
Automatic Simplification of Obfuscated JavaScript
Code: A Semantics-Based Approach

Gen Lu Saumya Debray
Department of Computer Science

The University of Arizona
Tucson, AZ 85721, USA

Email: {genlu, debray}@cs.arizona.edu

Abstract—JavaScript is a scripting language that is com-
monly used to create sophisticated interactive client-side web
applications. However, JavaScript code can also be used to
exploit vulnerabilities in the web browser and its extensions,
and in recent years it has become a major mechanism for web-
based malware delivery. In order to avoid detection, attackers
often take advantage of the dynamic nature of JavaScript to
create highly obfuscated code. This paper describes a semantics-
based approach for automatic deobfuscation of JavaScript code.
Experiments using a prototype implementation indicate that
our approach is able to penetrate multiple layers of complex
obfuscations and extract the core logic of the computation, which
makes it easier to understand the behavior of the code.

Keywords-web security; deobfuscation; dynamic analysis; pro-
gram slicing

I. I NTRODUCTION

Recent years have seen a dramatic increase in web-based
malware delivery. This is typically done via a process, known
as drive-by-downloading, that exploits vulnerabilities in web
browsers and/or their extensions, and can be delivered through
a variety of web-based mechanisms [1]. Drive-by-downloads
often rely on JavaScript, a scripting language widely used
for generating dynamic web content. Attackers often take
advantage of the dynamic nature of JavaScript to create
highly obfuscated code to avoid detection [2]. The growing
prevalence of malicious JavaScript code is exemplified by the
Gumblar worm, which uses dynamically generated and heavily
obfuscated JavaScript to avoid detection and identification, and
which at one point was considered to be the fastest-growing
threat on the Internet [3].

Identifying malicious JavaScript code is not easy, however.
The mere presence of obfuscated JavaScript does not, in
itself, signal the presence of malicious content, since benign
web pages also to use code obfuscation to protect intellec-
tual property [4], [5]. Moreover, attackers often use server-
side scripting to deliver randomly obfuscated code where
each instance is syntactically different from the next (server-
side polymorphism). For these reasons, static signature-based
heuristics (e.g., “‘eval(’ and ‘unescape(’ within 15 bytes of
each other” [3]) have limited success when dealing with
obfuscated JavaScript. Traditional anti-virus tools thatprocess
web pages typically rely on such syntactic heuristics and so
tend to produce a high misidentification rate [2], [4], [5].

A better solution would be to use semantics-based tech-
niques that focus on code behavior. Unfortunately, current

behavioral analysis techniques for obfuscated JavaScripttypi-
cally require considerable manual intervention, e.g., to modify
the code in specific ways or to monitor its execution within
a debugger [6]–[8]. There has been some recent work on
automated behavioral analyses of obfuscated JavaScript that in
many cases has a “deobfuscator” component [4], [5], [9], [10],
as well as standalone JavaScript deobfuscation tools [11]–[14].
These deobfuscators all rely on some simple and intuitive
assumptions about the obfuscation and the structure of the
obfuscated code. Although these assumptions seem plausible,
it is not difficult to construct obfuscations that violate them
and thereby defeat the corresponding deobfuscators. This is
illustrated in Section IV.

This paper proposes a different approach to analyze ob-
fuscated JavaScript code. We collect bytecode execution
traces from the target program and use dynamic slicing and
semantics-preserving code transformations to automatically
simplify the trace, then reconstruct deobfuscated JavaScript
code from simplified trace. The code so obtained isobserva-
tionally equivalentto the original program for the execution
path considered, but has obfuscations simplified away, thereby
exposing the core logic of the computation performed by
the original code. The resulting code can then be examined
manually or fed to other analysis tools for further processing.
Our approach differs from existing approaches in that it makes
no assumptions about the structure of the obfuscation and uses
semantics-based techniques to reveal the behavior of the code.

In previous work [15], we have described a semantics-
based approach to deobfuscating “core” JavaScript, i.e. code
that runs on a standalone JavaScript engine. This does not
account for interactions between the executing JavaScriptcode
and the host browser, which provides the Document Object
Model (DOM) for manipulating HTML documents and the
ability to interact with external websites. This paper, by con-
trast, focuses on the more challenging task of deobfuscating
JavaScript code in the full context of the browser’s execution
environment. This is much more complex than the “core”
JavaScript considered in [15], and admits many more options
for obfuscation, but is able to handle the full range of behaviors
of real JavaScript malware. We evalute our approach using
a prototype implemention and test it againest both synthetic
programs and real malware code. The results show that our ap-
proach can penetrate multiple layers of complex obfuscations,
some of which cannot be handled by existing techniques, and
extract the core logic of the underlying computation.



II. BACKGROUND

This section provides an overview of the JavaScript lan-
guage and the host environment of web browser and describes
some widely used real-world code obfuscation techniques.

A. JavaScript Basics

The term “JavaScript,” commonly used to refer to a script-
ing language used for client-side programming of dynamic
websites, consists of the core programming language together
with the host enviroment, namely, the Document Object Model
(DOM) provided by web browser.

The core JavaScript language provides a set of data types
(e.g. Boolean, String, Object), a collection of built-in objects
and functions (e.g.RegExp, Math, Date), and a prototype-
based inheritance mechanism, among other things. Like most
scripting languages, JavaScript is highly dynamic in nature.
It is dynamically typed, which means that a variable can
take on values of different types at different points in a
program. Properties of (associative-array based) objectscan
be added/deleted on the fly, and code can be generated from
strings at runtime using the built-ineval function.

The Document Object Model (DOM) is an API that ab-
stracts HTML documents as a structural representation of
objects and provides a mechanism for manipulating this ab-
straction, thereby enabling JavaScript code to modify and
interact with the content of web pages dynamically. For
example,write method of thedocument object can be used
to dynamically write HTML expressions or JavaScript code
to a document. In contrast to the built-in objects defined in
core JavaScript, objects defined in the DOM specification are
called “host objects”, and are provided as a part of the host
environment by the web browser.

