
A Semantics-Based Approach to Malware Detection∗

Mila Dalla Preda
Dipartimento di Informatica,

University of Verona,
Strada le Grazie 15, 37134 Verona, Italy.

dallapre@sci.univr.it

Mihai Christodorescu and Somesh Jha
Department of Computer Science,

University of Wisconsin, Madison, WI
53706, USA.

{mihai,jha}@cs.wisc.edu

Saumya Debray
Department of Computer Science,
University of Arizona, Tucson, AZ

85721, USA.
debray@cs.arizona.edu

Abstract
Malware detection is a crucial aspect of software security.Cur-
rent malware detectors work by checking for “signatures,” which
attempt to capture (syntactic) characteristics of the machine-level
byte sequence of the malware. This reliance on a syntactic ap-
proach makes such detectors vulnerable to code obfuscations, in-
creasingly used by malware writers, that alter syntactic proper-
ties of the malware byte sequence without significantly affecting
their execution behavior. This paper takes the position that the
key to malware identification lies in their semantics. It proposes
a semantics-based framework for reasoning about malware detec-
tors and proving properties such as soundness and completeness of
such detectors. Our approach uses a trace semantics to characterize
the behaviors of malware as well as the program being checkedfor
infection, and uses abstract interpretation to “hide” irrelevant as-
pects of these behaviors. As a concrete application of our approach,
we show that the semantics-aware malware detector proposedby
Christodorescuet al. is complete with respect to a number of com-
mon obfuscations used by malware writers.

1. Introduction
Malwareis a program with malicious intent that has the potential to
harm the machine on which it executes or the network over which
it communicates. Amalware detectoridentifies malware. Amis-
use malware detector(or, alternately, asignature-based malware
detector) uses a list of signatures (traditionally known as asigna-
ture database[19]). For example, if part of a program matches a

∗ The work of S. Debray was supported in part by the National Science
Foundation under grants EIA-0080123, CCR-0113633, and CNS-0410918.

The work of M. Christodorescu and S. Jha was supported in partby the
Office of Naval Research under contracts N00014-01-1-0796 and N00014-
01-1-0708. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes, notwithstanding any copyright notices
affixed thereon.

The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the above government
agencies or the U.S. Government.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00.

signature in the database, the program is labeled as malware[22].
Their low false-positive rate and ease of use have led to widespread
deployment of such systems.

Malware writers continuously test the limits of malware detec-
tors in an attempt to discover ways to evade detection. This leads
to an ongoing game of one-upmanship [20], where malware writers
find new ways to create undetected malware, and where researchers
design new signature-based techniques for detecting such evasive
malware. This co-evolution is a result of the theoretical undecid-
ability of malware detection [2,5]. This means that, in the currently
accepted model of computation, no ideal malware detector exists.
The only achievable goal in this scenario is to design betterdetec-
tion techniques that jump ahead of evasion techniques and make
the malware writer’s task harder.

Attackers have resorted to two main approaches for evading
malware detectors:program obfuscationand program evolution.
Program obfuscation transforms a program by inserting new code
or modifying existing code to make understanding and detection
harder, at the same time preserving the malicious behavior.Obfus-
cation transformations can easily defeat signature-baseddetection
mechanisms. If a signature describes a certain sequence of instruc-
tions [22], then those instructions can be reordered or replaced with
equivalent instructions [25, 26]. Such obfuscations are especially
applicable on CISC architectures, such as the Intel IA-32 [15],
where the instruction set is rich and many instructions haveover-
lapping semantics. If a signature describes a certain distribution of
instructions in the program, insertion of junk code [16, 23,26] that
acts as a nop so as not to modify the program behavior can defeat
frequency-based signatures. If a signature identifies someof the
read-only data of a program, packing or encryption with varying
keys [13, 21] can effectively hide the relevant data.Therefore, an
important requirement of a robust malware detection technique is
to handle obfuscation transformations.

Program semantics provides a formal model of program behav-
ior. Therefore addressing the malware-detection problem from a se-
mantic point of view could lead to a more robust detection system.
Preliminary work by Christodorescuet al.[4] and Kinderet al.[17]
on a formal approach to malware detection confirms the potential
benefits of a semantics-based approach to malware detection. The
goal of this paper is to provide a formal semantics-based frame-
work that can be used by security researchers to reason aboutand
evaluate the resilience of malware detectors to various kinds of ob-
fuscation transformations. This paper makes the followingspecific
contributions:

• We present a formal definition of what it means for a detector to
be sound and complete with respect to a class of obfuscations.
We also provide a framework which can be used by malware-
detection researchers to prove that their detector is complete
with-respect-to a class of obfuscations. As an integral part of

the formal framework, we provide a trace semantics to charac-
terize the program and malware behaviors, using abstract inter-
pretation to “hide” irrelevant aspects of these behaviors.

• We show our formal framework in action by proving that the
semantic-aware malware detectorAMD proposed by Christo-
dorescuet al. [4] is complete with respect to the some common
obfuscations used by malware writers. The soundness ofAMD

was proved in [4].

2. Preliminaries
Let P be the set of programs. Anobfuscationis a program trans-
former,O : P → P. Code reordering and variable renaming are
two common obfuscations. The set of all obfuscations is denoted
by O.

A malware detectoris D : P × P → {0, 1}: D(P,M) = 1
means thatP is infected withM or with an obfuscated variant
of M . Our treatment of malware detectors is focused on detecting
variants of existing malware. When a programP is infected with a
malwareM , we writeM →֒ P . Intuitively, a malware detector is
soundif it never erroneously claims that a program is infected, i.e.,
there are no false positives; and it iscompleteif it always detects
programs that are infected, i.e., there are no false negatives. More
formally, these properties can be defined as follows:

DEFINITION 1 (Soundness and Completeness).A malware detec-
torD is complete for an obfuscationO ∈ O if and only if∀M ∈ P,
O(M) →֒ P ⇒ D(P,M) = 1. A malware detectorD is sound
for an obfuscationO ∈ O if and only if∀M ∈ P, D(P,M) =
1⇒ O(M) →֒ P .

Note that this definition of soundness and completeness can be ap-
plied to a deobfuscator as well. In other words, our definitions are
not tied to the concept of malware detection. Most malware detec-
tors are built on top of other static-analysis techniques for prob-
lems that hard or undecidable. For example, most malware detec-
tors [4,17] that are based on static analysis assume that thecontrol-
flow graph for an executable can be extracted. As shown by re-
searchers [18], simply disassembling an executable can be quite
tricky. Therefore, we want introduce the notion ofrelative sound-
ness and completenesswith respect to algorithms that a detector
uses. In other words, we want to prove that a malware detectoris
sound or complete with respect to a class of obfuscations if the
static-analysis algorithms that the detector uses are perfect.

DEFINITION 2 (Oracle).An oracle is an algorithm over programs.
For example, a CFG oracle is an algorithm that takes a program
as an input and produces its control-flow graph.

DOR denotes a detector that uses a set of oraclesOR.1 For
example, letORCFG be a static-analysis oracle that given an exe-
cutable provides a perfect control-flow graph for it. A detector that
uses the oracleORCF G is denoted asDORCFG . In the definitions
and proofs in the rest of the paper we assume that oracles thata
detector uses are perfect.

DEFINITION 3 (Soundness and completeness relative to oracles).
A malware detectorDOR is complete with respect to an obfus-
cationO, if D is complete for that obfuscationO given that all
oracles in the setOR are perfect. Soundness of a detectorDOR

can be defined in a similar manner.

1 We assume that detectorD can query an oracle from the setOR, and
the query is answered perfectly and inO(1) time. This type of relative
completeness and soundness results are common in cryptography.

2.1 A Framework for Proving Soundness and Completeness
of Malware Detectors

When a new malware detection algorithm is proposed, one of the
criteria of evaluation is its resilience to obfuscations. Unfortunately,
identifying the classes of obfuscations for which a detector is re-
silient can be a complex and error-prone task. A large numberof
obfuscation schemes exist, both from the malware world and from
the intellectual-property protection industry. Furthermore, obfusca-
tions and detectors are defined using different languages (e.g., pro-
gram transformation vs program analysis), complicating the task of
comparing one against the other.

We present a framework for proving soundness and complete-
ness of malware detectors in the presence of obfuscations. This
framework operates on programs described through their execu-
tion traces—thus, program trace semantics is the building block of
our framework. Both obfuscations and detectors can be elegantly
expressed as operations on traces (as we describe in Section3 and
Section 4).

In this framework, we propose the following two stepproof
strategy for showing that a detector is sound or complete with
respect to an obfuscation or a class of obfuscations.

1. [Step 1] Relating the two worlds.
LetDOR be a detector that uses a set of oraclesOR. Assume
that we are given a programP and malwareM . Let S JP K and
S JMK be the set of traces corresponding toP andM , respec-
tively. In Section 3 we describe a detectorDTr which works in
the semantic world of traces. We then prove that if the oracles in
OR are perfect, the two detectors are equivalent, i.e, for allP
andM in P,DOR(P,M) = 1 iff DTr (S JP K ,S JMK) = 1.
In other words, this step shows the equivalence of the two
worlds: the concrete world of programs and the semantic world
of traces.

2. [Step 2] Proving soundness and completeness in the seman-
tic world.
After step 1, we prove the desired property (e.g., completeness)
about the trace-based detectorDTr , with respect to the chosen
class of obfuscations. In this step, the detector effects onthe
trace semantics are compared to the effects of obfuscation on
the trace semantics. This also allows us to evaluate the detector
against whole classes of obfuscations, as long as the obfusca-
tions have similar effects on the trace semantics.

The requirement for equivalence in step 1 above might be too
strong if only one of completeness or soundness is desired. For
example, if the goal is to prove only completeness of a malware
detectorDOR, then it is sufficient to find a trace-based detector
that classifies only malware and malware variants in the sameway
asDOR. Then, if the trace-based detector is complete, so isDOR.

