
Stack Analysis of x86 Executables ⋆

Cullen Linn1, Saumya Debray1, Gregory Andrews1, and Benjamin Schwarz2

1 Department of Computer Science
University of Arizona

Tucson, AZ 85721
{linnc, debray, greg}@cs.arizona.edu

2 Computer Science Division
University of California, Berkeley

Berkeley, CA 94720
bschwarz@eecs.berkeley.edu

Abstract. Binary rewriting is becoming increasingly popular for a variety of
low-level code manipulation purposes. One of the difficulties encountered in this
context is that machine-language programs typically have much less semantic in-
formation compared to source code, which makes it harder to reason about the
program’s runtime behavior. This problem is especially acute in the widely used
Intel x86 architecture, where the paucity of registers often makes it necessary to
store values on the runtime stack. The use of memory in this manner affects many
analyses and optimizations because of the possibility of indirect memory refer-
ences, which are difficult to reason about. This paper describes a simple analysis
of some basic aspects of the way in which programs manipulatethe runtime stack.
The information so obtained can be very helpful in enhancingand improving a
variety of other dataflow analyses that reason about and manipulate values stored
on the runtime stack. Experiments indicate that the analyses are efficient and use-
ful for improving optimizations that need to reason about the runtime stack.

1 Introduction

Binary rewriting is being increasingly used for a variety oflow-level code manipulation
purposes, including instrumentation [5, 6, 12, 16], code optimization [2, 9, 17, 18], code
compression [3, 4], and software security [7, 11, 19]. Amongthe advantages of binary
rewriting, compared to traditional compile-time code manipulation, are that the avail-
ability of source code is not necessary, making it possible to process proprietary and
third-party software; there is no need to rely on any particular compiler (and, there-
fore, any specific programming language supported by such a compiler); and the entire
program, potentially including all library routines, is available for analysis and opti-
mization. However, binary rewriting has its own problems. For example, much of the
semantic information present in source code is lost by the time it has been transformed

⋆ The work of B. Schwarz was carried out while the author was at the University of Arizona,
Tucson. This work was supported in part by the National Science Foundation under grants
EIA-0080123 and CCR-0113633.



to machine code, making it much more difficult to discover control flow or data flow
information. Moreover, machine code is often rife with features that make analysis diffi-
cult, such as nontrivial pointer arithmetic and non-standard control flow behaviors, e.g.,
(conditional or unconditional) branches that go from the middle of one function into
the middle of another, instead of the usual call/return mechanism for inter-procedural
control flow (this is common in many library routines).

A result of such loss of semantic information at the machine code level is that
good program analyses become even more important for the manipulation of programs.
Memory references pose a significant problem in this regard,due to the issues of pointer
aliasing and indirect memory references (it is known, for example, that alias analysis in
the presence of multi-level pointers is complete for deterministic exponential time [8]).
The problem is especially acute for the widely used Intel x86architecture, because of
a dearth of machine registers—there are six general-purpose registers available for use
by the compiler—which forces the compiler to store values inmemory when there are
no registers available.

As a simple example, suppose we have a value that is in a register r in a RISC
processor with many registers. If we wish to know whether this value is overwritten
due to a call to a functionf , and therefore has to be recomputed, it suffices to examine
the registers overwritten byf and all functions called byf via a straightforward linear
time analysis. On a register-poor architecture, however, the value is stored in memory
(typically in the runtime stack), and in this case determining whether or not it has to
be recomputed involves reasoning about the memory behaviorof f and the functions it
calls, which is a significantly more complex problem. For example, if f calls g andg
writes to the stack, then we need to know whether such writes might affect the values
within f ’s stack frame, which in turn requires knowing how largeg’s stack frame is and
how far down in the stackg’s store operations might reach.

A second problem that arises is that—unlike in RISC processors, where function ar-
guments are typically passed in registers—on the x86 architecture, parameter passing is
done via the stack. This makes tracking values across function boundaries significantly
more difficult. The problem can be illustrated by the following simple example:

int f(...) void g(int x, int y)
{ {

... ...
g(123, 456); if (y != 0) ...

