
Automatic Static Unpacking of Malware Binaries

Kevin Coogan Saumya Debray Tasneem Kaochar Gregg Townsend
Department of Computer Science

The University of Arizona
Tucson, AZ 85721, USA

{kpcoogan, debray, tkaochar, gmt}@cs.arizona.edu

Abstract—Current malware is often transmitted in packed or
encrypted form to prevent examination by anti-virus software.
To analyze new malware, researchers typically resort to dy-
namic code analysis techniques to unpack the code for examina-
tion. Unfortunately, these dynamic techniques are susceptible to
a variety of anti-monitoring defenses, as well as “time bombs”
or “logic bombs,” and can be slow and tedious to identify and
disable. This paper discusses an alternative approach thatrelies
on static analysis techniques to automate this process. Alias
analysis can be used to identify the existence of unpacking,
static slicing can identify the unpacking code, and control
flow analysis can be used to identify and neutralize dynamic
defenses. The identified unpacking code can be instrumented
and transformed, then executed to perform the unpacking.
We present a working prototype that can handle a variety of
malware binaries, packed with both custom and commercial
packers, and containing several examples of dynamic defenses.

Keywords-malware; analysis; static unpacking; dynamic de-
fenses

I. I NTRODUCTION

Recent years have seen explosive growth in attacks on
computer systems via a variety of malware such as viruses,
worms, bots, etc. Computer system security has accordingly
become an increasingly important concern, and a variety
of products, such as virus scanners, have been developed
to detect and eliminate malware before they can do any
damage.

Modern malware are typically transmitted in “scrambled”
form—either encrypted or packed—in an attempt to evade
detection. The scrambled code is then restored to the original
unscrambled form during execution. Here,encryptionrefers
to the use of some kind of invertible operation, together
with an encryption key, to conceal the malware.Packing
refers to the use of compression techniques to reduce the
size of the malware payload, which has the side effect of
disguising the actual instruction sequence. The distinction
between these approaches is not typically important for our
purposes. Hence, both will be referred to generically as
“packing.” The code used to transform the binary to its
scrambled form is referred to as apacker, and the code that
undoes the scrambling is called theunpacker.

The use of packers poses a problem for security re-
searchers, because in order to understand how a new virus or

worm (or a new variant of an old one) works, it is necessary
to reverse engineer its code. If the code is packed, then it
must be unpacked as part of this reverse engineering process.
In some cases, it may be possible to use syntactic clues
to identify the packer used on a program [1]. If a known
unpacker exists, such as for many commercial packing tools
like UPX [2], [3], it can be used to unpack the file. However,
malware writers can close this obvious hole by deliberately
altering the “signatures” of the packer in the packed binary,
or by using their own custom encryption and decryption
routines. When confronted with a malware binary packed
with an unknown packer, therefore, researchers rely almost
exclusively on dynamic analysis techniques to identify its
code, e.g., by running the malware binary under the control
of a debugger or emulator [4], [5], [6].

Unfortunately, these dynamic techniques have a number
of shortcomings. Execution of malware code may allow the
malware to “escape.” In some cases, elaborate infrastruc-
ture is required to prevent this, e.g., dynamic analysis of
bluetooth-enabled devices carried out in a giant Faraday cage
to prevent accidental infection through wireless transmis-
sion [7]. Dynamic techniques are also tedious and time-
consuming [8]. New malware can spread very quickly [8],
and the more time it takes to analyze these new threats,
the longer the threat can spread unabated. Finally, and most
importantly, dynamic analyses are vulnerable to conditional
execution of the unpacker routine. Malware may deploy anti-
debugging and anti-monitoring defenses [9], [10], [11], [12],
and skip the unpacking routine if it finds its execution is
being monitored, or it could be designed to execute only
under certain environmental conditions, such as a particular
date.

These problems with dynamic analysis motivate our
search for an alternative approach to identifying the code
generated when a packed malware binary is unpacked. Our
overall goal is to use static program analyses to construct
detailed behavioral models for malware code, which can then
be used by security researchers to understand various aspects
of the behavior of a malware binary: how the code for a
program may change as it executes; the control and data flow
logic of the various “layers” of the binary that are created by
successive unpacking operations; and the static and dynamic

Instr Address x86 assembly code

0x401000: {. . . encrypted malware body . . .}
. . .
I0 0x4064a8: movl %edx← $0x152a
I1 0x4064ad: movl %eax← $0x401000
I2 0x4064b2: movl %esi← $0x44b3080
I3 0x4064b7: subl (%eax)← %esi
I4 0x4064b9: addl %esi← $0x2431400
I5 0x4064bf: addl %eax← $4
I6 0x4064c2: decl %edx
I7 0x4064c3: jne .-0xc
I8 0x4064c5: jmp 0x401000

Figure 1. Unpacker code for Hybris-C worm

defenses deployed by the binary. This paper takes a first
step in this direction by describing a general and automatic
approach to statically unpacking malware binaries. Its main
contributions are as follows:

1) It shows how well-understood program analyses can
be used to identify whether a program may be self-
modifying (which may indicate unpacking).

