-ompleteness for available ex-pressions; in fat, he proved only hardness results. Ourresults establish that membership in NP holds for aylinon-reursive programs (Theorem 3.2), but stronger resultsan be given for general programs.4.1.3 Inter-proedural Control Flow Analysis of Programswith Funtion PointersIn this setion we onsider extending Base in another dire-tion, by adding C-style funtion pointers. These di�er fromgeneral-purpose pointers in that (i) the objets pointed atare funtions, rather than data; and (ii) the objet obtainedby dereferening a funtion pointer annot be modi�ed bythe program. The primary purpose of funtion pointers,therefore, is to a�et ontrol ow. The orresponding analy-sis problem is therefore a ontrol ow analysis problem. Thefollowing result, whose proof follows the lines of those forTheorem 3.8 and Corollary 4.4, improves on an NP-hardnessresult by Zhang and Ryder [18℄:Theorem 4.8 Preise ontrol ow analysis in the preseneof funtion pointers is PSPACE-omplete for non-reursiveprograms and EXPTIME-omplete for arbitrary programs.5 Summary and Related WorkThe ontributions of this paper an be summarized as fol-lows:1. New Results : To the best of our knowledge, the fol-lowing are are new results: Corollary 3.7, Theorem3.9(b,), Corollary 4.4, and Corollary 4.5.2. Improvements to Existing Results : Theorem 3.9and Corollary 4.5 improve on a result by Pande et al.[14℄. Corollary 4.4 improves on a result by Landi [7, 10℄.Theorem 4.6 and Corollary 4.7 improve on a result byMyers [12℄.3. Explanations of Existing Results : Theorems 3.6and 3.8 explain the underlying reasons for Landi's om-plexity results for pointer alias analysis [7, 10℄. The-orems 3.8 and 3.9(a) together explain why single-levelpointers are hard to deal with when onstruting intra-proedural def-use hains but not when onsideringintra-proedural pointer analyses. Theorem 4.8 ex-plains the diÆulty of inter-proedural ontrol owanalysis in the presene of funtion pointers.The distintion between independent-attribute analyses andrelational-attribute analyses was �rst de�ned by Jonesand Muhnik [5℄, who also examined the omplexity ofthese approahes to program analysis. They showed thatindependent-attribute analyses over a �xed �nite domainhas worst ase omplexity that is polynomial in the sizeof the program, while relational-attribute analysis for pro-grams onsisting of assignments, sequening, and \uninter-preted" onditionals|i.e., where we always assume that ei-ther branh of a onditional may be taken, or, equivalently,8

that all paths in the program are exeutable|but not on-taining any loops, is NP-hard [5℄. Variations on the basiidea of this proof have been used for NP-hardness results bya number of authors [7, 10, 11, 12, 14℄, as well as in the proofof Theorem 3.2 in this paper. Jones and Muhnik also showthat when loops and \interpreted" onditionals are added,the problem beomes PSPACE-hard. Unfortunately, sinemost dataow analyses in pratie treat onditionals as un-interpreted, the latter result is not diretly appliable tothem.Nielson and Nielson onsider, in a very general denota-tional setting, the number of iterations neessary to omputethe least �xpoint of a funtional over a �nite lattie, undervarious assumptions about the kinds of funtions onsidered[13℄; this work is aimed at �nding the ost of partiular for-mulations of dataow analysis problems. By ontrast, ourwork fouses on the inherent omputational omplexity forertain kinds of program analyses. While the number of it-erations needed to attain a �xpoint is an important fatorin determining the amount of work done by an analysis, it isnot the only suh fator, and hene does not give a ompletepiture of the omplexity of an analysis. To see this, observethat if we restrit our attention to intra-proedural analysesof loop-free programs, the resulting dataow equations arenot reursive, so a single iteration suÆes to ompute theleast �xpoint; nevertheless, relational-attribute analyses forsuh programs are NP-omplete (Theorem 3.2).Many researhers have given omplexity results for spe-i� program analysis problems (see, for example, [7, 10, 11,12, 14, 16, 17℄). With a few exeptions, e.g., [16, 17℄, theseresults do not generally provide insights into the underlyingreasons for the eÆieny, or lak thereof, of the analyses.6 ConlusionsThis paper attempts to eluidate the fundamental reasonswhy preise solutions to ertain program analyses are om-putationally diÆult to obtain. We give simple and generalresults that relate the omplexity of a problem to whether ornot it requires a relational-attribute analysis. The applia-bility of this result is illustrated using a number of analysesdisussed in the literature: we are able to derive the om-plexity results originally given by the authors, and in severalases even stronger omplexity results, as diret orollariesto the results presented here, with little oneptual and no-tational e�ort.AknowledgementsDisussions with William Landi have been very helpful inlarifying omplexity questions for pointer alias analysis.Referenes[1℄ J. M. Barth, \A pratial interproedural data owanalysis algorithm", Communiations of the ACM vol.21 no. 9, pp. 724{736, 1978.[2℄ A. K. Chandra, D. C. Kozen, and L. J. Stokmeyer,\Alternation", J. ACM vol. 28 no. 1, Jan. 1981,pp. 114{133.[3℄ R. Chatterjee, B. G. Ryder, and W. A. Landi, \Com-plexity of Conrete Type-inferene in the Presene of

