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of cost information, the problem of cost analysis may be of some independentinterest to researchers on static analysis of logic programs because (i) it uses agreat deal of information from other kinds of analyses, such as mode and typeanalysis, inference of size norms, etc., so that any improvements in these analysespotentially yield improvements in cost analysis; and (ii) because of the rich va-riety of algorithms for combinatorial analysis that arise, especially when dealingwith constraints. Here we discuss some of our work to date on (semi-)automaticworst-case upper and lower bound cost analysis for logic programs.Cost analysis of functional and imperative programs has been studied bya number of researchers. A major di�erence between logic programming lan-guages and other traditional languages in this regard is that logic programs arenondeterministic in general, and may produce multiple solutions, making it nec-essary to estimate their number to give nontrivial upper bound cost estimates.A related problem is that failure of execution is not an abnormal situation, andimplicit failures have to be accounted for and dealt with explicitly if meaning-ful results are to be obtained. For example, in the following program to checkmembership of an element in a list, a naive analysis that does not take implicitfailure into account will not have a base case from which to reason about itscost: member(X, [X|_]).member(X, [_|L]) :- member(X, L).Failure also poses problems for lower bound analyses, since any attempt to inferlower bounds has to contend with the possibility that a goal may fail duringhead uni�cation, yielding a trivial lower bound of 0.The work described here had its origins in discussions on task granularityanalysis for parallel logic programs. We hoped, initially, to obtain techniques forlower bound cost estimation for arbitrary (pure) Prolog programs, but it soonbecame clear that on the one hand, nontrivial lower bounds were di�cult toobtain because of the possibility of failure; and on the other hand, upper boundcost estimation for nondeterministic programs was di�cult without informationabout the number of solutions a predicate could generate, which we didn't knowhow to estimate. We were forced to scale back our expectations, therefore,and the work reported in [5] dealt only with upper bound cost estimation fordeterministic programs. Subsequently we were able to make some progress onestimating (upper bounds on) the number of solutions a procedure might produce[4]. This resulted in a framework for upper bound analysis of logic programs,discussed in Section 3 and detailed in [3, 8]. Recently, we have made someprogress on our original goal of lower bound cost estimation: these ideas are



discussed in Section 4, with details in [6]. Together, this provides a frameworkfor reasoning about the computational cost of a reasonably large class of logicprograms, though there is a great deal of scope for improvements in this area (acouple of directions for future research are discussed in Section 5).2 The Overall ApproachIn general, the cost of a procedure depends on (some measure of) the size of itsinput. Therefore, it is necessary to keep track of the sizes of arguments to proce-dures at each program point (procedure entry and exit). In addition, in order tohandle nondeterministic procedures, knowledge about the number of solutionsgenerated by each predicate is required. Not unexpectedly, the size relationshipsbetween arguments, the number of solutions, and the time complexity functionsfor recursive procedures are obtained in the form of di�erence equations. To getclosed form expressions for the cost of a procedure, we have to obtain (possiblyapproximate) solutions to these equations.Our approach to cost analysis of logic programs can be summarized as follows:1. Carry out mode and data dependency analysis to identify input and out-put arguments to procedures and dependencies between producers andconsumers of variable bindings.2. Determine which portions of a program can be executed and thereforeshould be considered during cost analysis. For a worst case upper boundanalysis, this step is generally trivial in that all of the program is consid-ered to be reachable; however, for lower bound analysis, it is necessaryto identify program fragments where failure can be ruled out. This mayrequire auxiliary information, e.g., types.3. Use data dependency information to obtain size relationships between vari-ables in a clause. Use this to infer size relationships between input andoutput arguments of procedures.4. Use argument size information to determine how many solutions a proce-dure can produce.5. Use information about argument sizes and number of solutions producedby various procedures to obtain estimates of their computational costs.The call graph of a program is a directed graph whose vertices correspond tothe predicates in the program, and where there is an edge from a vertex p toa vertex q if there is a literal with predicate symbol q in the body of a clausede�ning p. Because of recursion, the call graph may contain cycles, but if we