B. JavaScript Runtime

At the implementation level, JavaScript typically uses an
expression-stack-based byte-code interpreter; modern imple-
mentations of these interpreters usually come with JIT compil-
ers. For example, Mozilla’s popular FireFox web browser uses
an open source JavaScript interpreter, SpiderMonkey, written
in C/C++ [16]. This is a single dispatching function that steps
through the bytecode one instruction at a time.

As discussed in previous sections, client-side JavaScript
programs have the ability to generate code at runtime, using
various mechanisms provided by both the interpreter and
browser. Further, dynamic code generation can be multi-
layered, e.g., a string that iseval-ed may itself contain calls to
eval, and such embedded calls toeval can be stacked several
layers deep. We refer to such dynamic code generating ascode
unfolding, and for each piece of code generated by runtime
unfolding, we call it acode context. Functions that are defined
in JavaScript (using the keyword ‘function’) are callednon-
native functions; and functions provided by the interpreter or
browser (e.g. built-in functions and methods of host objects)
are callednative functions. Unlike non-native functions, native
functions do not generate a bytecode trace when executed.

1 <div id=’x’>HelloWorld</div>
2 <script>
3 a = document; b = "Id";
4 var c = a[f()](’x’)[’i’+’nn’+’erH’+’TML’];
5 function f(){
6 var p=’ent’+’By’+b;
7 var q=’get’+’Elem’;
8 return q+p;
9 }
10 </script>

Fig. 1. Example of obfuscated JavaScript code

C. JavaScript Obfuscation Techniques

The dynamic nature of Javascript code makes possible a
variety of obfuscation techniques. What’s particularly chal-
lenging is the combination of the ability to execute a string
using code unfolding, as described above, and the fact that the
string being “executed” may be obfuscated in a wide variety of
ways. Howard discusses several such techniques in more detail
[2]. For example, the characters in the string can be encoded
in various ways, e.g., using %-encoding (a as%61, b as%62,
. . . ), Unicode (a as\u0061, b as\u0062, . . . ), Base-64, etc.
The string can be kept in encrypted, compressed, or permuted
form. It can be constructed at runtime by concatenating other
strings together. Besides, in addition to the traditional “dot no-
tation” (obj.property) for object access, one can use a “bracket
notation” (obj[“property”]) instead. In the latter case, moreover,
the use of a string as an array index makes applicable all of
the string obfuscation techniques mentioned earlier.

The host environment of web browser also provides various
options for obfuscation. One approach is to split code into
several parts, either in the same file or even into multiple files
stored among web servers. This technique is frequently seen
with web-based malware. Another approach takes advantage
of DOM interaction. For example, data can be stored in
the HTML file, outside the<script> block, then retrieved
usingdocument.getElementById() at runtime. And, of course,
document.write() is a more powerful weapon thaneval(), which
can be used in combination of those obfuscation techqniues
mentioned above, to generate script, document elements stor-
ing data and pointers to external documents, all at runtime.

Figure 1 presents an example of JavaScript code obfuscated
using some of the techniques discussed above. Line 3 of
this code snippet uses bracket notation to reference object
property, using the strings ‘getElementById’ (obtained as the
concatenation of the strings ‘get’, ‘ Elem’, ‘ ent’, ‘ By’, and
‘ Id’) and ‘innerHTML’ (obtained as the concatenation of the
strings ‘i’, ‘ nn’, ‘ erH’, and ‘TML’) as array indices instead
of using the more straightforward dot-notation to obtain the
corresponding property values. Furthermore, it uses the DOM
methoddocument.getElementById() to retrieve data, namely,
the string ‘HelloWorld.’ For simplicity of exposition, this code
uses a very straightforward obfuscation of the array index
strings, namely, concatenation of a few smaller strings; the
code could, however, just as easily have used arbitrarily more
complex obfuscations to construct these strings. The script is
equivalent tovar c = document.getElementById(’x’).innerHTML.
The value finally assigned to variablec is a string’HelloWorld’
which is retrived from the HTML<div> element with ID’x’.

Those obfuscation techniques can be combined in arbitrary



ways with multi-layered code unfolding, which makes it
difficult to determine the intent of a JavaScript program from
a static examination of the program text. To make it more
challenging, the payload can be scattered in multiple code
contexts at different levels, with each piece using various
obfuscation techniques and hidden in the garbage code whose
only purpose is to confuse deobfuscators. We will show in
Section IV this trick can defeat existing JavaScript deobfus-
cators, which assume the unobfuscated, complete payload is
revealed in one of the (typically the last) unfolded JavaScript
code contexts.

There are also tools available for reducing the size of scripts
[17], [18], usually by removing unnecessary whitespaces and
comments, and renaming symbols. This technique is called
code compression or minification, although it makes code
difficult to read, the behavior is still apparent. Therefore, we
don’t consider code minification as obfuscation.

III. SEMANTICS-BASED DEOBFUSCATION

In this section, we describe the concept of semantics-based
deobfuscation and the architecture of our prototype systemin
more detail. In particular, we discuss how we collect execu-
tion information of JavaScript programs at runtime, and how
we use dynamic slicing technique to identify “semantically
relevant” code from obfuscated script.

A. Overview

Semantics-based approach.Deobfuscation refers to the
process of simplifying a program to remove obfuscation code
and produce a simpler and functionally equivalent program.
In general, we cannot expect deobfuscation to produce the
original source code for the program, either because the source
code is unavailable, or due to code transformations applied
during obfuscation. All we can require, then, is that the process
of deobfuscation must be semantics-preserving: i.e., thatthe
code resulting from deobfuscation beequivalentto the original
program. For the analysis of potentially-malicious code, a
reasonable notion of equivalence is that ofobservational
equivalence, where two programs are considered equivalent if
they behave—i.e., interact with their execution environment—
in the same way. Since a program’s runtime interactions with
the external environment occur through system calls, this
means that two programs are observationally equivalent if they
execute identical sequences of system calls (together withthe
argument vectors to these calls).