2) For programs that are found to be possibly self-
modifying, it shows how the code modification mecha-
nism, i.e., the code that carries out the unpacking, can
be identified and used to unpack the binary without
any prior knowledge about the packing algorithm used.

3) It shows how standard control and data flow analyses
can be applied to this code modification mechanism
to find (and possibly neutralize) dynamic defenses,
time/logic bombs, etc. that activate the unpacking
conditionally.

Our approach is intended to complement — and not neces-
sarily replace — dynamic analysis techniques currently used
by researchers for analyzing malware.

II. BACKGROUND

Figure 1 shows an example of a simple unpacker, in this
case for the Hybris-C email worm. InstructionsI0 and I1

load registers with the size (5418 words) and start address
(0x401000) of the region to be unpacked. InstructionI2

loads the encryption key.I3 through I7 iterate over each
word of the region, performing the decryption by means
of the subtract instruction, and rotating the key value with
addition. When the value of the%edx register (the number
of words left to decrypt) is greater than zero, execution
jumps back toI3. At zero, it falls through and branches
to the unpacked code. Other unpackers may differ from this
code in various aspects, but they all share the property that
they modify memory to create new code that was not present
(in that form) in the original binary, then execute the code
so created. This observation forms the key to our approach
to static unpacking.

Unfortunately, at the level of a program binary, code bytes
may be indistinguishable from data bytes. In some cases,

the bytes at a memory address may be used for both [13].
Hence, it may not be possible to tell which memory writes
target code, and which modify data. Some researchers have
addressed this question using heuristics, e.g., by considering
all writes to the text section of a binary as a code mod-
ification [14]. This approach does not always work, since
code can be generated in memory regions other than the
text section, e.g., the data section or the heap, and the text
section can contain embedded data whose modification does
not, intuitively, constitute code modification. Furthermore,
packers may rename sections arbitrarily, e.g. UPX-packed
binaries typically have sections namedUPX0, UPX1, etc. It
may not even be possible to tell, by simple inspection, which
sections contain executable code. ASPACK [2] changes the
flags in the section header table of the packed binary so
that no section appears to be executable. For these reasons,
we consider a more behavioral approach, where a location
is considered to be code if it is possible for execution to
reach that location. As we will see, however, even this is
difficult to identify statically, and we will have to resort to
conservative approximations.

In general, a program may modify its code in different
ways and enter the modified code from different program
points. Figure 2 shows a simple example. Execution begins
at block B0 and immediately checks to see whether it is
being monitored. If it is not, control falls through to the
unpacker code in blockB2, which unpacks the malware pay-
load and branches to it. If monitoring is detected, however,
control branches to blockB1, which overwrites the code in
blocks B0 and B2 with no-ops—thereby presumably cov-
ering its tracks. Execution falls through the no-op sequence
into unrelated code followingB2. In this example, there are
essentially two unpackers: the one inB2 which unpacks the
code and branches to it, and the one inB1 which hides
the malicious intent of the program and falls through to
the unrelated code. In general, there may be an arbitrary
number. Thus, our approach focuses on identifying points
in the program where control can enter unpacked code, and
treats the unpackers for each case separately.

III. I DENTIFYING THE UNPACKER

In order to carry out unpacking statically, we first have to
identify the code in the packed binary that carries out un-
packing. In order to do this, we have to be able to distinguish
between the part of the malware’s execution when unpacking
is carried out from the part where it executes the unpacked
code. This section discusses the essential semantic ideas
underlying the notion of “transition points,” i.e., pointsin the
code where execution transitions from unpacker code to the
unpacked code newly created by the unpacker. This notion
of transition points underlies our approach to identifyingand
extracting the unpacker code, which is then used to carry out
unpacking.

