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Abstract

Malware detection is a crucial aspect of software secuGyt-
rent malware detectors work by checking for “signaturedjiclu
attempt to capture (syntactic) characteristics of the nmaetevel
byte sequence of the malware. This reliance on a syntactic ap
proach makes such detectors vulnerable to code obfussaiion
creasingly used by malware writers, that alter syntactimper-
ties of the malware byte sequence without significantly ciffe
their execution behavior. This paper takes the position tha
key to malware identification lies in their semantics. It pwses

a semantics-based framework for reasoning about malwaee-de
tors and proving properties such as soundness and conmgdsteh
such detectors. Our approach uses a trace semantics totehae
the behaviors of malware as well as the program being cheioked
infection, and uses abstract interpretation to “hide”lavant as-
pects of these behaviors. As a concrete application of quioagh,
we show that the semantics-aware malware detector propgmsed
Christodorescet al.is complete with respect to a number of com-
mon obfuscations used by malware writers.

1. Introduction

Malwareis a program with malicious intent that has the potential to
harm the machine on which it executes or the network over twhic
it communicates. Analware detectoidentifies malware. Anis-
use malware detectofor, alternately, ssignature-based malware
detecto) uses a list of signatures (traditionally known asigna-
ture databasg19]). For example, if part of a program matches a
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signature in the database, the program is labeled as maj22jre
Their low false-positive rate and ease of use have led tospidad
deployment of such systems.

Malware writers continuously test the limits of malwareedet
tors in an attempt to discover ways to evade detection. Eaidd
to an ongoing game of one-upmanship [20], where malwarewsrit
find new ways to create undetected malware, and where résearc
design new signature-based techniques for detecting uadive
malware. This co-evolution is a result of the theoreticadesid-
ability of malware detection [2,5]. This means that, in therently
accepted model of computation, no ideal malware detectigtsex
The only achievable goal in this scenario is to design belgésc-
tion techniques that jump ahead of evasion techniques amke ma
the malware writer’s task harder.

Attackers have resorted to two main approaches for evading
malware detectorgprogram obfuscatiorand program evolution
Program obfuscation transforms a program by inserting rese ¢
or modifying existing code to make understanding and dietect
harder, at the same time preserving the malicious behahfus-
cation transformations can easily defeat signature-bdegzttion
mechanisms. If a signhature describes a certain sequenostafd-
tions [22], then those instructions can be reordered oaoepl with
equivalent instructions [25, 26]. Such obfuscations apeeislly
applicable on CISC architectures, such as the Intel IA-3},[1
where the instruction set is rich and many instructions tenes-
lapping semantics. If a signature describes a certaintaligion of
instructions in the program, insertion of junk code [16,26,that
acts as a nop so as not to modify the program behavior cantdefea
frequency-based signatures. If a signature identifies sointee
read-only data of a program, packing or encryption with gy
keys [13, 21] can effectively hide the relevant datherefore, an
important requirement of a robust malware detection teghaiis
to handle obfuscation transformations.

Program semantics provides a formal model of program behav-
ior. Therefore addressing the malware-detection probtem & se-
mantic point of view could lead to a more robust detectioriesys
Preliminary work by Christodoresat al.[4] and Kinderet al.[17]
on a formal approach to malware detection confirms the paient
benefits of a semantics-based approach to malware detettien
goal of this paper is to provide a formal semantics-baseahdra
work that can be used by security researchers to reason abdut
evaluate the resilience of malware detectors to varioudskaf ob-
fuscation transformations. This paper makes the follovgipecific
contributions:

¢ We present a formal definition of what it means for a detector t
be sound and complete with respect to a class of obfuscations
We also provide a framework which can be used by malware-
detection researchers to prove that their detector is catenpl
with-respect-to a class of obfuscations. As an integral pfr



the formal framework, we provide a trace semantics to charac
terize the program and malware behaviors, using abstrest in
pretation to “hide” irrelevant aspects of these behaviors.

e We show our formal framework in action by proving that the
semantic-aware malware detectdli;p proposed by Christo-
doresctet al.[4] is complete with respect to the some common
obfuscations used by malware writers. The soundnes$af
was proved in [4].

2. Preliminaries

Let P be the set of programs. Asbfuscationis a program trans-
former,© : P — P. Code reordering and variable renaming are
two common obfuscations. The set of all obfuscations is t&ho
by O.

A malware detectois D : P x P — {0,1}: D(P,M) = 1
means thatP is infected with M or with an obfuscated variant
of M. Our treatment of malware detectors is focused on detecting
variants of existing malware. When a prograhis infected with a
malwareM, we write M — P. Intuitively, a malware detector is
soundif it never erroneously claims that a program is infectesl, i.
there are no false positives; and itasmpletef it always detects
programs that are infected, i.e., there are no false negativiore
formally, these properties can be defined as follows:

DEeFINITION 1 (Soundness and Completenegs)nalware detec-
tor D is complete for an obfuscatiadfl € O if and only ifVM € P,
O(M) — P = D(P,M) = 1. A malware detectoD is sound
for an obfuscation® < O if and only ifYM € P, D(P,M) =
1= O(M)— P.

Note that this definition of soundness and completenesseapb
plied to a deobfuscator as well. In other words, our defingiare
not tied to the concept of malware detection. Most malwatede
tors are built on top of other static-analysis techniquespfob-
lems that hard or undecidable. For example, most malwaezdet
tors [4,17] that are based on static analysis assume theotiteol-
flow graph for an executable can be extracted. As shown by re-
searchers [18], simply disassembling an executable caruibe q
tricky. Therefore, we want introduce the notionrefative sound-
ness and completenewsth respect to algorithms that a detector
uses. In other words, we want to prove that a malware detéctor
sound or complete with respect to a class of obfuscationieif t
static-analysis algorithms that the detector uses aregerf

DeFINITION 2 (Oracle).An oracle is an algorithm over programs.
For example, a CFG oracle is an algorithm that takes a program
as an input and produces its control-flow graph.

DO denotes a detector that uses a set of ora€l&s® For
example, letOR cr¢ be a static-analysis oracle that given an exe-
cutable provides a perfect control-flow graph for it. A dédechat
uses the oracl®Rcr¢ is denoted ad “%crc | In the definitions
and proofs in the rest of the paper we assume that oracles that
detector uses are perfect.

DEFINITION 3 (Soundness and completeness relative to oracles).
A malware detectoD®™ is complete with respect to an obfus-
cation O, if D is complete for that obfuscatio® given that all
oracles in the se©®R are perfect. Soundness of a deteciof™

can be defined in a similar manner.

1We assume that detectd? can query an oracle from the sé&tR, and
the query is answered perfectly and (1) time. This type of relative
completeness and soundness results are common in crypitggra

2.1 A Framework for Proving Soundness and Completeness
of Malware Detectors

When a new malware detection algorithm is proposed, oneeof th
criteria of evaluation is its resilience to obfuscationafditunately,
identifying the classes of obfuscations for which a deteidae-
silient can be a complex and error-prone task. A large nurober
obfuscation schemes exist, both from the malware world eomd f
the intellectual-property protection industry. Furthere obfusca-
tions and detectors are defined using different languaggs peo-
gram transformation vs program analysis), complicatirgtésk of
comparing one against the other.

We present a framework for proving soundness and complete-
ness of malware detectors in the presence of obfuscatidns. T
framework operates on programs described through thetuexe
tion traces—thus, program trace semantics is the buildiockinf
our framework. Both obfuscations and detectors can be eflgga
expressed as operations on traces (as we describe in S&etiah
Section 4).

In this framework, we propose the following two stppmof
strategyfor showing that a detector is sound or complete with
respect to an obfuscation or a class of obfuscations.

1. [Step 1] Relating the two worlds.
Let D be a detector that uses a set of ora@¥8. Assume
that we are given a prograi and malwarel/. Let S [P] and
& [M] be the set of traces corresponding@nd M, respec-
tively. In Section 3 we describe a detecior,. which works in
the semantic world of traces. We then prove that if the osadle
OR are perfect, the two detectors are equivalent, i.e, foPall
andM in P, D°®(P, M) = 1iff D7.(&[P],& [M]) = 1.
In other words, this step shows the equivalence of the two
worlds: the concrete world of programs and the semanticdvorl
of traces.