2.2 Abstract Interpretation

The basic idea of abstract interpretation is that program behaviour
at different levels of abstraction is an approximation of its formal
semantics [8, 9]. The (concrete) semantics of a program is com-
puted on the (concrete) domain〈C,≤C〉, i.e., a complete lattice
which models the values computed by programs. The partial or-
dering≤C models relative precision between concrete values. An
abstract domain〈A,≤A〉 is a complete lattice which encodes an
approximation of concrete program values. As usual abstract do-
mains are specified by Galois connections [8, 9]. Two complete
latticesC and A form a Galois connection(C,α, γ,A), when
α : C → A and γ : A → C form an adjunction, namely
∀a ∈ A,∀c ∈ C : α(c) ≤A a ⇔ c ≤C γ(a) whereα(γ)
is the left(right) adjoint ofγ(α). α andγ are called, respectively,
abstraction and concretization maps. A tuple(C,α, γ, A) is a Ga-

Syntactic Categories:

n ∈ N (integers)
X ∈ X (variable names)
L ∈ L (labels)
E ∈ E (integer expressions)
B ∈ B (Boolean expressions)
A ∈ A (actions)
D ∈ E ∪ (A× ℘(L)) (assignment r-values)
C ∈ C (commands)
P ∈ P (programs)

Value Domains:

B = {true, false} (truth values)
n ∈ Z (integers)
ρ ∈ E = X→ L⊥ (environments)
m ∈M = L→ Z ∪ (A× ℘(L)) (memory)
ξ ∈ X = E ×M (execution contexts)

Σ = C× X (program states)

Syntax:

E ::= n | X | E1 op E2 (op ∈ {+,−, ∗, /, . . .})
B ::= true | false | E1 < E2 | ¬B1 | B1 && B2

A ::= X := D | skip | assign(L, X)
C ::= L : A→ L′ (unconditional actions)
| L : B → {LT , LF } (conditional jumps)

P ::= ℘(C)

Semantics:
ARITHMETIC EXPRESSIONS

E : A×X → Z⊥ ∪ (A× ℘(L))
E JnK ξ = n
E JXK ξ = m(ρ(X)), whereξ = (ρ, m)
E JE1 op E2K ξ = if (E JE1K ξ ∈ Z andE JE2K ξ ∈ Z) thenE JE1K ξ op E JE2K ξ; else⊥

BOOLEAN EXPRESSIONS

B : B× X → B⊥

B JtrueK ξ = true
B JfalseK ξ = false
B JE1 < E2K ξ = if (E JE1K ξ ∈ Z andE JE2K ξ ∈ Z) thenE JE1K ξ < E JE2K ξ; else⊥
B J¬BK ξ = if (B JBK ξ ∈ B) then¬B JBK ξ; else⊥
B JB1 && B2K ξ = if (B JB1K ξ ∈ B andB JB2K ξ ∈ B) thenB JB1K ξ ∧B JB2K ξ; else⊥

ACTIONS

A : A×X → X
A JskipK ξ = ξ

A JX := DK ξ = (ρ, m′) whereξ = (ρ, m), m′ = m[ρ(X)← δ], and δ =

D if D ∈ A× ℘(L)
E JDK (ρ, m) if D ∈ E

A Jassign(L′, X)K ξ = (ρ′, m) whereξ = (ρ, m) andρ′ = ρ[X L′]

COMMANDS

The semantic functionC effectively specifies the transition relation between states. Here, lab JCK denotes the label for the commandC, i.e.,
lab JL : A→ L′K = L andlab JL : B → {LT , LF }K = L.

C : Σ→ ℘(Σ)
C JL : A→ L′K ξ = {(C, ξ′) | lab JCK = L′, ξ′ = A JAK ξ}

C JL : B → {LT , LF }K ξ = {(C, ξ) | lab JCK =

LT if B JBK ξ = true
LF if B JBK ξ = false }

Figure 1. A simple programming language.

lois connection iffα is additive iff γ is co-additive. This means
that whenever we have an additive(co-additive) functionf between
two domains we can always build a Galois connection by consid-
ering the right(left) adjoint map induced byf . Given two Galois
connections(C,α1, γ1, A1) and(A1, α2, γ2, A2), their composi-
tion (C,α2 ◦ α1, γ1 ◦ γ2, A2) is a Galois connection.(C,α, γ,A)
specifies a Galois insertion if each element ofA is abstraction
of concrete element inC, namely(C,α, γ,A) is a Galois inser-
tion iff α is surjective iffγ is injective. Abstract domains can be
related to each other w.r.t. their relative degree of precision. We
say that an abstractionα1 : C → A1 is more concrete then
α2 : C → A2, i.e., A2 is more abstract thanA1, namely if
∀c ∈ C : γ1(α1(c)) ≤C γ2(α2(c)).

2.3 Programming Language

The language we consider is a simple extension of the one in-
troduced by Cousot and Cousot [10], the main difference being
the ability of programs to generate code dynamically (this facil-
ity is added to accommodate certain kinds of malware obfuscations
where the payload is unpacked and decrypted at runtime). Thesyn-
tax and semantics of our language are given in Figure 1. Givena set
S, we useS⊥ to denote the setS∪{⊥}, where⊥ denotes an unde-
fined value.2 Program variables are integer-valued, i.e., range over
Z⊥. Commands can be either conditional or unconditional. A con-
ditional command at a labelL has the form ‘L : B → {LT , LF },’

2 We abuse notation and use⊥ to denote undefined values of different types,
since the type of an undefined value is usually clear from the context.

whereB is a Boolean expression andLT (respectively,LF) is the
label of the command to execute whenB evaluates totrue (respec-
tively, false); an unconditional command at a labelL is of the form
‘L : A → L1,’ whereA is an action andL1 the command to be
executed next. A variable can store either an integer or a (appro-
priately encoded) pair(A,S) ∈ A × ℘(L). A program consists
of a set of commands (since each command explicitly mentionsits
successors, the program need not maintain an explicit sequence of
commands).

An environmentρ ∈ E maps variables indom(ρ) ⊆ X to
memory locationsL⊥. Given a programP we denote withE(P)
its environments, i.e. ifρ ∈ E(P) thendom(ρ) = var JP K. Let
ρ[X L] denote environmentρ where labelL is assigned to
variableX. The memoryis represented as a functionm : L →
Z⊥ ∪ (A × ℘(L)). Let m[L ← D] denote memorym where
elementD is stored at locationL. When considering a program
P , we denote withM(P) the set of program memories, namely
if m ∈ M(P) then dom(m) = Luse JP K. This means that
m ∈ M(P) is defined on the set of memory locations that are
affected by the execution of programP (excluding the memory
locations storing the commands ofP).

Labels:
lab JL : A→ L′K = L
lab JL : B → {LT , LF }K = L
lab JP K = {lab JCK |C ∈ P}

Successors of a comamnd:
suc JL : A→ L′K = L′

suc JL : B → {LT , LF }K = {LT , LF }

Action of a command:
act JL : A→ L2K = A

Variables:
var JL1 : A→ L2K = var JAK
var JP K =

S

C∈P var JCK
var JAK = { variables occuring inA}

Memory locations used by a program:
Luse JL : A→ L′K = Luse JAK
Luse JP K =

S

C∈P Luse JCK
Luse JAK = {locations occuring inA} ∪ ρ(var JAK)

Figure 2. Auxiliary functions for the language of Figure 1.

The behavior of a command when it is executed depends on its
execution context, i.e., the environment and memory in which it is
executed. The set of execution contexts is given byX = E ×M. A
program stateis a pair(C, ξ) whereC is the next command that has
to be executed in the execution contextξ. Σ = C× X denotes the
set of all possible states. Given a states ∈ Σ, the semantic function
C (s) gives the set of possible successor states ofs; in other words,
C : Σ → ℘(Σ) defines the transition relation between states. Let
Σ(P) = P × X (P) be the set of states of a programP , then we
can specify the transition relationC onP as follows:

C JP K (C, ξ) =
˘
(C′, ξ′)

˛̨
(C′, ξ′) ∈ C (C, ξ), C′ ∈ P, andξ, ξ′ ∈ X (P)

¯
.

Let A∗ denote the Kleene closure of a setA, i.e., the set of finite
sequences overA. A traceσ ∈ Σ∗ is a sequence of statess1...sn

of length|σ| ≥ 0 such that for alli ∈ [1, n): si ∈ C (si−1). The
finite partial traces semanticsS JP K ⊆ Σ∗ of programP is the
least fixpoint of the functionF :

F JP K (T) = Σ(P) ∪ {ss′σ|s′ ∈ C JP K (s), s′σ ∈ T}

whereT is a set of traces, namelyS JP K = lfp⊆F JP K. The
set of all partial trace semantics, ordered by set inclusion, forms
a complete lattice.

Finally, we use the following notation. Given a functionf :
A → B and a setS ⊆ A, we suef|S to denote the restriction of
functionf to variables inS∩A, andfrS to denote the restriction
of functionf to elements not inS, namely toAr S.

3. Semantics-Based Malware Detection
Intuitively, a programP is infected by a malwareM if (part
of) P ’s execution behavior is similar to that ofM . In order to
detect the presence of a malicious behaviourM in a programP ,
therefore, we need to check whether there is a part (a restriction)
of S JP K that “matches” (in a sense that will be made precise)
S JMK. In the following we show how program restriction as
well as semantic matching are actually appropriate abstractions of
program semantics, in the abstract interpretation sense.

The process of considering only a portion of program semantics
can be seen as an abstraction. Given a subset of a programP ’s
labels (i.e., commands)labr JP K ⊆ lab JP K that characterize a
restrictionof P , let varr JP K andLuser JP K be, respectively, the
set of variables occurring in the restriction and the set of memory
locations it uses:

varr JP K = {var JCK | lab JCK ∈ labr JP K}
Luser JP K = {Luse JCK | lab JCK ∈ labr JP K}.