This notion of equivalence suggests a simple approach to
deobfuscation: identify code that directly or indirectly affects
the values of the arguments to system calls; these instructions
are “semantically relevant”. Any remaining instructions,which
are by definition semantically irrelevant, may be discarded.
For the JavaScript code considered in this paper, the actual
system calls are typically made from built-in browser routines
that appear as native functions. Our implementation therefore
uses native functions as a proxy for system calls: this is sound,
but potentially conservative since not all native functions lead
to system calls. Then, to identify instructions that affectthe
values of native function arguments, we use dynamic slicing,

applied at the byte-code level. One of the advantages of doing
analysis at byte-code level is that the JavaScript compilerdoes
part of the job for us: many obfuscation techniques used to
confuse human analysts or automated script parsers can be
revealed or removed after compilation. Examples of such tricks
are discussed in [8], [19].

System overview.Our approach to deobfuscating JavaScript
code consists of the following steps, as shown in Figure 2:

1) Use an instrumented web browser to obtain an execution
trace for the JavaScript code under analysis.

2) Construct a dynamic control flow graph from collected
trace to determine the structure of the executed code.

3) Use our deobfuscation slicing algorithm to identifyse-
mantically relevant instructions, i.e., instructions that
affect the externally-observable behavior of the program.
As previously discussed, externally-observable behavior
is carried out by native functions.

4) Decompile the dynamic control flow graph to an abstract
syntax tree (AST) and label all the nodes constructed
from resulting set of relevant instructions.

5) Use semantics-preserving transformations to eliminate
goto statements. Finally, generate deobfuscated source
code by traversing the AST and printing only labeled
(relevant) syntax tree nodes.

Our current implementation seperates trace collection from
the remaining steps: the generated trace is written out to a
file, which is then read by the trace analyzer. This is purely
for convenience, since it is conceptually straightforwardto
build the analysis facilities directly into the web browser.
Our current implementation writes out the abstract syntax
tree obtained at the end of the above process in the form
of JavaScript source code, but one can also imagine directly
applying other malware analysis tools to the syntax tree itself.

B. Trace Collection

We use an instrumented Mozilla FireFox web browser to
collect the program’s execution trace. FireFox first compiles
JavaScript source code to bytecode and then executes it using
its embeded SpiderMonkey interpreter. Since obfuscations
commonly used by malware take advantage of the built-in
functionality of JavaScript interpreter as well as document
related operations provided by the browser (see Section II-C),
our instrumentation covers both the interpreter and DOM.

Each byte-code instruction instance generated by our instru-
mented web browser includes instruction’s address, opcode
mnemonic, length (in bytes), and operands, together with
any additional information about the instruction that may be
relevant. In particular, we print the following information,
which is used for subsequent steps of the deobfuscation:

– function calls: the reference to the callee (function object)
and the number of arguments being passed, together with
a flag indicating whether the callee is a native function;

– global variables, array elements, and object property
accesses: which property of which object is being defined
or used.

– function references: the reference to the function object
in which this intruction belongs to.



Fig. 2. Semantics-based JavaScript deobfuscation: System overview

– document.write flags: a flag indicating current instruction
is a call todocument.write() function;

– document elements: the reference to the document ele-
ment that is created or accessed by functions such as
getElementById();

– unfolded code: string passed to code generating opera-
tions (i.e.eval(), document.write(), etc.)

As discussed in Section II-B, the execution of a non-native
function generates a bytecode trace while a call to a native
function does not. However, the call to the non-native function
can not be determined merely by the existence of bytecode
trace. There are native functions take other functions as
arguments, i.e. callbacks. These callback functions are invoked
implicitly by the native function and generate bytecode trace,
makes it similar to the execution of a non-native function. One
such example isstring.replace(), it takes a callback function
as argument, the callback will be invoked after the match
has been performed. The callback result (return value) will
be used as the replacement string. Therefore, a flag is used
to distinguish calls to native and non-native functions, and
for each instruction instance in the trace, we use the function
reference to indicate in which function this instruction belongs,
in order to associate the execution and definition of callback
functions.

The references to document elements anddocument.write
flags are used to handle obfuscations involving DOM op-
erations, which is opaque to JavaScript interpreter, but is
crucial for the purpose of deobfuscating JavaScript in web
pages: HTML document elements can be created and modified
dynamically, and are often used for storing data by obfuscated
JavaScript programs (e.g., see Figure 1). Unlikeeval(), which
is directly translated to an “eval” bytecode instruction, a
call to document.write() is indistinguishable from other native
function calls. Thedocument.write flag is used by our deob-
fuscation slicing algorithm to establish the connection between
HTML document and JavaScript code.

C. Control Flow Graph Construction

In principle, obtaining the static control flow graph (CFG)
for a JavaScript program is possible. JavaScript source code is
compiled into bytecode before execution, and it is straightfor-
ward to decompile this bytecode to an abstract syntax tree. In
practice, the control flow graph so obtained may not be very
useful if the intent is to simplify obfuscations away. The reason
for this is that dynamic constructs such aseval(), commonly

used to obfuscate JavaScript code, are essentially opaque in
the static control flow graph: their runtime behavior—which is
what we are really interested in—cannot be easily determined
from an inspection of the static control flow graph. For this
reason, we opt instead for a dynamic control flow graph,
which is obtained from an execution trace of the program.
However, while the dynamic control flow graph gives us more
information about the runtime behavior of constructs such as
eval(), it does so at the cost of reduced code coverage.

The algorithm for constructing a dynamic CFG from an
execution trace is adapted from the algorithm for static CFG
construction, found in standard compiler texts [20], modified
to deal with dynamic execution traces, plus the standard
dominator analysis to identify the loops. A more detailed
discussion of issues about recovering the CFG from dynamic
execution trace, such as handling different instances of the
same instruction and the lack of information about functions,
are given in our previous paper [15].

One particular challenge for JavaScript dynamic CFG con-
struction is how to deal with code generated dynamically.
In order to distinguish code used for generating other code
at runtime, from code used for other computation, we treat
dynamically unfolded code similar to the way we handle non-
native functions: a seperate CFG is constructed for each piece
of dynamically unfolded code, as the function body; and the
unfolding instruction (e.g.eval()) is treated as a call to the
function. This turns out to be conceptually simple and also
reflects the way in which theeval() construct is handled in the
underlying implementation.