Exeptions", Pro. European Symposium on Program-ming, 1998.[4℄ M. R. Garey and D. S. Johnson, Computers andIntratability: A Guide to the Theory of NP-Completeness, Freeman, New York, 1979.[5℄ N. D. Jones and S. S. Muhnik, \Complexity of owanalysis, indutive assertion synthesis, and a languagedue to Dijkstra", In S. S Muhnik and N. D Jones,eds., Program Flow Analysis: Theory and Appliations,hapter 12, pp. 380{393. Prentie-Hall, 1981.[6℄ R. E. Ladner, R. J. Lipton, and L. J. Stokmeyer,\Alternating Pushdown Automata", Pro. 19th IEEESymposium on Foundations of Computer Siene, Ot.1978, pp. 92{106.[7℄ W. A. Landi, Interproedural Aliasing in the Preseneof Pointers, Ph.D. Dissertation, Rutgers University,New Brunswik, NJ, Jan. 1992.[8℄ W. A. Landi, \Undeidability of Stati Analysis", ACMLetters on Programming Languages and Systems vol. 1no. 2, De. 1992, pp. 323{337.[9℄ W. Landi, personal ommuniation, June 1998.[10℄ W. Landi and B. G. Ryder, \Pointer-indued Aliasing:A Problem Classi�ation", Pro. 18th ACM Symposiumon Priniples of Programming Languages, Jan. 1991,pp. 93{103.[11℄ J. R. Larus, Restruturing Symboli Programs for Con-urrent Exeution on Multiproessors, Ph.D. Disserta-tion, University of California, Berkeley, 1989.[12℄ E. W. Myers, \A Preise Inter-Proedural Data FlowAlgorithm", Pro. 8th ACM Symposium on Priniplesof Programming Languages, Jan. 1981, pp. 219{230.[13℄ H. R. Nielson and F. Nielson, \Bounded Fixed Point It-eration", Pro. Nineteenth ACM Symposium on Prini-ples of Programming Languages, Jan. 1992, pp. 71{82.[14℄ H. D. Pande, W. A. Landi, and B. G. Ryder, \Interpro-edural Def-Use Assoiations for C Systems with SingleLevel Pointers", IEEE Transations on Software Engi-neering vol. 20 no. 5, May 1994, pp. 385{403.[15℄ H. D. Pande and B. G. Ryder, \Stati Type Determi-nation for C++", Pro. Sixth USENIX C++ TehnialConferene, April 1994, pp. 85{97.[16℄ T. Reps, \Program Analysis via Graph Reahability",Information and Software Tehnology 40, 11{12 (Nov.-De. 1998), pp. 701-726.[17℄ T. Reps, \Undeidability of Context-Sensitive Data-Dependene Analysis", Tehnial Report TR-1397,Computer Sienes Department, University of Wison-sin, Madison, Marh 1999.[18℄ S. Zhang and B. Ryder, \Complexity of single levelfuntion pointer aliasing analysis", Tehnial ReportLCSR-TR-233, Laboratory of Computer Siene Re-searh, Rutgers University, Otober 1994.9