construct a derived graph whose vertices correspond to the strongly connectedcomponents of the call graph and where there is an edge from a vertex p to avertex q if there is an edge from some predicate in the strong component of pto some predicate in the strong component of q, the resulting graph is acyclic.The various components of cost analysis (argument size, number of solutions,computational cost) all proceed by traversing the graph of strongly connectedcomponents of the call graph of the program in topological order starting atthe leaves. At each stage, therefore, we can assume that the costs of predicatesthat are \lower" in the graph have been determined. To handle recursion, wesymbolically represent the cost (be it size, number of solutions, or computationalcomplexity) of the predicate being analyzed as a function of its input sizes. Forrecursive clauses, this expresses the cost for a particular input size (correspondingto the head of the clause) in terms of the costs for smaller inputs (correspondingto the recursive calls in the body), which can be simpli�ed to obtain di�erenceequations. Base cases for these di�erence equations are provided by the non-recursive clauses (or have to be obtained separately in the case of implicit failureas in the member/2 predicate described earlier). By solving these equations weget an expression for the cost of the predicate under consideration.3 Upper Bound AnalysesIn worst case upper bound analyses, we assume that all goals succeed (i.e.,produce at least one solution) and that all solutions computed by a predicateare needed.3.1 Argument Sizes and Space ComplexityIn general, the size of the outputs produced by a predicate depends on the sizeof its inputs. To simplify the analysis, we assume that the size of each outputargument of a predicate is a function of the sizes of its input arguments. Thisworks reasonably well in general, but tends to be overly conservative for divide-and-conquer programs.Argument sizes are computed using data dependencies. Intuitively, a datadependency is a binary relation between the di�erent argument positions in aclause (the latter may be speci�ed, for example, by a pair of integers indicatinga literal in the clause and an argument within that literal): there is a datadependency from a position a to a position b if a value de�ned (i.e., computed)at a is used at b.Various measures can be used to determine the \size" of an input value, e.g.,term-size, term-depth, list-length, integer-value, etc. The measure(s) appropri-ate in a given situation can in most cases be determined by examining the types



of argument positions, the general idea being to use the \back edges" in the typegraph of a predicate to determine how that predicate recursively traverses itsinput terms (or constructs its output terms), and thereby synthesize an appro-priate measure for the predicate [7]. If we start with a program where clauseshave been rewritten so that each argument in each literal is a variable, with newuni�cation goals introduced where necessary, then for each variable x we can setup equations that specify its size in terms of the sizes of other variables and,possibly, symbolic representations of the output sizes for recursive procedures.For example, for the clausenrev(x1; x2) :�x1 = [y1|y2]; nrev(y2; z1); z2 = [y1]; append (z1; z2; x2)assuming that nrev/2 has its �rst argument as an input argument and its secondas an output argument while for append/3 the �rst two arguments are inputsand the third is an output argument, and that the size of each argument is givenby the \list length" function, we get the following equationsx2 = size nrev (x1) y2 = x1 � 1 z1 = size nrev(y2)x2 = size append (z1; z2) z2 = 1These equations can be simpli�ed to obtain size expressions for the output ar-guments of the procedure. For recursive clauses this yields a di�erence equationthat expresses the output size for a given input size in terms of the output sizefor smaller inputs. For example, suppose that while processing the call graphin topological order, we solve the di�erence equations obtained for the outputargument size of append/3 to get size append (x; y) = x+y. Then, for the clausefor nrev/2 given above, we get the di�erence equationsize nrev(x1) = size nrev (x1 � 1) + 1.3.2 Number of SolutionsTo estimate the number of solutions a predicate can return, we estimate thenumber of bindings possible for each variable in the clause. We use two simplerules for this:(i) If a variable has k occurrences in a clause, and the number of (ground)bindings possible for these occurrences are estimated as n1; : : : ; nk,then the number of bindings possible for the variable is (at most)min(n1; : : : ; nk).