} }

At the machine code level, the code for these functions has the following form:

f: ...
push $456 # push arg 2 to g()
push $123 # push arg 1 to g()
call g
addl $8, %esp # pop args



...

g: push %ebp # save old frame ptr
movl %esp, %ebp # update frame ptr
subl $32, %esp # allocate stack frame
...
movl 8(%ebp), %eax # load y
testl %eax, %eax # y != 0 ?
jne ... # if (y != 0) ...
...
leave # deallocate frame
ret

Suppose we inlineg() into the body off(). Intuitively, we should be able to then
propagate the value of the (constant) second argument for this call into the inlined body,
and thereby eliminate the test and conditional branch corresponding to the statement
‘if (y != 0) ...,’ as well as thepush operation(s) at the call site for parameter
passing. To do this, we have to be able to infer the following about the locationℓ written
to by the instruction ‘push $456’ in f():

1. ℓ is the same as that referenced by the instruction ‘movl 8(%ebp), %eax’ in
g(), in order to propagate the value of the argument into the bodyof g().

2. ℓ is not overwritten by any prior store operations withing().

3. ℓ becomes dead once all references to it in the body ofg() have been replaced by
the constant value of the argument.

To make these inferences, we have to be able to determine the position of the location
ℓ addressed by the instruction ‘push $456’ relative to both the “old” frame pointer
in f() as well as the “new” frame pointer ing() and to reason about the liveness of
specific memory locations within the stack frame off() after inlining the call tog().

As this discussion suggests, in order to reason about the lowlevel behavior of pro-
grams on the x86 architecture, it is important to be able to determine how the runtime
stack is used: which stack locations may be overwritten (or can be guaranteed to not be
overwritten) by a function call; which stack locations may be live at a given program
point; how stack references at one point in a program correspond to stack references
elsewhere; and so on. Without such information, many analyses and optimizations are
forced to treat stack-allocated variables conservatively, potentially reducing their im-
pact considerably. This paper describes analyses we use within the PLTO post-link-time
optimizer [13] to obtain basic information about the way in which programs manipulate
the stack. The information so obtained can be very helpful inenhancing and improving
a variety of other dataflow analyses that reason about and manipulate values stored on
the runtime stack. Experiments indicate that the analyses are efficient and useful for
improving such analyses and optimizations.



2 System Overview

The PLTO binary rewriting system consists of a front end for reading in executables,
modules for code transformations, and a back end for emitting machine code. At present
PLTO optimizes x86 executables, in the Executable and Linkable Format (ELF), under
RedHat Linux.

PLTO begins processing an executable by disassembling each executable section of
the binary [1, 14]. Once disassembly is complete, PLTO constructs an interprocedural
control flow graph (ICFG) for the program. Several issues complicate the construc-
tion of the ICFG: indirect calls, indirect jumps through tables, and data appearing in
segments, such as.text, that are typically reserved for instructions. The targetsof
indirect jumps through jump tables are identified using specific usage patterns involv-
ing relocation entries [14]. Control transfers whose targets cannot be resolved, namely,
indirect function calls as well as indirect jumps that cannot be resolved as above, are
modeled using special pseudo-nodes in the ICFG:B⊥, a pseudo-block belonging to the
pseudo-functionF⊥. These pseudo-nodes are used to represent worst-case scenarios,
e.g., use all registers, define all registers, and possibly write to all possible (writable)
memory locations, possibly overwriting data in the stack frames of any callers. Their
use ensures that all analyses and optimizations performed by PLTO are conservative.

The construction of the ICFG is followed by various program analyses and code
optimizations, e.g., dead and unreachable code elimination, constant folding, and load
forwarding. After this, instruction scheduling and profile-guided code layout [10] are
carried out. Finally, relocation information is used to update addresses appropriately,
and the binary is written out.

3 Frame Size Analysis

In order to reason about the stack behavior of a function, we have to be able to model
the stack frame of that function. One straightforward way todo this is as an array of
words; subsequent analyses then reason about the contents,liveness, etc., of locations
within this array. For such a model to be feasible, however, we have to first determine
the (maximum) size of a function’s stack frame.

To determine the size of a function’s stack frame, we examinethe basic blocks of the
function and compute the largest difference between the frame pointer register%ebp
and the top-of-stack pointer%esp. The essential idea is to keep track of operations that
update the stack and frame pointers. When we come to a function call, we cannot in
general assume that the stack will have the same height on return from the callee as it
did on entry to it. Hence, to determine the size of the stack frame when control returns
from the callee, we have to take into account the behavior of the callee. To this end, we
first carry out a well-behavedness analysis to identify functions that leave the stack at
the same height as it had when the function was entered.