The set of labelslabr JP K induces a restriction on environment
and memory maps. Givenρ ∈ E(P) and m ∈ M(P), let
ρr = ρ|varrJP K andmr = m|LuserJP K denote the restricted
set of environments and memories induced by the restricted set of
labelslabr JP K. Defineαr : Σ∗ → Σ∗ that propagates restriction
labr JP K on a given a traceσ:

αr(σ) =

8
><
>:

ǫ if σ = ǫ
(C1, (ρ

r
1,m

r
1))αr(σ

′) if σ = (C1, (ρ1,m1))σ
′

andlab JC1K ∈ labr JP K
αr(σ

′) otherwise

Given a functionf : A → B we denote, by a slight abuse of no-
tation, its pointwise extension on powerset asf : ℘(A) → ℘(B),
wheref(X) = {f(x)|x ∈ X}. Note that the pointwise exten-
sion is additive. Therefore, the functionαr : ℘(Σ∗) → ℘(Σ∗

r)
is an abstraction that discards information outside the restriction
labr JP K. Moreoverαr is surjective and defines a Galois insertion:
〈℘(Σ∗),⊆〉 →−→←−

αr

γr

〈℘(Σ∗
r),⊆〉. Let αr(S JP K) be therestricted

semanticsof programP . Observe that program behaviour is ex-
pressed by the effects that program execution has on environment
and memory. Consider a transformationαe : Σ∗ → X ∗ that, given
a traceσ, discards fromσ all information about the commands that
are executed, retaining only information about changes to the envi-
ronment and effects on memory during execution:

αe(σ) =

ǫ if σ = ǫ
ξ1αe(σ

′) if σ = (C1, ξ1)σ
′

Two traces are considered to be “similar” if they are the sameunder
αe, i.e., if they have the same sequence of effects on the restrictions
of the environment and memory defined bylabr JP K. This seman-
tic matching relation between program traces is the basis ofour ap-
proach to malware detection. The additive functionαe : ℘(Σ∗)→
℘(X ∗) abstracts from the trace semantics of a program and defines
a Galois insertion:〈℘(Σ∗),⊆〉 →−→←−

αe

γe

〈℘(X ∗),⊆〉.

Let us say that a malware is avanilla malwareif no obfuscating
transformations have been applied to it. The following definition
provides a semantic characterization of the presence of a vanilla
malwareM in a programP in terms of the semantic abstractions
αr andαe.

DEFINITION 4. A programP is infected by a vanilla malwareM ,
i.e.,M →֒ P , if:

∃labr JP K ∈ ℘(lab JP K) : αe(S JMK) ⊆ αe(αr(S JP K)).
A semantic malware detectoris a system that verifies the presence
of a malware in a program by checking the truth of the inclusion
relation of the above definition.

4. Obfuscated Malware
To prevent detection malware writers usually obfuscate themali-
cious code. Thus, a robust malware detector needs to handle possi-
bly obfuscated versions of a malware. While obfuscation maymod-
ify the original code, the obfuscated code has to be equivalent (up
to some notion of equivalence) to the original one. Given an ob-
fuscating transformationO : P → P on programs and a suitable
abstract domainA, we define an abstractionαO : ℘(X ∗) → A
that discards the details changed by the obfuscation while preserv-
ing the maliciousness of the program. Thus, different obfuscated
versions of a program are equivalent up toαO ◦ αe. Hence, in or-
der to verify program infection, we check whether there exists a
semantic program restriction that matches the malware behaviour
up toαO , formally if:

∃ labr JP K ∈ ℘(lab JP K) :

αO(αe(S JMK)) ⊆ αO(αe(αr(S JP K))).
Hereαr(S JP K) is the restricted semantics forP ; αe(αr(S JP K))
retains only the environment-memory traces from the restricted se-
mantics; andαO further discards any effects due to the obfuscation
O. We then check that the resulting set of environment-memory
traces contains all of the environment-memory traces from the mal-
ware semantics, with obfuscation effects abstracted away viaαO.

4.1 Soundness vs Completeness

The extent to which a semantic malware detector is able to dis-
criminate between infected and uninfected code, and therefore the
balance between any false positives and any false negativesit may
incur, depends on the abstraction functionαO. We can provide se-
mantic characterizations of the notions of soundness and complete-
ness, introduced in Definition 1, as follows:

DEFINITION 5. A semantic malware detector onαO is complete
for O if and only if

O(M) →֒ P ⇒

∃labr JP K ∈ ℘(lab JP K) :
αO(αe(S JMK)) ⊆ αO(αe(αr(S JP K))) .

A semantic malware detector onαO is sound forO if and only if

∃labr JP K ∈ ℘(lab JP K) :
αO(αe(S JMK)) ⊆ αO(αe(αr(S JP K)))

ff
⇒ O(M) →֒ P.

It is interesting to observe that completeness is guaranteed when
abstractionαO is preserved by obfuscationO, namely when∀P ∈
P : αO(αe(S JP K)) = αO(αe(S JO(P)K)).
THEOREM 1. If αO is preserved by the transformationO then the
semantic malware detector onαO is complete forO.

However, the preservation condition of Theorem 1 is too weak
to imply soundness of the semantic malware detector. As an ex-
ample let us consider the abstractionα⊤ = λX.⊤ that loses all
information. It is clear thatα⊤ is preserved by every obfuscating
transformation, and the semantic malware detector onα⊤ classi-
fies every program as infected by every malware. Unfortunately we
do not have a result analogous to Theorem 1 that provides a prop-
erty of αO that characterizes soundness of the semantic malware
detector.

4.2 A Semantic Classification of Obfuscations

Obfuscating transformations can be classified according totheir
effects on program semantics. Givens, t ∈ A∗ for some setA,
let s � t denote thats is a subsequence oft, i.e., if s = s1s2 . . . sn

thent is of the form. . . s1 . . . s2 . . . sn

4.2.1 Conservative Obfuscations

An obfuscationO : P → P is a conservative obfuscationif
∀σ ∈ S JP K ,∃δ ∈ S JO(P)K such that:αe(σ) � αe(δ). Let
Oc denote the set of conservative obfuscating transformations.

When dealing with conservative obfuscations we have that a
trace δ of a programP presents a malicious behaviourM , if
there is a malware traceσ ∈ S JMK whose environment-memory
evolution is contained in the the environment-memory evolution
of δ, namely if αe(σ) � αe(δ). Let us define the abstraction
αc : ℘(X ∗) → (X ∗ → ℘(X ∗)) that given a sequences ∈ X ∗

and a setS ∈ ℘(X ∗), returns the elementst ∈ S that are subtraces
of s.

αc[S](s) = S ∩ SubSeq(s)

whereSubSeq(s) = {t|t � s} denotes the set of all subsequences
of s. For anyS ∈ ℘(X ∗), the additive functionαc defines a Galois

connection:〈℘(X ∗),⊆〉 −→←−
αc[S]

γc[S]

〈℘(X ∗),⊆〉. The abstraction

αc turns out to be a suitable approximation when dealing with
conservative obfuscations. In fact the semantic malware detector
on αc[αe(S JMK)] ◦ αe is complete and sound for the class of
conservative obfuscations.

THEOREM2. If M is a vanilla malware andOc ∈ Oc, then
Oc(M) →֒ P iff ∃ labr JP K ∈ ℘(lab JP K) such that:

αcαe(S JMK) ⊆
αc[αe(S JMK)](αe(αr(S JP K))).

Many obfuscating transformations commonly used by malware
writers are conservative; a partial list of such conservative obfus-
cations is given below. It follows that Theorem 2 is applicable to a
significant class of malware-obfuscation transformations.

– Code reordering. This transformation, commonly used to avoid
signature matching detection, changes the order in which com-
mands are written, while maintaining the execution order
through the insertion of unconditional jumps.

– Opaque predicate insertion. This program transformation con-
fuses the original control flow of the program by inserting
opaque predicates, i.e., a predicate whose value is known a pri-
ori to a program transformation but is difficult to determineby
examining the transformed program [7].

– SemanticNOP insertion. This transformation inserts commands
that are irrelevant with respect to the program semantics.

– Substitution of Equivalent Commands. This program transfor-
mation replaces a single command with an equivalent one, with
the goal of thwarting signature matching.

The following result shows that the composition of conservative
obfuscations is a conservative obfuscation. Thus when morethan
one conservative obfuscation is applied, it can be handled as a
single conservative obfuscation.

LEMMA 1. GivenO1,O2 ∈ Oc thenO1 ◦ O2 ∈ Oc.

EXAMPLE 1. Let us consider a fragment of malwareM presenting
the decryption loop used by polymorphic viruses. Such a fragment
writes, starting from memory locationB, the decryption of memory
locations starting at locationA. Let Oc(M) be a conservative
obfuscation ofM :

M Oc(M)

L1 : assign(LB , B)→ L2

L2 : assign(LA, A)→ Lc

Lc : cond(A)→ {LT , LF }
LT : B := Dec(A)→ LT1

LT1
: assign(π2(B), B)→ LT2

LT2
: assign(π2(A), A)→ LC

LF : ...

L1 : assign(LB , B)→ L2

L2 : skip→ L4

Lc : cond(A)→ {LO , LF }
L4 : assign(LA, A)→ L5

L5 : skip→ Lc

LO : P T → {LN , Lk}
LN : X := X − 3→ LN1

LN1
: X := X + 3→ LT

LT : B := Dec(A)→ LT1

LT1
: assign(π2(B), B)→ LT2

LT2
: assign(π2(A), A)→ Lc

Lk : . . .
LF : . . .

Given a variableX, the semantics ofπ2(X) is the label expressed
byπ2(m(ρ(X))), in particular π2(n) = ⊥, whileπ2(A,S) = S.
Given a variableX, let Dec(X) denote the execution of a set of
commands that decrypts the value stored in the memory location
ρ(X). The obfuscations are as follows:L2 : skip → L4 and
L5 : skip→ Lc are inserted by code reordering;LN : X := X+
3 → LN1

andLN1
: X := X − 3 → LT represent semantic nop

insertion, andLO : P T → {LN , Lk} true opaque predicate in-
sertion. It can be shown thatαc[αe(S JMK)](αe(S JOc(M)K)) =
αcαe(S JMK), i.e., our semantics-based approach
is able to see through the obfuscations and identifyO(M) as
matching the malwareM .

4.2.2 Non-Conservative Obfuscations

A non-conservative transformation modifies the program semantics
in such a way that the original environment-memory traces are not
present any more. A possible way to face these transformations is
to identify the set of all possible modifications induced by anon-
conservative obfuscation, and fix, when possible, acanonicalone.
In this way the abstraction would reduce the original semantics to
the canonical version before checking malware infection.

