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Abstract. Binary rewriting is becoming increasingly popular for aiesy of
low-level code manipulation purposes. One of the diffi@gdt&ncountered in this
context is that machine-language programs typically haveimbtess semantic in-
formation compared to source code, which makes it hardegasan about the
program’s runtime behavior. This problem is especiallytadén the widely used
Intel x86 architecture, where the paucity of registersrofteakes it necessary to
store values on the runtime stack. The use of memory in thissraaffects many
analyses and optimizations because of the possibility diféect memory refer-
ences, which are difficult to reason about. This paper dess simple analysis
of some basic aspects of the way in which programs maniptilateintime stack.
The information so obtained can be very helpful in enhaneing improving a
variety of other dataflow analyses that reason about andpulaté values stored
on the runtime stack. Experiments indicate that the anslgeeefficient and use-
ful for improving optimizations that need to reason aboetrimtime stack.

1 Introduction

Binary rewriting is being increasingly used for a varietyaf-level code manipulation
purposes, including instrumentation [5, 6, 12, 16], codinaigation [2,9, 17, 18], code
compression [3, 4], and software security [7,11, 19]. Amtrmgadvantages of binary
rewriting, compared to traditional compile-time code npaation, are that the avail-
ability of source code is not necessary, making it possiblprbcess proprietary and
third-party software; there is no need to rely on any pakdicaompiler (and, there-
fore, any specific programming language supported by sucmgiter); and the entire
program, potentially including all library routines, isaable for analysis and opti-
mization. However, binary rewriting has its own problemst Example, much of the
semantic information present in source code is lost by the tt has been transformed
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to machine code, making it much more difficult to discovertooirflow or data flow
information. Moreover, machine code is often rife with feats that make analysis diffi-
cult, such as nontrivial pointer arithmetic and non-staddantrol flow behaviors, e.g.,
(conditional or unconditional) branches that go from theldie of one function into
the middle of another, instead of the usual call/return raacdm for inter-procedural
control flow (this is common in many library routines).

A result of such loss of semantic information at the machiodeclevel is that
good program analyses become even more important for thgpaiation of programs.
Memory references pose a significant problem in this reghuelto the issues of pointer
aliasing and indirect memory references (it is known, famaple, that alias analysis in
the presence of multi-level pointers is complete for detristic exponential time [8]).
The problem is especially acute for the widely used Intel aBthitecture, because of
a dearth of machine registers—there are six general-pamggssters available for use
by the compiler—which forces the compiler to store valuesh@mory when there are
no registers available.

As a simple example, suppose we have a value that is in aeegist a RISC
processor with many registers. If we wish to know whethes thlue is overwritten
due to a call to a functio, and therefore has to be recomputed, it suffices to examine
the registers overwritten by and all functions called by via a straightforward linear
time analysis. On a register-poor architecture, howetiervalue is stored in memory
(typically in the runtime stack), and in this case determgnivhether or not it has to
be recomputed involves reasoning about the memory behafvioand the functions it
calls, which is a significantly more complex problem. Forrepée, if f callsg andg
writes to the stack, then we need to know whether such wriightraffect the values
within f’s stack frame, which in turn requires knowing how laggestack frame is and
how far down in the stacl's st or e operations might reach.

A second problem that arises is that—unlike in RISC proasssdhere function ar-
guments are typically passed in registers—on the x86 acthite, parameter passing is
done via the stack. This makes tracking values across fambtiundaries significantly
more difficult. The problem can be illustrated by the follagisimple example:

int f(...) void g(int x, int vy)
{ {

.g-(.123, 456) ; i-%-(y 1= 0)
} }

At the machine code level, the code for these functions fafoltowing form:

push $456 # push arg 2 to g()
push $123 # push arg 1 to g()
call g

addl $8, %esp # pop args



g: push %bp # save old franme ptr
movl %esp, %ebp # update frane ptr
subl $32, %sp # all ocate stack franme
movl 8(%bp), %eax # load y
test|l % ax, %ax #yl=07?
jne ... #if (y !'=0)
| eave # deal | ocate frane
ret

Suppose we inling() into the body off () . Intuitively, we should be able to then
propagate the value of the (constant) second argumentifardh into the inlined body,
and thereby eliminate the test and conditional branch spmeding to the statement
‘“if (y !'=0) ..., aswellasthgush operation(s) at the call site for parameter
passing. To do this, we have to be able to infer the followimgua the locatiorf written

to by the instructionpush $456’in f () :

1. 7 is the same as that referenced by the instructmovi 8( %ebp), %eax’in
g(), in order to propagate the value of the argument into the lobdy ) .