A function f is said to bewell-behavedif there is no net change in the height of
the runtime stack due to the execution off (expect for popping off the return address
that the caller pushed on the stack), for all possible execution paths throughf . Well-
behavedness analysis is done in two phases. First, we mark aswell-behaved all those
functions that have standard function prologue and epilogue combinations that ensure
that the height of the stack at function exit is the same as that at its entry; this involves
a simple comparison against a small set of known instructionsequences for function
prologues and epilogues. Second, as described below, we propagate information about
changes in the height of the runtime stack due to the execution of each basic block in the
program. This allows us to additionally identify other functions that are well-behaved.

Given information about well-behavedness of functions, weanalyze each function
to determine the (maximum) size of its stack frame (including the space for actual
parameters, which is shared with the caller). The stack frame size of a functionf is
defined to be the maximum height of the stack, over all points in all basic blocks in the
function, relative to that at the entry tof . To determine this, we first compute, for each
basic block in the function, the change in the stack size due to the execution of that
block. This is then propagated iteratively through the control flow graph of the function
until a fixpoint is attained.

More formally, the analysis can be specified as follows. Given a basic blockB, let
IN(B) andOUT(B) denote the height of the runtime stack at the entry to, and exit from,
the basic blockB, relative to that at the entry to the function containingB, andaddrsz
denote the size of an address. We can write the dataflow equations for this analysis as
follows:

– To computeIN(B), we have the following cases:
1. If B is the entry block of the function, thenIN(B) = 0.
2. Otherwise, ifB is a return block, i.e., a block to which control returns froma

function call blockB′, where the callee is a functionf , then

IN(B) =







OUT(B′)−addrsz if f is well-behaved;

⊥ otherwise.

The reason for subtractingaddrszhere is that the return address, which had
been pushed on the stack by thecall instruction to f , gets popped off the
stack by the ‘ret’ instruction in the callee.

3. Otherwise, ifB is neither the entry block nor a return block, then:

IN(B) =
^

{OUT(B′) | B′ is a predecessor ofB};

where
V

is the meet operator over the flat lattice of integers, as in the case of
constant propagation:

x∧y =







x if x = y;

⊥ otherwise.



– To computeOUT(B), the most interesting case is whenB is an exit block of the
function containing a standard epilogue that matches the prologue. In this case,
the effect of executingB is to restore the stack and frame pointers to their values at
entry to the function, and then pop the return address off thestack while transferring
control back to the caller (via a ‘ret’ instruction). Thus, the net height of the stack
at the end of the block, relative to that at entry to the function, is−addrsz, because
the return address, which was on top of the stack at the function entry, now gets
popped off. In general, we have the following cases:
1. If B is an exit block, then:

OUT(B) =















−addrsz if B contains a standard epilogue that matches the
prologue in the entry block of the function;

⊥ otherwise.

2. Otherwise,OUT(B) = IN(B)+ δB, whereδB denotes the net change in stack
height due to the instructions inB, and the addition is strict, i.e.,⊥+ x = x+
⊥=⊥.

The analysis can be illustrated using the example shown in Figure 1. This is the control
flow graph for the functionxor() in the SPECint-95 benchmark programli , a Lisp
interpreter; it was generated using thegcccompiler at optimization level-O3. Notice
that over half the instructions—16 out of 31—use the stack, either by pushing or pop-
ping values, or by accessing a value in the runtime stack as anoperand. Notice also
that the stack pointer register%esp, which points to the top of the stack, is changed in
several places, both explicitly (e.g., viaadd andsub operations, e.g., at instructions
15, 19, and 22) and implicitly (viapush, andpop operations). This makes the problem
of keeping track of the top of the stack, relative to the framepointer%ebp, nontrivial.

The frame size analysis proceeds as follows:

1. The functions in the program are examined to see which can be identified as well-
behaved. Assume that the functionsxlsave() andxlevarg() are identified
as well-behaved; the functionxor, shown in Figure 1, itself has one of the stan-
dard prologue/epilogue combinations that PLTO recognizes, and is marked as well-
behaved.