Another possible approach comes from Theorem 1 that states
that if αO is preserved byO then the semantic malware detector
on αO is complete w.r.t.O. Recall that, given a program trans-
formationO : P → P, it is possible to systematically derive the
most concrete abstractionαO preserved byO [12]. This systematic
methodology can be used in presence of non-conservative obfusca-
tions in order to derive a complete semantic malware detector when
it is not easy to identify a canonical abstraction.

Moreover in Section 5 we show how it is possible to handle a
class of non-conservative obfuscations through a further abstraction
of the malware semantics.

In the following we consider a non-conservative transformation,
known asvariable renaming, and propose a canonical abstraction
that leads to a sound and complete semantic malware detector.

Variable Renaming Variable renaming is a simple obfuscating
transformation, often used to prevent signature matching,that re-
places the names of variables with some different new names.Let
Ov : P×Π→ P denote the obfuscating transformation that, given
a programP , renames its variables according to a mappingπ ∈ Π,
whereπ : var JP K → Names is a bijective function that relates
name of each program variable to its new name.

Ov(P, π) =
˘
C

˛̨
∃C′ ∈ P : act JCK = act JC′K [X/π(X)]

¯

whereA[X/π(X)] represents actionA where each variable name
X is replaced byπ(X). Recall that the matching relation between
program traces considers the abstractionαe of traces, thus it is
interesting to observe that:

αe(S JOv(P, π)K) =
˘
αv[π](s)

˛̨
s ∈ αe(S JP K)

¯

whereαv : Π→ (X ∗ → X ∗) is defined as:

αv [π]((ρ1,m1) . . . (ρn,mn)) =

(ρ1 ◦ π
−1,m1) . . . (ρn ◦ π

−1,mn).

In order to deal with variable renaming obfuscation we define
the notion ofcanonical variable renamingsbπ. Let {Vi}i∈N be a
set of canonical variable names. Given an environment-memory
sequences ∈ X ∗, the canonical renamingbπs : var JsK →
{Vi}i∈N renames the variables ofs in such a way that the canonical
name of the first variable ins is V1, the canonical name of the
second one isV2, and so on. These canonical mappingsbπ have to
be such that an environment-memory tracet is a renaming of an
environment-memory traces if and only if s andt have the same
canonical form, namelyαv[π](s) = t⇔ αv[bπs](s) = αv[bπs](t).

Note that program execution starts from the uninitialized envi-
ronmentρuninit = λX.⊥, and that each command assigns at most
one variableX. Let def (ρ) denote the set of variables that have
defined (i.e., non-⊥) values in an environmentρ. This means that
considerings ∈ αe(S JP K), we have thatvar JsK = def (ρn), and
def (ρi−1) ⊆ def (ρi). Let us defineList(s) as the list of variables
in s ordered according to their assignment time. LetX : List(s)
denote the insertion of a new variableX on the beginning of the
list, and letList(s)[i] denote thei-th element of the list. Formally,
let s = (ρ1,m1)(ρ2,m2)...(ρn,mn) = (ρ1,m1)s

′:

List(s) =

8
<
:

ǫ if s = ǫ
X : List(s′) if def (s2) r def (s1) = {X}
List(s′) if def (s2) r def (s1) = ∅

Thus the canonical renamingbπs : var JsK → {V1...V|varJsK|} of
the environment sequences is defined in function ofList(s) as:

bπs(X) = Vi ⇔ List(s)[i] = X (1)

Thus,αc[bπs] : X ∗ → X ∗
c , whereXc denotes execution contexts

where environments are defined on canonical variables, reduces
s ∈ X ∗ to its canonical form. The following result shows thatbπs

defined by Equation (1) is a canonical renaming.

LEMMA 2. Givens, t ∈ X ⋆:

∃π : var JsK→ var JtK : αv [π](s) = t⇔ αv[bπs](s) = αv[bπt](t).

Let bΠ denote a set of canonical variable renaming and the additive
function αv : bΠ → (℘(X ∗) → ℘(X ∗

c)) is an approximation
that abstracts from the names of variables. Thus, we have the

following Galois connection:〈℘(X ∗),⊆〉 −→←−
αv [bΠ]

γv [bΠ]

〈℘(X ∗
c),⊆〉.

In the following we show that the presence of a renamed malware
Ov(M,π) in a programP can be semantically characterized in
terms of the abstractionsαv andαe. Define a variable renaming
to bestable if, for each test action in the program, thei-th local
variable of thetrue branch has the same name as thei-th local
variable of thefalse branch. The following result states that the
semantic malware detector onαv [bΠ] is complete and sound for
variable renaming.

THEOREM3. Given a stable renaming,Ov(M,π) →֒ P iff

∃labr JP K ∈ ℘(lab JP K) :

αv[bΠ](αe(S JMK)) ⊆ αv [bΠ](αe(αr(S JP K))).
4.3 Composition

In general a malware uses multiple obfuscating transformations
concurrently to prevent detection, therefore we have to consider the
composition of conservative and non-conservative obfuscations,
which is clearly not conservative. LetO : P → P be a non-
conservative obfuscation,αO an abstraction such that the semantic

malware detector onαO is sound and complete forO. It is inter-
esting to observe that if the abstractionαO preserves�, namely
if (αe(σ) � αe(δ)) ⇒ αO(αe(σ)) � αO(αe(δ)), then the se-
mantic malware detector onαc ◦ αO is complete forO ◦ Oc and
Oc ◦ O.

THEOREM 4. If M is a vanilla malware, obfuscationO preserves
�, Oc ∈ Oc, andO(Oc(M)) →֒ P or Oc(O(M)) →֒ P , then
∃labr JP K ∈ ℘(lab JP K) such that

αcαO(αe(S JMK)) ⊆
αc[αO(αe(S JMK))](αO(αe(αr(S JP K)))).

EXAMPLE 2. Let us considerO(Oc(M), π) obtained by obfuscat-
ing the portion of malwareM in Example 1 through variable re-
naming and some conservative obfuscations:

O(Oc(M), π)
L1 : assign(D, LB)→ L2

L2 : skip→ L4

Lc : cond(E)→ {LO, LF }
L4 : assign(E, LA)→ L5

L5 : skip→ Lc

LO : P T → {LT , Lk}
LT : D := Dec(E)→ LT1

LT1
: assign(π2(D), D)→ LT2

LT2
: assign(π2(E), E)→ Lc

Lk : . . .
LF : . . .

whereπ(B) = D, π(A) = E. It is possible to show that:

αc[αv[bΠ](αe(S JMK)](αv [bΠ](αe(S JMK))) ⊆
αc[αv [bΠ](αe(S JMK))](αv[bΠ](αe(αr(S JO(Oc(M), π)K)))).

5. Further Malware Abstractions
Definition 4 characterizes the presence of malwareM in a program
P as the existence of a restrictionlabr JP K ∈ ℘(lab JP K) such
thatαe(S JMK) ⊆ αe(αr(S JP K)). This means that programP
is infected by malwareM if P matches all malware behaviours.
This notion of malware infection can be weakened in two differ-
ent ways. First we can abstract the malware traces eliminating the
states that are not relevant to determine maliciousness, and then
check if programP matches this simplified behaviour. Second we
can require programP to match a proper subset of malicious be-
haviours. Clearly that it is possible to combine the generalizations
above. A deeper understanding of the malware behaviour is neces-
sary in order to identify both the set of interesting states and the set
of interesting behaviours.

Interesting States. Assume that we have an oracle that, given a
malwareM , returns the set of its interesting states. These states
could be selected based on a security policy, for example, the
states could represent network operations. This means that, in order
to verify if P is infected byM , we have to check whether the
malicious sequences of interesting states are present inP . Let us
define the trace transformationαInt(M) : Σ∗ → Σ∗ that considers
only the interesting states in a given traceσ = σ1σ

′:

αInt(M)(σ) =

8
<
:

ǫ if σ = ǫ
σ1αInt(M)(σ

′) if σ1 ∈ Int(M)
αInt(M)(σ

′) otherwise

The following definition characterizes the presence of malwareM
in terms of its interesting states, i.e., through abstractionαInt(M).

DEFINITION 6. A programP is infected by a vanilla malwareM
with interesting statesInt(M), i.e., M →֒ P , if ∃labr JP K ∈

℘(lab JP K) such that:

αInt(M)(S JMK) ⊆ αInt(M)(αr(S JP K)).
Thus we can weaken the standard notion of conservative trans-
formation by saying thatO : P → P is conservative w.r.t.
Int(M) if ∀σ ∈ S JP K ,∃δ ∈ S JO(P)K such thatαInt(M)(σ) =
αInt(M)(δ).

When program infection is characterized by Definition 6, these-
mantic malware detector onαInt(M) is complete and sound for the
obfuscating transformations that are conservative w.r.t.Int(M).

THEOREM5. Let Int(M) be the set of interesting states of a
vanilla malwareM , and letO be conservative w.r.t.Int(M). Then
O(M) →֒ P iff ∃labr JP K ∈ ℘(lab JP K) such that:

αInt(M)(S JMK) ⊆ αInt(M)(αr(S JP K)).
It is clear that transformations that are non-conservativemay

be conservative w.r.t.Int(M), meaning that knowing the set of
interesting states of a malware allows us to handle also somenon-
conservative obfuscations. For example the abstractionαInt(M)

allows the semantic malware detector to deal with reordering of
independent instructions, as the following example shows.

EXAMPLE 3. Let us consider the malwareM and its obfuscation
O(M) obtained by reordering independent instructions.