D. Semantic-Based Deobfuscation

Given the execution trace and control flow graph, the next
step is to identify the instructions that are semantically relevant
to the program’s externally observable behavior. For this,we
use a variation on a program analysis technique known as
dynamic slicing.

In general, dynamic slicing is the problem of identifying,
for a given execution of a programP , which instructions
(or statements) inP actually affect the value of a given
variable at a given point inP . Intuitively, this involves tracing
dependencies between uses and definitions of variables; theis-
sue is somewhat more complicated in stack-based interpreters
because the instructions that use the expression stack typically
do not have their operands represented explicitly. Dynamic
slicing in such situations has been investigated by Wang and



Input : A dynamic traceT ; an instruction instanceinstr ∈ T ; a
dynamic control flow graphG;

Output : A slice S;

1 S := ∅;
2 currFrame := lastFrame := NULL;
3 LiveSet :=∅;
4 stack := a new empty stack;
5 I := instruction instance at the last position in T;
6 while true do
7 inSlice := false;
8 Uses := locations of data used byI;
9 Defs := locations of data defined byI;

10 if I is property access by bracket notation∧ all instances
of the corresponding instruction access the same namethen

11 Uses := Uses - location of the string argument;
12 end

13 inSlice := I is instr;
14 if I is a return instruction then
15 push a new frame on stack;
16 else if I is an interpreted function callthen
17 lastFrame := pop(stack);
18 else
19 lastFrame := NULL;
20 end
21 currFrame := top frame on stack;

22 if I is an interpreted function call∧ I is not eval ∧ I is
not code-unfoldingdocument.write then

23 inSlice := inSlice∨ lastFrame is not empty;
24 else if I is a control transfer instructionthen
25 for each instructionJ in currFrame s.t.J is

control-dependent onI do
26 inSlice := true;
27 removeJ from currFrame;
28 end
29 end

30 inSlice := inSlice∨ (LiveSet∩ Defs 6= ∅);
31 LiveSet := LiveSet− Defs;
32 if inSlice then
33 addI into S;
34 addI into currFrame;
35 LiveSet := LiveSet∪ Uses;
36 end

37 if I is not the first instruction instance in Tthen
38 I := previous instruction instance in T;
39 else
40 break;
41 end
42 end

Algorithm 1: Deobfuscation-Slicing algorithm

Roychoudhury in the context of slicing Java byte-code traces
[21]. We adapt their algorithm in two ways, both having to do
with the dynamic features of JavaScript used extensively for
obfuscation. The first is that while Wang and Roychoudhury
use a static control flow graph, we use the dynamic control
flow graph discussed in Section III-C. The reason for this is
that in our case a static control flow graph does not adequately
capture the execution behavior of exactly those dynamic code
unfolding constructs, such aseval() anddocument.write(), that
we need to handle when dealing with obfuscated JavaScript.
The second is in the treatment of dynamic constructs during
slicing, such as code-unfolding and the bracket notation.
Consider a statementeval(s): in the context of deobfuscation,
we have to determine the behavior of the code obtained from
the strings; the actual construction of the strings, however,

is simply part of the obfuscation process and is not directly
relevant for the purpose of understanding the functionality
of the program. When slicing, therefore, we do not follow
dependencies through any code unfolding statements.

A different approach is used to handle object property ac-
cesses using bracket notation. This access mechanism is useful
in situations where different executions of the same piece of
bracket-notation code access different object properties, e.g.,
when iterating over a list of properties in a loop. In such
situations, the code used to construct the various strings used
for the bracket-notation access is relevant to understanding
the behavior of the program, and should be included in the
slice. On the other hand, if every instance of the bracket-
notation code accesses the same property, then this access
mechanism provides no additional benefit compared to the
more common dot-notation access; arguably, it makes the code
a little harder to understand (especially if the string being used
for the bracket-notation access is constructed dynamically),
and so is obfuscatory. For this reason, given an instruction
instanceI in the trace that uses a bracket-notation access, we
check whether all the instances ofI in the trace access the
same property names: if so, the dependency fromI to the
code that constructss is not followed; instead, the constructed
names is used in decompilation stage. Otherwise, if different
instances ofI use different property namess, the dependency
from I to the code that constructss is treated normally and
the string construction code is included.

The key to any dynamic slicing based technique is to
accurately capture the data and control flow of the target
program, which is especially challenging for slicing JavaScript
code in web pages: DOM enables the interaction between
JavaScript code and the host HTML document, but the
document related information is opaque to the JavaScript
interpreter. For example, a program can store data in a HTML
element and retrieve it later, similar to the usage of variables
(e.g., see Figure 1). Furthermore, JavaScript program can
also perform code unfolding at runtime using DOM methods
(e.g. document.write()), either directly or from an external
source. Therefore, to precisely slice JavaScript program,it is
important to keep track of the connection between the byte-
code used by interpreter and DOM operations. To this end,
our slicing algorithm considers extra information provided
by instrumented DOM, as discussed in Section III-B. More
specifically, the reference to the document element is printed
at the point where it is accessed by DOM methods, which
recovers the data dependence hidden in the native functions.

In additon, we treatdocument.write() specially. docu-
ment.write() method writes a string of text to the HTML
document, which could be used both for basic document
manipulation and code unfolding. Those two cases are handled
differently, depends on whether new code is introduced and
executed. If JavaScript code is dynamically generated and
executed by calling this method, then our slicing algorithm
handles the call exactly the same way aseval(): cut the
dependence betweendocument.write() and the code generated.
Otherwise, we consider it a regular native function call which
is used for output purpose.

We refer to this algorithm as deobfuscation-slicing. The



pseudocode is shown in Algorithm 1. Lines1−5 are initializa-
tion. The algorithm traverses the execution trace backwards,
processing each instruction in order from the last instruction to
the first. Lines8−9 extracts from the trace the set of memory
locations on the stack that are read and/or written by the
instruction, and similarly for properties and DOM elements.
Lines 10 − 12 cut the dependency for property access using
bracket notation, as discussed above. If we encounter areturn
instruction, this instruction must be in a callee function,and
since the trace is being traversed backwards we push a new
frame on the stack (line 14); analogously, when we encountera
call to an interpreted function (native functions are not traced),
we pop the stack because the call instruction is in the caller
(line 16). The underlying implementation handles dynamic
code generation viaeval() anddocument.write() like a function
call; line 22 of our algorithm ignores code unfolding, as
discussed above. The handling of callback functions requires
extra processing, the details of which are omitted due to space
constraints; interested readers are referred to the full version
of the paper, which is available online [22].