2. Each basic block is analyzed to identify the net change in stack height due to its
instructions. For example, in blockB0, we find sixpushl instructions, each of
which pushes 4 bytes on the stack; an explicit allocation of 20 bytes on the stack
(instruction 6),1 and acall instruction, which pushes the return address (4 bytes)
on the stack; the total change in stack height is thus 48 bytes. At the end of this
phase, we have the following net changes to stack height inferred for the various
basic blocks:

1 The runtime stack grows downwards, from high addresses towards low addresses. For this
reason,sub instructions (e.g., instructions 6, 19) allocate space on the stack, whileadd in-
structions (e.g., instructions 15, 22) deallocate space.



Basic block effect on stack(bytes)

B0 +48
B1 −16
B2 0
B3 +20
B4 −16
B5 ?

The reason we can’t compute a net change to the stack for blockB5 is that instruc-
tion 24 sets the value of the stack top pointer%esp to the valueval(%ebp)−12,
whereval(%ebp) denotes the value of the frame pointer register%ebp, which
means that the net change in the height of the stack due to block B5 depends on the
value of register%ebp at the entry to B5.

3. We now propagate the stack height changes to determine, for each basic block, the
height of the stack at its entry and exit, relative to that at entry to the function.
First, OUT(B0) is computed as +48. Given thatxlsave() is well-behaved, and
therefore has no net effect on the stack except to pop off the return address, we
therefore haveIN(B1) = OUT(B0) = 48− 4 = 44. Since block B1 effects a net
change of−16 in stack height, we getOUT(B1) = 44−16= 28. Proceeding in this
way, we get the following:

Basic block Relative Stack Height(bytes)
(B) IN(B) OUT(B)

B0 0 +48
B1 +44 +28
B2 +28 +28
B3 +28 +48
B4 +44 +28
B5 +28 −4

Two of these values are of particular interest. The value ofIN(B2) is computed
twice: first when onlyOUT(B1) has been determined, and again when theOUT
sets of both of its predecessors—namely, B1 and B4—have beendetermined, to
ensure that it is the same for both predecessors (which, in this case, it is). The value
of OUT(B5) is computed to be−4, even though the actual change in stack height
due to B5 is unspecified (see above), because B5 ends with a standard epilogue,
which means that the stack height after all its instructionshave been executed is 4
bytes below that at entry to the function, as discussed above.

4. Finally, using the values ofIN(B) andOUT(B) for each blockB, we determine the
maximum stack height, relative to that at entry to the function, at each point within
each block. In this case, this value is computed as +48.

Thus, we conclude that for this function, the stack frame size is 48 bytes. Notice that
this is quite different from the 20 bytes of storage explicitly allocated on entry to the
function in block B0 (instruction 6), because it also takes into account space allocated
on the stack via other instructions elsewhere in the function.



(12) movl  %edi       %eax
(13) movl −16(%ebp)      %ebx
(14) xorl  %eax       %eax
(15) addl  %esp       $16

(17) testl   %ecx, %ecx
(18)  je     B5

(16) movl  %ecx       −16(%ebp)

 (7) pushl $0
 (8) leal    %esi       −16(%ebp)
 (9) movl  %ebx       8(%ebp)
(10) pushl %esi

 (1) pushl %ebp
 (2) movl %ebp      %esp
 (3) pushl %edi
 (4) pushl %edi
 (5) pushl %ebx
 (6) subl   %esp      $20

(11) call    xlsave

(19) subl  %esp       $12
(20) pushl %esi
(21) call    xlevarg

(22) addl %esp       $16
(23) jmp   B2

(24) leal  %esp       −12(%ebp)
(25) popl %ebx
(26) popl %esi
(27) movl 0x080aabe8       %edi
(28) popl %edi
(30) popl %ebp
(31) ret

B3

B0

B1

B2

B4

B5

xlsave()

xlevarg()

Fig. 1. An example control flow graph (functionxor(), from the SPEC-95 benchmarkli )

4 Use-Depth and Kill-Depth Analysis

The relatively small number of compiler-visible general purpose registers in the x86
architecture often causes values to be placed in (or spilledto) a function’s stack frame.
In the absence of any other information, program analyses must make worst-case as-
sumptions about the effects of function calls on values keptin the stack. For example,
constant propagation must assume that a function call can destroy all such values, be-
cause a function might write to any memory location, while stack liveness analysis must



assume that stack locations are live because they may be accessed by a function call.
Such worst-case assumptions can affect the precision of ouranalyses quite significantly.