(ii) If a variable x is bound to a term containing a set of variables V , and foreach v 2 V the number of bindings possible for v is given by nv, then thenumber of bindings possible for x is (at most) Qv2V nv.The second of these rules is fairly conservative in that it assumes that all vari-able bindings are independent, so that all possible combinations of bindings forthe di�erent variables are possible. It is possible to improve this rule to takedependences between variables into account; details are given in [3].These rules work reasonably well for pure Horn clauses. We augment themwith two approximation algorithms for dealing with arithmetic and �nite-domainconstraints. The �rst deals with linear binary constraints. Such constraintsatisfaction problems can be represented as a graph where each vertex representsan assignment of a value to a variable, and where there is an edge betweentwo vertices if the corresponding value assignments are consistent with eachother. Solving a set of constraints over n variables then corresponds to �ndinga clique of size n in such a graph, and the number of solutions is given by thenumber of such cliques. A direct approach to counting the number of cliques in aconsistency graph can require exponential time. Instead, we obtain upper boundapproximations to the number of cliques by repeatedly simplifying a (weightedversion of) the consistency graph until we obtain a bipartite graph. The numberof 2-cliques in a bipartite weighted consistency graph is simply the sum of theweights of its edges, and this can be shown to provide an upper bound on thenumber of n-cliques in the original graph. For a set of constraints involving nvariables and m domain values, the overall worst case time complexity of thisalgorithm is O(n3m3).The second approximation algorithm deals with equality and disequality con-straints over a �nite domain. It can be shown that the problem of estimatingthe number of solutions to a set of such constraints can be transformed into theproblem of computing the chromatic polynomial of a graph. Since the problemof determining the chromatic number of a graph is NP-complete, that of deter-mining chromatic polynomials is NP-hard. However, it turns out that if we cane�ciently compute a lower bound on the chromatic number of a graph, thenwe can e�ciently compute an upper bound on the chromatic polynomial of agraph. We use a result by Bondy [1] to obtain a lower bound on the chromaticnumber of a graph. For a set of m constraints involving n variables, this yieldsa procedure for computing an upper bound estimate on the number of solutionshaving a worst case complexity of O(n2 logn+ nm).For estimating the number of solutions for predicates in a program, we asso-ciate with each predicate a pair of values: one of these is an upper bound on therelation size for the predicate (for recursive predicates this is in�nity), and the



other is a function that gives an upper bound on the number of solutions thatmay be obtained for a single input of given size. We combine the algorithmsdescribed above as follows. When type information is available for a predicate,each of its clauses is �rst checked to see if it can be unfolded into a conjunctionof binary disequality constraints where the variables range over the same �niteset of constants. In this case, the constraint graph is constructed and the algo-rithm for estimating the chromatic polynomial of a graph is utilized to estimatethe number of solutions possible for those variables. Otherwise, the clause ischecked to see if it can be unfolded into a conjunction and/or disjunction oflinear constraints over a �nite domain. In this case, the algorithm for estimat-ing the number of n-cliques of a consistency graph is employed to estimate thenumber of bindings possible. In other cases, the general algorithm is used. Asin the case of size relationships, recursive literals are handled by using symbolicexpressions to denote the number of solutions generated by them, and solving(or giving upper bound estimates to) the resulting di�erence equations.The number of solutions a predicate can generate is the maximum of thenumber of solutions that can be generated by each mutually exclusive clusterof clauses (see [2] for a discussion of inference of mutual exclusion); the numberof solutions any cluster can generate is bounded by the sum of the number ofsolutions that can be generated by each clause within the cluster.3.3 Time ComplexityThe worst-case upper bound time complexity of a clause, for a single procedurecall to that clause, can be obtained as the time taken for head uni�cation togetherwith the time to execute its body.If we express the time complexity in terms of the number of resolution steps,or procedure calls, then head uni�cation involves just a single resolution. Ifcomplexity is expressed in terms of the number of uni�cation operations, thenthe cost of head uni�cation is given by the number of arguments. If we wantto estimate the number of instructions executed, then we have to examine theuni�cation algorithm being used in detail, to obtain a precise expression for itsworst-case cost for inputs of a given size, and use this to express the cost of headuni�cation. An intermediate solution is to \peel" head uni�cation to \normalform," i.e., represent it as a sequence of atomic Herbrand domain constraintsand count the number of such constraints, or even estimate the cost of each ofthem. Mode and type information can help estimate such cost.The cost of executing the body of the clause can be obtained from the costs ofexecuting each body literal (as mentioned earlier, recursive literals are handledusing symbolic representations). The input size for each body literal is obtained