Appendix : Proofs of TheoremsTheorem 3.1 The single value problem for programs inBase an be solved in polynomial time, provided that prim-itive operations of the analysis an be arried out in polyno-mial time.Proof: A straightforward independent-attribute analysissuÆes in this ase. Jones and Muhnik ([5℄, Setion 12.2)show that this an be arried out in time quadrati in thesize of the program, provided that primitive operations ofthe analysis, e.g., heking whether two abstrat domainelements are equal (whih is neessary to determine whena �xpoint has been reahed), an be arried out in O(1)time. The requirement of onstant-time operations an berelaxed to allow polynomial-time primitive operations andstill preserve an overall polynomial time omplexity.Theorem 3.2 The simultaneous values problem for ayliprograms in Base is NP-omplete.Proof: The proof of NP-hardness is by redution from the3-SAT problem, whih is the problem of determining, givena set of lauses ' eah ontaining three literals, whether 'is satis�able. This problem is known to be NP-omplete [4℄.Given a formula ' � (u11_� � �_u13)^� � �^(um1_� � �_um3)over a set of variables fx1; : : : ; xng, where eah of the literalsuij is either a variable or its negation, we generate a programP', with variables fx 1t, . . . , x nt, x 1f, . . . , x nf, 1, . . . ,mg, of the following form:if (-) fx 1t = 0; x 1f = 1;gelse fx 1t = 1; x 1f = 0;gif (-) fx 2t = 0; x 2f = 1;gelse fx 2t = 1; x 2f = 0;g...if (-) fx nt = 0; x nf = 1;gelse fx nt = 1; x nf = 0;gif (-) 1 = w11;else if (-) 1 = w12;else 1 = w13;...if (-) m = wm1;else if (-) m = wm2;else m = wm3;L: Here, wij are de�ned as follows: if the literal uij is avariable xk for some k, then wij = x kt; if the literal uij is anegated variable xk for some k, then wij = x kf. Intuitively,x it = 1 in P' represents an assignment of a truth value trueto xi in ', while x if = 1 represents a truth value of false.Eah path through the �rst group of onditionals representsa truth assignment for the variables of '. The seond groupof onditionals represents the evaluation of the lauses: theith lause evaluates to true if and only if there is a paththrough the ith onditional in the seond group that assigns

1 to the variable i. The simultaneous value problem wepose at the program point labelled L is1 = 1 ^ ...^ m = 1.This is true if and only if there is a path through all of thestatements in P' that assigns 1 to eah of the i, i.e., if andonly if there is a truth assignment to the variables of ' thatauses eah of its lauses to evaluate to true.To see that the simultaneous value problem is in NP,given any ayli program in Base we simply guess a paththrough the program and hek whether the assignmentsalong this path make the problem true.Lemma 3.3 A given polynomial-spae-bounded Turing ma-hine M aepts its input x if and only if AeptingCon�gmay hold at the point in PM;x labelled End, whereAeptingCon�g �UnambiguousFinalState ^ TempsClear ^ TapeClear .Proof: (sketh) Let a on�guration � of M orrespond toa state b� of PM;x, written � � b�, if and only if the followingholds: in �, M is in state qk, sanning tape ell m, withtape ontents s0s1 : : : snt; and in b�, PM;x has the followingvalues for its variables, with ontrol at the point labelledDispath:Qi = � 1 if i = k0 otherwise ;Xi = 0; for all i;Ti;j = � 1 if s(i�m) mod (nt+1) = j0 otherwiseWe use the following notation: if M an go from on�gura-tion � to on�guration � via a sequene of transitions, wewrite � `�M �; if there is a path in the program PM;x thattransforms a state u to a state v, with ontrol being at thepoint labelled Dispath in eah ase, we write u `�P v.We �rst show that if, given on�gurations � and � forM and states b� and b� for PM;x suh that � � b� and � � b�,if � `�M � then b� `�P b�. Pitorially:
βα