2. Cis not overwritten by any prior store operations witli) .

3. ¢ becomes dead once all references to it in the body(9f have been replaced by
the constant value of the argument.

To make these inferences, we have to be able to determine#itop of the location

¢ addressed by the instructiopdsh $456’ relative to both the “old” frame pointer
inf () as well as the “new” frame pointer g ) and to reason about the liveness of
specific memory locations within the stack framd ¢f) after inlining the call tag() .

As this discussion suggests, in order to reason about théel@l/behavior of pro-
grams on the x86 architecture, it is important to be able terd@ne how the runtime
stack is used: which stack locations may be overwrittendarle guaranteed to not be
overwritten) by a function call; which stack locations mayllve at a given program
point; how stack references at one point in a program coorabpo stack references
elsewhere; and so on. Without such information, many aeralgsd optimizations are
forced to treat stack-allocated variables conservatiyayentially reducing their im-
pact considerably. This paper describes analyses we usi@wie R TO post-link-time
optimizer [13] to obtain basic information about the way inigh programs manipulate
the stack. The information so obtained can be very helpfahimancing and improving
a variety of other dataflow analyses that reason about anipoiate values stored on
the runtime stack. Experiments indicate that the analysegfficient and useful for
improving such analyses and optimizations.



2 System Overview

The R.TO binary rewriting system consists of a front end for readim@xecutables,
modules for code transformations, and a back end for emittiachine code. At present
PLTO optimizes x86 executables, in the Executable and Linkabltengt (ELF), under
RedHat Linux.

PLTO begins processing an executable by disassembling eachtakérsection of
the binary [1, 14]. Once disassembly is completerdconstructs an interprocedural
control flow graph (ICFG) for the program. Several issues orate the construc-
tion of the ICFG: indirect calls, indirect jumps through leedy and data appearing in
segments, such ag ext, that are typically reserved for instructions. The targsts
indirect jumps through jump tables are identified using Bmegsage patterns involv-
ing relocation entries [14]. Control transfers whose teggannot be resolved, namely,
indirect function calls as well as indirect jumps that canoe resolved as above, are
modeled using special pseudo-nodes in the ICBG:a pseudo-block belonging to the
pseudo-functiorf | . These pseudo-nodes are used to represent worst-casei@gena
e.g., use all registers, define all registers, and possiblg wo all possible (writable)
memory locations, possibly overwriting data in the stacrfes of any callers. Their
use ensures that all analyses and optimizations perform@dto are conservative.

The construction of the ICFG is followed by various progranalgses and code
optimizations, e.g., dead and unreachable code elimmatmnstant folding, and load
forwarding. After this, instruction scheduling and profijaided code layout [10] are
carried out. Finally, relocation information is used to afmladdresses appropriately,
and the binary is written out.

3 Frame Size Analysis

In order to reason about the stack behavior of a function, ave lto be able to model
the stack frame of that function. One straightforward waydothis is as an array of
words; subsequent analyses then reason about the cotitemiess, etc., of locations
within this array. For such a model to be feasible, howeverhave to first determine
the (maximum) size of a function’s stack frame.

To determine the size of a function’s stack frame, we examhiedasic blocks of the
function and compute the largest difference between thradrpointer registe¥ebp
and the top-of-stack pointéesp. The essential idea is to keep track of operations that
update the stack and frame pointers. When we come to a funcéilth we cannot in
general assume that the stack will have the same height emriebm the callee as it
did on entry to it. Hence, to determine the size of the staatf when control returns
from the callee, we have to take into account the behavidre€allee. To this end, we
first carry out a well-behavedness analysis to identify fioms that leave the stack at
the same height as it had when the function was entered.



A function f is said to bewell-behavedf there is no net change in the height of
the runtime stack due to the executionfofexpect for popping off the return address
that the caller pushed on the stack), for all possible exacytaths throughf. Well-
behavedness analysis is done in two phases. First, we mavklabehaved all those
functions that have standard function prologue and epéagnmbinations that ensure
that the height of the stack at function exit is the same atsathigs entry; this involves
a simple comparison against a small set of known instrucémguences for function
prologues and epilogues. Second, as described below, \wagate information about
changes in the height of the runtime stack due to the exatatieach basic block in the
program. This allows us to additionally identify other ftinas that are well-behaved.