Input : A dynamic traceT ; a dynamic control flow graphG;
Output : All relevant instructionsR;

1 R := ∅;
2 U := ∅;
3 for i := length of T to 1 do
4 instr := i-th instruction instance in T;
5 if instr is a code unfolding instructionthen
6 U := U ∪ Deobfuscation-Slicing(T , instr, G);
7 end
8 end
9 for i := length of T to 1 do

10 instr := i-th instruction instance in T;
11 if instr is a native function call∧ instr /∈ U then
12 R := R ∪ Deobfuscation-Slicing(T , instr, G);
13 end
14 end

Algorithm 2: Semantics-based deobfuscation algorithm.

Deobfuscation-slicing solves only half of the puzzle; we still
have to determine which instructions affect program’s behav-
ior, i.e. on which instructions to apply deobfuscation-slicing.
Our approach of semantics-based deobfuscation consists of
two basic steps, both steps rely on the deobfuscation-slicing
algorithm. The pseudocode is shown in Algorithm 2:

1) identify all instructions relevant to code unfolding (line
3-8). First, the algorithm traverses the execution trace
in order from the last instruction instance to the first,
for each instance of dynamic code unfolding instructions
in trace (e.g.eval() and call to document.write()), the
deobfuscation-slicing algorithm is applied on it to identify
instruction instances relevant to code unfolding, which
include native function calls contribute to dynamic code
generation. After this step, setU contains all the instruc-
tions in traceT that are relevant to code unfolding.

2) identify all instructions relevant to observable behavior
(line 9-14).The algorithm traverses the trace backwards,
applying the deobfuscation-slicing algorithm on each
call to the native function which is irrelevant to code
unfolding (those not in setU as identified in the first step).

The resulting setR contains instructions semantically
relevant to the observable behavior of the script.

E. Decompilation

The slicing step described above identifies instructions inthe
dynamic trace that directly or indirectly affect argumentsto na-
tive function calls, which includes functions that invoke system
calls. Instead of recomputing a control flow graph considering
only those relevant instructions, we adopt a simpler approach
for decompilation: transform theoriginal control flow graph to
the higher-level representation such as an abstract syntaxtree
(AST), and label those AST nodes constructed from relevant
instrucions. This way, we avoid the complexity of handling
protential problems caused by slicing, for example, basic
blocks might be scattered and the branching target instruction
might not in the slice.

A program in the byte-code representation of SpiderMonkey
can not be directly converted into valid JavaScript source code,
due to the existence of those low level branch instructions,
e.g. ifne, goto, etc. Therefore, as the first step, we usegoto
statement to represent those branch operations in AST. Since
the CFG has already been processed using loop analysis
and function indentification, we need to construct an abstract
syntax tree for each function. The basic blocks of the CFG are
traversed in depth first order on the corresponding dominance
tree,goto node is created in two cases: at the end of basic block
that doesn’t end with a brach instruction, or whenever a branch
instruction is encountered. In addition to storing information
of target block ingoto nodes, we also keep track of a list of
precedinggoto nodes in each target node. Once every basic
block has been translated to an AST node, loop structures
are constructed by creating infinitewhile loop node which,
initially, contains only the nodes of corresponding natural loop
obtained from section III-C. Once we have an extened AST
with goto nodes, additional code transformation is applied to
generate valid JavaScript soure code. Basic block node and
loop node in AST will be refered asblock node.

F. Code Transformation

Introducinggoto statments during decompilation allows us
to apply a straightforward algorithm to construct AST, but
JavaScript source code generated directly from this AST is
invalid. To recover valid code, we need to transform the
extended AST to eliminategoto statements, without changing
the logic of the program.

Joelsson proposed agoto removal algorithm for decompi-
lation of Java byte-code with irreducible CFGs, the algorithm
traverses the AST over and over and applies a set of trans-
formations whenever possible [23]. We adapt this algorithm
to handle JavaScript and the instruction set used by the
SpiderMonkey JavaScript engine [16]. The basic idea is to
transform the program so that eachgoto is either replaced by
some other construct, or thegoto and its target are brought
closer together in a semantics-preserving transformation. The
transformation stops when none of the rules above can be
applied to the AST. The resulting syntax tree is traversed one
last time, for each node labeled by the decompiler described



Fig. 3. The test programsP1 andP2

in section III-E, corresponding source code has been printed
out. Again, the detailed description of our transformationrules
can be found in [15] .

G. Attacking our Algorithm

Intuitively, there are two ways by which an attacker might
attempt to evade our approach to deobfuscation. The first
is to hide relevant instructions, by adding fake dependency
between them and strings to be unfolded. Our approach
is immune to this technique, because an unfolded strings

depends on some codev doesn’t automatically excludev
from the resulting slice; if the real workload depends onv,
then v would be added to slice regardless of the connection
with code unfolding operation. In other words, only code
which is solely used for obfuscation would be eliminated.
The second evasion technique is to disguise the obfuscation
code as relevant by adding extra irrelevant native function
calls and creating dependencies between the obfuscation code
and those irrelevant calls. Our semantics-based approach can
not automically simplify away this kind of disguised obfus-
cation because, in general, the additional native functioncalls
potentially change the observable behavior of the program.
One approach to mitigating such attacks is to select, either
manually or automatically, a (possibly proper) subset of the
native function calls in the program that are used as the basis
for the slicing process described above. A detailed discussion
of this issue is beyond the scope of this paper.