∼
βα

∗

∗
M

P

∼The proof is by indution on the length n of the transitionsequene of M . The base ase, for n = 0, is trivial. For theindutive ase, suppose that the laim holds for transitionsequenes of length n, and onsider on�gurations �, � and of M and states b� and b of PM;x, with � � b� and � b,suh that � `nM `M �. From the indution hypothesis, wehave b� `�P b. Suppose that in the transition `M � M goesfrom state qa, sanning tape symbol , to state qb. In PM;x,onsider state resulting from b by taking the path from thepoint labelled Dispath to that referred to as MOV a;. Anexamination of the de�nition of the ode orresponding toMOV i;j shows that the resulting state b� of PM;x orresponds10

to the on�guration � ofM after the n+ 1st transition. Thelaim follows.Sine, from the de�nition of PM;x, the initial on�gura-tion ofM orresponds to the state of PM;x when ontrol �rstreahes Dispath, it follows from this that if M aepts itsinput and halts|i.e., reahes a on�guration with state q1and its tape erased (reall that q1 is the �nal state ofM , andwe assumed that M would erase its tape prior to halting)|then there is a path in PM;x that leads to a orrespondingstate, whih is desribed by AeptingCon�g. This meansthat AeptingCon�g holds at the point End. Conversely,if there is a path through PM;x suh that AeptingCon�gholds at its end at the point labelled End, then we an usethe sequene of MOV i;j ode exeuted along this path to re-onstrut a sequene of moves of M leading to aeptane.This establishes thatM aepts its input if and only if thereis a path in PM;x, onsisting of \good" guesses, at the endof whih AeptingCon�g holds at the point End.Next, onsider any path in PM;x that does not orre-spond to a valid omputation of M . This must ome from a\bad guess" in PM;x of either the state (variables Qi) or thetape symbol (variables Tj;k), resulting in the exeution of aode fragment MOV i;k. It an be seen, from the de�nitionof MOV i;k, that the variable setting that results when on-trol next returns to the point Dispath has more than onethe variables Qi set to 1, or more than one of the variablesTi;j set to 1. Suh a variable setting is alled illegal beauseit does not represent any valid on�guration. Furthermore,one we obtain an illegal variable setting we annot turnthis bak into a legal one beause eah of the MOV i;j odesegments preserves or inreases the number variables set to1. This means that AeptingCon�g will not hold at the endof suh a path in PM;x.Together, it follows from these that AeptingCon�g willhold at the point labelled End if and only if M aepts x.Lemma .1 Given a polynomial-spae-bounded Turing ma-hine M and input x, the program PM;x illustrated in Figure1 an be generated in spae O(log(jM j+ jxj)).Proof: Suppose we are given a Turing mahine M that,on any input of length n, is p(n)-spae-bounded for somepolynomial p(n). The ode for the orresponding programPM;x an be divided into three distint, and independent,omponents: the initialization ode; the ode for the emu-lation loop, onsisting of the ode to lear the variables Xifollowed by the ode for the transitions of M ; and the odefor \rotating" the tape, labelled opy right and opy left,and the \leanup" omputation at the label Done. The spaerequirements for eah of these omponents is as follows:{ The initialization step onsists of j�j � p(jxj) assign-ments, where eah assignment statement is of �xedsize. To generate this ode we need a ounter ofsize log(j�j � p(jxj)) = log j�j + log p(jxj) bits. Sinej�j = O(jM j) and log p(n) = O(log n) for any polyno-mial p(n), this omponent requires O(log jM j+ log jxj)spae.{ For the emulation loop, learing the temporary vari-ables requires log j�j = O(1) bits. The outer if state-ment in the emulation loop onsists of jQj ases, whereeah ase (with the exeption of that for Q1 = 1) on-sists of an inner if statement with O(j�j) ases, eahof whih onsists of a �xed amount of ode. Thus the