. [Step 2] Proving soundness and completeness in the seman-
tic world.
After step 1, we prove the desired property (e.g., compésten
about the trace-based detecior,., with respect to the chosen
class of obfuscations. In this step, the detector effectthen
trace semantics are compared to the effects of obfuscation o
the trace semantics. This also allows us to evaluate thetdete
against whole classes of obfuscations, as long as the abfusc
tions have similar effects on the trace semantics.

The requirement for equivalence in step 1 above might be too
strong if only one of completeness or soundness is desired. F
example, if the goal is to prove only completeness of a mawar
detectorD®%, then it is sufficient to find a trace-based detector
that classifies only malware and malware variants in the seaye
asD®™. Then, if the trace-based detector is complete, 07,

2.2 Abstract Interpretation

The basic idea of abstract interpretation is that prograhaweur

at different levels of abstraction is an approximation effarmal
semantics [8, 9]. The (concrete) semantics of a program s co
puted on the (concrete) doma{, <¢), i.e., a complete lattice
which models the values computed by programs. The partial or
dering < models relative precision between concrete values. An
abstract domaif{A, <.) is a complete lattice which encodes an
approximation of concrete program values. As usual alistiac
mains are specified by Galois connections [8, 9]. Two comaplet
lattices C' and A form a Galois connectio{C, o, 7y, A), when
a: C — Aandy : A — C form an adjunction, namely
Va € AVe € C 1 alc) <a a & ¢ <¢ v(a) wherea(y)

is the left(right) adjoint ofy(«). « and~ are called, respectively,
abstraction and concretization maps. A tuflg a, v, A) is a Ga-



Syntactic Categories: Value Domains:

neN (integers) B = {true, false} (truth values)
XeX (variable names) neZ (mte_gers)
Lel (labels) pe E= X—1L, (environments)
E€E (integer expressions) meM=L—ZU(Axgp(L)) (memory)
BeB (Boolean expressions) € X=ExM (execution contexts)
AeA (actions) Y= Cx& (program states)
D e EU(A x p(L)) (assignment r-values)
cecC (commands)
PecP (programs)
Syntax:
Ei=n | X ‘ EIOPEQ (°P€{+777*7/7"'})
B ::= true | false | FE1 < E2 ‘ -B; | By && B>
A= X:=D | skip | assign(L,X)
Cu=L:A—1L (unconditional actions)
| L:B— {Lp,Lp} (conditional jumps)
P = p(C)
Semantics:

ARITHMETIC EXPRESSIONS

E:AXX —Z, U(AxpL)

En]E =n

£IXTE = m(p(X)), whereg = (p, m)

E[E1 op E2] ¢ = if (§[E1]€ € Zand& [E2] € € Z) then& [E1] € op & [E2] &; elseL

BOOLEAN EXPRESSIONS

AB:BXxX -8B,

A true] & = true

2B (false] ¢ = false

ABE1 < Ex] ¢ = if (6[E1]€ € Zand& [E2] € € Z) then& [E1] € < & [E2] &; elsel
Z[-B] & = if (B[B]¢ e B)then-Z[B]¢; elsel

A B1 && B3] ¢ = if (B[B1]& € Band# [B:] & € B) thenZ [B1] £ A B [Bz2] &; else L

ACTIONS
o AXX — X
o [skip]€ = ¢

A [X = D¢ = (p,m’) wheret = (p,m),m’ = m[p(X) — 3], and § = { é’]‘)[[D]] (o,m) rocaxeld)
o [assign(L’, X)[ € = (p',m) where§ = (p,m) andp’ = p[X ~ L]

COMMANDS
The semantic functiors’ effectively specifies the transition relation between estatHere, lab [C]] denotes the label for the commard, i.e.,
lab[L: A— L'] = Landlab[L:B — {Ly,Lr}] = L.

C 3 — p(X)

CIL: A— L€ = {(C,€) | lab[C] = L',¢& = o [A] ¢}

ILs B~ {Lr. Lol = (€0 | wic]={ {7 [ 5IE= e )

Figure 1. A simple programming language.

lois connection iffa is additive iff v is co-additive. This means 2.3 Programming Language
that whenever we have an additive(co-additive) functidretween
two domains we can always build a Galois connection by censid
ering the right(left) adjoint map induced b Given two Galois
connectionsC, a1, v1, A1) and (A1, az, v2, A2), their composi-
tion (C, a2 o a1, 11 © 72, A2) is a Galois connectior{C, o, 7y, A)
specifies a Galois insertion if each element Afis abstraction

of concrete element i@, namely (C, a, v, A) is a Galois inser-
tion iff « is surjective iffy is injective. Abstract domains can be
related to each other w.r.t. their relative degree of preciswe
say that an abstraction; : ¢ — A; is more concrete then
as : C — Ay, ie., Az is more abstract thanl,, namely if

Ve e C:yi(ai(c)) <c y2(az(c)).

The language we consider is a simple extension of the one in-
troduced by Cousot and Cousot [10], the main differencegoein
the ability of programs to generate code dynamically (thislf

ity is added to accommodate certain kinds of malware obfista
where the payload is unpacked and decrypted at runtime)syiine

tax and semantics of our language are given in Figure 1. Gisa

S, we useS, to denote the sefU{_L }, where L denotes an unde-
fined valu€® Program variables are integer-valued, i.e., range over
7, . Commands can be either conditional or unconditional. A-con
ditional command at a labdl has the formL : B — {Lr,Lr},

2We abuse notation and useto denote undefined values of different types,
since the type of an undefined value is usually clear from tmgext.



where B is a Boolean expression aid- (respectively,L r) is the
label of the command to execute whBrevaluates tdrue (respec-
tively, false); an unconditional command at a laldels of the form
‘L : A — Li, where A is an action and.; the command to be
executed next. A variable can store either an integer or prdap
priately encoded) paifA,S) € A x p(L). A program consists
of a set of commands (since each command explicitly menttens
successors, the program need not maintain an explicit seque
commands).

An environmentp € £ maps variables inlom(p) C X to
memory locationd . Given a program” we denote with (P)
its environments, i.e. ip € £(P) thendom(p) = var [P]. Let
p[X ~» L] denote environmenp where labelL is assigned to
variable X. The memoryis represented as a function : L —
Z, U (A x p(L)). Let m[L < D] denote memorymn where
elementD is stored at locatiorl.. When considering a program
P, we denote withM (P) the set of program memories, namely
if m € M(P) then dom(m) Luse [P]. This means that
m € M(P) is defined on the set of memory locations that are
affected by the execution of prograi (excluding the memory
locations storing the commands Bj.

Labels:

lab[L:A— L] = L

lab[L:B — {Lp,Lr}] = L

lab [P] = {lab[C]|C € P}
Successors of a comamnd:

suc[L: A—L'] =L

suc|L: B — {Lp,Lr}] = {Lr,Lpr}
Action of a command:

act[L:A— L] = A
Variables:

var [L1 : A — La] = war [A]

var [P] = UCEP var [C]

var [A] = { variables occuring i}
Memory locations used by a program:

Luse[L:A— L'] = Luse[A4]

Luse [P] = Ugep Luse [C]

Luse [A] = {locations occuring i} U p(var [A])

Figure 2. Auxiliary functions for the language of Figure 1.

The behavior of a command when it is executed depends on its {p(x7), <)

execution contexi.e., the environment and memory in which it is
executed. The set of execution contexts is givertby: € x M. A
program statés a pair(C, £) whereC' is the next command that has
to be executed in the execution contéxt: = C x X’ denotes the
set of all possible states. Given a state 3, the semantic function

¢ (s) gives the set of possible successor states iof other words,

% : ¥ — p(X) defines the transition relation between states. Let
¥(P) = P x X(P) be the set of states of a prograf then we
can specify the transition relatiéi on P as follows:

¢ [P](C,8) =
{(C€)[(C'€) € €(C.€).C" € P, andg, &' € X(P)} .
Let A* denote the Kleene closure of a s&ti.e., the set of finite
sequences ovetl. A traceo € X is a sequence of states...s,,
of length|o| > 0 such that for ali € [1,n): s; € €(si—1). The
finite partial traces semantic® [P] C X* of programP is the
least fixpoint of the functior:

F[PI(T) = S(P)U{ss'a|s' € €[P](s), s'o € T}
whereT is a set of traces, namel@g [P] = [fpSF [P]. The

set of all partial trace semantics, ordered by set inclysioms
a complete lattice.