The discussion in Section II implies that it suffices, for our
purposes, to focus on an individual transition from ordinary
(i.e., unmodified) code to modified code. To this end, given
a programP , consider a trace of a single execution ofP .
This consists of a sequence of statesS = S0, S1, . . ., where
each stateSi consists of(i) the contents of memory, denoted
by Mem(Si);1 and (ii) the value of the program counter,
denoted bypc(Si), specifying the location of the instruction
to be executed next. At any stateSi, we can determine
which memory locations (if any) have changed relative
to the previous stateSi−1 by comparingMem(Si) with
Mem(Si−1). This notion generalizes in a straightforward
way to the set of memory locations modified over a sequence
of states〈Si, . . . , Sj〉, which we will denote by

ModLocs(〈Si, . . . , Sj〉)

We can divide the execution traceS into two phases: an
initial unpacking phaseSunpack , followed by the subsequent
execution of unpacked codeSexec:

S = S0, . . . , Sk
︸ ︷︷ ︸

Sunpack

, Sk+1, . . . ,
︸ ︷︷ ︸

Sexec

.

The boundary between these two phases is marked by
the execution of a memory location that was modified
earlier in the execution. Thus,Sexec begins (andSunpack

ends) at the first stateSk+1 for which pc(Sk+1) ∈
ModLocs(〈S0, . . . , Sk〉); if no suchSk+1 exists, no unpack-
ing has taken place on this execution. If we assume complete
knowledge about the traceS, we can give an idealized
definition of the set of unpacked locations,ULideal, as
those locations inModLocs(Sunpack) that are subsequently
executed:

ULideal (S) = ModLocs(Sunpack) ∩ {pc(Si) | Si ∈ Sexec}.

In practice, of course, we do not havea priori knowledge of
the set of locations that will be executed after unpacking (in
fact, until unpacking has been carried out, we do not even
know which locationscould be executed after unpacking).
We therefore use the set of memory locations modified dur-
ing the unpacking phase up to the point where control enters
an unpacked location, i.e., the set ofModLocs(Sunpack), as a
conservative approximation to the idealized set of unpacked
locationsULideal (S). We then define the dynamic unpacker
UD for the traceS—i.e., the code that actually carries
out the memory modifications in the unpacking phase of
this trace—to be the fragment of the programP that was
executed duringSunpack and which could have affected
the value of some location inModLocs(Sunpack). This is
nothing but the dynamic slice ofP for the set of locations
ModLocs(Sunpack) and the execution traceSunpack .

There are two key pieces of information used to define
the dynamic unpacker here: the state where control is about

1For simplicity of discussion, we consider registers to be a special part
of memory.

B0

B2

is the program
being monitored?

unpack malware
payload and
branch to it

B1

B0 B2

B0
B2

fall−through execution
path after erasure of
and

no

entry point

yes

blocks and
erase the code in

unpacked code

Figure 2. A schematic of a program that can modify its code in different
ways

to flow into unpacked code, and the set of memory locations
that get modified by the time control reaches this state.
For static analysis purposes, we consider the natural static
analogues for these. Reasoning analogously to the distinction
betweenSunpack andSexec above, we find a pair of locations
(ℓ, ℓ′) such that control can go fromℓ to ℓ′, andℓ′ may have
been modified earlier in the execution. We refer to such pairs
as transition points:

Definition 3.1: A transition pointin a program P is a
pair of locations(ℓ, ℓ′) satisfying the following:

1) ℓ is not modified during the execution ofP ;
2) there is an execution path from the entry point ofP

to the pointℓ along whichℓ′ may be modified; and
3) the next instruction to be executed afterℓ may be at

ℓ′.

Intuitively, a transition point(ℓ, ℓ′) gives a static characteri-
zation of the point where control goes from the unpacker to
the unpacked code:ℓ corresponds to the program counter in
Sk, the last state in the unpacking phaseSunpack in the trace
shown above, whileℓ′ corresponds to the program counter
in Sk+1, the first state of the unpacked code execution phase
Sexec.

Given a transition pointt for a programP , let Mods(t)
denote (an upper approximation to) the set of memory
locations that may be modified along execution paths from
the entry point of the program tot. We defineUS(t), the
static unpacker fort, to be the static backward slice ofP
from the program pointt with respect to the set of locations
Mods(t), i.e., the set of instructions whose execution could
possibly affect any of the locations inMods(t).

The remainder of this paper focuses on how, given an
executable programP , we identify the set of static unpackers
for it and use them to carry out unpacking statically.

IV. H ANDLING DYNAMIC DEFENSES

As mentioned earlier, one of the drawbacks with dynamic
analysis of malware binaries is that it allows the malware
to deploy dynamic defenses. Examples of such defenses in-
clude anti-debugging code, which attempt to detect whether
the program’s execution is being monitored; time bombs,
which cause the malware to be activated only at certain times
or dates; and logic bombs, which activate the malware upon
the detection of some environmental trigger.