spae requirement for generating this is log(jQj�j�j) =log jQj+log j�j = O(log jM j). Thus, the total spae re-quired for this omponent is O(log jM j).{ Eah of the opy right and opy left portions of theprogram onsists of j�j+ j�j � p(jxj) = O(j�j � p(jxj))assignments, where eah assignment statement is of�xed size. The leanup ode at the label Done on-sists of j�j�p(jxj) assignments, where eah assignmentstatement is of �xed size. To generate these assign-ments we need a ounter of size log(j�j � p(jxj)) =log j�j + log p(jxj) bits. Sine j�j = O(jM j) andlog p(n) = O(log n) for any polynomial p(n), this om-ponent requires O(log jM j+ log jxj) spae.The total spae required is therefore O(log jxj + log jM j).Sine log jxj � log(jM j + jxj) and log jM j � log(jM j + jxj),we have O(log jxj+log jM j) = O(log(jM j+jxj)). The lemmafollows.Theorem 3.4 The simultaneous value problem for pro-grams in Base is PSPACE-omplete.Proof: (sketh) PSPACE-hardness follows diretly fromLemmas 3.3 and .1.To show that the simultaneous value problem is inPSPACE, we show that a given suh a problem for a pro-gram P , we an onstrut a nondeterministi multi-tapepolynomial-spae-bounded Turing mahine MP to solve theproblem. Given a program P , the input to MP onsistsof the ontrol ow graph GP of P , an initial assignmentEinit of values for the variables of P , a target program pointnt, and a target environment Et for the variables of P :Et = fx0 7! 0; x1 7! 1; : : : ; xn 7! ng spei�es the si-multaneous value problem x0 = 0 ^x1 = 1 ^ : : :^xn = n.We wantM to halt i� there is a path from the initial node ofGP to nt that transforms Einit to the target environmentEt.MP opies GP and Et to two work tapes and maintains an-other work tape Tenv that ontains a list of (variable, value)pairs, one for eah program variable. Tenv is initialized fromthe initial assignment Einit . MP then starts simulating theexeution of P by traversing GP At eah vertex of the on-trol ow graph, it simulates the e�ets of assignments andupdates Tenv appropriately. At branh nodes MP nonde-terministially hooses a suessor to ontinue proessing.Whenever MP reahes the target node nt it heks whetherthe variable values on Tenv math the desired environmentEt, and halts if this is the ase. It is lear that if there isan exeution path in P suh that, starting from the initialvariable assignment Einit , exeution an reah the point ntwith the desired values Et for the variables, then M anguess this path and will eventually halt and aept its in-put. Conversely, if MP halts and aepts, there must havebeen suh a path.The spae needs for MP are bounded by the spae re-quired to store the GP and Einit and the spae required forthe tape Tenv . The spae required for GP and Einit is O(n),where n is the size of the input program. Under the assump-tion that the we have a �xed number of onstants to dealwith (i.e., that the analysis is being arried out over a �xed�nite domain), we need O(1) bits for the value of a variableat any program point; there an be at most O(n) variablesin P , so the spae requirements for Tenv are O(n). It followsthat M is polynomial-spae-bounded.11

Theorem 3.5 The lass of Inter-proedural simultaneousvalues problems for non-reursive programs in Base+Prois PSPACE-omplete.Proof: PSPACE-hardness follows from Theorem 3.4. Tosee that the problem remains in PSPACE, onsider a non-reursive program ontaining k proedures. The runtimeall stak of this program an have depth at most k. We usea nondeterministi Turing mahine similar to that used toshow membership in PSPACE in the proof of Theorem 3.4,exept that it uses a tape that is k times longer than before.This tape is used as a stak: at a proedure all, it \pushes"a frame by opying the values of the arguments after the\urrent frame" at the end of the tape; and on a returnfrom a proedure, it \pops" the urrent frame by erasingthe appropriate tape ells and moves to the next frame. Thespae requirement of this mahine is still polynomial in thelength of the input, whene it follows that the analysis is inPSPACE.Theorem 3.6 The single-value problem for pointer vari-ables in Base+1ptr an be solved in polynomial time. Thesingle-value problem for base variables in Base+1ptr isPSPACE-omplete.Proof: For a single-value problem for a pointer vari-able, the analysis need onern itself only with assignmentsto pointer variables, and a straightforward independent-attribute analysis is suÆient. Reasoning as for Theorem3.1 shows that this is solvable in polynomial time.To prove PSPACE-hardness of the base variable ase, weshow how a binary simultaneous value problem in Base anbe redued to a single-value problem for base variables inBase+1ptr . Given a program P in Base the idea is togenerate a program P 0 as follows (here, X1; X2; : : : denotevariables in P while X1; X2; : : : denote variables in P 0). Theprogram P 0 ontains two variables, Zero and One, that areinitialized to the onstants 0 and 1 respetively. For eahvariable X in P we have two variables X and X in P 0. As-signments in P are translated into P 0 as follows:{ An assignment `X = 0' in P is translated to a pair ofassignments `X = &Zero; X = &One' in P 0; an assign-ment `X = 1' is translated to `X = &One; X = &Zero.'{ An assignment `X = Y in P is translated to a pair ofassignments `X = Y; X = Y.'The intuition is that X tells us what the value of the originalvariable X is, while X tells us what it is not. Other on-struts, suh as onditionals and ontrol transfers, remainunhanged in the translation.Suppose we are given a binary simultaneous value prob-lem in of the form X1 = 1 ^ � � � ^ Xn = n at a point pin the original program P , where i 2 f0; 1g. Consider theonjunt X1 = 1: if 1 � 0 then, in the generated pro-gram program, we want to test whether X1 points to Zero.If 1 � 1, we want to test whether X1 points to One; orequivalently, whether X1 does not point to Zero (sine thevariables One and Zero are the only base variables in theprogram, and hene the only things that X1 ould point to);or equivalently, whether X1 points to Zero. Let p0 be theprogram point in P 0 that orresponds to the point p in P ,and let u ; v denote that u points to v. We want to de-termine whether there is an exeution path in P 0 upto p0suh that x1 ; Zero ^ � � � ^ xn ; Zero, where xi is Xi if