Given information about well-behavedness of functions analyze each function
to determine the (maximum) size of its stack frame (inclgdine space for actual
parameters, which is shared with the caller). The stack draize of a functiorf is
defined to be the maximum height of the stack, over all pom#dlibasic blocks in the
function, relative to that at the entry fo To determine this, we first compute, for each
basic block in the function, the change in the stack size dubé execution of that
block. This is then propagated iteratively through the oaritow graph of the function
until a fixpoint is attained.

More formally, the analysis can be specified as follows. Giaebasic bloclB, let
IN(B) andOUT (B) denote the height of the runtime stack at the entry to, artdrexn,
the basic blockB, relative to that at the entry to the function containBigandaddrsz
denote the size of an address. We can write the dataflow eqgdbr this analysis as
follows:

— To computdN(B), we have the following cases:
1. If Bis the entry block of the function, théN(B) = 0.
2. Otherwise, ifB is a return block, i.e., a block to which control returns fram
function call blockB’, where the callee is a functidhn then

OUT(B') —addrszif f is well-behaved;
IN(B) =

1 otherwise.

The reason for subtractirgddrszhere is that the return address, which had
been pushed on the stack by thal | instruction tof, gets popped off the
stack by ther et " instruction in the callee.

3. Otherwise, iB is neither the entry block nor a return block, then:

IN(B) = \{OUT(B') | B is a predecessor &};
whereA is the meet operator over the flat lattice of integers, aserctise of

constant propagation:
x ifx=y;
XAY =

1 otherwise.



— To computeDUT(B), the most interesting case is whBris an exit block of the
function containing a standard epilogue that matches tbogue. In this case,
the effect of executin® is to restore the stack and frame pointers to their values at
entry to the function, and then pop the return address offtdiek while transferring
control back to the caller (via & et ' instruction). Thus, the net height of the stack
at the end of the block, relative to that at entry to the fuorctis —addrsz because
the return address, which was on top of the stack at the fumetntry, now gets
popped off. In general, we have the following cases:

1. If Bis an exit block, then:

—addrsz if B contains a standard epilogue that matches the
OUT(B) = prologue in the entry block of the function;

1 otherwise.

2. OtherwiseOUT(B) = IN(B) + g, wheredg denotes the net change in stack
height due to the instructions B, and the addition is strict, i.el, + x=x+
=1

The analysis can be illustrated using the example showrgiar&il. This is the control
flow graph for the functiorxor () in the SPECint-95 benchmark progrdima Lisp
interpreter; it was generated using tipec compiler at optimization level G3. Notice
that over half the instructions—16 out of 31—use the staitkee by pushing or pop-
ping values, or by accessing a value in the runtime stack asparand. Notice also
that the stack pointer regist®esp, which points to the top of the stack, is changed in
several places, both explicitly (e.g., véald andsub operations, e.g., at instructions
15, 19, and 22) and implicitly (vipush, andpop operations). This makes the problem
of keeping track of the top of the stack, relative to the frggomter%ebp, nontrivial.

The frame size analysis proceeds as follows:

1. The functions in the program are examined to see which eaddntified as well-
behaved. Assume that the functianissave() andxl evar g() are identified
as well-behaved; the functioror , shown in Figure 1, itself has one of the stan-
dard prologue/epilogue combinations thatrB recognizes, and is marked as well-
behaved.

2. Each basic block is analyzed to identify the net changéaicksheight due to its
instructions. For example, in blodB0, we find sixpushl instructions, each of
which pushes 4 bytes on the stack; an explicit allocationGobytes on the stack
(instruction 6)* and acal | instruction, which pushes the return address (4 bytes)
on the stack; the total change in stack height is thus 48 bjethe end of this
phase, we have the following net changes to stack heightr@ddor the various
basic blocks:

1 The runtime stack grows downwards, from high addressesrttsilaw addresses. For this
reasonsub instructions (e.g., instructions 6, 19) allocate spacehenstack, whileadd in-
structions (e.g., instructions 15, 22) deallocate space.



| Basic block |effect on stackbytes)

BO +48
B1 -16
B2 0
B3 +20
B4 —16
B5 ?