IV. EXPERIMENTAL EVALUATION

We evaluated the efficacy of our ideas using a prototype
implementation based on Mozilla’s open source FireFox web
browser, which uses SpiderMonkey as its JavaScript engine.
We tested this prototype on three synthetic programs as well
as an actual JavaScript malware sample obtained from the
Internet. First, we used two versions of the familiar Fibonacci
program: this was chosen, first because it contains a vari-
ety of language constructs, including conditionals, recursive
function calls, and arithmetic; and second because it is small
and familiar, which makes it easy to assess the quality of
deobfuscation. Our third synthetic test case is a very simple
program that obfuscated so as to distribute its “payload” over
multiple code contexts. This poses a problem for most existing

Fig. 4. Fragments of obfuscated versions of the programP1

Fig. 5. Deobfuscator outputs for programsP1 andP2

JavaScript deobfuscators, which assume that the entirety of the
payload is contained in one of the unfolded JavaScript code
contexts. Finally, we tested our prototype using a sample of
actual malicious code obtained from the Internet by using the
‘wget’ command to retrieve the contents of a URL extracted
from a spam email sent to one of the authors.

Figure 3 shows two version of Fibonacci number compu-
tation programs. The first one,P1 is shown in Figure 3(a),
this program is hand-obfuscated to incorporate multiple nested
levels of dynamic code generation usingeval for each level of
recursion. The second program,P2, as shown in Figure 3(b), is
also hand-obfuscated, in which we added dependency between
real workload and the value used byeval (local variablex in
function fib). Three versions of each of these programs are
used—the program as-is as well as two obfuscated versions—
one using an obfuscator we wrote ourselves that uses many of
the obfuscation techniques described in Section II-C, including
DOM operation; and an online obfuscator [24]. Figures 4
shows the fragments of obfuscated programs corresponding
to P1; the obfuscated code forP2 are very similar and not
shown separately due to space constraints.

The output of our deobfuscator for these programs is shown
in Figure 5. Figure 5(a) shows the deobfuscated code for



Fig. 6. Unfolded code contexts from obfuscated version of programsP3. the
original code ofP3 is highlighted. Some smaller code contexts are omitted.

all three versions ofP1 (the original code, shown in Figure
3(a), as well as the two obfuscated versions shown in Figure
4). Figure 5(b) shows the deobfuscated code for all three
versions ofP2. For each ofP1 and P2, the deobfuscator
outputs are the same for all of the three versions. It can be
seen that the recovered code is very close to the original, and
expresses the same functionality. The results obtained show
that the technique we have described is effective in simplifying
away obfuscation code and extracing the underlying logic
of obfuscated JavaScript code, which means it can handle
server-side polymorphism regardless of syntactical difference
of obfuscations. This holds even when the code is heav-
ily obfuscated with multiple different kinds of obfuscations,
including runtime decryption of strings and multiple levels
of dynamic code generation and execution usingeval() and
document.write(), In particular, from simplified code ofP2

(Figure 5(b)), we could see that our approach handles those
code intented to be “hidden” byeval correctly.

All obfuscations shown in Figure 3 and 4 are typical
techniques widely used in the wild, they also satisfy the
assumption made by current deobfuscators: the unobfuscated,
complete payload is revealed in one of the unfolded JavaScript
code contexts, i.e. if the deobfuscator simply examines every
string passed to code unfolding operations such aseval() and
document.write(), the unobfuscated payload can be directly
identified in one of them. Our next test program,P3, is pur-
posely constructed to violate this assumption. For illustrative
purpose, we make the original logic ofP3 very simple, which
consists of only three statements:

Fig. 7. Deobfuscator outputs for programsP3

laKKs=’mCha’;jJt=’’;n9gs="37G51G67G105G102G114G97G109G1
...6 lines deleted...

7G105G102G114G97G109G101G37G51G69";ngs=document;n9gs=
n9gs["split"](’G’);for(i=0;i<n9gs.length;i++)
jJt+=String[’fro’+laKKs+’rCode’](n9gs[i]);
ngs["w"+"rite"](unescape(jJt));

Fig. 8. Source code for malware sampleP4

b=0; ++b; alert(b);

This code is manually obfuscated by hiding each statement
into obfuscated variants ofP1 and P2, in four steps. First,
we remove the calls to native functionalert() in P1 and P2

in Figure 3. Next, the modifiedP1 and P2 are obfuscated
using the online obfuscator [24]. Then we insert first two
statements ofP3 into these two obfuscated programs, as if a
part of the obfuscation process, and concatenate them together.
Last, we apply one more level of obfuscation to the code
from last step, and attach the third statement ofP3 to its end.
Figure 6 shows the unfolded code contexts of obfuscatedP3 as
described above. Figure 6(a) is the topmost level obfuscation,
statementalert(b) of P3 resides in this context. Figure 6(b) is
the context unfolded by theeval() in Figure 6(a). This context
consists of obfuscated Fibonacci number programs, and the
first two statements ofP3 are hidden in these two obfuscation
processes consecutively. Figure 6(c) and (d) present the logic
of Fibonacci number computation, fromP1 and P2, both
unfolded by context of Figure 6(b). Some of the smaller code
contexts generated are not shown here.

Although P3 is extremely simple, identifying its original
logic from unfolded contexts in Figure 6 is still challenging:
the original code is scattered among different code contexts at
different obfuscation levels, hidden in garbage code; and it is
easy to misidentifyP3 as Fibonacci computation. Therefore,
as we can see, deobfuscators adopt the simple “context-
unfolding” technique is very ineffective against the obfuscation
which does’t satisfy its assumption. In comparison, Figure
7 presents the output of our deobfuscator, in which most
of the obfuscation and garbage code are removed, recovered
code is very close to the originalP3, and expresses the same
functionality. The extra code (functionf0 andf4) is introduced
because of the control dependency, which can be simplified
away by further analysis, e.g. in this case, since none of the
arguments is relevant, the invocation of the functions can be
simply replaced by their body. We leave this for future work.