Finally, we use the following notation. Given a functigh:
A — BandasetS C A, we suef|s to denote the restriction of
function f to variables inSN A, and f . S to denote the restriction
of function f to elements not it%, namely toA \ S.

3. Semantics-Based Malware Detection

Intuitively, a programP is infected by a malware\l if (part
of) P’s execution behavior is similar to that @f/. In order to
detect the presence of a malicious behavidfiin a programP,
therefore, we need to check whether there is a part (a resiric
of & [P] that “matches” (in a sense that will be made precise)
& [M]. In the following we show how program restriction as
well as semantic matching are actually appropriate atigtrecof
program semantics, in the abstract interpretation sense.

The process of considering only a portion of program seroanti
can be seen as an abstraction. Given a subset of a progiem
labels (i.e., commandsdyb, [P] C lab[P] that characterize a
restrictionof P, letvar, [P] and Luse, [P] be, respectively, the
set of variables occurring in the restriction and the set efmory
locations it uses:

vary [P] {var [C] | lab [C] € lab, [P]}
Luse, [P] {Luse [C] | lab [C] € lab, [P]}.

The set of labeldab, [P] induces a restriction on environment
and memory maps. Givep € &£(P) andm € M(P), let
P = Ploar(p] ANAM" = M., [p] denote the restricted
set of environments and memories induced by the restrigedfs
labelslab,. [P]. Definea,. : ¥* — 3* that propagates restriction
lab, [P] on a given a trace:

€ ifo=c¢

(Cr, (p1,m1))ar (o) if o = (C1,(p1,m1))0’
andlab [C1] € lab, [P]
otherwise

ar(o) =
ar (o)

Given a functionf : A — B we denote, by a slight abuse of no-
tation, its pointwise extension on powersetfas p(A) — p(B),
wheref(X) = {f(z)|z € X}. Note that the pointwise exten-
sion is additive. Therefore, the functian. : p(X*) — (X))

is an abstraction that discards information outside th&icéisn
lab, [P]. Moreovera, is surjective and defines a Galois insertion:

- (p(X)), C). Let (& [P]) be therestricted

semanticof prégramP. Observe that program behaviour is ex-
pressed by the effects that program execution has on enveon
and memory. Consider a transformation: ¥* — X’* that, given
atraceo, discards fronv all information about the commands that
are executed, retaining only information about changelde@nvi-
ronment and effects on memory during execution:

ifo=c¢

ac(o) = { Erac(e’) it o= (Cr &)’

Two traces are considered to be “similar” if they are the santer
ae, I.e., if they have the same sequence of effects on thectstrs
of the environment and memory defined fay,. [P]. This seman-
tic matching relation between program traces is the basisiodp-
proach to malware detection. The additive function: p(X*) —

p(X™) abstracts from the trace semantics of a program and defines

a Galois insertion{p(X*), C) === (p(X*), C).

ha—

Let us say that a malware isvanilla malwareif no obfuscating
transformations have been applied to it. The following dédin
provides a semantic characterization of the presence ohilava
malwarelM in a programP in terms of the semantic abstractions
o, andae.

Vr
—_—
a



DEFINITION 4. A program P is infected by a vanilla malwaré/,
i.e., M — P, Iif:

Alab, [P] € p(lab[P]) : ae(S [M]) C ae(ar (S [P])).

A semantic malware detectts a system that verifies the presence
of a malware in a program by checking the truth of the inclasio
relation of the above definition.

4. Obfuscated Malware

To prevent detection malware writers usually obfuscatentiad-
cious code. Thus, a robust malware detector needs to haosié p
bly obfuscated versions of a malware. While obfuscation mag-
ify the original code, the obfuscated code has to be equivéie
to some notion of equivalence) to the original one. Given an o
fuscating transformatio® : P — P on programs and a suitable
abstract domaim, we define an abstractiono : E(X*) — A
that discards the details changed by the obfuscation whelsepv-
ing the maliciousness of the program. Thus, different atsHtesd
versions of a program are equivalent upte o «.. Hence, in or-
der to verify program infection, we check whether there tsxé&
semantic program restriction that matches the malwarevimira
up toae, formally if:

3 lab, [P] € p(lab [P]) :
ao(ae(6 [M])) € ao(ae(ar(S [P]))).

Herea,. (& [P]) is the restricted semantics fét; a. (- (S [P]))
retains only the environment-memory traces from the retsulise-
mantics; andvp further discards any effects due to the obfuscation

4.2 A Semantic Classification of Obfuscations

Obfuscating transformations can be classified accordintheo
effects on program semantics. Givent € A* for some set4,
let s < t denote that is a subsequence ofi.e., if s = s1s2... s,
thent is of the form...s;...s2... 85 ....

4.2.1 Conservative Obfuscations

An obfuscationO : P — P is aconservative obfuscatioif
Vo € 6[P],306 € &[O(P)] such thatae(c) < ae(d). Let
O, denote the set of conservative obfuscating transformation
When dealing with conservative obfuscations we have that a

trace § of a programP presents a malicious behaviodd, if
there is a malware trace € & [M] whose environment-memory
evolution is contained in the the environment-memory eNoiu
of §, namely if ac(0) = ac(9). Let us define the abstraction
ac : p(X") — (X" — p(&™)) that given a sequence € X*
and aselS € p(X™), returns the elementsc S that are subtraces
of s.

a:[S](s) = SN SubSeq(s)
whereSubSeq(s) = {t|t < s} denotes the set of all subsequences
of s. For anyS € p(X™), the additive functiorx. defines a Galois

’YC[S] * .
{p(X*), C). The abstraction

_—
a. turns out to be a suitable approximation when dealing with
conservative obfuscations. In fact the semantic malwatects

on ac[ae (& [M])] o a. is complete and sound for the class of
conservative obfuscations.

connection:(p(X™), C)

THEOREM2. If M is a vanilla malware and®. € O, then

O. We then check that the resulting set of environment-memory O.(M) — P iff 3 lab, [P] € p(lab[P]) such that:

traces contains all of the environment-memory traces flemtal-
ware semantics, with obfuscation effects abstracted aveeyy.

4.1 Soundness vs Completeness

The extent to which a semantic malware detector is able to dis

criminate between infected and uninfected code, and ther¢he
balance between any false positives and any false negétives
incur, depends on the abstraction functien. We can provide se-
mantic characterizations of the notions of soundness amglete-
ness, introduced in Definition 1, as follows:

DEFINITION 5. A semantic malware detector an» is complete
for O if and only if
3lab, [P] € p(lab[P]) :
ao(ae(6 [M])) € ao(ae(ar (S [P])))
A semantic malware detector @i is sound forQ if and only if
3lab, [P] € p(lab[P]) :
ao(ae(6 [M])) € co(ac(ar(S [P]

It is interesting to observe that completeness is guardnigeen
abstractionv is preserved by obfuscatiafl, namely wherv P €
P:ao(ac(6[P]) = ao(ac(& [O(P)])).

THEOREM1. If ao is preserved by the transformatidn then the
semantic malware detector ey is complete foO.

O(M)%Pé{

) }:>(’)(M) — P.

aclae(6 [M])](ae(S [M])) <
aclae(6 [M])](ae(ar (S [P])))-

Many obfuscating transformations commonly used by malware
writers are conservative; a partial list of such conseveatibfus-
cations is given below. It follows that Theorem 2 is applieaio a
significant class of malware-obfuscation transformations

— Code reorderingThis transformation, commonly used to avoid
signature matching detection, changes the order in whiof co
mands are written, while maintaining the execution order
through the insertion of unconditional jumps.

— Opaque predicate insertiofThis program transformation con-
fuses the original control flow of the program by inserting
opaque predicates, i.e., a predicate whose value is knowin a p
ori to a program transformation but is difficult to determime
examining the transformed program [7].

— Semantiavopinsertion This transformation inserts commands
that are irrelevant with respect to the program semantics.

— Substitution of Equivalent Commandghis program transfor-
mation replaces a single command with an equivalent onf, wit
the goal of thwarting signature matching.