The reason we can’t compute a net change to the stack for Bedkthat instruc-
tion 24 sets the value of the stack top poirftessp to the valueval(%ebp) — 12,
whereval(%ebp) denotes the value of the frame pointer regitebp, which
means that the net change in the height of the stack due tk B®depends on the
value of registefebp at the entry to B5.

3. We now propagate the stack height changes to determineaéb basic block, the
height of the stack at its entry and exit, relative to thatratyeto the function.
First, OUT(BO) is computed as +48. Given thalt save() is well-behaved, and
therefore has no net effect on the stack except to pop offeahen address, we
therefore haveN(B1) = OUT(BO) = 48— 4 = 44. Since block B1 effects a net
change of-16 in stack height, we g@UT(B1) = 44— 16= 28. Proceeding in this
way, we get the following:

Basic block Relative Stack Heighbytes)
(B) IN(B) | OUT(B)
BO 0 +48
B1 +44 +28
B2 +28 +28
B3 +28 +48
B4 +44 +28
B5 +28 —4

Two of these values are of particular interest. The valuéNgB2) is computed
twice: first when onlyOUT(B1) has been determined, and again when@hér
sets of both of its predecessors—namely, B1 and B4—have detenmined, to
ensure that it is the same for both predecessors (whichisicéise, it is). The value
of OUT(B5) is computed to be-4, even though the actual change in stack height
due to B5 is unspecified (see above), because B5 ends witm@asthepilogue,
which means that the stack height after all its instructicenge been executed is 4
bytes below that at entry to the function, as discussed above

4. Finally, using the values ¢ (B) andOUT(B) for each blockB, we determine the
maximum stack height, relative to that at entry to the forctat each point within
each block. In this case, this value is computed as +48.

Thus, we conclude that for this function, the stack frame &2z48 bytes. Notice that

this is quite different from the 20 bytes of storage explc#tllocated on entry to the

function in block BO (instruction 6), because it also tak&s iaccount space allocated
on the stack via other instructions elsewhere in the functio
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(1) pushl %ebp

(2) movl %ebp<— %esp

(3) pushl %edi

(4) pushl %edi

(5) pushl %ebx

(6) subl %esp<— $20

(7) pushl $0

(8) leal %esi < -16(%ebp)
(9) movl %ebx<— 8(%ebp)
(10) pushl %esi

(11) call xIsave

x—)»
B1 Y —
(12) movl %edi < %eax
(13) movl -16(%ebp) «— %ebx
(14) xorl %eax «—%eax
(15) addl %esp <—$16

xlsave()

B2

(16) movl %ecx<— -16(%ebp
(17) testl  %ecx, %ecx
(18) je B5

B3

(19) subl %esp<— $12
(20) pushl %esi
(21) call xlevarg

B5

(24) leal %esp <— —12(%ebp)
(25) popl %ebx

(26) popl %esi |

(27) movl 0x080aabe8 <— Yedi B4 Y _ Xlevarg()
(28) popl %edi

(30) popl %ebp (22) addl %esp<+— $16

(31) ret (23)jmp B2

Fig. 1. An example control flow graph (functioror () , from the SPEC-95 benchmalilk

4 Use-Depth and Kill-Depth Analysis

The relatively small number of compiler-visible generalgase registers in the x86
architecture often causes values to be placed in (or spdlea function’s stack frame.
In the absence of any other information, program analysest make worst-case as-
sumptions about the effects of function calls on values kefite stack. For example,
constant propagation must assume that a function call cstnogeall such values, be-
cause a function might write to any memory location, whitektliveness analysis must



assume that stack locations are live because they may bssadcby a function call.
Such worst-case assumptions can affect the precision @fralyses quite significantly.

To address this, we usese depttandkill depthanalyses to estimate the effect of
function calls on the runtime stack. Thee depttof a function is either a non-negative
integer or the valuev; it represents an upper bound on the depth in the stackivestat
the top of stack when the function is called, from which thediion may read a value.
Thekill depthof a function is analogous to that of use depth: it is eitheo@-negative
integer or the valueo, and represents an upper bound on the depth in the stadiveela
to the top of the stack when the function is called, to whidt fanction may write a
value.

4.1 TheBasic Analyses

The psuedo-functiofi |, which is used to model indirect function calls, is assunted t
have a use depth ef. The use depth of the other functions in the program are céedpu
in two phases:

1. [Local analysi4.The instructions in each function are examined to deteerfiom
how far down the stack they may load a value. Indirect loadsaasumed to be
able to load from any location, and result in a use depth.dfhis forms an initial
approximation to the use depth of each function.