We can classify dynamic defenses into three categories,
whose conceptual structures are shown in Figure 3. Here, the
variablesrc refers to the packed code. The first kind, shown
in Figure 3(a), issimple: here, the dynamic defense predicate
is executed after the malicious code has been unpacked.
The second kind, shown in Figure 3(b), iscontrol-based:
here the dynamic defense predicate is executed first, and
the unpacker is invoked conditionally based on the outcome
of this test. TheW32.Divinorumvirus attempts to use such
a technique [15] (though a bug in the code renders the
defense ineffective). Finally, Figure 3(c) showsdata-based
dynamic defense, whose effect is to pass different values to
the unpacker based on the outcome of the test. As a result,
the outcome of unpacking is different based on whether or
not the dynamic defense predicate is true.

Many of the dynamic defenses currently encountered in
malware use the simple defense shown in Figure 3(a). Exist-
ing emulation-based techniques are sufficient to identify the
malware in this case, since the malicious code is materialized
in unpacked form in memory regardless of whether or not
it is executed. We therefore do not consider such defenses
further. However,control-basedand data-basedmay cause
a dynamic analyzer to miss, or incorrectly unpack, the
true malware, thus leading to tedious and time-consuming
manual intervention.

Using static analysis, we can use the control-flow structure
of the malware code to detect dynamic defenses. To this end,
we recall the notions of dominators and post-dominators
from static control-flow analysis [16]. Given two basic
blocks B and B′ in the control flow graph of a program
P , B dominatesB′ if every execution path from the entry
point of P to B′ goes throughB. B post-dominatesB′ if
every execution path fromB′ to the exit node ofP passes
throughB. We can use these notions to identify dynamic
defenses, as follows:

• Control-based defenses:
Unpacking is control-dependent on a conditional branch
C if the unpacker code is reachable fromC but does
not post-dominateC.

• Data-based defenses:
Unpacking is data-dependent if the instructions that

define the unpacking parameters do not dominate the
unpacker code.

In the first case, since the unpacker code does not post-
dominate the conditional branchC, control may or may not
reach the unpacker at runtime depending on the outcome
of C. In the second case, since the instructions defining
the unpacking parameters do not dominate the unpacker,
different execution paths can assign different values for these
parameters. Note that in both cases these are necessary but
not sufficient conditions (the usual undecidability results for
static analysis make it difficult to give nontrivial sufficient
conditions).

It turns out that a data-based dynamic defense can be
transformed to a control-based one using a code transfor-
mation known astail duplication. Fom the perspective of
static unpacking, therefore, data-based dynamic defensescan
be handled by transforming them to control-based defenses
and then handling these as discussed in Section V-B2. The
remainder of this paper therefore focuses on dealing with
control-based dynamic defenses.

While dynamic defenses can be detected as discussed
above, in general they cannot always be completely elim-
inated while preserving the unpacking behavior. To see this,
consider the situation where an external input is read in and
used as a password and also as a decryption key: in this
case, eliminating the dynamic defense would be equivalent
to automatically guessing the password. However, automatic
elimination of dynamic defenses may be possible if the value
that is tested in the dynamic defense predicate is unrelated
to the decryption key(s) used for unpacking (here, the two
are considered to be “related” if there is some valuev such
that, for some functionsf and g, the valuef(v) is used
in the dynamic defense predicate andg(v) is used as an
unpacking key). This is usually true of malware code, where
the dynamic defense is related to some aspect of the external
environment, e.g., execution under the control of a debugger
or in a virtual machine, while the unpacking key is typically
stored within the program executable itself.

V. OUR APPROACH

The overall organization of our static unpacker is as
follows:

1) Disassembly and control flow analysis.Read in the
input binary and use information about the program
entry point (found in the file header) to obtain an initial
disassembly of the binary. We perform control flow
analysis using standard techniques to identify basic
blocks and construct the control flow graph of the
disassembled code [16].

2) Alias analysis.Perform binary-level alias analysis to
determine the possible target addresses of indirect
memory operations in the disassembled code. Our
current implementation uses the value-set analysis
described by Balakrishnan [17], [18].

exit unpacked code

YN

today() == "Fri 13th"?

src = &malicious code

Unpack(src)

exit

unpacked code

YN

today() == "Fri 13th"?

Unpack(src)

src = &malicious code

unpacked code

Unpack(src)

YN

today() == "Fri 13th"?

src = &harmless code src = &malicious code

(a) simple (b) control-based (c) data-based

Figure 3. Different kinds of dynamic defenses

3) Potential Transition point identification.Use the results
of alias analysis to identify potential transition points
i.e., points where control may be transferred to un-
packed code (see Definition 3.1). We refer to these as
“potential” because imprecision in the alias analysis
may identify some locations as possible transition
points even though in reality they are not.