To address this, we useuse depthandkill depthanalyses to estimate the effect of
function calls on the runtime stack. Theuse depthof a function is either a non-negative
integer or the value∞; it represents an upper bound on the depth in the stack, relative to
the top of stack when the function is called, from which the function may read a value.
Thekill depthof a function is analogous to that of use depth: it is either a non-negative
integer or the value∞, and represents an upper bound on the depth in the stack, relative
to the top of the stack when the function is called, to which that function may write a
value.

4.1 The Basic Analyses

The psuedo-functionF⊥, which is used to model indirect function calls, is assumed to
have a use depth of∞. The use depth of the other functions in the program are computed
in two phases:

1. [Local analysis.] The instructions in each function are examined to determine from
how far down the stack they may load a value. Indirect loads are assumed to be
able to load from any location, and result in a use depth of∞. This forms an initial
approximation to the use depth of each function.

2. [Iterative propagation.] Use depth information is iteratively propagated along the
call graph of the program from callee to caller. In a given iteration, consider a
function f whose use depth is currently set tom. Suppose thatf calls functions
g1, . . . ,gk from call sitesC1, . . . ,Ck respectively, and that the use depths of the func-
tionsg1, . . . ,gk are set ton1, . . . ,nk respectively. Moreover, suppose that the height
of f ’s stack frame, determined from the stack analysis described in Section 3, at
the call siteCi is pi , 1≤ i ≤ k. Let di be the maximum depth in the stack that can
be accessed by the call togi , 1≤ i ≤ k, relative to the stack top at the timef was
called. We computedi as follows:

– If pi =⊥, we do not know how largef ’s stack frame is at that call site. In this
case, the deepest location in the stack that can be accessed by a load operation
in the calleegi cannot be deeper thanni relative to the top of the stack at the
call siteCi in f . It follows that this location cannot be deeper thatni relative
to the top of the stack whenf was called (sincef ’s stack frame cannot have
negative size). So we setdi = ni.

– If pi 6=⊥, we have two possibilities. Ifpi ≥ ni , then load operations within the
callee cannot access any stack location outsidef ’s stack frame. On the other
hand, if pi < ni then the deepest location accessed by a load operation within
gi , relative to the stack top at the point whenf was called, is at mostni− pi. In
this case, therefore, we havedi = max(0,ni− pi).

The use depth off is then updated tomax(m,d1, . . . ,dk). This is repeated until a
fixpoint is reached and the use depth of every function stabilizes.

The computation of kill depths is exactly analogous to that of use depths.



4.2 Improving the Treatment of Indirect Memory References

The basic analysis described above is very conservative in its treatment of indirect
memory references. This can be problematic, because at the binary level, even sim-
ple source-level code constructs—such as accessing an array element—involve pointer
arithmetic off a base address followed by an indirect memoryreference. Our implemen-
tation therefore extends the basic analysis described above with a straightforward and
efficient region-based pointer analysis that aims to determine which area of memory
(stack, heap, global memory, etc.) a pointer can be pointingat.

The rationale for this analysis comes from the manner in which the different sections
of an executable file are generated. The object module generated by a compiler from a
source module typically consists of several code and data sections, e.g., the code sec-
tion, the constant data section, the zero-initialized datasection, etc. The linker combines
a number of such object modules into an executable program: in the process, it puts all
the sections in their final order and location. The sections of the same type coming from
different object modules are typically combined into a single region of that type in the
final executable. In general, when generating an object module from a source module, a
compiler has no information about other object modules, e.g., their number, size, or the
order in which they will be linked together, so it cannot makeany assumptions about
the eventual locations of these regions in the final executable. As a result, because the
distance between the two regions of memory is not known at compile time, the code
generated by a compiler for address computations cannot usea pointer to a particular
region of memory to obtain an address pointing to some other region of memory. In
other words, an address obtained by doing address arithmetic starting with a pointer to
a particular region of memory can be safely assumed to fall within that same region of
memory. This observation forms the basis of this analysis.

When faced with an instructionI that is an indirect memory reference off one or
more registers, we attempt to discover whether or not the register(s) used byI could be
pointing into the stack. We do this by tracing back fromI in an attempt to determine the
origin of the initial value of the registers in question. If we can determine that the base
address being used for the pointer arithmetic is in global memory or the heap, then, from
the reasoning above, we can conclude that the indirect memory reference cannot affect
the stack, and may therefore be ignored for the purposes of stack analysis. A more
detailed formulation of this region analysis as a dataflow analysis is given elsewhere
[15]; we omit it here due to space constraints.