as a function of the input sizes for the clause head from argument size analysis.Number of solutions analysis is used to determine how many times each bodyliteral is executed: given Prolog's left-to-right execution strategy, for example,the number of times a body literal is executed is (bounded above by) the productof (upper bounds on) the number of solutions produced by the literals to its left.As in the case of estimating the number of solutions, the clauses are par-titioned into mutually exclusive clusters. The time complexity for each suchcluster can be obtained by summing the time complexity for each of its clauses.In addition to that, however, we also need to take into account the failure costintroduced by trying to solve the clauses in other clusters. The failure cost fromsolving a clause in another cluster can be estimated by considering the sourcesleading to the mutual exclusion among clauses. This information can be easilyproduced by mutual exclusion analysis [2]. After the failure costs are added intothe time complexity for each cluster, the time complexity of a predicate is thenobtained as the maximum of the time complexities of these clusters.4 Lower Bound Cost AnalysesThe main problem with the inference of lower bounds on the computational costof logic programs is the possibility of failure of execution. Any attempt to inferlower bounds has to contend with the possibility that a goal may fail during headuni�cation, yielding a trivial lower bound of 0. An obvious solution would be totry and rule out \bad" argument values by considering the types of predicates.However, most existing type analyses provide upper approximations, in the sensethat the type of a predicate is a superset of the set of argument values that areactually encountered at runtime. Unfortunately, straightforward attempts toaddress this issue, for example by trying to infer lower approximations to thecalling types of predicates, fail to yield nontrivial lower bounds for most cases.We take a di�erent approach where, given mode and (upper approximation) typeinformation, we can detect procedures and goals that can be guaranteed to notfail, using the notion of a set of tests \covering" the type of a variable.4.1 Coverings and Non-Failure AnalysisThe basic idea behind the notion of covering is very simple. We can think ofa test � (x) as denoting a set of terms succ(� (x)), namely, the terms for whichthe test succeeds (tests that take more than one argument can be thought ofas unary predicates operating on tuples of the appropriate size). This extendsin the obvious way to sets of tests: a set of tests S = f�1(x); : : : ; �n(x)g, whichrepresents the disjunction �1(x)_� � �_ �n(x), denotes the set of terms succ(S) =[ni=1succ(�i(x)). Now suppose that the variable x has type T , where a typeintuitively denotes a set of terms. If T � succ(S), then it must be the case that



for any possible value that x can take on (this value must lie in the set of termsT ) at least one of the tests in the set S will succeed. In this case, we say thatthe set of tests S covers the type T of x. The idea can be generalized easily totype assignments on multiple variables.We can think of each clause in a program as consisting of an \input test",which is a conjunction of head uni�cations and tests on the input arguments,followed by a sequence of output uni�cations and calls to other predicates. Thebasic idea behind our approach is to determine whether the set of input tests ofa predicate cover the type of its input arguments: if it does, we can guaranteethat at least one of these tests will succeed for any call to that predicate, andtherefore that if such a call fails it must be due to the failure of a body goal.Information about the possible failure of body goals is obtained by processingthe strongly connected components of the call graph in topological order.The main technical problem here, then, is that of determining whether a setof tests covers a type assignment. It turns out that in the presence of arbitraryarithmetic operations the problem is undecidable in general, even if the set oftests under consideration is a singleton (the proof is a straightforward reductionfrom Matijasevi�c's proof of the unsolvability of Hilbert's tenth problem [9]), andis co-NP-hard even if we restrict ourselves to �nite types. We therefore have toresort to sound (but obviously incomplete) algorithms for checking coverings. Alinear time algorithm for this is described in [6].Using the notion of coverings, it is straightforward to identify the non-failinggoals and predicates in a program. This simply involves a depth-�rst traversalof a graph derived from the the call graph of the program, starting from literalswhose types are not covered by the input tests of the called predicate, markingeach visited node (literal as well as predicate) as \possibly failing." When thisis over the unmarked predicates and literals are guaranteed to be non-failing.4.2 Argument SizeAfter non-failing goals have been identi�ed, lower-bound argument size analysisproceeds essentially as described in Section 3.1, with two obvious di�erences:�rst, the output sizes for a clause that may fail are 0;1 and second, the outputsize of a predicate is obtained by taking the min of the output sizes of its clauses.1This works because we consider only the non-failing literals to the left of the �rst possibly-failing literal when estimating the computational cost of a clause (see Section 4.4).