Finally, we evaluated our prototype system using a
JavaScript malware sample,P4, which we collected from
the Internet as described earlier. The complete code contexts
and deobfuscation output ofP4 is not presented here, due



Fig. 9. Execution flow of malware sampleP4

Fig. 10. A fragment of deobfuscator output for malware sampleP4

to the space constraint; Figure 8 shows the initial obfus-
cated JavaScript, while Figure 9 shows its high-level dynamic
structure. Context 1 resides in the web page opened by web
browser; it is a small piece of obfuscated JavaScript code (see
Figure 8) that invokesdocument.write() method to dynamically
insert a hidden iFrame, and cause the load of an external web
page. This newly loaded web page contains more obfuscated
code, which consists context 2 in Figure 9. Similarly, context
2 causes one more level of code unfolding usingeval() and
generates context 3. context 3 is the intended payload, it opens
a PDF file that exploits a vulnerability in Adobe Reader, this
action is also conducted using a dynamically created hidden
iFrame. Figure 10 shows a fragment from the output of our
deobfuscator. The full recovered code is very close to hand
deobfuscated result and captures the essence of the malicious
behavior ofP4. The call todocument.write() in context 3 is
part of the simplified code since it is used as a method for
output as discussed in Section III-D. For complete result of
P4, please refer to the full version of this paper [22].

Performance

Thus far we have focused our efforts on implementing
functionality in our deobfuscation tool instead of performance.
Nevertheless, current performance seems acceptable. For all
the test programs described earlier, the average overhead of
trace collection is2.5µs per instruction executed. Table I
presents the performance for the deobfuscation process: with
traces ranging from 582 instructions to 25,330 instructions,
our tool takes an average of about76µs per trace instruction.
In particular, the trace for the our malware sample was12, 225

instructions long and required1.126s to analyze, which works
out to about92µs/instruction.

V. RELATED WORK

Most current approaches to dealing with obfuscated
JavaScript typically require a significant amount of manual
intervention, e.g., to modify the JavaScript code in specific
ways or to monitor its execution within a debugger [6]–[8].
There are also approaches, such as Caffeine Monkey [11],
intended to assist with analyzing obfuscated JavaScript code,
by instrumenting JavaScript engine and logging the actual
string passed toeval. Similar tools include several browser
extensions, such as the JavaScript Deobfuscator extensionfor

TABLE I
RUNNING TIME OF THE DEOBFUSCATOR FOR TEST PROGRAMS

Test Length of trace Total time Avg. time
program (instructions) (µs) (µs/instr.)
P1 obf1 6166 221949 35.9
P1 obf2 582 40514 69.6
P2 obf1 5755 155537 27.0
P2 obf2 587 50209 85.5

P3 25330 3793117 149.7
P4 12225 1125874 92.1

Firefox [12]. The disadvantage of such approaches is that they
show all the code that is executed and do not separate out the
code that pertains to the actual logic of the program from the
code whose only purpose is to deal with obfuscation.

Recently a few authors have begun looking at automatic
analysis of obfuscated and/or malicious JavaScript code. Cova
at al. [9] and Curtsingeret al. [4] describe the use of
machine learning techniques based on a variety of dynamic
execution features to classify Javascript code as malicious or
benign. Such techniques typically do not focus on automatic
deobfuscation, relying instead on the heuristics based on
behavioral characteristics. Since obfuscation can also befound
in benign code and really is simply an indicative of a desire
to protect the code against casual inspection, classifiers that
rely on obfuscation-oriented features are not reliable indicators
of malicious intent. Our automatic deobfuscation approach
can potentially increase the accuracy of such techniques by
exposing the actual logic of the code. Saxenaet al.discuss dy-
namic symbolic execution of JavaScript code using constraint-
solving over strings [25]. Hallaraker and Vigna describe an
approach to detecting malicious JavaScript code by monitoring
the execution of the program and comparing the execution to
a set of high-level policies [26]. All of these works are very
different from the approach discussed in this paper.

There is a rich body of literature dealing with dynamically
generated (“unpacked”) code in the context of native-code
malware executables [27]–[29]. Much of this work focuses
on detecting unpacking and identifying the unpacked code.
By contrast, the work described here is not concerned with
the identification and extraction of dynamically-generated code
per se, but focuses instead on identifying instructions that are
relevant to the externally-observable behavior of the program.

VI. D ISCUSSION ANDFUTURE WORK

Our approach requires instrumenting the JavaScript inter-
preter within a web browser to write out a trace of the byte
code being executed. Because this requires inserting code into
the interpreter, our current prototype is implemented in the
context of the open-source Firefox web browser. However,
none of our ideas are Firefox-specific, and in principle they
could be adapted in a straightforward way to any browser
whose source code is available.

A potential concern with dynamic approaches, such as ours,
is that of code coverage: in theory, static analyses can examine
all of the code in a program while dynamic analyses can only
examine the code that lies on a particular execution path. In
practice, however, current static analyses for JavaScriptare not



able to actually penetrate constructs such aseval() and analyze
the code generated at runtime; rather, they rely on syntactic
heuristics such as the presence of redirection, calls toeval(),
and code/data entropy, to classify whether or not the code is
potentially malicious. Examination of the simplified JavaScript
code obtained from a tool such as ours can make it easier to
identify inputs that would cause the code to execute alternative
execution paths. We leave this to future work.

Another area of future research is the extension our ap-
proach to allow identification of attack code that does not have
any other semantic significance, e.g.,code whose only purpose
is to position heap buffers for a heap spray attack [30], [31].
Intuitively, what is going on is that our slicing algorithm starts
with a notion of a set of “interesting” data values and identifies
all of the other code that affects these values; the problem
is that our current notion of “interesting values,” limitedto
arguments to native function calls, is too narrow to capture
such attack code. We intend to explore ways to address this
issue by broadening the notion of “interesting” data values
appropriately.

Finally, there are a few minor aspects of JavaScript and its
DOM interactions that we have not yet had time to implement
fully within our decompiler. For example, our JavaScript
decompiler currently does not handle exception-handling via
try-catch statements. This is straightforward implementation
work and does not present significant conceptual challenges.

VII. C ONCLUSIONS

The common use of JavaScript code for web-based malware
delivery makes it important to be able analyze the behavior
of JavaScript programs and, possibly, classify them as benign
or malicious. For malicious JavaScript code, it is useful to
have automated tools that can help identify the functionality
of the code. However, such JavaScript code is usually highly
obfuscated, and use dynamic language constructs that make
program analysis difficult.