M O(M)
L1 : A1 → L2

L2 : A2 → L3

L3 : A3 → L4

L4 : A4 → L5

L5 : A5 → L6

L1 : A1 → L2

L2 : A3 → L3

L3 : A2 → L4

L4 : A4 → L5

L5 : A5 → L6

In the above exampleA2 andA3 are independent, meaning that
A JA2K (A JA3K (ρ,m)) = A JA3K (A JA2K (ρ,m)). Consider-
ing malwareM , we have the traceσ = σ1σ2σ3σ4σ5 where:
- σ1 = 〈L1 : A1 → L2, (ρ,m)〉,
- σ5 = 〈L5 : A5 → L6,

(A JA4K (A JA3K (A JA2K (A JA1K (ρ,m)))))〉,
while considering the obfuscated version, we have the traceδ =
δ1δ2δ3δ4δ5, where:
- δ1 = 〈L1 : A1 → L2, (ρ,m)〉,
- δ5 = 〈L5 : A5 → L6,

(A JA4K (A JA2K (A JA3K (A JA1K (ρ,m)))))〉.
Let Int(M) = {σ1, σ5}. ThenαInt(M)(σ) = σ1σ5 as well as
αInt(M)(δ) = δ1δ5, which concludes the example. It is obvious
that δ1 = σ1, moreoverδ5 = σ5 follows from the independence of
A2 andA3.

Interesting Behaviours. Assume we have an oracle that given a
malwareM returns the setT ⊆ S JMK of its behaviours that
characterize the maliciousness ofM . Thus, in order to verify if
P is infected byM , we check whether programP matches the
malicious behavioursT . The following definition characterizes the
presence of malwareM in terms of its interesting behavioursT .

DEFINITION 7. A program P is infected by a vanillaM with
interesting behavioursT ⊆ S JMK, i.e.,M →֒ P if:

∃labr JP K ∈ ℘(lab JP K) : αe(T) ⊆ αe(αr(S JP K)).
It is interesting to observe that, when program infection ischarac-
terized by Definition 7, all the results obtained in Section 4still
hold if we replaceS JMK with T .

6. Case Study: Completeness of Semantics-Aware
Malware DetectorAMD

An algorithm calledsemantics-aware malware detectionwas pro-
posed by Christodorescu, Jha, Seshia, Song, and Bryant [4].This

approach to malware detection uses instruction semantics to iden-
tify malicious behavior in a program, even when obfuscated.

The obfuscations considered in [4] are from the set of conser-
vative obfuscations, together with variable renaming. Thepaper
proved the algorithm to be oracle-sound, so we focus in this sec-
tion on proving its oracle-completeness using our abstraction-based
framework. The list of obfuscations we consider (shown in Table 1)
is based on the list described in the semantics-aware malware de-
tection paper.

Obfuscation Completeness ofAMD

Code reordering Yes
Semantic-nop insertion Yes
Substitution of equivalent commands No
Variable renaming Yes

Table 1. List of obfuscations considered by the semantics-aware
malware detection algorithm, and the results of our completeness
analysis.

Description of the Algorithm The semantics-aware malware de-
tection algorithmAMD matches a program against a template de-
scribing the malicious behavior. If a match is successful, the pro-
gram exhibits the malicious behavior of the template. Both the tem-
plate and the program are represented as control-flow graphsduring
the operation ofAMD .

The algorithmAMD seeks to find a subset of the programP that
matches the commands in the malwareM , possibly after renaming
of variables and locations used in the subset ofP . Furthermore,
AMD checks that any def-use relationship that holds in the mal-
ware also holds in the program, across program paths that connect
consecutive commands in the subset.

A control-flow graphG = (V,E) is a graph with the vertex
setV representing program commands, and edge setE represent-
ing control-flow transitions from one command to its successor(s).
For our language the control-flow graph (CFG) can be easily con-
structed as follows:

• For each commandC ∈ C, create a CFG node annotated with
that command,vlabJCK. Correspondingly, we writeC JvK to
denote the command at CFG nodev.

• For each commandC = L1 : C → S, whereS ∈ ℘(L), and
for each labelL2 ∈ S, create a CFG edge(vL1

, vL2
).

Consider a pathθ through the CFG from nodev1 to nodevk,
θ = v1 → . . . → vk. There is a corresponding sequence of com-
mands in the programP , writtenP |θ = {C1, . . . , Ck}. Then we
can express the set of states possible after executing the sequence of
commandsP |θ asC

k JP |θK (〈C1, ρ,m〉), by extending the transi-
tion relationC to a set of states, such thatC : ℘(Σ) → ℘(Σ). Let
us define the following basic functions:

mem J〈C, ρ,m〉K = m

env J〈C, ρ,m〉K = ρ

The algorithm takes as inputs the CFG for the template,GT =
(V T , ET), and the binary file for the program,File JP K. For each
pathθ in GT , the algorithm proceeds in two steps:

1. Identify a one-to-one map from template nodes in the pathθ to
program nodes,µθ : V T → V P .

A template nodenT can match a program nodenP if the top-
level operators in their actions are identical. This map induces
a mapνθ : X

T × V T → X
P from variables at a template

node to variables at the corresponding program node, such that
when renaming the variables in the template commandC

q
nT

y

according to the mapνθ, we obtain the program command
C

q
nP

y
= C

q
nT

y
[X/νθ

`
X,nT

´
].

This step makes use of the CFG oracleORCFG that returns
the control-flow graph of a programP , givenP ’s binary-file
representationFile JP K.

2. Check whether the program preserves the def-use dependencies
that are true on the template pathθ.

For each pair of template nodesmT , nT on the pathθ, and
for each template variablexT defined inact

q
CT

m

y
and used in

act
q
CT

n

y
, let λ be a program pathµ(vT

1) → . . . → µ(vT
k),

wheremT → vT
1 → . . . → vT

k → nT is part of the
path θ in the template CFG.λ is therefore a program path
connecting the program CFG node corresponding tomT with
the program CFG node corresponding tonT . We denote by
T |θ =

˘
C

q
mT

y
, CT

1 , . . . , C
T
k , C

q
nT

y¯
the sequence of

commands corresponding to the template pathθ.

The def-use preservation check can be expressed formally as
follows:

∀ρ ∈ E ,∀m ∈ M,∀s ∈ C
k JP |λK

“D
µθ

“
vCT

1

”
, ρ,m

E”
:

A

r
νθ

“
xT , vCT

1

”z
(ρ,m) =

A

r
νθ

“
xT , vCT

n

”z
(env JsK ,mem JsK) .

This check is implemented inAMD as a query to asemantic-
nop oracle ORSNop . The semantic-nop oracle determines
whether the value of a variableX before the execution of a
code sequenceψ ⊆ P is equal to the value of a variableY after
the execution ofψ.

The semantics-aware malware detectorAMD makes use of two
oracles,ORCFG andORSNop , described in Table 2. ThusAMD =
DOR, for the set of oraclesOR = {ORCFG ,ORSNop}. Our
goal is then to show thatAMD is OR-complete with respect to
the obfuscations from Table 1. Since three of those obfuscations
(code reordering, semantic-nop insertion, and substitution of equiv-
alent commands) are conservative, we only need to proveOR-
completeness ofAMD for each individual obfuscation. We would
then know (from Lemma 1) thatAMD is alsoOR-complete with
respect to any combination of these obfuscations.

Oracle Notation
CFG oracle ORCFG (File JP K)

Returns the control-flow graph of the programP , given
its binary-file representationFile JP K.

Semantic-nop oracle ORSNop(ψ,X, Y)
Determines whether the value of variableX before the
execution of code sequenceψ ⊆ P is equal to the value
of variableY after the execution ofψ.

Table 2. Oracles used by the semantics-aware malware detection
algorithmAMD . Notation:P ∈ P,X, Y ∈ var JP K , ψ ⊆ P .

We follow the proof strategy proposed in Section 2.1. First,
in step 1 below, we develop a trace-based detectorDTr based
on an abstractionα, and show thatDOR = AMD andDTr are
equivalent. This equivalence of detectors holds only if theoracles
in OR are perfect. Then, in step 2, we show thatDTr is complete
w.r.t. the obfuscations of interest.

Step 1: Design an Equivalent Trace-Based Detector We can
model the algorithm for semantics-aware malware detectionusing
two abstractions,αSAMD andαAct . The abstractionα that char-
acterizes the trace-based detectorDTr is the composition of these

two abstractions,α = αAct◦αSAMD . We will show thatDTr is
equivalentAMD = DOR, when the oracles inOR are perfect.

The abstractionαSAMD , when applied to a traceσ ∈ S JP K,
σ = 〈C′

1, ρ
′
1,m

′
1〉 . . . 〈C

′
n, ρ

′
n,m

′
n〉, to a set of variable maps{πi},

and a set of location maps{γi}, returns an abstract trace:

αSAMD (σ, {πi}, {γi}) = 〈C1, ρ1,m1〉 . . . 〈Cn, ρn, mn〉
if ∀i, 1 ≤ i ≤ n : act JCiK = act JC′

iK [X/πi(X)]
∧ lab JCiK = γi(lab JC′

iK)
∧ suc JCiK = γi(suc JC′

iK)
∧ ρi = ρ′ji

◦ πi

∧mi = m′
ji
◦ γi

Otherwise, if the condition does not hold,αSAMD (σ, {πi}, {γi}) =
ǫ. A mapπi : var JP K → X renames program variables such that
they match malware variables, while a mapγi : lab JP K → L

reassigns program memory locations to match malware memory
locations.

The abstractionαAct simply strips all labels from the commands
in a traceσ = 〈C1, ρ1,m1〉σ

′, as follows:

αAct (σ) =

ǫ if σ = ǫ
〈A1, ρ1,m1〉αAct (σ

′) otherwise

DEFINITION 8 (α-Semantic Malware Detector).An α-semantic
malware detector is a malware detector on the abstractionα, i.e.,
it evaluates the validity of the following for a programP and a
malwareM :

∃labr JP K ∈ ℘(lab JP K) : α(S JMK) ⊆ α(αr(S JP K)).

By this definition, a semantic malware detector (from Definition 4)
is a special instance of theα-semantic malware detector, forα =
αe. Then letDTr be a(αAct◦αSAMD)-semantic malware detector.

PROPOSITION1. The semantics-aware malware detector algo-
rithm AMD is equivalent to the(αAct◦αSAMD)-semantic mal-
ware detectorDTr . In other words,∀P,M ∈ P, we have that
AMD (P,M) = DTr (S JP K ,S JMK).