4.3 Number of SolutionsIt is tempting to try and estimate a lower bound on the number of solutionsgenerated by a clause `H :� B1; : : : ; Bn' from lower bounds on the number ofsolutions generated by each of the body literals Bi, in a manner analogous tothe estimation of upper bounds on the number of solutions. Unfortunately, thisdoes not work. For example, given a clause `p(X) :� q(X); r(X)', where X is anoutput variable, suppose that q and r generate nq and nr bindings, respectively,for X, then min(nq; nr) is not a lower bound on the number of solutions theclause can generate. To see this, suppose that q can bind X to either a or b,while r can bind X to either b or c: thus, min(nq; nr) = min(2; 2) = 2, butthe number of solutions for the clause is 1. The problem in this case is thatthe goals q(X) and r(X) \interfere" with each other in terms of the bindingsthey allow for X. We can give more restrictive rules that essentially rule outsuch interference, for example by requiring that output variables be distinct andunaliased and occur at most once in the clause body. The approach can beextended to handle equality and disequality constraints by computing a lowerbound on the chromatic polynomial of the associated graph.Once we have computed lower bounds on the number of solutions a singleclause can yield, we can estimate lower bounds on the number of solutions pro-duced by a set of clauses. In general, this is given by the min of the number ofsolutions due to the individual clauses. However, if we can show that a set ofclauses have \equivalent" input tests, so that if one of them succeeds for a callthen all of them do, then we can improve our lower bound estimate to be thesum of the lower bounds of the individual clauses in that set.These restrictions may seem serious, but they nevertheless allow us to inferinteresting lower bounds for a reasonably large class of programs. For example,given the program:- mode subset(in, out).subset([], X) :- X = [].subset([H|L], X) :- X = [H|X1], subset(L, X1).subset([H|L], X) :- subset(L, X).we can infer that given an input list of length n, this predicate produces at least2n solutions.4.4 Computational CostOnce information about non-failure and argument sizes has been computed,the estimation of lower bounds on the computational cost of a predicate is not



di�cult. If we cannot guarantee that all solutions to a predicate are needed,then the cost of a clause is at least the cost of the input tests together with thesum of the costs of the body literals upto the leftmost \possibly failing" goal. Incontexts where all solutions are required, e.g., within a setof or in a distributedimplementation, this can be improved by taking the number of solutions intoaccount to estimate how many times each of these literals must be executed. Thecost of a predicate is at least the min of the costs of its clauses. This estimatecan be improved with knowledge about the order in which clauses are tried andabout the indexing scheme used.5 Directions for Future WorkThere are many directions in which the work described can be extended: herewe consider just two. A signi�cant shortcoming of our current approach is thatthe size of each output argument is treated as a function of the input sizes,independent of the sizes of other output arguments. As a result, relationshipsbetween the sizes of di�erent output arguments are lost. This, in turn, cancause a signi�cant loss in precision, especially in divide-and-conquer programs.For example, in a quicksort program where a list of numbers is split into twolists that are recursively sorted, our approach determines that given an input listof length n, each of the lists obtained from the splitting can have length n�1 inthe worst case: the information that their lengths must also sum to n�1 is lost.Because of this, we infer an exponential upper bound on the time complexity ofthe quicksort program: this is sound, but somewhat less precise than we wouldlike. It may be possible to alleviate this problem by using constraint-basedreasoning both for expressing output sizes in terms of input sizes, and also forexpressing relationships between the sizes of di�erent variables in a clause. Onthe other hand, as a pragmatic short-term solution it may be possible to get alot of mileage simply by identifying and treating divide-and-conquer programsspecially.Another interesting area of investigation is average case analysis. For mostof the applications identi�ed at the beginning of this paper, the average costof a program is far more interesting, and appropriate, than the worst case.Obviously, giving an acceptable de�nition of \average" requires de�ning a prob-ability distribution on the possible inputs, and this seems nontrivial. However,one can imagine that pro�ling techniques might be usable for estimating inputdistributions, so techniques for average case analysis that assume that the inputdistributions are given are worth investigating.
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