5 Experimental Results

We evaluated our analyses using ten programs from the SPECint-2000 benchmark suite:
bzip2, crafty, gap, gcc, gzip, mcf, parser, twolf, vortex, andvpr.2 The programs were
compiled using thegcc compiler version 3.2.2, at optimization level-O3, with addi-

2 We were unable to build two of the benchmarks from the SPECint-2000 suite:eon and
perlbmk.



tional flags to instruct the linker to produce statically linked executables containing
relocation information (PLTO requires relocation information to identify and update ad-
dresses). We ran our experiments on a 2.4 GHz Pentium 4 workstation with 1 GB of
main memory.

PROGRAM TOTAL FUNCTIONS KNOWN FRAME SIZE Known/Total
(Total) (Known) (%)

bzip2 592 534 90.2
crafty 663 593 89.4
gap 1387 1306 94.2
gcc 2375 1875 78.9
gzip 620 562 90.6
mcf 555 505 91.0
parser 741 674 91.0
twolf 721 660 91.5
vortex 1192 1120 94.0
vpr 808 713 88.2

GEOMETRIC MEAN: 89.8

KNOWN FRAME SIZE: Number of functions for which we are able to determine a nontrivial
stack frame size.

Table 1. Precision of Frame Size Analysis

5.1 Frame Size Analysis

Table 1 shows the precision of our stack frame analysis. It can be seen that the anal-
ysis is able to infer a nontrivial stack frame size (i.e., a value other than⊥) for most
functions in the programs: ranging from about 79% for thegcc benchmark, to 94%
for gap, with an average of just under 90%. The main reason the remaining 10% of
the functions are not inferred to have a balanced stack is that of “escaping edges”—
that is, inter-procedural control flow edges that do not adhere to the normal function
call/return mechanism. Such edges are commonly encountered in hand-written assem-
bly code found in some libraries, as well as in code resultingfrom space-saving opti-
mizations [3]. In our benchmarks, we find that roughly 10%–13% of all functions hav
either incoming or outgoing escaping edges; for one program, vpr, this figure is as high
as 16.9%. To a great extent, this high incidence of escaping edges stems from the fact
that we consider statically linked executables; if librarycode were noet considered, then
the proportion of functions without escaping edges—and, concomitantly, the proportion
of functions with defined stack frame sizes—would be considerably higher.



5.2 Use-Depth and Kill-Depth Analysis

Table 2 shows the precision of our Use-Depth and Kill-Depth analyses. The precision
of these analyses are considerably lower than for Stack Frame Size. We find that the
proportion of functions inferred to have a known value of use-depth is about 7.4% on
average, with values ranging from 4.9% forvortexto 8.9% forvpr. For kill-depth anal-
ysis the numbers are slightly better: on average some 16.8% of functions are found to
have nontrivial kill-depths, with values ranging from 10.7% for vortex to 20.2% for
crafty. The reason for the relatively low values for these two analysis is a combination
of the small number of available registers (which causes values to frequently be spilled
to the stack, and which necessitates stack analysis in the first place), and our conserva-
tive handling of indirect memory operations. The problem isthat loads and stores from
arrays or records involve pointer arithmetic off a base address, followed by an indirect
memory access. The basic algorithm treats all such indirectaccesses conservatively,
and assumes that it can address any location in memory. Our simple extension to incor-
porate information about whether the base address is a global or in the function’s own
stack frame—in essence, associating a very rudimentary form of “region information”
with pointers—improves the precision of the analysis somewhat. However, in our cur-
rent implementation this region information is associatedonly with registers, not with
memory locations. As a result, if a pointer in a register is ever spilled to memory (be-
cause of the small number of registers, this is not infrequent), and then subsequently
loaded back into a register, all information about the pointer’s memory region is lost. A
possible solution would be to associate region informationwith stack slots as well, but
we have not yet implemented this.

PROGRAM TOTAL FUNCTIONS USE-DEPTH 6= ∞ Use/Tot K ILL -DEPTH 6= ∞ Kill/Tot
(Tot) (Use) (%) (Kill ) (%)

bzip2 592 48 8.1 108 18.2
crafty 663 57 8.6 134 20.2
gap 1387 88 6.3 205 14.8
gcc 2375 170 7.2 374 15.7
gzip 620 50 8.1 115 18.5
mcf 555 46 8.3 101 18.2
parser 741 53 7.2 137 18.5
twolf 721 51 7.1 137 19.0
vortex 1192 59 4.9 128 10.7
vpr 808 72 8.9 137 17.0

GEOMETRIC MEAN: 7.4 16.8

USE-DEPTH 6= ∞: Number of functions whose use-depth is a known value, i.e.,not ∞.
K ILL -DEPTH 6= ∞: Number of functions whose kill-depth is a known value, i.e., not∞.