2. [lterative propagatiohUse depth information is iteratively propagated along the
call graph of the program from callee to caller. In a givemat®n, consider a
function f whose use depth is currently setrto Suppose thaf calls functions
01,---,0« from call site<Cy, ... ,Cy respectively, and that the use depths of the func-
tionsgs,...,0k are set tan, ..., Nk respectively. Moreover, suppose that the height
of f’s stack frame, determined from the stack analysis destiilb&ection 3, at
the call siteC; is pj, 1 <i < k. Letd; be the maximum depth in the stack that can
be accessed by the call¢p 1 <i <Kk, relative to the stack top at the tinfewas
called. We computé; as follows:

— If pp = L, we do not know how largé’s stack frame is at that call site. In this
case, the deepest location in the stack that can be accesadddyl operation
in the calleeg; cannot be deeper tham relative to the top of the stack at the
call siteC; in f. It follows that this location cannot be deeper thatelative
to the top of the stack whehwas called (sincd’s stack frame cannot have
negative size). So we sdt= n.

— If pj # L, we have two possibilities. Iy > n;, then load operations within the
callee cannot access any stack location out$idestack frame. On the other
hand, if p; < n; then the deepest location accessed by a load operatiomwithi
gi, relative to the stack top at the point whemas called, is at most — p;. In
this case, therefore, we hagde= max0,n; — p;).

The use depth of is then updated tonaxXm,ds,...,dy). This is repeated until a
fixpoint is reached and the use depth of every function stasil

The computation of kill depths is exactly analogous to thHatse depths.



4.2 Improving the Treatment of Indirect Memory References

The basic analysis described above is very conservatives itrdatment of indirect
memory references. This can be problematic, because atiribeybevel, even sim-
ple source-level code constructs—such as accessing anederaent—involve pointer
arithmetic off a base address followed by an indirect memefigrence. Our implemen-
tation therefore extends the basic analysis describedeabiil a straightforward and
efficient region-based pointer analysis that aims to datesmwhich area of memory
(stack, heap, global memory, etc.) a pointer can be poimting

The rationale for this analysis comes from the manner in vtfie different sections
of an executable file are generated. The object module gexdig a compiler from a
source module typically consists of several code and dat#oss, e.g., the code sec-
tion, the constant data section, the zero-initialized datdion, etc. The linker combines
a number of such object modules into an executable progratheiprocess, it puts all
the sections in their final order and location. The sectiditisesame type coming from
different object modules are typically combined into a #mggion of that type in the
final executable. In general, when generating an object ladohm a source module, a
compiler has no information about other object modules, thgir number, size, or the
order in which they will be linked together, so it cannot maksy assumptions about
the eventual locations of these regions in the final exeteit&ls a result, because the
distance between the two regions of memory is not known atpilertime, the code
generated by a compiler for address computations cannat psiter to a particular
region of memory to obtain an address pointing to some ot#gipn of memory. In
other words, an address obtained by doing address arithstatting with a pointer to
a particular region of memory can be safely assumed to féltlimthat same region of
memory. This observation forms the basis of this analysis.

When faced with an instructiohthat is an indirect memory reference off one or
more registers, we attempt to discover whether or not thistex¢s) used by could be
pointing into the stack. We do this by tracing back frbim an attempt to determine the
origin of the initial value of the registers in question. léwan determine that the base
address being used for the pointer arithmetic is in globahorg or the heap, then, from
the reasoning above, we can conclude that the indirect merafarence cannot affect
the stack, and may therefore be ignored for the purposesaok stnalysis. A more
detailed formulation of this region analysis as a datafloalysis is given elsewhere
[15]; we omit it here due to space constraints.

5 Experimental Results

We evaluated our analyses using ten programs from the SREQ@® benchmark suite:
bzip2 crafty, gap, gcg gzip, mcf parser, twolf, vortex andvpr.2 The programs were
compiled using theycc compiler version 3.2.2, at optimization leveO3, with addi-

2\We were unable to build two of the benchmarks from the SPEZHOO suite:eon and
perlbmk



tional flags to instruct the linker to produce staticallykial executables containing
relocation information (Pro requires relocation information to identify and update ad-
dresses). We ran our experiments on a 2.4 GHz Pentium 4 vatidkstvith 1 GB of
main memory.