i � 0, and Xi if i � 1. We do this by inserting the followingode fragment at the point p0 (where xi is either Xi or Xi ,depending on whether i is 0 or not, as just desribed).if (-) f*x1 = 0; ...; *xn = 0;L: goto End; /* go to end of pgm, halt */gIf, for some exeution path leading to p0 in the program P 0,xi ; Zero for eah xi, then all of the assignments *xi = 0will write to the variable Zero. This means that the initialassignment of 1 to the variable One will not be overwritten(sine there are no other assignments to either Zero or One,or any indiret assignments through any of the variables Xior Xi, elsewhere in the program), so One will have the value1 at the point labelled L in the ode fragment above. On theother hand, if for every exeution path leading to p0 we havexj 6; Zero for some j, it must be the ase that xj ; One,whih means that the assignment *xj = 0 will overwrite theinitial assignment to One. Thus, by answering the single-value problem of whether or not One has the value 1 atthe point L, we an solve the original binary simultaneousvalue problem for the program P . The result follows fromTheorem 3.6.Theorem 4.1 PM;x has a valid all tree with root (fq ; Ti;j)if and only if M has an aepting omputation tree with rootqu, where Ti;j � u.Proof: We �rst show that PM;x has a valid all tree TPwith root (fq ; Ti;j) if M has an aepting omputation treeTM with root qu, where Ti;j � u. We proeed by indutionon the height of TM .The base ase is for n = 0, whih means that q is anaepting state. Suppose that the root of TM is labelledqu. From the onstrution of PM;x, it follows that the treeonsisting of the single node (fq; Ti;j), where Ti;j � u, is avalid all tree.For the indutive ase, assume that PM;x has a validall tree with root (fq0 ; �v0) whenever M has an aeptingomputation tree with root q0u0 and height � k, where �v0 �u0, and onsider an aepting omputation tree TM of Mwith height k + 1. Let the root of TM be qu, and supposethat Ti;j � u. We have two possibilities:1. q is an existential state. From the de�nition of om-putation trees, TM 's root has a single hild q0u0, andthe subtree T 0M rooted at this hild is also an aeptingomputation tree of M . Sine T 0M has height less thank+1, it follows from the indution hypothesis that PM;xhas a valid all tree T 0P whose root is labelled (fq0 ; �v0)suh that �v0 � u0.Suppose that the transition from q to q0 ours on tapesymbol si. From the onstrution of PM;x, the fun-tion fq ontains an exeution path through the odede�ned by TRANSITION(q; si; q0) that veri�es that thetape symbol sanned is si, adjusts the variables Ti;j asneessary to orrespond to the tape ontents u0, andalls fq0 . It follows from this that a tree with root(fq ; Ti;j) that has a single subtree T 0P is a valid alltree for PM;x.2. q is a universal state. This means that TM 's root hastwo hildren q0u0 and q00u00, and that the subtrees T 0Mand T 00M rooted at eah of these hildren are aepting12