The following result shows that the composition of constvea
obfuscations is a conservative obfuscation. Thus when ttiane

However, the preservation condition of Theorem 1 is too weak One conservative obfuscation is applied, it can be handéed a
to imply soundness of the semantic malware detector. As an ex Single conservative obfuscation.

ample let us consider the abstractionr = AX.T that loses all
information. It is clear thatvr is preserved by every obfuscating
transformation, and the semantic malware detectoxvonclassi-
fies every program as infected by every malware. Unfortuyate

LEMMA 1. GivenO1, O3 € O, thenO;1 0 07 € Q..

ExAMPLE 1. Let us consider a fragment of malwaté presenting
the decryption loop used by polymorphic viruses. Such arieag

do not have a result analogous to Theorem 1 that providespa pro writes, starting from memory locatioRa, the decryption of memory
erty of ap that characterizes soundness of the semantic malwarelocations starting at locationA. Let O.(M) be a conservative
detector. obfuscation of\/:



M Oc(M)
Ly, :assign(Lp,B) — Lo Ly :assign(Lp,B) — Lo
Lo :assign(La,A) — Le Lo :skip — L4
L. :cond(A) — {Lp,Lp} L. :cond(A) — {Lo,Lr}
Ly : B:=Dec(A) — L, Ly :assign(La,A) — Ls
Lp, :assign(m2(B),B) — L1, L5 :skip — L¢
Ly, : assign(m2(A),A) - Lc Lo : PT — {Ly, Ly}
Lp : Ly : X =X-3— Ly,
Ly, : X =X+3— Lr
Lt :B:= Dec(A) — L,
Lp, :assign(m2(B), B) — L,
Lr, :assign(m2(A), A) — Lc¢
Ly ..
Lp

Given a variableX, the semantics af2(X) is the label expressed
by 72 (m(p(X))), in particular m2(n) = L, whilema (A, S) = S.
Given a variableX, let Dec(X) denote the execution of a set of
commands that decrypts the value stored in the memory tocati
p(X). The obfuscations are as follows&:; : skip — L4 and
Ls : skip — L. are inserted by code reorderind;y : X := X+

3 — Ly, andLy, : X := X — 3 — Lr represent semantic nop
insertion, andLo : PT — {Ln, L} true opaque predicate in-
sertion. It can be shown that. [c. (& [M])] (e (S [O(M)])) =
ac[ae (& [M])](ce (& [M])), i.€., our semantics-based approach
is able to see through the obfuscations and identify\/) as
matching the malwar@/.

4.2.2 Non-Conservative Obfuscations

A non-conservative transformation modifies the programesgits

in such a way that the original environment-memory traceshat

present any more. A possible way to face these transforngi®
to identify the set of all possible modifications induced byam-

conservative obfuscation, and fix, when possibleamaonicalone.

In this way the abstraction would reduce the original seiartb

the canonical version before checking malware infection.

wherea, : IT — (X* — X™) is defined as:

au[m]((pr,m1) .. (pnymn)) =
(prom tyma). .. (pnom ' my).

In order to deal with variable renaming obfuscation we define
the notion ofcanonical variable renamings. Let {V;},cn be a
set of canonical variable names. Given an environment-mgmo
sequences € X, the canonical renaming, : var[s] —
{Vi}ien renames the variables ofn such a way that the canonical
name of the first variable i is Vi, the canonical name of the
second one i¥%, and so on. These canonical mappifgkave to

be such that an environment-memory trade a renaming of an
environment-memory traceif and only if s andt have the same
canonical form, namely, [71](s) = t < a,[7s](s) = aw [Ts](1).

Note that program execution starts from the uninitializedi-e
ronmentp..inic = AX. L, and that each command assigns at most
one variableX. Let def (p) denote the set of variables that have
defined (i.e., nont) values in an environment. This means that
considerings € a.(& [P]), we have thavar [s] = def (p»), and
def (pi—1) C def (p:). Let us definelist(s) as the list of variables
in s ordered according to their assignment time. Ket List(s)
denote the insertion of a new variabk on the beginning of the
list, and letList(s)[i] denote the-th element of the list. Formally,
lets = (p1,m1)(p2, m2)...(pn, Mn) = (p1,m1)s":
€ If S=c€
X : List(s") if def(s2) \ def(s1) ={X}
List(s") if def (s2) \ def(s1) =@

Thus the canonical renamirg : var [s] — {Vi...Vjyarsy) } Of
the environment sequeneés defined in function of.ist(s) as:
7s(X) = Vi & List(s)[i] = X (1)

Thus,ac[Ts] : X — X7, whereX. denotes execution contexts
where environments are defined on canonical variables,cesdu
s € X* to its canonical form. The following result shows that

List(s) =

Another possible approach comes from Theorem 1 that statesdefined by Equation (1) is a canonical renaming.

that if o is preserved by) then the semantic malware detector
on ap is complete w.r.tO. Recall that, given a program trans-
formation©O : P — P, it is possible to systematically derive the
most concrete abstractien, preserved by) [12]. This systematic
methodology can be used in presence of non-conservatives cdof
tions in order to derive a complete semantic malware detedien
itis not easy to identify a canonical abstraction.

Moreover in Section 5 we show how it is possible to handle a
class of non-conservative obfuscations through a furthstraction
of the malware semantics.

In the following we consider a non-conservative transfdiomg
known asvariable renamingand propose a canonical abstraction
that leads to a sound and complete semantic malware detector

Variable Renaming Variable renaming is a simple obfuscating
transformation, often used to prevent signature matchmeg, re-
places the names of variables with some different new nabets.
O, : P xII — P denote the obfuscating transformation that, given
a programP, renames its variables according to a mapping 11,
wherer : var [P] — Names is a bijective function that relates
name of each program variable to its new name.

O,(P,m) = {C|3C" € P: act[C] = act [C"] [X/n(X)] }

where A[X /7 (X)] represents actiod where each variable name
X is replaced byr(X). Recall that the matching relation between
program traces considers the abstractianof traces, thus it is
interesting to observe that:

ae (S [0y (P, m)]) = {aw[r](s) |s € ae(S [P]) }

LEMMA 2. Givens,t € X*:
I var [s] — var [t] : cw[7](s) =t € a[Ts](s) = aw[Te](t).

Let II denote a set of canonical variable renaming and the additive
functiona, : II — (p(X*) — p(XF)) is an approximation
that abstracts from the names of variables. Thus, we have the

o [11] .
(p(X5), C).

m—
In the following we show that the presenceuof a renamed malwar
O,(M, ) in a programP can be semantically characterized in
terms of the abstractions, and a.. Define a variable renaming
to be stableif, for each test action in the program, tixh local
variable of thetrue branch has the same name as ifth local
variable of thefalse branch. The following result states that the
semantic malware detector an, [II] is complete and sound for
variable renaming.

following Galois connection{p(X™*), C)

THEOREM3. Given a stable renamind), (M, ) — P iff

Jlab, [P] € p(lab[P]) :

ay[](ae (6 [M])) € av[ll](ac(ar (6 [P]))).
4.3 Composition

In general a malware uses multiple obfuscating transfaomsit
concurrently to prevent detection, therefore we have taiciem the
composition of conservative and non-conservative obtimts,
which is clearly not conservative. L& : P — P be a non-
conservative obfuscation,» an abstraction such that the semantic



malware detector one is sound and complete fa@P. It is inter-

esting to observe that if the abstractioa preserves<, namely
if (ae(o) <X @e(d)) = ao(ac(o)) 2 ao(ae(d)), then the se-
mantic malware detector af. o ap is complete forO o O, and

O 00.

THEOREMA4. If M is a vanilla malware, obfuscatio® preserves
<,0. € 0., andO(O(M)) — P or O.(O(M)) — P, then
3lab, [P] € p(lab [P]) such that

aclao(ae(6 [M]))|(ao(ac(6 [M]))) C
aclao(ae(& [M]))](ao(ae(ar( [P]))))-

EXAMPLE 2. Letus conside©(O.(M), 7) obtained by obfuscat-
ing the portion of malware\/ in Example 1 through variable re-
naming and some conservative obfuscations:

OO (M), )

L1 :assign(D,Lp) — L2

Lo :skip — Ly

L. :cond(E) — {Lo,Lr}

Ly :assign(F,La)— Ls

Ls :skip — L.

Lo : PT — {Lt, Ly}

Lt :D:= Dec(E) — L,

s assign(m2(D), D) — L,
: assign(me(E), E) — Le

wherer(B) = D, n(A) = E. Itis possible to show that:
e oo [TT] (e (& [M])] (exo [T (e (& [M))) €
avelo [T (e (& [M]))] (e [T (e (0 (& [O(Oc(M), m)])))).