The proof has two parts, to show thatAMD (P,M) = 1 ⇒
DTr (S JP K ,S JMK) = 1, and then to show the reverse. For the
first implication, it is sufficient to show that for any pathθ in the
CFG of M and the pathχ in the CFG ofP , such thatθ and
χ are found as related by the algorithmAMD , the corresponding
traces are equal when abstracted byαAct◦αSAMD . The proof for
the second implication proceeds by showing that any two traces
σ ∈ S JMK and δ ∈ S JP K, that are equal when abstracted by
αAct◦αSAMD , have corresponding paths through the CFGs ofM
andP , respectively, such that these paths satisfy the conditions in
the algorithmAMD . Both parts of the proof depend on the oracles
used byAMD to be perfect.

Now we can define the operation of the semantics-aware mal-
ware detector in terms of its effect on the trace semantics ofa pro-
gramP .

DEFINITION 9 (Semantics-Aware Malware Detection).A program
P is a infected by a vanilla malwareM , i.e.M →֒ P , if:

∃labr JP K ∈ ℘(lab JP K), {πi}i≥1, {γi}i≥1 :

αAct (αSAMD (S JMK , {πi}, {γi})) ⊆

αAct (αSAMD (αr(S JP K), {πi}, {γi}))

Step 2: Prove Completeness of the Trace-Based Detector We are
interested in finding out which classes of obfuscations are handled
by a semantics-aware malware detector. We check the validity
of the completeness condition expressed in Definition 5. In other
words, if the program is infected with an obfuscated variantof the
malware, then the semantics-aware detector should return1.

PROPOSITION2. A semantics-aware malware detector is complete
onαSAMD w.r.t. the code-reordering obfuscationOJ :

OJ (M) →֒ P ⇒

8
<
:
∃labr JP K ∈ ℘(lab JP K , {πi}i≥1, {γi}i≥1 :
αAct (αSAMD (S JMK , {πi}, {γi})) ⊆
αAct (αSAMD(αr(S JP K), {πi}, {γi}))

The code-reordering obfuscation insertsskip commands into
the program and changes the labels of existing commands. The
restrictionαr “eliminates” the insertedskip commands, while
the αAct abstraction allows for trace comparison while ignoring
command labels. Thus, the detectorDTr isOR-complete w.r.t. the
code-reordering obfuscation. Similar proofs confirm thatDTr is
OR-complete w.r.t. variable renaming and semantic-nop insertion.

PROPOSITION3. A semantics-aware malware detector is complete
onαSAMD w.r.t. the variable-renaming obfuscationOv.

PROPOSITION4. A semantics-aware malware detector is complete
onαSAMD w.r.t. the semantic-nop insertion obfuscationON .

Additionally, DTr is OR-complete onαSAMD w.r.t. a limited
version of substitution of equivalent commands, when the com-
mands in the original malwareM are not substituted with equiv-
alent commands.

Unfortunately,DTr is notOR-complete w.r.t. all conservative
obfuscation, as the following result illustrates.

PROPOSITION5. A semantics-aware malware detector is not com-
plete onαSAMD w.r.t. all conservative obfuscationsOc ∈ Oc.

The cause for this incompleteness is the fact that the abstraction
applied byDTr still preserves some of the actions from the pro-
gram. Thus, an obfuscation that affects at least one action on every
path through the program, e.g., a well chosen instance of substi-
tution of equivalent commands (see proof of Proposition 5 inthe
Appendix for an example), will defeat the detector.

7. Related Work
There is a considerable body of literature on existing techniques for
malware detection: Szor gives an excellent summary [22].

Code obfuscation has been extensively studied in the context of
protecting intellectual property. The goal of these techniques is to
make reverse engineering of code harder [3, 6, 7, 11, 12, 18].Cryp-
tographers are also pursuing research on the question of possibility
of obfuscation [1, 14, 24]. To our knowledge, we are not awareof
existing research on formal approaches to obfuscation in the con-
text of malware detection.

8. Conclusions and Future Work
Malware detectors have traditionally relied upon syntactic ap-
proaches, typically based on signature-matching. While such ap-
proaches are simple, they are easily defeated by obfuscations. To
address this problem, this paper presents a semantics-based frame-
work within which one can specify what it means for a malware
detector to be sound and/or complete, and reason about the com-
pleteness of malware detectors with respect to various classes of
obfuscations. As a concrete application, we have shown thata
semantics-aware malware detector proposed by Christodorescuet
al. is complete with respect to some commonly used malware ob-
fuscations.

Given an obfuscating transformationO, we assumed that the
abstractionαO is provided by the malware detector designer. We
are currently investigating how to design a systematic (ideally au-
tomatic) methodology for deriving an abstractionαO that leads to a
sound and complete semantic malware detector. We observed that

if the abstractionαO is preserved by the obfuscationO then the
malware detection is complete, i.e. no false negatives. However,
preservation is not enough to eliminate false positives. Hence, an
interesting research task consists in characterizing the set of se-
mantic abstractions that prevents false positives.

One further step would be to investigate whether and how model
checking techniques can be applied to detect malware. Some works
along this line already exist [17]. Observe that the abstractionαO ,
actually defines a set of program traces that are equivalent up toO.
In model checking, sets of program traces are represented byfor-
mulae of some linear/branching temporal logic. Hence, we aim at
defining a temporal logic whose formulae are able to express nor-
mal forms of obfuscations together with operators for composing
them. This would allow to use standard model checking algorithms
to detect malwares in programs. This could be a possible direction
to follow in order to develop a practical tool for malware detection
based on our semantic model. We expect this semantics-basedtool
to be significantly more precise than existing virus scanners.

References
[1] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai,

S. Vadhan, and K. Yang. On the (im)possibility of obfuscating
programs. InAdvances in Cryptology (CRYPTO’01), volume 2139 of
Lecture Notes in Computer Science, pages 1 – 18. Springer-Verlag,
Aug. 2001.

[2] D. Chess and S. White. An undetectable computer virus. InProc. of
the 2000 Virus Bulletin Conference (VB2000), 2000.

[3] S. Chow, Y. Gu, H. Johnson, and V. A. Zakharov. An approachto
the obfuscation of control-flow of sequential computer programs.
In Proc. 4th. Information Security Conference (ISC 2001), Springer
LNCS vol. 2000, pages 144–155, 2001.

[4] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E.Bryant.
Semantics-aware malware detection. InProc. Usenix Security ’05,
pages 32–46, Aug. 2005.

[5] F. B. Cohen. Computer viruses: Theory and experiments.Computers
and Security, 6:22–35, 1987.

[6] C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating
transformations. Technical Report 148, Department of Computer
Sciences, The University of Auckland, July 1997.

[7] C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap,
resilient, and stealthy opaque constructs. InProc. 25th. ACM
Symposium on Principles of Programming Languages (POPL 1998),
pages 184–196, Jan. 1998.

[8] P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction of
approximation of fixed points. InProc. 4th ACM Symposium on
Principles of Programming Languages, pages 238–252, 1977.

[9] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. InProc. ACM Symposium on Principles of Programming
Languages (POPL’79), pages 269–282, 1979.

[10] P. Cousot and R. Cousot. Systematic design of program transfor-
mation frameworks by abstract interpretation. InProc. 29th ACM
Symposium on Principles of Programming Languages (POPL), pages
178–190, Jan. 2002.

[11] M. Dalla Preda and R. Giacobazzi. Control code obfuscation by
abstract interpretation. InProc. of the 3rd IEEE International Con-
ference on Software Engineeering and Formal Methods(SEFM ’05),
pages 301–310, 2005.

[12] M. Dalla Preda and R. Giacobazzi. Semantic-based code obfuscation
by abstract interpretation. InProc. 32nd International Colloquium on
Automata, Languages and Programming (ICALP’05), volume 3580
of Springer LNCS, pages 1325–1336, 2005.

[13] T. Detristan, T. Ulenspiegel, Y. Malcom, and M. S. von Underduk.
Polymorphic shellcode engine using spectrum analysis.Phrack,

11(61):published online athttp://www.phrack.org. Last ac-
cessed: 16 Jan. 2004, Aug. 2003.

[14] S. Goldwasser and Y. T. Kalai. On the impossibility of obfuscation
with auxiliary input. InFOCS ’05: Proceedings of the 46th Annual
IEEE Symposium on Foundations of Computer Science, pages 553–
562, Washington, DC, USA, 2005. IEEE Computer Society.

[15] Intel Corporation. IA-32 Intel Architecture Software Developer’s
Manual.

[16] M. Jordan. Dealing with metamorphism.Virus Bulletin, pages 4–6,
Oct. 2002.

[17] J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith. Detecting
malicious code by model checking. In K. Julisch and C. Krügel,
editors,Proc. of the 2nd International Conference on Intrusion
and Malware Detection and Vulnerability Assessment (DIMVA’05),
volume 3548 ofLecture Notes in Computer Science, pages 174–187,
Vienna, Austria, July 2005. Springer-Verlag.

[18] C. Linn and S. Debray. Obfuscation of executable code toimprove
resistance to static disassembly. InProc. of the 10th ACM Conference
on Computer and Communications Security (CCS’03). ACM Press,
Oct. 2003.

[19] P. Morley. Processing virus collections. InProc. of the 2001 Virus
Bulletin Conference (VB2001), pages 129–134, Sept. 2001.

[20] C. Nachenberg. Computer virus-antivirus coevolution. Communica-
tions of the ACM, 40(1):46–51, Jan. 1997.

[21] Rajaat. Polymorphism.29A Magazine, 1(3), 1999.

[22] P. Szor.The Art of Computer Virus Research and Defense. Addison-
Wesley Professional, 2005.

[23] P. Ször and P. Ferrie. Hunting for metamorphic. InProc. of the 2001
Virus Bulletin Conference (VB2001), pages 123 – 144, Prague, Czech
Republic, Sept. 2001. Virus Bulletin.

[24] H. Wee. On obfuscating point functions. InSTOC ’05: Proceedings of
the thirty-seventh annual ACM symposium on Theory of computing,
pages 523–532, New York, NY, USA, 2005. ACM Press.