omputation trees for M . Sine eah of these subtreeshas height less than k+1, it follows from the indutionhypothesis that PM;x has valid all trees T 0P , with rootlabelled (fq0 ; �v0), and T 00P , with root labelled (fq00 ; �v00),where �v0 � u0 and �v00 � u00.Suppose that the transitions from q to q0 and q00 ouron tape symbol si. From the onstrution of PM;x, thefuntion fq ontains an exeution pathif (-) fTRANSITION(q; si; q0);TRANSITION(q; si; q00);gthat simulates eah of these transitions by verifyingthat the tape symbol sanned is si, adjusting the vari-ables Ti;j as neessary, and alling the appropriate fun-tion in PM;x. It follows that a tree with root (fq; Ti;j)that has two subtrees T 0P and T 00P is a valid all tree forPM;x.The proof in the other diretion is very similar, exept thatthe indution is on the height of the valid all trees of PM;x.Corollary .2 M aepts x if and only if there is an exeu-tion path p in PM;x from the program point labelled Startto that labelled End suh NoErr = 1 at the end of p.Proof: We observe that by onstrution of PM;x, the odeat the point labelled Start sets NoErr to 1 and initializesthe variables Ti;j aording to the input x.Suppose that M aepts x, i.e., there is an aeptingomputation tree TM rooted at q0x. It follows from Theo-rem 4.1 that there is a valid all tree TP for PM;x with root(fq0 ; Ti;j) where Ti;j � x. This means that there is an exe-ution path in PM;x from Start to End suh that NoErr = 1at End.Suppose that M does not aept x, i.e., there is no a-epting omputation tree TM rooted at q0x. From Theorem4.1, it follows that there is no valid all tree in PM;x withroot (fq0 ; Ti;j) suh that Ti;j � x. It follows that there is noexeution path from Start to End along whih the value ofNoErr remains 1.Theorem 4.3 The inter-proedural single-value problemfor base variables in Base+Pro+1ptr is EXPTIME-omplete.Proof: The proof is by redution from the inter-proeduralsingle-value problem for Base+Pro+Err . We show howany program PM;x in Base+Pro+Err , generated for anATM M and input x as disussed in Setion 4, an betranslated to a program P 0 in Base+Pro+1ptr (here,X1; X2; : : : denote variables in P while X1; X2; : : : denote vari-ables in P 0):1. P 0 ontains global variables Zero and One, whih areinitialized to 0 and 1 respetively. Additionally, foreah global variable V in P there is a global pointervariable V in P 0; in partiular, the distinguished (base)variable NoErr in P orresponds to a global pointervariable NoErr in P 0, whih is initialized to the value&One.

2. For eah n-argument funtion f in P there is an n-argument funtion f in P 0. For eah suh pair of orre-sponding funtions, for eah loal variable V in f thereis a loal pointer variable V in f.3. Assignment statements in P are translated as follows:a statement `X = e' in P translates to the statement`X = e0', where e0 is given bye0 = (&Zero if e � 0&One if e � 1Y if e � Y for some variable YFuntion alls are translated as follows: a all`f(e1; : : : ; en)' translates to `f(e01; : : : ; e0n)', where thee0i are given by:e0i = (&Zero if ei � 0&One if ei � 1Y if ei � Y for some variable YConditionals are translated unhanged.4. A statement Error-if-Zero(X) is translated to `*NoErr= *X.'5. The single-value problem `NoErr = 0' in P orrespondsto the base-variable single-value problem `One = 1' inP 0.Eah variable V in P is translated to a pointer variable V inP 0; a value of 0 for V in P orresponds to V being a pointerto the base variable Zero in P 0, while a value of 1 for Vorresponds V being a pointer to the variable One.Consider the program PM;x generated for a given ATMM and input x. In the orresponding program P 0M;x inBase+1ptr , the variable NoErr is initially set to pointto One, whih has the value 1. Now onsider any exeu-tion path p in P . If p does not ontain any ourrene ofa Error-if-Zero(�) statement, the exeution along the or-responding path in P 0 simply parallels that in P , the onlydi�erene being that instead of the values 0 and 1 in P wehave &Zero and &One in P 0. If the path p ontains a state-ment Error-if-Zero(X) , then the orresponding statement inP 0 is `*NoErr = *X.' We have the following possibilities:1. NoErr points to One, X points to One, and the valueof One is 1 (orresponding to the variables NoErr andX in P both having the value 1). In this ase thisassignment to *NoErr has no e�et on the value of anyvariable in P 0. This parallels the behavior of P .2. NoErr points to One and X points to Zero (orrespond-ing to X having the value 0 in P). In this ase theassignment sets the variable One to have the value 0.This again parallels the behavior of P .3. NoErr points to One, but the value of One is 0 (due toan assigment orresponding to the previous ase earlierin the exeution). In this ase, regardless of whetherX points to One or to Zero, the value of *X is 0, so theassignment `*NoErr = *X' does not hange the valueof any variable in P 0. In partiular this means that*NoErr remains 0. Again, this parallels the behavior ofP .
13