5. Further Malware Abstractions

Definition 4 characterizes the presence of malwidrée a program
P as the existence of a restrictidab, [P] € p(lab[P]) such
thata. (& [M]) C ac(a-(S [P])). This means that progratit
is infected by malware\l if P matches all malware behaviours.
This notion of malware infection can be weakened in two diffe
ent ways. First we can abstract the malware traces elimipaltie
states that are not relevant to determine maliciousnessthan

check if programP matches this simplified behaviour. Second we
can require progran® to match a proper subset of malicious be-

haviours. Clearly that it is possible to combine the gelieatibns
above. A deeper understanding of the malware behaviourcisshe
sary in order to identify both the set of interesting statebthe set
of interesting behaviours.

Interesting States. Assume that we have an oracle that, given a
malware M, returns the set of its interesting states. These states
could be selected based on a security policy, for exampke, th

states could represent network operations. This meansntwater
to verify if P is infected byM, we have to check whether the
malicious sequences of interesting states are present iret us
define the trace transformatiary,,; s : 3* — X" that considers
only the interesting states in a given trace= o10”:

€ ifo=¢
oraman (o) if o1 € Int(M)

i) (0) = ( _
Arme(any (o) otherwise

The following definition characterizes the presence of raadil/
in terms of its interesting states, i.e., through abstoactis,; ).

DEFINITION 6. A program P is infected by a vanilla malwaré/
with interesting statednt(M), i.e., M — P, if Jlab, [P] €

p(lab [P]) such that:

ey (6 [M]) € amean (ar (S [P])).

Thus we can weaken the standard notion of conservative-trans
formation by saying that : P — P is conservative w.r.t.
Int(M) if Vo € 6 [P],30 € & [O(P)] such thaix,,(ar)(0) =
Arpe(ar)(0).

When program infection is characterized by Definition 6 d&e
mantic malware detector amy,,;(,s) is complete and sound for the
obfuscating transformations that are conservative vttt M/ ).

THEOREMbS. Let Int(M) be the set of interesting states of a
vanilla malware)M, and letO be conservative w.r.fnt(M). Then
O(M) — P iff Alab, [P] € p(lab [P]) such that:

) (6 [M]) € apmean (ar (S [P])).

It is clear that transformations that are non-conservaties/
be conservative w.r.tfnt(M), meaning that knowing the set of
interesting states of a malware allows us to handle also smme
conservative obfuscations. For example the abstractigg )
allows the semantic malware detector to deal with reordeah
independent instructions, as the following example shows.

EXAMPLE 3. Let us consider the malwark/ and its obfuscation
O(M) obtained by reordering independent instructions.

M O(M)

L1:A1 — Lo L1: A1 — Lo
Lo:As — L3 Lo: A3 — L3
L3 : A3 — Ly Ly :As — Ly
Ly: A4 — Ly Ly: Ay — Ls
Ls:As — Lg Ls: As — Lg

In the above exampldl> and As are independent, meaning that
o [Az]] (o [As] (p,m)) = o [As] (<7 [A2] (p, m)). Consider-
ing malwareM , we have the trace = 0102030405 Where:
-01 = <L1 AL — Lo, (p,m)),
-o5 = (L5 : As — Le,

(A [Ad] (o [As] (@ [A2] (o [Ad] (p,m))))))s
while considering the obfuscated version, we have the téace
5152535455, where:
- 01 <L1 s Ay _)L27(p7m)>1
'55 <L5 2A5 —>L(37

(o [Ad] (o [A2] (& [As] (7 [A1] (p,m))))))-

Let Int(M) = {o1,05}. Thenay, (o) = o105 as well as
Ay (0) = 9165, which concludes the example. It is obvious
that 1 = o1, moreoverds = o5 follows from the independence of
AQ andAg,.

Interesting Behaviours. Assume we have an oracle that given a
malware M returns the sefl” C & [M] of its behaviours that
characterize the maliciousness &f. Thus, in order to verify if
P is infected byM, we check whether program® matches the
malicious behaviourg'. The following definition characterizes the
presence of malwar#/ in terms of its interesting behaviours

DEFINITION 7. A program P is infected by a vanilla\M/ with
interesting behaviour§” C & [M], i.e., M — Pif:

Flab, [P] € p(lab [P]) : ae(T) C ae(ar (6 [P]))-

It is interesting to observe that, when program infectiooharac-
terized by Definition 7, all the results obtained in Sectiostil
hold if we replaceS [M] with T'.

6. Case Study: Completeness of Semantics-Aware
Malware Detector A p

An algorithm calledsemantics-aware malware detectisas pro-
posed by Christodorescu, Jha, Seshia, Song, and Bryanth#.



approach to malware detection uses instruction semaiatickeh-
tify malicious behavior in a program, even when obfuscated.

The obfuscations considered in [4] are from the set of censer
vative obfuscations, together with variable renaming. paper
proved the algorithm to be oracle-sound, so we focus in #is s
tion on proving its oracle-completeness using our abstnadiased
framework. The list of obfuscations we consider (shown ibl&d)
is based on the list described in the semantics-aware nmalder
tection paper.

Obfuscation Completeness ofyp

Code reordering Yes
Semantic-nop insertion Yes
Substitution of equivalent commands No
Variable renaming Yes

Table 1. List of obfuscations considered by the semantics-aware
malware detection algorithm, and the results of our corapless
analysis.

Description of the Algorithm  The semantics-aware malware de-
tection algorithmA,,p matches a program against a template de-
scribing the malicious behavior. If a match is successhé, firo-
gram exhibits the malicious behavior of the template. Bb&item-
plate and the program are represented as control-flow goaphgy

the operation ofd y/p.

The algorithmA /p seeks to find a subset of the prograhthat
matches the commands in the malwate possibly after renaming
of variables and locations used in the subseofFurthermore,
Aump checks that any def-use relationship that holds in the mal-
ware also holds in the program, across program paths thatcbn
consecutive commands in the subset.

A control-flow graphG = (V, E) is a graph with the vertex
setV representing program commands, and edge setpresent-
ing control-flow transitions from one command to its sucogss.

For our language the control-flow graph (CFG) can be easity co
structed as follows:

e For each command' € C, create a CFG node annotated with
that commandy;,,jcp. Correspondingly, we write” [v] to
denote the command at CFG node

e For each command = L; : C — S, whereS € p(L), and
for each label,; € S, create a CFG edder,,vL, ).

Consider a patld through the CFG from node; to nodewy,
0 = v — ... — v,. There is a corresponding sequence of com-
mands in the progran®, written P|lg = {C1,...,Cx}. Then we
can express the set of states possible after executinggbersee of
commandsP|y as%™ [Ple] ((C1, p,m)), by extending the transi-
tion relation% to a set of states, such thét: p(X) — p(X). Let
us define the following basic functions:

mem [(C, p,m)] = m
env [(C, p,m)] = p

The algorithm takes as inputs the CFG for the template,=
(VT, ET), and the binary file for the prograniile [ P]. For each
pathd in GT, the algorithm proceeds in two steps:

1. Identify a one-to-one map from template nodes in the path
program nodesyy : VT — VT,
A template nodex” can match a program nodg’ if the top-
level operators in their actions are identical. This mapoas
amapry : XT x VT — XP from variables at a template
node to variables at the corresponding program node, sath th
when renaming the variables in the template comn@@ra.” |

according to the mapy, we obtain the program command
C [[np]] =C [nT]] [X/ve (X,nT)].

This step makes use of the CFG orack cr¢ that returns
the control-flow graph of a prograr®?, given P’s binary-file
representatioile [ P].

2. Check whether the program preserves the def-use depseslen
that are true on the template p#th

For each pair of template nodes”, n” on the pathd, and
for each template variabte” defined inact [C7,] and used in
act [CF], let X be a program patp(vi) — ... — p(vi),
wherem? — o] — vl — nT is part of the
path 6 in the template CFGA is therefore a program path
connecting the program CFG node corresponding:fowith

the program CFG node correspondingrtb. We denote by

Te {C[m™].Cf,....CF,C[n"]} the sequence of
commands corresponding to the template gath

The def-use preservation check can be expressed formally as
follows:

Vp e &E,Vm e M, Vs € &" P[] (<u9 (vclT) ,p,m>) :
o [[Vg (JCT,UCIT)]] (p,m) =
o [[Vg (JCT, ch)]] (env [[s] ,mem [s]) .