Table 2. Precision of Use-Depth and Kill-Depth Analysis



5.3 Analysis Time

The time taken for each of these analysis is only a relativelysmall fraction of PLTO’s
overall execution time. For the benchmarks we used, frame size analysis took, on aver-
age, 0.4% of the total processing time, with individual benchmarks taking from 0.08%
to 0.8% of the total time. Use-depth and Kill-depth analyseseach took 0.2% of the total
processing time on average, with individual programs taking from 0.03% to 0.3% of the
total time. Interestingly, the proportion of time spent in these analyses was smallest for
the largest programs: forgcc, for example, frame size analysis took 0.08% of the total
time, use-depth analysis took 0.03%, and kill-depth analysis took 0.04%; forvortex,
frame size analysis took 0.26%, use-depth took 0.12%, and kill-depth took 0.13%. The
reason for this is that for the larger programs, I/O and disassembly dominate PLTO’s
execution time.

5.4 Optimization Effects of Stack Analyses

We evaluated the effect of our stack analyses on other aspects of the system using two
optimizations:load forwardinganddead stack store elimination:

Load forwarding: This optimization attempts to eliminate unnecessary load opera-
tions from memory. Suppose we have a pair of instructionsI andJ such that:

(i) I is a load instructionr0← load(ℓ);
(ii) J loads a registerr1 from, or storesr1 to, the locationℓ;
(iii ) J dominatesI ; and
(iv) the contents of memory locationℓ do not change betweenJ andI .

In this case, provided that some additional conditions are satisfied, we can replace
the load operationI by a register-to-register move fromr1 to r0 (or, if r0 = r1,
simply eliminateI ). The optimization can be thought of as a special case of com-
mon subexpression elimination; it also has the effect of promoting variables into
registers that may have been freed up as a result of other optimizations.
This optimization uses kill-depth analysis to check condition (iv) above.

Dead stack store elimination: This is simply the process of doing liveness analysis
of stack locations, followed by the elimination of stores tostack locations that are
dead.
This analysis uses use-depth analysis as part of the stack liveness analysis.

Table 3 shows the effects of our stack analyses on some of the optimizations imple-
mented within PLTO. The columns labelled ‘Analysis Off’ give the number of times
the optimization could be used when the stack analyses were turned off; the columns
labelled ‘Analysis On’ give the corresponding numbers whenthe stack analyses were
turned on. The difference between these two columns for a particular optimization gives
the effect of our stack analyses on the efficacy of that optimization.

It can be seen, from Table 3, that use-depth information is quite effective in improv-
ing dead stack store elimination. For most of the benchmarksexamined, only a very



PROGRAM LOAD FORWARDING DEAD STACK STORE ELIM .
Analysis Off Analysis OnChange (%)Analysis Off Analysis OnChange (%)

bzip2 590 596 1.02 2 18 800.0
crafty 903 909 0.67 2 37 1750.0
gap 980 987 0.71 2 20 900.0
gcc 1486 1505 1.28 2 23 1050.0
gzip 584 591 1.20 2 19 850.0
mcf 557 563 1.08 2 18 800.0
parser 649 655 0.92 2 18 800.0
twolf 746 753 0.94 2 18 800.0
vortex 603 650 1.72 44 62 40.9
vpr 603 611 1.33 2 18 800.0

Table 3. Optimization Effects of Stack Analysis

small number of stores into the stack can be eliminated as dead without any information
about the liveness of stack locations, and use-depth information is crucial for reasoning
about this. By contrast, the effect of kill-depth information on load forwarding is rela-
tively much smaller, though noticeable, even though we are typically able to determine
nontrivial kill-depth information for over twice as many functions as for use-depth. The
reason kill-depth information has proportionally less impact on load forwarding is that
in the case of load forwarding, kill-depth information makes a difference when there is
a function call separating the two instructions involved inthe forwarding, but because
of the small number of registers available, it is very often not possible to find a free
register to hold the forwarded value between the two instructions.