We present a semantics-based approach for automatic de-
obfuscation of JavaScript code. We use dynamic analysis and
program slicing techniques to simplify away the obfuscation
and expose the underlying logic of the JavaScript code in
web pages. Moreover, this approach does not make any as-
sumptions about the structure of the obfuscation. Experiments
using a prototype implementation indicate that our technique is
effective even against highly obfuscated JavaScript programs.

ACKNOWLEDGEMENT

This work was supported in part by the National Science
Foundation via grant nos. CNS-1016058 and CNS-1115829,
and the Air Force Office of Scientific Research via grant no.
FA9550-11-1-0191.

REFERENCES

[1] N. Provos, P. Mavrommatis, M. Rajab, and F. Monrose, “All your
iFRAMEs point to us,” in Proc. 17th USENIX Security Symposium,
2008, pp. 1–15.

[2] F. Howard, “Malware with your mocha: Obfuscation
and anti emulation tricks in malicious JavaScript,”
September 2010, http://www.sophos.com/security/technical-
papers/malwarewith your mocha.pdf.

[3] A. Kirk, “Gumblar and more on Javascript obfuscation,” sourcefire
Vulnerability Research Team. http://vrt-blog.snort.org/2009/05/gumblar-
and-more-on-javascript.html. May 22, 2009.

[4] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert, “Zozzle: Fast and
precise in-browser JavaScript malware detection,” inUSENIX Security
Symposium, 2011.

[5] S. Kaplanet al., ““NOFUS: Automatically Detecting”+ String. from-
CharCode (32)+ “ObFuSCateD ”.toLowerCase()+ “JavaScriptCode”,”
Microsoft Research, Tech. Rep., 2011.

[6] P. Markowski, “ISC’s four methods of decoding JavaScript+
1,” Mar. 2010, http://blog.vodun.org/2010/03/iscs-four-methods-of-
decoding.html.

[7] J. Nazario, “Reverse engineering malicious JavaScript,” CanSecWest
2007, http://cansecwest.com/csw07/csw07-nazario.pdf.

[8] D. Wesemann, “Advanced obfuscated JavaScript analysis,” Apr. 2008,
http://isc.sans.org/diary.html?storyid=4246.

[9] D. Canali, M. Cova, G. Vigna, and C. Kruegel, “Prophiler:A fast filter
for the large-scale detection of malicious web pages,” inProc. 20th
International Conference on World Wide Web, 2011, pp. 197–206.

[10] M. Cova, C. Kruegel, and G. Vigna, “Detection and analysis of drive-
by-download attacks and malicious JavaScript code,” inProc. 19th
International Conference on World Wide Web, 2010, pp. 281–290.

[11] B. Feinstein and D. Peck, “Caffeine Monkey: Automated collection,
detection and analysis of malicious javaScript,”Black Hat USA, 2007.

[12] W. Palant, “FireFox add-on: JavaScript deobfuscator 1.5.7,”
https://addons.mozilla.org/en-US/firefox/addon/javascript-deobfuscator/.

[13] “jsunpack: A generic JavaScript unpacker,” http://jsunpack.jeek.org/.
[14] B. Spasic, “Malzilla,” http://malzilla.sourceforge.net/.
[15] G. Lu, K. Coogan, and S. Debray, “Automatic simplification

of obfuscated JavaScript code (extended abstract),” inProc.
ICISTM-12 Workshop on Program Protection and Reverse
Engineering (PPREW), Mar. 2012, full version available at:
http://www.cs.arizona.edu/˜debray/Publications/js-deobf-full.pdf.

[16] Mozilla, “SpiderMonkey,” https://developer.mozilla.org/en/SpiderMonkey.
[17] Google, “Minify,” http://code.google.com/p/minify/.
[18] Yahoo!, “YUI compressor,” http://developer.yahoo.com/yui/compressor/.
[19] B. Zdrnja, “Advanced JavaScript obfuscation (or why signature scanning

is a failure),” Apr. 2009, http://isc.sans.edu/diary.html?storyid=6142.
[20] A. Aho, R. Sethi, and J. Ullman,Compilers: principles, techniques, and

tools. Pearson/Addison Wesley, 1986.
[21] T. Wang and A. Roychoudhury, “Dynamic slicing on java bytecode

traces,”ACM TOPLAS, vol. 30, no. 2, p. 10, 2008.
[22] G. Lu and S. Debray, “Automatic simplification of obfuscated

JavaScript code: A semantics-based approach,” Tech. Rep., Jan. 2012,
http://www.cs.arizona.edu/˜genlu/pub/js-deobf-web.pdf.

[23] E. Joelsson, “Decompilation for visualization of code optimizations,”
Master’s thesis, Royal Institute of Technology, 2003.

[24] “Online javascript obfuscator,” http://www.daftlogic.com/projects-
online-javascript-obfuscator.htm.

[25] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D.Song,
“A symbolic execution framework for JavaScript,” inProceedings of
the 31st IEEE Symposium on Security and Privacy, Oakland, CA, USA,
2010, pp. 513–528.

[26] O. Hallaraker and G. Vigna, “Detecting Malicious JavaScript Code
in Mozilla,” in Proceedings of the IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS), Shanghai, China,
June 2005, pp. 85–94.

[27] L. Martignoni, M. Christodorescu, and S. Jha, “OmniUnpack: Fast,
Generic, and Safe Unpacking of Malware,” inProc. ACSAC ’07, Dec.
2007.

[28] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee, “Polyunpack:
Automating the hidden-code extraction of unpack-executingmalware,”
in Proc. ACSAC ’06, 2006, pp. 289–300.

[29] M. G. Kang, P. Poosankam, and H. Yin, “Renovo: A hidden code
extractor for packed executables,” inProc. Fifth ACM Workshop on
Recurring Malcode (WORM 2007), Nov. 2007.

[30] M. Daniel, J. Honoroff, and C. Miller, “Engineering heap overflow ex-
ploits with javascript,” inProc. Second USENIX Workshop on Offensive
Technologies (WOOT), 2008.

[31] A. Sotirov, “Heap feng shui in JavaScript,”
in Black Hat USA 2007, Jul. 2007,
https://www.blackhat.com/presentations/bh-usa-07/
Sotirov/Whitepaper/bh-usa-07-sotirov-WP.pdf.