This check is implemented iAl;p as a query to @emantic-
nop oracle ORsnop. The semantic-nop oracle determines
whether the value of a variabl& before the execution of a
code sequencg C P is equal to the value of a variab¥é after
the execution of).

The semantics-aware malware deteco;p, makes use of two
oracles,OR cre and ORsnop, described in Table 2. Thudyp =
D®R, for the set of oracle®R = {ORcra, ORsnop}. OUr
goal is then to show thatl,p is OR-complete with respect to
the obfuscations from Table 1. Since three of those obfistat
(code reordering, semantic-nop insertion, and subsiiuif equiv-
alent commands) are conservative, we only need to plR:
completeness aflyp for each individual obfuscation. We would
then know (from Lemma 1) thatlyp is alsoOR-complete with
respect to any combination of these obfuscations.

Oracle Notation

CFG oracle ORcrq (File [P])
Returns the control-flow graph of the progrd given
its binary-file representatiofile [ P].

Semantic-nop oracle ORsnop (¥, X,Y)
Determines whether the value of variabte before the
execution of code sequengeC P is equal to the value
of variableY” after the execution of.

Table 2. Oracles used by the semantics-aware malware detection
algorithm.Ap. Notation:P € P, X, Y € var [P],¢ C P.

We follow the proof strategy proposed in Section 2.1. First,
in step 1 below, we develop a trace-based deteflgr based
on an abstractiomy, and show thaD®® = A,p and D, are
equivalent. This equivalence of detectors holds only ifdhecles
in OR are perfect. Then, in step 2, we show tiiat, is complete
w.r.t. the obfuscations of interest.

Step 1. Design an Equivalent Trace-Based Detector We can
model the algorithm for semantics-aware malware detectsing
two abstractionsqesanp and aac:. The abstractiony that char-
acterizes the trace-based detedtor. is the composition of these



two abstractionsge = aacroasamp. We will show thatD . is
equivalentdp = DR, when the oracles iR are perfect.

The abstractionvsanp, when applied to a trace € S [P],
o= (C1,p,my)...(Cy, pr,,m}), toasetof variable magsr; },
and a set of location magsy; }, returns an abstract trace:

QSAMD (0_7 {71—1'}7 {77«}) = <Cl7 p17m1> s <Cn7pn7 mn>
if Vi, 1 <i<mn :act[C;] = act [C]] [X/m:(X)]
Alab[Cs] = vi(lab [C])
A suc [Cs] = i (suc[Ci])
A pi = p;-i o m;
ANm; = m}i 0 Y

Otherwise, if the condition does not hotdsanp (o, {m: }, {vi})
e. Amapm; : var [P] — X renames program variables such that
they match malware variables, while a map : lab[P] — L

PROPOSITION2. A semantics-aware malware detector is complete
onasamp W.r.t. the code-reordering obfuscatid@n;:

Alab, [P] € p(lab[P], {mi}ti>1, {~Vi}i>1:
aact(asamp (6 [M], {m:}, {vi})) C
aact(asamp (o (6 [P]),{m}, {vi}))

The code-reordering obfuscation insestsip commands into
the program and changes the labels of existing commands. The
restriction i, “eliminates” the insertecskip commands, while
the aa.; abstraction allows for trace comparison while ignoring
command labels. Thus, the detector, is OR-complete w.r.t. the
code-reordering obfuscation. Similar proofs confirm that,. is
OR-complete w.r.t. variable renaming and semantic-nop froser

O;(M)— P =

PROPOSITION3. A semantics-aware malware detector is complete

reassigns program memory locations to match malware memory on asanp W.I.t. the variable-renaming obfuscatid@d, .

locations.
The abstraction 4.; simply strips all labels from the commands
inatraceo = (C1, p1,m1) o', as follows:

aact(o) = {

DEFINITION 8 (a-Semantic Malware Detectorpn a-semantic
malware detector is a malware detector on the abstractiome.,
it evaluates the validity of the following for a prograf and a
malwareM :

Jlab, [P] € p(lab[P]) : a(& [M]) C a(a-(& [P])).
By this definition, a semantic malware detector (from Defonit4)

is a special instance of the-semantic malware detector, for =
ae. Then letD 7, be a(aactoasanp )-semantic malware detector.

ifo=c¢
otherwise

€
(A1, p1,m1) aace(o”)

PrRoPOSITIONL. The semantics-aware malware detector algo-
rithm Apyp is equivalent to the(aactoasamp)-semantic mal-
ware detectorD .. In other words,VP, M € P, we have that
Awup (P, M) = D1-(& [P], & [M]).

The proof has two parts, to show thdw,p(P,M) = 1 =
D7 (& [P],6[M]) = 1, and then to show the reverse. For the
first implication, it is sufficient to show that for any paghin the
CFG of M and the pathy in the CFG of P, such thatd and
x are found as related by the algorith#w,p, the corresponding
traces are equal when abstracteddoy..oasanp. The proof for
the second implication proceeds by showing that any tweetac
o € 6[M] andé € G [P], that are equal when abstracted by
aactoasamp, have corresponding paths through the CFG4/bf
and P, respectively, such that these paths satisfy the condifion
the algorithmA p. Both parts of the proof depend on the oracles
used byAp to be perfect.

Now we can define the operation of the semantics-aware mal-
ware detector in terms of its effect on the trace semantiespb-
grampP.

DEFINITION 9 (Semantics-Aware Malware Detectioy program
P is ainfected by a vanilla malwarg/, i.e. M — P, if:

Alab, [P] € p(lab[P]), {mi}ti>1, {vi}iz1 :
aact(asamp (6 [M],{mi}, {vi})) C
aact(asamp (o (& [P]), {mi}, {v:}))

Step 2: Prove Completeness of the Trace-Based Detector  We are
interested in finding out which classes of obfuscations arelled

by a semantics-aware malware detector. We check the walidit
of the completeness condition expressed in Definition 5.therm
words, if the program is infected with an obfuscated varidrthe
malware, then the semantics-aware detector should réturn

PrRoPOSITION4. A semantics-aware malware detector is complete
onagsamp W.I.t. the semantic-nop insertion obfuscation; .

Additionally, D7, is OR-complete onsamp W.r.t. a limited
version of substitution of equivalent commands, when the-co
mands in the original malwarg/ are not substituted with equiv-
alent commands.

Unfortunately,D 7 is not OR-complete w.r.t. all conservative
obfuscation, as the following result illustrates.

ProOPOSITIONS. A semantics-aware malware detector is not com-
plete onasamp W.Lt. all conservative obfuscatior@. € Q..

The cause for this incompleteness is the fact that the altistna
applied by D, still preserves some of the actions from the pro-
gram. Thus, an obfuscation that affects at least one acti@very
path through the program, e.g., a well chosen instance dtisub
tution of equivalent commands (see proof of Proposition hin
Appendix for an example), will defeat the detector.

7. Related Work

There is a considerable body of literature on existing tephes for
malware detection: Szor gives an excellent summary [22].
Code obfuscation has been extensively studied in the cooitex
protecting intellectual property. The goal of these teghes is to
make reverse engineering of code harder [3,6, 7,11, 12Ck8p-
tographers are also pursuing research on the question sibpidg
of obfuscation [1, 14, 24]. To our knowledge, we are not avzdre
existing research on formal approaches to obfuscationarctim-
text of malware detection.

8. Conclusions and Future Work

Malware detectors have traditionally relied upon syntaep-
proaches, typically based on signature-matching. Whit sap-
proaches are simple, they are easily defeated by obfussafi®
address this problem, this paper presents a semanticd-fragge-
work within which one can specify what it means for a malware
detector to be sound and/or complete, and reason about the co
pleteness of malware detectors with respect to variousetasf
obfuscations. As a concrete application, we have shown ghat
semantics-aware malware detector proposed by Christecloet

al. is complete with respect to some commonly used malware ob-
fuscations.