Thus, at the end of the exeution of P 0, the variable One hasthe value 1 if and only if, at the end of the orrespondingexeution path in P , the value of NoErr is 1. The redu-tion desribed above establishes that the inter-proeduralsingle-value problem for base variables in Base+1ptr isEXPTIME-hard.We next show how a program P in Base+Pro+1ptran be simulated by a p(n)-spae-bounded ATMMP , wheren is the program size. MP has its tape divided into fourregions: Globals, AntiipatedGlobals, TempGlobals, and Lo-als. Globals ontains the urrent snapshot of the globalvariables. AntiipatedGlobals shows the Globals as we ex-pet them to be upon return from the urrent subroutine.TempGlobals is an auxiliary region big enough to hold Glob-als and AntiipatedGlobals. Loals ontains the ontents ofloal variables and subroutine arguments; the sope of thesevariables extends only to the end of the urrent subroutine(parameter passing and returning of results an be ahievedusing global variables). These regions are obviously polyno-mially bounded by the size of P.MP works as follows: It interprets the urrent subroutinef in P , updating Globals and Loals appropriately. WhenP is nondeterministi beause of uninterpreted onditionalsso is MP , whih \guesses" one of the branhes of the on-ditional to ontinue interpreting (using existential states).When f returnsMP ompares Globals with AntiipatedGlob-als and goes into an aepting state if they are equal andotherwise into a rejeting state.The key mehanism is how alls to a subroutine g are sim-ulated. First MP opies the AntiipatedGlobals into Temp-Globals MP then guesses the e�et of the subroutine all onGlobals and writes this guess into AntiipatedGlobals. Im-mediately after thisMP swithes into a universal state. Onesuessor of this state starts interpreting subroutine g. Thisomputation branh will reah an aepting state only ifAntiipatedGlobals was guessed orretly. The other sues-sor ontinues interpreting subroutine f assuming the all tog behaves as expeted, i.e., it opies AntiipatedGlobals toGlobals and TempGlobals bak to AntiipatedGlobals.The subroutine main(), where the simulation begins ishandled slightly di�erently. At the beginning of main()Globals is initialized and upon return from main MP alwaysenters an aepting state.It is not hard to see that this will faithfully simulateP. If we interested in solving a single or simultaneous valueproblem|whih we assume, without loss of generality, to beposed at the end of main|we an make MP test the ondi-tion at the end of main and either go into an aepting stateif the ondition is satis�ed or in a rejeting state otherwise.Theorem 4.6 The single value problem for Base extendedwith proedures with referene parameters is PSPACE-omplete for non-reursive programs and EXPTIME-omplete for arbitrary programs.Proof: (sketh) The proof is very similar to that for Theo-rem 4.3, the primary di�erene being that instead of expliitpointer variables we use referene parameters. Eah proe-dure in the program takes two additional arguments that arereferenes to the global variables Zero and One. Instead ofexpliit assignments of &Zero and &One, as in the onstru-tion in the proof of Theorem 4.3, we use these refereneparameters. The remainder of the proof remains essentiallyunhanged.

Corollary 4.7 Preise inter-proedural liveness analysisand available expressions analysis for Base extended withproedures with referene parameters are both PSPACE-omplete for non-reursive programs, and EXPTIME-omplete for arbitrary programs.Proof: The proof follows the lines of that of Theorem 4.6,modi�ed in a manner analogous to that in Theorem 3.9.

14