[25] z0mbie. Automated reverse engineering: Mistfall engine. Published
online athttp://z0mbie.host.sk/autorev.txt. Last accessed:
16 Jan. 2004.

[26] z0mbie. RPME mutation engine. Published online athttp:
//z0mbie.host.sk/rpme.zip. Last accessed: 16 Jan. 2004.

9. Appendix: Selected Proofs
Theorem 2

(⇒) Completeness: IfOc(M) →֒ P it means that∃ labr JP K ∈
℘(lab JP K) such thatPr = Oc(M). Such restriction is the one
that satisfies the condition on the right. In fact ifPr = Oc(M) it
means thatαr(S JP K) = S JOc(M)K. Thus we have to prove that
αcαe(S JMK) ⊆ αc[αe(S JMK)](αe(S JOc(M)K
)). By definition of conservative obfuscation for each traceσ ∈
S JMK there existsδ ∈ S JOc(M)K such that:αe(σ) � αe(δ).
Considering suchσ andδ we show thatαc[αe(S JMK)](αe(σ)) ⊆
αc[αe(S JMK)](αe(δ)), in fact:

αc[αe(S JMK)](αe(δ)) = αe(S JMK) ∩ SubSeq(αe(δ))

αc[αe(S JMK)](αe(σ)) = αe(S JMK) ∩ SubSeq(αe(σ)).

Sinceαe(σ) � αe(δ) thenSubSeq(αe(σ)) ⊆ SubSeq(αe(δ)).
Thereforeαc[αe(S JMK)](αe(σ)) ⊆ αc[αe(S JMK)](αe(δ)),
which concludes the proof.
(⇐) Soundness: By hypothesis there existslabr JP K ∈ ℘(lab JP K)
αcαe(S JMK) ⊆ αc[αe(S JMK)](αe(αr(S JP K)
)). This means that∀σ ∈ S JMK we have that:αc[αe(S JMK)](αe

(σ)) ⊆ αc[αe(S JMK)](αe(αr(S JP K))). By hypothesisσ ∈
S JMK, thereforeαe(σ) ∈ αc[αe(S JMK)](αe(σ)), which means
thatαe(σ) ∈

˘
αc(αe(S JMK))(αe(δ)) | δ ∈ αr(S JP K)

¯
. Thus

there existsδ ∈ αr(S JP K) such thatαe(σ) � αe(δ) and this
means that thatPr is a conservative obfuscation of malwareM .

Lemma 2

(⇒) Let s = (ρs
1,m1)...(ρ

s
n,mn) andt = (ρt

1,m1)...(ρ
t
n, mn)

such thatt = αv[π](s), with π : var JsK → var JtK, then
∀i ∈ [1, n] : def (ρt

i) = {π(X)|X ∈ def (ρs
i)}, thus|def (ρt

i)| =
|def (ρs

i)|. By definition of List we have that:List(s)[i] =
X ⇔ List(t)[i] = π(X), which means thatπc

s(X) = Vi ⇔
πc

t (π(X)) = Vi. This implies thatαv[πc
s](s) = αv [πc

t](t).
(⇐) Let αv[πc

s](s) = αv [πc
t](t) = (ρc

1,m1)...(ρ
c
n,mn), thus

|var JsK | = |var JtK | = k. By definition πc
s : var JsK →

{V1...Vk} andπc
t : var JtK → {V1...Vk}. Let π = πc−1

t ◦ πc
s :

var JsK → var JtK. π is a bijection because is a composi-
tion of bijective functions. We show thatαv [π](s) = t. In fact
αv[π](s) = t iff ∀i: ρs

i (X) = ρt
i(π(X)) which holds since

ρt
i(π(X)) = ρt

i(π
c−1

t ◦ πc
s(X)) = ρc

i (π
c
t ◦ π

C−1

t ◦ πc
s(X)) =

ρc
i (π

c
s(X)) = ρs

i (X).

Theorem 3

Given a stable renaming, for each test action thei-th local variable
of the true branch has the same name of thei-th local variable of
thefalsebranch. In particular considering two pathspath1 = A→
B → C and path2 = A → D → C of the CGF ofP . Let
Loc JBK = {X|X ∈ var JBK ,X 6∈ var JAK ∪ var JCK} be the
set of local variables ofB enumerated following their definition
order. Letn = min{|Loc JBK |, |Loc JDK |} then:∀i ∈ [1, n] the
i-th variable ofLoc JBK has the same name of thei-th variable of
Loc JDK.
(⇒) Completeness: IfOv(M,π) →֒ P , then existslabr JP K ∈
℘(lab JP K) such thatPr = Ov(M,π), thereforeαr(S JP K) =
S JOv(M,π)K. This restriction is the one that satisfies the con-
dition on the right, in fact we show:αv [Πc](αe(S JMK)) ⊆
αv[Πc](αe(S JOv(M,π)K)). From definition ofOv we have that:

αe(S JOv(M,π)K) = {αv[π](s)|s ∈ αe(S JMK)}
⇔ ∀s ∈ αe(S JMK),∃t ∈ αe(S JOv(M,π)K) : t = αv[π](s)

⇔ (Lem2)∀s ∈ αe(S JMK),∃t ∈ αe(S JOv(M,π)K) :

αv [πc
s](s) = αv[πc

t](t)

⇔ αv [Πc](αe(S JMK)) = αv[Πc](αe(S JOv(M,π)K)).
(⇐) Soundness: Observe that:

αv [Πc](αe(S JMK)) ⊆ αv[Πc](αe(αr(S JP K)))
⇔ {αv [πc

s](s) | s ∈ αe(S JMK)} ⊆
{αv [πc

t](t) | t ∈ αe(αr(S JP K))}
⇔ ∀s ∈ αe(S JMK),∃t ∈ αe(αr(S JP K)) :

αv [πc
s](s) = αv[πc

t](t)

⇔ (Lem2)∀s ∈ αe(S JMK),∃t ∈ αe(αr(S JP K)) :

∃πs,t : var JsK→ var JtK : αv[πs,t](s) = t.

It is clear thatvar JMK =
S

s∈αe(SJMK) var JsK andvar JPrK =S
t∈αe(αR(SJP K)) var JtK. Let us defineπ : var JMK→ var JP K

as follows:π(X) = {Y |∃s ∈ αe(S JMK),∃t ∈ αe(αr(S JP K)) :
πs,t(X) = Y }. Let us show thatπ is a function. In fact if we
considers, q ∈ αe(S JMK) and t, r ∈ αe(αr(S JP K)) such
that αv[πc

s](s) = αv[πc
t](t) andαv[πc

q](q) = αv [πc
r](r), then

∀X ∈ var JsK ∩ var JqK : πs,t(X) = πq,r(X). Let s, q be en-
vironment instances of respectivelypath1 = A → B → C and
path2 = A → D → C of the CFG ofM , and t, r of respec-
tively ˆpath1 = Â → B̂ → Ĉ and ˆpath2 = Â → D̂ → Ĉ
of the CFG of Pr. Then we have two possible cases: (1) if

X ∈ var JsK ∩ var JqK and X ∈ var JAK ∪ var JCK then

π(X) ∈ var
r
Â

z
∪ var

r
Ĉ

z
andπs,t(X) = πq,r(X) is guar-

anteed by the fact thatX is present in a common part of the two
paths. (2)X ∈ var JsK ∩ var JqK and ifX ∈ Loc JBK ∩ Loc JDK
thenπ(X) ∈ Loc

r
B̂

z
∩Loc

r
D̂

z
and the assumption of a stable

renaming guarantees thatπs,t(X) = πq,r(X).

Theorem 4

(1) WhenO(Oc(M)) →֒ P then∃labr JP K ∈ ℘(lab JP K) such
thatPr = O(Oc(M)), thereforeαr(S JP K) = S JO(Oc(M))K.
Thus, we have to show that:

αcαO(αe(S JMK)) ⊆
αc[αO(αe(S JMK))](αO(αe(S JO(Oc(M))K))).

αO is sound by hypothesis, therefore:

αO(αe(S JOc(M)K)) ⊆ αO(αe(S JO(Oc(M))K)).
αc is monotone therefore:

αc[αO(αe(S JMK))](αO(αe(S JOc(M)K))) ⊆
αc[αO(αe(S JMK))](αO(αe(S JO(Oc(M))K))).

Thus, we only have to prove that:

αcαO(αe(S JMK)) ⊆
αc[αO(αe(S JMK))](αO(αe(S JOc(M)K))).

By definition of conservative transformation we have that∀σ ∈
S JMK ,∃δ ∈ S JOc(M)K such that ifαe(σ) � αe(δ). For such
σ andδ, we show that:

αc[αO(αe(S JMK))](αO(αe(σ))) ⊆

αc[αO(αe(S JMK))](αO(αe(δ))).

By definition we have thatαc[αO(αe(S JMK))](αO(αe(σ))) =
αO(αe(S JMK))∩SubSeq(αO(αe(σ)) andαc[αO(αe(S JMK))]
(αO(αe(δ))) = αO(αe(S JMK)) ∩ SubSeq(αO(αe(δ))).

SinceαO(αe(σ)) � αO(αe(δ)), thenSubSeq(αO(αe(σ))) ⊆
SubSeq(αO(αe(δ))), and this concludes the proof.

Proof for (2) is similar to point (1).

Proposition 1

To show thatAMD = D, we can equivalently show that∀P,M ∈
P : AMD(P,M) = 1 ⇐⇒ ∃labr JP K ∈ ℘(lab JP K), ∃{πi}i≥1,
and ∃{γi}i≥1 such thatαAct (αSAMD (S JMK , {πi}, {γi})) ⊆
αAct (αSAMD (αr(S JP K), {πi}, {γi})). Since πi renames vari-
ables only fromP (i.e.,∀V ∈ V \ var JP K, πi is the identity func-
tion,πi(X) = X), and similarlyγi remaps locations only fromP ,
then we have thatαSAMD (S JMK , {πi}, {γi}) = S JMK.
(⇒) We know thatAMD (P,M) = 1. We can construct the restric-
tion labr JP K from the path-sensitive mapµθ as follows:

labr JP K =
[

θ∈Paths(GM)

n
lab

r
C

r
µ

“
vM

”zz
: vM ∈ θ

o

The variable maps{πi} can be defined based onνθ. For a path
θ = vM

1 → . . . → vM
k , πi(X) = νθ

`
X, vM

i

´
. Similarly,

γi(L) = L′ if lab
q
C

q
vM

i

yy
= L′ andlab

q
C

q
µθ

`
vM

i

´yy
= L.