Given an obfuscating transformatid@d, we assumed that the
abstractiono is provided by the malware detector designer. We
are currently investigating how to design a systematicafigieau-
tomatic) methodology for deriving an abstractios that leads to a
sound and complete semantic malware detector. We obsdraed t



if the abstractiomo is preserved by the obfuscati@n then the
malware detection is complete, i.e. no false negatives. édew
preservation is not enough to eliminate false positivesiddean
interesting research task consists in characterizing ¢hefsse-
mantic abstractions that prevents false positives.

One further step would be to investigate whether and how imode

checking techniques can be applied to detect malware. Saresw
along this line already exist [17]. Observe that the abstraco,
actually defines a set of program traces that are equivatett @.

In model checking, sets of program traces are representéarby
mulae of some linear/branching temporal logic. Hence, we ati
defining a temporal logic whose formulae are able to express n
mal forms of obfuscations together with operators for cosipm
them. This would allow to use standard model checking atlgors
to detect malwares in programs. This could be a possibletéire
to follow in order to develop a practical tool for malware efgton
based on our semantic model. We expect this semantics-basled
to be significantly more precise than existing virus scasner
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9. Appendix: Selected Proofs
Theorem 2

(=) Completeness: IO.(M) — P it means tha8 lab, [P] €

p(lab [P]) such thatP, = O.(M). Such restriction is the one
that satisfies the condition on the right. In factHf = O.(M) it
means thatv,. (& [P])) = & [O.(M)]. Thus we have to prove that
aclae (S [M])](e (S [M])) € aclae (S [M])](ae(S [Oc(M)]
)). By definition of conservative obfuscation for each tracec
G [M] there exists) € & [O.(M)] such thatae(o) < a.(9).
Considering suck andd we show thatv. [ae (& [M])](ae (o)) C
acfae (S [M])](ae(9)), in fact:

aclae(& [M]))(ae(6)) = e (& [M]) N SubSeq(ce(9)
aclac(& [M]))(ae(0)) = ae(& [M]) N SubSeq (o

(9))

().
Sinceae(o) =< () then SubSeq(ae(o)) C SubSeq(ce(9)).
Therefore acla. (& [M])](ac(0)) € acloe(S [M])](ac(9)),
which concludes the proof.
(<) Soundness: By hypothesis there exiats. [P] € p(lab [P])
ovelove (6 [M])] (e (& [MT)) C avelere (& [M])](cxe (2 (& [P])
)). This means thato € & [M] we have thati. [a. (S [M])](ce
(0) € acloe(& [M])](are (o (& [P]))). By hypothesiss €
G [M], thereforene (o) € aclae(S [M])](ce (o)), which means
thatae (o) € {ac(ae(S [M]))(ee(d)) | 6 € ar(S [P])}. Thus

o)



there exist$y € (& [P]) such thatae(o) = a.(d) and this
means that thaP. is a conservative obfuscation of malwave.

Lemma 2

(:>) LetS = (p;7m1)(p;7mn) andt = (p§7m1)(p;7mn)
such thatt = au[r](s), with @ : wvar[s] — war[t], then
Vi € [Ln] : def(p!) = {m(X)|X € def ()}, thus|def (p})| =
|def (pi)|. By definition of List we have that:List(s)[i]] =

X & List(t)[i] = w(X), which means that{(X) = V;, &

7 (m(X)) = Vi. Thisimplies thatv, [75](s) = aw[7f](t).

(<) Let au[nms](s) = aulmf](t) = (pf,m1)...(p5, mn), thus
lvar [s]| = |var[t]| = k. By definition 75 : wvar[s] —
{Vi.Vi} andnf : var [t] — {Vi..Vi}. Letmr = 7th_1 o :
var[s] — war[t]. = is a bijection because is a composi-

tion of bijective functions. We show that, [7](s) = t. In fact

ay[m](s) = tiff Vii pj(X) = pi(m(X)) which holds since
—1 —1

Pi(r(X)) = plins " omi(X)) = pilf om0 mi(X)) =

pi(ms (X)) = pi (X).

Theorem 3

Given a stable renaming, for each test actionitiielocal variable
of the true branch has the same name of thh local variable of
thefalsebranch. In particular considering two pathgh, = A —
B — C andpath: = A — D — C of the CGF ofP. Let
Loc[B] = {X|X € var[B],X ¢ var[A] Uwvar[C]} be the
set of local variables of3 enumerated following their definition
order. Letn = min{|Loc [B] |, |Loc[D] |} then:Vi € [1,n] the
i-th variable ofLoc [ B]] has the same name of ti¢h variable of
Loc[D].

(=) Completeness: 10, (M, ) — P, then existslab, [P] €
p(lab [P]) such thatP, = O,(M, ), thereforea.,. (& [P]) =
G [0, (M, m)]. This restriction is the one that satisfies the con-
dition on the right, in fact we showey, [II°](c. (& [M])) C
o [IT% (e (6 [Oy (M, m)])). From definition ofO, we have that:

e (& [O0 (M, m)]) = {aw[r](s)]s € ae(& [M])}
& Vs € (S [M]),3t € (S [On(M,m)]) : t = aw[m](s)
< (Lem2)Vs € ae(6 [M]), 3t € ac(G [Oy(M,)]) :
ay[m](s) = au[m](t)
& a[ll(ae(6 [M])) = au[IT
(<) Soundness: Observe that:
a[II°)(ae (6 [M])) € aw[IT°] (e (e (& [P])))
& Aa[r](s) | s € ae(S[M])} €
{aw[nt](t) [t € ac(ar (S [P]))}
& Vs € ae(G[M]), 3t € ac(ar (S [P])) :
a[m](s) = awlm](t)
< (Lem2)Vs € ae (6 [M]), 3t € ae(ar (6 [P])) :
e, var [s] — var [t] : awlms,](s) = t.
Itis clear thatvar [M] = Use%(GW]]) var [s] andvar [P.] =
Uica. (ar(S1P])) VO [t]- Let us definer : var [M] — var [P]

asfollows:(X) = {Y|3s € ae(6 [M]), 3t € ac(ar(S[P])) :
ms,t(X) = Y}. Let us show thatr is a function. In fact if we
considers,q € a.(6[M]) andt,r € ae(ar(&[P])) such
that o, [75](s) = aw[nf](t) and aw[mgl(q) = awlmr](r), then
VX € var[s] Nwar[q] : ms,:(X) X). Let s, g be en-
vironment instances of respectiveiyith; = A — B — C and
patho = A — D — C of the CFG ofM, andt,r of respec-
tively path, = A — B — C andpath, = A — D — C
of the CFG of P.. Then we have two possible cases: (1) if

J(@e(& [Ou(M, 7)])).

= Tg,r(

X € war[s] Nwvar[q] and X € wvar[A] U var[C] then
m(X) € var [[A]] U var [[C’]] and7s,:(X) = mg,(X) is guar-
anteed by the fact thaX is present in a common part of the two
paths. (2)X € var [s] Nwvar [¢] and if X € Loc [B] N Loc [D]

thenw(X) € Loc [[B N Loc | D| and the assumption of a stable
renaming guarantees that :(X) = mq,»(X).

Theorem 4

(1) WhenO(O.(M)) — P then3lab, [P] € p(lab[P]) such

that P. = O(O.(M)), thereforea,. (& [P]) = & [O(O.(M))].
Thus, we have to show that:
ac[ao(ae (6 [M]))](co(ae (S [M]))) €
aclao(ae (S [M]))](ao(ae (S [O(O(M))]))).

ao is sound by hypothesis, therefore:
a0 (ae(6 [Oc(M)])) € ao(ac(S [O(O(M
a. IS monotone therefore:
aclao(ae (S [M]))](ao(ae (S [0(M)]))) €
aclao(ae(S [M]))](ao (e (S [O(Oc(M
Thus, we only have to prove that:
aclao(ae (S [M]))|(co(ae (S [M]))) C
aclao(ae (S [M]))|(co(ac(S [Oc(M)]))).