PROGRAM| TOTAL FUNCTIONS|KNOWN FRAME SIZE| Known/Total
(Total) (Known (%)
bzip2 592 534 90.2
crafty 663 593 89.4
gap 1387 1306 94.2
gcc 2375 1875 78.9
gzip 620 562 90.6
mcf 555 505 91.0
parser 741 674 91.0
twolf 721 660 91.5
vortex 1192 1120 94.0
vpr 808 713 88.2
|GEOMETRIC MEAN: | 89.8 |

KNOWN FRAME s1ZE: Number of functions for which we are able to determine a riziat
stack frame size.

Table 1. Precision of Frame Size Analysis

5.1 FrameSize Analysis

Table 1 shows the precision of our stack frame analysis.ritteseen that the anal-
ysis is able to infer a nontrivial stack frame size (i.e., lugaother thanl) for most
functions in the programs: ranging from about 79% for ¢foe benchmark, to 94%
for gap, with an average of just under 90%. The main reason the réngalr0% of
the functions are not inferred to have a balanced stack tsofhi@scaping edges’—
that is, inter-procedural control flow edges that do not aglthe the normal function
call/return mechanism. Such edges are commonly encouriter@and-written assem-
bly code found in some libraries, as well as in code resulfiogy space-saving opti-
mizations [3]. In our benchmarks, we find that roughly 109841 all functions hav
either incoming or outgoing escaping edges; for one progvamthis figure is as high
as 16.9%. To a great extent, this high incidence of escaplggestems from the fact
that we consider statically linked executables; if libraogle were noet considered, then
the proportion of functions without escaping edges—andg¢omitantly, the proportion
of functions with defined stack frame sizes—would be consiolg higher.



5.2 Use-Depth and Kill-Depth Analysis

Table 2 shows the precision of our Use-Depth and Kill-Depthlygses. The precision
of these analyses are considerably lower than for Stack &@ime. We find that the
proportion of functions inferred to have a known value of-dsgth is about 7.4% on
average, with values ranging from 4.9% fartexto 8.9% forvpr. For kill-depth anal-
ysis the numbers are slightly better: on average some 16f8&tctions are found to
have nontrivial kill-depths, with values ranging from 1@ 7#or vortexto 20.2% for
crafty. The reason for the relatively low values for these two asialis a combination
of the small number of available registers (which causasegto frequently be spilled
to the stack, and which necessitates stack analysis in gigkice), and our conserva-
tive handling of indirect memory operations. The problerthat loads and stores from
arrays or records involve pointer arithmetic off a base aglslrfollowed by an indirect
memory access. The basic algorithm treats all such ind&ectsses conservatively,
and assumes that it can address any location in memory. @ptesextension to incor-
porate information about whether the base address is algiobathe function’s own
stack frame—in essence, associating a very rudimentany ébr‘region information”
with pointers—improves the precision of the analysis sotr@wHowever, in our cur-
rent implementation this region information is associaiaty with registers, not with
memory locations. As a result, if a pointer in a register isrespilled to memory (be-
cause of the small number of registers, this is not infreuand then subsequently
loaded back into a register, all information about the paiatmemory region is lost. A
possible solution would be to associate region informatith stack slots as well, but
we have not yet implemented this.

PROGRAM|TOTAL FUNCTIONS|USE-DEPTH# | Use/Tot |KILL-DEPTH# | Kill/Tot
(Tob) (Use (%) (Kill) (%)
bzip2 592 48 8.1 108 18.2
crafty 663 57 8.6 134 20.2
gap 1387 88 6.3 205 14.8
gcc 2375 170 7.2 374 15.7
gzip 620 50 8.1 115 18.5
mcf 555 46 8.3 101 18.2
parser 741 53 7.2 137 18.5
twolf 721 51 7.1 137 19.0
vortex 1192 59 4.9 128 10.7
vpr 808 72 8.9 137 17.0
| GEOMETRIC MEAN: | 74 ] | 168 |

USE-DEPTH# 0 Number of functions whose use-depth is a known value,ric .
KiLL-DEPTH# o: Number of functions whose kill-depth is a known value,, in@t co.