Let σ ∈ S JMK and denote byθ = vM
1 → . . .→ vM

k the CFG
path corresponding to this trace. By algorithmAMD , there exists a
pathχ in the CFG ofP of the form:

. . .→ C
r
µ

“
vM
1

”z
→ . . .→ C

r
µ

“
vM

k

”z
→ . . .

Let δ ∈ S JP K be the trace corresponding to the pathχ inGP , δ =
. . .

˙
C

q
µ

`
vM
1

´y
, ρP

1 ,m
P
1

¸
. . .

˙
C

q
µ

`
vM

k

´y
, ρP

k ,m
P
k

¸
. . . . For

two statesi andj > i of the traceσ, denote the intermediate states
in the traceδ by

˙
C′P

1 , ρ′P1 ,m′P
1

¸
. . .

˙
C′P

l , ρ′Pl ,m′P
l

¸
, i.e.: δ =

. . .
˙
C

q
µ

`
vM

i

´y
, ρP

i ,m
P
i

¸ ˙
C′P

1 , ρ′P1 ,m′P
1

¸
. . .

˙
C′P

l , ρ′Pl ,m′P
l

¸
˙
C

q
µ

`
vM

j

´y
, ρP

j ,m
P
j

¸
. . . . From step 1 of algorithmAMD , we

have that the following hold:

act
r
C

r
µ

“
vM

i

”zz
[X/πi(X)] = act

r
C

r
vM

i

zz

γi

“
lab

r
C

r
µ

“
vM

i

”zz”
= lab

r
C

r
vM

i

zz

γi

“
suc

r
C

r
µ

“
vM

i

”zz”
= suc

r
C

r
vM

i

zz

From step 2 of algorithmAMD , we know that for any template
variable xM that is defined inC

q
vM

i

y
and used inC

q
vM

j

y

(for 1 ≤ i < j ≤ k), we have thatA
q
ν(xM , vM

i)
y

(ρ,m) =

A
q
ν(xM , vM

j)
y

(env JsK ,mem JsK), wheres ∈ C
l
` ˙
µ

`
vM

i

´¸
,

ρ,m
´
. As act

q
C

q
µ

`
vM

i

´yy
[X/πi(X)] = act

q
C

q
vM

i

yy
,

it follows that ρP
i

`
ν

`
xM , vM

i

´´
= ρP

j

`
ν

`
xM , vM

j

´´
. Since

ρM
i (xM) = ρM

j (xM), then we can writeρM
i = ρP

i ◦πi. Simi-
larly,mM

i = mP
i ◦πi. Then it follows that:

αAct (αSAMD (σ, {πi}, {γi})) = αAct (σ)

= αAct (αSAMD (δ, {πi}, {γi})).

Therefore,αAct (αSAMD (S JMK , {πi}, {γi})) ⊆ αAct (αSAMD (
S JP K , {πi}, {γi})).

(⇐) We know thatlabr JP K, {πi}i≥1, and{γi}i≥1 exist such as
to satisfy the RHS of the logical equivalence. We will show that
AMD returns1 in such a case, that is, the two steps of the algorithm
complete successfully.

Let σ ∈ αAct (αSAMD (S JMK , {πi}, {γi})), with

σ =
D
A1, ρ

M
1 ,m

M
1

E
. . .

D
Ak, ρ

M
k ,mM

k

E
.

Then there existsσ′ ∈ S JMK

σ′ =
D
CM

1 , ρM
1 ,m

M
1

E
. . .

D
CM

k , ρM
k ,mM

k

E
,

such that∀i, act
q
CM

i

y
[X/πi(X)] = Ai. Similarly, there exists

δ ∈ αr(S JP K), δ =
˙
CP

1 , ρ
P
1 ,m

P
1

¸
. . .

˙
CP

k , ρ
P
k ,m

P
k

¸
, such that

∀i, act
q
CP

i

y
[X/πi(X)] = Ai, ρP

i = ρM
i ◦π

−1
i , andmP

i =

mM
i ◦γ

−1
i . In other words,σ = αAct (αSAMD (σ′, {πi}, {γi})) =

αAct (αSAMD (δ′, {πi}, {γi})), whereσ′ is a malware trace andδ′

is a trace of the restricted programPr induced bylabr JP K. For
each pair of traces(σ, δ) chosen as above, we can define a mapµ
from nodes in the CFG ofM to nodes in the CFG ofP by setting

µ
“
v
labJCM

i K
”

= v
labJCP

i K. Without loss of generality, we assume

thatlab JMK∩ lab JP K = ∅. Thenµ is a one-to-one, onto map, and
step 1 of algorithmAMD is complete.

Consider a variablexM ∈ var JMK that is defined by action
Ai and later used by actionAj in the traceσ′, for j > i, such
thatρM

i+1(x
M) = ρM

j (xM). Let xP
i be the program variable cor-

responding toxM at program commandCP
i , andxP

j the program
variable corresponding toxM at program commandCP

j :

xP
i = ν

“
xM , v

labJCM
i K

”
xP

j = ν
“
xM , v

labJCM
j K

”

If δ ∈ αr(S JP K), then there exists aδ′ ∈ S JP K of the form:

δ′ = . . .
D
CP

i , ρ
P
i ,m

P
i

E
. . .

D
CP

j , ρ
P
j ,m

P
j

E
. . .

where1 ≤ i < j ≤ k. Let θ be a path in the CFG ofP , θ = vP
1 →

. . .→ vP
k , such thatvP

labJCP
i K → vP

1 → . . .→ vP
k → vP

labJCP
j K is

also a path in the CFG ofP . SinceρM
i+1

`
xM

´
= ρM

j

`
xM

´
, then

ρP

sucJCP
i K

`
xP

i

´
= ρM

i+1

`
πi

`
xP

i

´´
= ρM

i+1

`
xM

´
= ρM

j

`
xM

´
=

ρP
j

`
πj

`
xP

j

´´
= ρP

j

`
xP

j

´
. But suc

q
CP

i

y
= lab

q
CP Jv1K

y
in

the traceδ′. As A
q
xP

i

y
(ρ,m) = ρ(xP

i), it follows that

A

r
ν

“
xM , v

labJCM
i K

”z
(ρ,m) =

A

r
ν

“
xM , v

labJCM
j K

”z
(env JsK ,mem JsK)

for anyρ ∈ E , anyminM, and any states of P at the end of ex-

ecuting the pathθ, i.e.,s ∈ C
k JP |θK

“D
µ

“
vP

labJCP
i K

”
, ρ,m

E”
.

If the semantic-nop oracle queried byAMD is complete, then the
second step of the algorithm is successful. ThusAMD (P,M) = 1.

Proposition 2

If OJ (M) →֒ P , and given thatOJ inserts onlyskip commands
into a program, then∃labr JP K ∈ ℘(lab JP K) such thatPr =
OJ (M) \ Skip, whereSkip is a set ofskip commands inserted
by OJ . LetM ′ = OJ (M) \ Skip. Thenαr(S JP K) = S JM ′K.
Thus we have to prove that

αAct (αSAMD (S JMK , {πi}, {γi})) ⊆

αAct (αSAMD (S
q
M ′

y
, {πi}, {γi})),

for some{πi} and{γi}. AsOJ (M) does not rename variables or
change memory locations, we can setπi andγj , for all i andj, to be
the respective identity maps,πi = IdvarJP K andγj = Id labJP K. It
follows thatαSAMD(S JM ′K , {IdvarJP K}, {Id labJP K}) = S JM ′K
andαSAMD(S JMK , {IdvarJP K}, {Id labJP K}) = S JMK. It re-
mains to show thatαAct (S JMK) ⊆ αAct (S JM ′K). By the defini-
tion ofOJ , we have thatM ′ = OJ (M)\Skip = (M \S)∪η(S),
for someS ⊂ M . But η(S) only updates the labels of the com-
mands inS, and thus we have:

αAct (S
q
M ′

y
) = αAct (S J(M \ S) ∪ η(S)K)
= αAct (S JMK).

It follows thatαAct (S JMK) ⊆ αAct (S JOJ (M) \ SkipK).

Proposition 5

To prove that semantics-aware malware detection is not complete
onαSAMD w.r.t. all conservative obfuscations, it is sufficient to find
one conservative obfuscation such that

αAct (αSAMD (S JMK , {πi}, {γi})) ⊆

αAct (αSAMD (αr(S JOc(M)K), {πi}, {γi})) (2)

cannot hold for any restrictionlabr JOc(M)K ∈ ℘(lab JOc(M)K)
and any maps{πi}i≥1 and{γi}i≥1.

Consider an instance of the substitution of equivalent com-
mands obfuscating transformationOI that substitutes the action
of at least one command for each path through the program (i.e.,
S JP K∩S JOI(P)K = ∅)—for example, the transformation could
modify the command at the start label of the program. Assume
that ∃{πi}i≥1 and ∃{γi}i≥1 such that Equation 2 holds, where
Oc = OI . Then ∃σ ∈ S JMK and ∃δ ∈ S JOI(M)K such
that αAct (σ) = αAct (αSAMD (αr(δ), {πi}, {γi})). As |σ| =
|δ|, we have thatαr(δ) = δ. If σ = . . . 〈Ci, ρi,mi〉 . . . and
δ = . . . 〈C′

i, ρ
′
i,m

′
i〉 . . . , then we have that∀i, act JCiK =

act JC′
iK [X/πi(X)]. But from the definition of the obfuscating

transformationOI above, we know that∀σ ∈ S JMK , ∀δ ∈
S JOI(M)K , ∃i ≥ 1 such thatCi ∈ σ, C′

i ∈ δ, and∀π : X →
X, act JCiK 6= act JC′

iK [X/π(X)]. Hence we have a contradic-
tion.