By definition of conservative transformation we have ttat €
G [M],36 € & [O(M)] such that ifae (o) < ae(d). For such
o andd, we show that:

aclao(ae(& [M]))](ao(ae(0))) €
aclao(ae(& [M]))](co(ae(d)

By definition we have thatv.[ao (e (S [M]))](ao(ae(0))
ao(ae(6 [M]))NSubSeq(ao(ae (o)) andac[ao (ae (S [M
(ao(ae(d))) = ao(ac(& [M])) N SubSeq(ao(ae(9))).
Sinceao (ae(0)) 2 ao(ae(d)), thenSubSeq(ao (ce (o))
SubSeq(ao(ae(d))), and this concludes the proof.
Proof for (2) is similar to point (1).
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Proposition 1

To show thatdp = D, we can equivalently show thetP, M €
P: Aup(P,M) =1 <= 3lab, [P] € p(lab[P]), I{m:i}i>1,
and 3{y:}i>1 such thatae (asaun (S [M], {mi}, {7:})) C
asact(asamp (ar (S [P]), {m:}, {vi})). Sincen; renames vari-
ables only fromP (i.e.,VV € V \ var [P], ; is the identity func-
tion, ;(X) = X), and similarlyy; remaps locations only frorf,
then we have thaksayp (6 [M],{m:i}, {vi}) = & [M].

(=) We know thatAap (P, M) = 1. We can construct the restric-
tion lab, [ P] from the path-sensitive map as follows:
€0}

U ol ()]]

oepathy GM )
The variable mapg; } can be defined based 0@. For a path
0 = oM — oM, (X)) = v (X v, ) Similarly,
vi(L) = L'if lab [C [v}]] = L' andlab [C [pe (v} )]]]] =1L.
Leto € & [M] and denote by = vi¥ — ... — v} the CFG
path corresponding to this trace. By algoritbéa,p, there exists a
pathy in the CFG ofP of the form:

e [u ()] = [u ()] -

Letd € & [P] be the trace corresponding to the pgtim G, 6 =
AT N of mEy O Tu ()] pf ) ... For

lab, [P] =



two stateg andj > i of the tracar, denote the intermediate states

|nthetrace5by<01 ,pl mh ) < {P,pip,mlp> ie:d =
<C H:M(/U’L )]] pz 7 ><Cl 7pl 7m ><C 7Pl 7mlp>
<C [e ()], pF,my). ... From step 1 of algorithrodxp, we

N ;t [{Z Euoglzi]]o]] [;(/m (0] = act ¢ [o']]
5 (1ab [ Ju (2] ]) = b [ []]
e[ [ ()]) = me o []]

From step 2 of algorithmA4,p, we know that for any template
variable 2" that is defined inC [v}'] and used inC [v,”]
(for 1 < i < j < k), we have thate/ [v(z",v}")] (p,m) =
o [v(z™,v}")] (env [s], mem [s]), wheres € € ({p (vfw)> ,
p,m). As act [C [p (v)")]] [X/7i(X)] act [C [v]].

it follows that p/” (v (z™,v;")) py (v (z™,v;")). Since
oM (™M) = p}(z™), then we can write}' = p[om;. Simi-
larly, m® = mFon;. Then it follows that:

act
ab

aAct(OéSAMD (U, {m}, {%})) = OéAct(U)
= oact(asamp (6, {mi}, {~i})).
Thereforeq ac (asamp (6 [M], {m:i}, {7i})) € cace(asann(

S [P],{mi}, {vi})).
(<) We know thatlab,. [P], {m:}i>1, and{v;}:>1 exist such as
to satisfy the RHS of the logical equivalence. We will showtth
Awump returnsl in such a case, that is, the two steps of the algorithm
complete successfully.

Leto € OéACt(OzSAMD(G HMH {71'1} {’Yz}))‘ with

<A1,p1 7miw> . <Ak,pk 7mjkw> .
Then there exists’ € & [M]
(ol mdtY (i i,

such thatvi, act [CM] [X/mi(X)] =
6€OZT(G|IPH (5—<Cl,p1,m1> <Ck,pk,mk> such that
Vi, act [CF] [X/m:(X)] = Ai, pf pMor ', andm;
mMoy; ' In other wordsg = aact(asamn (a’, {m}, {v}) =
aact(asamp (8, {mi}, {vi})), wheres’ is a malware trace antf
is a trace of the restricted prograf induced bylab, [P]. For
each pair of traceés, ) chosen as above, we can define a map
from nodes in the CFG ao#/ to nodes in the CFG aoP by setting

i (”za,b[[cm]) = V[P Without loss of generality, we assume

thatlab [M]Nlab [P] = (. Thenu is a one-to-one, onto map, and
step 1 of algorithmA/p is complete.

Consider a variable™ ¢ wvar [M] that is defined by action
A; and Iater used by actiod; in the traces’, for j > 4, such
thatp/, (™) = p}'(z™). Letz] be the program variable cor-
responding ta:" at program command'/”, andz! the program
variable corresponding to" at program command;”:

of = v (" vafern) # = v (" o)
If § € (& [P]), then there exists & € & [P] of the form:
.<C’f,pf3,mf>...<0f,pf,mf>...

wherel < i < j < k. Letf be a path inthe CFG d?, 0 = v{’ —
.. — vf, such thaﬁ;lpb[[cpﬂ — ol = .

A;. Similarly, there exists

§ =

R — U;:b[[c{’]] is

J
also a path in the CFG aP. Sincep,{, (z") = p}’ (™), then

() = () = 2 ) =
oy (75 (27)) = pf ( 7). But suc [[CP]] lab [C* [v1]] in
the traceS’ Asd [z]] (p, m) = p(z!), it follows that
o (" vugery) | (om) =
o [v (+ v geary )| (env Is) mem [s])
foranyp € &, anyminM, and any state of P at the end of ex-

ecuting the patld, i.e.,s € €* [Pq] (<M (vli,b[[C.P ) ,p,m>).
If the semantic-nop oracle queried byp is corﬁp]Jete, then the
second step of the algorithm is successful. THugy (P, M) = 1.

Pﬁj,,c[[c;]] (@) = pits (m

Proposition 2

If O;(M) — P, and given that); inserts onlyskip commands
into a program, therBlab, [P] € p(lab[P]) such thatP, =
O;(M) \ Skip, whereSkip is a set ofskip commands inserted
by O;. Let M’ = O (M) \ Skip. Thena, (& [P]) = & [M'].
Thus we have to prove that
aact(asamn (& [M],{m}, {vi})) S
asct(asamp (& [M'], {mi}, {vi}),

for some{m;} and{~:}. As O;(M) does not rename variables or
change memory locations, we cansgand~;, for all: andj, to be
the respective identity maps; = Id,q,pp) andy; = Idippy- It
follows thatesanp (S [M'], {Idyariey }» {fdlab[[p]]}) =6 [M]
and asamp (& [[Mﬂ {[dm“«[[p]]} {fdlab[[p]]}) [[Mﬂ It re-
mains to show that 4.¢ (& [[M]]) C aaa (6 [M']). By the defini-
tion of O, we have that\/’ = O, (M) \ Skip = (M \ S)Un(S),

for someS C M. Butn(S) only updates the labels of the com-
mands inS, and thus we have:

6 [M']) = aac(& [(M\ S) Un(S)])
= (6 [M]).
It follows thata4.¢ (& [M]) C cact (6 [O7(M

aAct(

)\ Skip]).

Proposition 5

To prove that semantics-aware malware detection is not iep
onasanmp W.I.t. all conservative obfuscations, it is sufficient tadfin
one conservative obfuscation such that

aact(asamp (6 [M],{mi}, {vi})) C
aact(asamp (ar (& [Oc(M)]), {mi}, {7i}))

@
cannot hold for any restrictiofub, [O.(M)] € p(lab[O.(M)])
and any map$m; };>1 and{v; }i>1.

Consider an instance of the substitution of equivalent com-
mands obfuscating transformati@®; that substitutes the action
of at least one command for each path through the program (i.e
S [P]N& [O;(P)] = 0)—for example, the transformation could
modify the command at the start label of the program. Assume
that 3{; };>1 and 3{~;}:>1 such that Equation 2 holds, where
O. = Or. Thendo € G[M] and3d € &[O;(M)] such
that aaci(o) = aae(asamn(ar(6),{mi}, {vi})). As |o]
|6], we have that,.(§) = 6. If 0 = ... {(Cs, pi,ms) ...
6 = ACY, pi,mi) ..., then we have thaVi, act [C;]
act [[C ﬂ [X/m( )]. But from the definition of the obfuscating
transformationO; above, we know thatoc € G [M], V§ €

and

S [Or(M)], 3 > 1 suchthatC; € o, Cj € §, andVr : X —
X, act [C;] # act [C{] [X/m(X)]. Hence we have a contradic-
tion.