Table 2. Precision of Use-Depth and Kill-Depth Analysis



5.3 AnalysisTime

The time taken for each of these analysis is only a relatigetgll fraction of RTO’S
overall execution time. For the benchmarks we used, frapgeasialysis took, on aver-
age, 0.4% of the total processing time, with individual bemarks taking from 0.08%
to 0.8% of the total time. Use-depth and Kill-depth analyesash took 0.2% of the total
processing time on average, with individual programs tgkiom 0.03% to 0.3% of the
total time. Interestingly, the proportion of time spentlies$e analyses was smallest for
the largest programs: fgcc for example, frame size analysis took 0.08% of the total
time, use-depth analysis took 0.03%, and kill-depth anstgok 0.04%; forvortex
frame size analysis took 0.26%, use-depth took 0.12%, dhdd¢th took 0.13%. The
reason for this is that for the larger programs, /0 and dmaxbly dominate Bro’s
execution time.

5.4 Optimization Effects of Stack Analyses

We evaluated the effect of our stack analyses on other aspgtie system using two
optimizationsioad forwardinganddead stack store elimination

Load forwarding: This optimization attempts to eliminate unnecessary lopera-

tions from memory. Suppose we have a pair of instructlassdJ such that:
(i) 1is aload instructiomg «— load({);

(i) Jloads a register; from, or stores to, the locatior;

(iii) J dominated; and

(iv) the contents of memory locatigrdo not change betweehandl.
In this case, provided that some additional conditions atisfed, we can replace
the load operatioh by a register-to-register move from to rg (or, if ro =ry,
simply eliminatel). The optimization can be thought of as a special case of com-
mon subexpression elimination; it also has the effect ofrmting variables into
registers that may have been freed up as a result of otheniaptions.
This optimization uses kill-depth analysis to check candifiv) above.

Dead stack store elimination: This is simply the process of doing liveness analysis
of stack locations, followed by the elimination of storestack locations that are
dead.

This analysis uses use-depth analysis as part of the staclebs analysis.

Table 3 shows the effects of our stack analyses on some ofpfimirations imple-
mented within RT0o. The columns labelled ‘Analysis Off’ give the number of tisne
the optimization could be used when the stack analyses wemed off; the columns
labelled ‘Analysis On’ give the corresponding numbers whenstack analyses were
turned on. The difference between these two columns fortecplar optimization gives
the effect of our stack analyses on the efficacy of that ogtition.

It can be seen, from Table 3, that use-depth informationite @ffective in improv-
ing dead stack store elimination. For most of the benchmexksnined, only a very



PROGRAM LOAD FORWARDING DEAD STACK STOREELIM.
Analysis Oﬁ]AnaIysis Oerhange (Y9Analysis Oﬁ]AnaIysis Oerhange (%

bzip2 590 596 1.02 2 18 800.0
crafty 903 909 0.67 2 37 1750.0
gap 980 987 0.71 2 20 900.0
gcc 1486 1505 1.28 2 23 1050.0
gzip 584 591 1.20 2 19 850.0
mcf 557 563 1.08 2 18 800.0
parser 649 655 0.92 2 18 800.0
twolf 746 753 0.94 2 18 800.0
vortex 603 650 1.72 44 62 40.9
vpr 603 611 1.33 2 18 800.0

Table 3. Optimization Effects of Stack Analysis

small number of stores into the stack can be eliminated aswihout any information
about the liveness of stack locations, and use-depth irdtbomis crucial for reasoning
about this. By contrast, the effect of kill-depth infornmation load forwarding is rela-
tively much smaller, though noticeable, even though weygpieally able to determine
nontrivial kill-depth information for over twice as manyrfctions as for use-depth. The
reason kill-depth information has proportionally less auopon load forwarding is that
in the case of load forwarding, kill-depth information makedifference when there is
a function call separating the two instructions involvedhia forwarding, but because
of the small number of registers available, it is very oftern possible to find a free
register to hold the forwarded value between the two intitvos.

6 Conclusion

Binary rewriting is becoming increasingly popular for ilapienting a variety of low-
level code manipulations, ranging from traditional penfiance-oriented optimizations,
to code compression, to security-oriented applicatioesaBse binaries typically have
a lot less semantic information than source programs, theeg@respondingly harder
to analyze. This problem is especially acute for registarmrchitectures such as the
widely-used Intel x86, where the paucity of registers veftgo makes it necessary
to store values on the stack. This use of the stack, in turmnsi¢hat analyses and
optimizations need a significant amount of information ablmw a program uses its
stack. This paper describes several simple analyses thabaibtain such information.
Experiments show that the analyses are efficient and carfdxtie¢ in improving the
results of optimizations.
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