6 Conclusion

Binary rewriting is becoming increasingly popular for implementing a variety of low-
level code manipulations, ranging from traditional performance-oriented optimizations,
to code compression, to security-oriented applications. Because binaries typically have
a lot less semantic information than source programs, they are correspondingly harder
to analyze. This problem is especially acute for register-poor architectures such as the
widely-used Intel x86, where the paucity of registers very often makes it necessary
to store values on the stack. This use of the stack, in turn, means that analyses and
optimizations need a significant amount of information about how a program uses its
stack. This paper describes several simple analyses that aim to obtain such information.
Experiments show that the analyses are efficient and can be effective in improving the
results of optimizations.



References

1. C. Cifuentes and K. J. Gough. Decompilation of binary programs. Software—Practice and
Experience, 25(7):811–829, July 1995.

2. R. S. Cohn, D. W. Goodwin, and P. G. Lowney. Optimizing Alpha executables on Windows
NT with Spike.Digital Technical Journal, 9(4):3–20, 1997.

3. S. Debray, W. Evans, R. Muth, and B. De Sutter. Compiler techniques for code compaction.
ACM Transactions on Programming Languages and Systems, 22(2):378–415, March 2000.

4. S. K. Debray and W. Evans. Profile-guided code compression. In Proc. ACM SIGPLAN
2002 Conference on Programming Language Design and Implementation (PLDI-02), pages
95–105, June 2002.

5. J. R. Larus and T. Ball. Rewriting executable files to measure program behavior.Software—
Practice and Experience, 24(2):197–218, February 1994.

6. M. Legendre, G. R. Andrews, and S. K. Debray. BIT: A binary instrumentation toolkit for the
Intel IA-32 architecture. Technical report, Department ofComputer Science, The University
of Arizona, Tucson, AZ 85721, November 2003.

7. C. Linn and S.K. Debray. Obfuscation of executable code toimprove resistance to static
disassembly. InProc. 10th. ACM Conference on Computer and Communications Security
(CCS 2003), pages 290–299, October 2003.

8. R. Muth and S. K. Debray. On the complexity of flow-sensitive dataflow analyses. In
Proc. 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL-00), pages 67–80, January 2000.

9. R. Muth, S. K. Debray, S. Watterson, and K. De Bosschere.alto : A link-time optimizer
for the Compaq Alpha.Software—Practice and Experience, 31:67–101, January 2001.

10. K. Pettis and R. C. Hansen. Profile-guided code positioning. InProc. ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, pages 16–27, June 1990.

11. M. Prasad and T. Chiueh. A binary rewriting defense against stack based buffer overflow
attacks. InProc. USENIX Technical Conference, June 2003.

12. J. F. Reiser and J. P. Skudlarek. Program profiling problems, and a solution via machine
language rewriting.ACM SIGPLAN Notices, 29(1):37–45, January 1994.

13. B. Schwarz, S. K. Debray, and G. R. Andrews. Plto: A link-time optimizer for the Intel IA-32
architecture. InProc. 2001 Workshop on Binary Translation (WBT-2001), 2001.

14. B. Schwarz, S. K. Debray, and G. R. Andrews. Disassembly of executable code revisited.
In Proc. IEEE 2002 Working Conference on Reverse Engineering (WCRE), pages 45–54,
October 2002.

15. N. Snavely, S. K. Debray, and G. R. Andrews. Unspeculation. In Proc. 18th IEEE Interna-
tional Conference on Automated Software Engineering (ASE-2003), pages 205–214, October
2003.

16. A. Srivastava and A. Eustace. ATOM—A system for buildingcustomized program analy-
sis tools. InProc. ACM SIGPLAN’94 Conference on Programming Language Design and
Implementation (PLDI), pages 196–205, June 1994.

17. A. Srivastava and D. W. Wall. A practical system for intermodule code optimization at link-
time. Journal of Programming Languages, 1(1):1–18, March 1993.

18. A. Srivastava and D. W. Wall. Link-time optimization of address calculation on a 64-bit ar-
chitecture. InProceedings of the ACM SIGPLAN’94 Conference on Programming Language
Design and Implementation (PLDI), pages 49–60, June 1994.

19. D. D. Zovi. Security applications of dynamic binary translation, December 2002. Bachelor
of Science Thesis, Dept. of Computer Science, University ofNew Mexico.