4) Static unpacker extraction.For each potential transition
point t identified above, we use the results of alias
analysis to determine the set of memory locations that
may be modified along execution paths tot, and use
backward static slicing on this to identify the static
unpackerUS(t).

5) Static unpacker transformation.Various analyses and
transformations are applied to the unpackerUS(t), ex-
tracted in the previous step, to enable it to be executed
as part of a static unpacking tool. These include the
detection and elimination of dynamic defenses that
effect control-dependent unpacking, as well as address
translation and code change monitoring.

6) Finally, the transformed code is invoked to effect
unpacking.

A. Potential Transition Point Identification

As outlined above, we begin by disassembling the binary,
then carrying out alias analysis for all indirect memory ref-
erences (the targets of direct references are readily apparent,
and do not need additional analysis). Given the aliasing
information, for each instructionI we compute two sets:
write(I), the set of memory locations that may be written
to by I; andnext(I), the set of locations that control may
go to after the execution ofI. These sets are computed
as follows, with alias(x) denoting the possible aliases of
a memory referencex:

write(I) =

8

>

>

>

<

>

>

>

:

{a} if I is a direct write to
a locationa;

alias(r) if I is an indirect write
throughr;

∅ otherwise.

next(I) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

{a} if I is a direct control
transfer to a locationa;

alias(r) if I is an indirect control
transfer throughr;

{addr(I ′)} otherwise, whereI ′ follows
I in the instruction
sequence.

We next identify potential transition points, which indicate
points where control may go from the unpacker into the
unpacked code (i.e., modified locations). More formally, the
idea is to collect all instructionsI such that there is some
instructionJ that can modify some location innext(I) and
where there is a control flow path fromJ to I. Imprecision
in the alias analysis will lead to multiple potential transition
points. We extract and execute a slice for each one to identify
true transition points.

B. Static Unpacker Extraction

Once potential transition points have been identified as
described above, we process each transition pointt in turn
and extract the corresponding unpackerUS(t). To this end,
let epdenote the entry point of the program (i.e., instruction
sequence)P under consideration, and define the set of
memory locationsMods(t) that may be modified along some
execution path leading tot as follows:

Mods(t) =
⋃
{write(I) | I ∈ P is reachable fromep
and t is reachable fromI}.

The unpackerUS(t) associated witht is then computed
as the backward static slice of the program fromt with
respect to the set of locationsMods(t). Note that because of
the unstructured nature of machine code, slicing algorithms
devised for structured programs will not work; we use

an algorithm, due to Harman and Danicic, intended for
unstructured programs [19]. Since the computation of this
slice considers all of the memory locations that can be
modified in any execution from the entry point of the
program up to the pointt, most of the code in the initial
disassembly is usually included; however, obfuscation code
that is dead or which has no effect on any memory location
will be excluded.

Once identified, we want use the unpacker to unpack
the code. However, in its raw form it is not suitable for
execution. For example, virtual addresses in the code will not
point to their intended locations since the unpacker will be
loaded into allocated memory on the heap. Additionally, any
dynamic defenses will still be included and may disrupt the
unpacking process. Our next step, therefore, if to transform
the code to a form suitable for execution using the following
transformations.

1) Instruction Simplification:The Intel x86 architecture
(targeted by a great deal of malware because of its ubiquity)
has a number of instructions with complex semantics and/or
ad hoc restrictions. The simplification step rewrites such
instructions, which are difficult to handle during the address
translation step (Section V-B3), to an equivalent sequence
of simpler instructions.

As an example, therepz/repnzprefixes on certain string
instructions cause repeated execution of the instruction.The
effect of the prefix is to decrement the%ecx register, then—
depending on the prefix, the value of%ecx, and the result
of the last comparison operation in the string instruction—
either repeat the execution of the string instruction, or else
exit the repetition. The problem here is that the side effect
of the repz/repnzprefix on the%ecx register interferes with
register save/restore operations in the address translation
step. We address this by replacing therepz/repnzprefix
with explicit arithmetic on the%ecx register together with a
conditional jump that reexecutes the string instruction when
necessary.

2) Dynamic Defense Elimination:As mentioned in Sec-
tion IV, data-based dynamic defenses can be transformed to
control-based ones in a straightforward way, so it suffices
to deal with control-based dynamic defenses. We do this as
follows. After the sliceUS(t) has been constructed, we check
each conditional branch that is in the slice to see whether it
might be a dynamic defense test. For each such branchJ ,
we check to see whether there is some instructionI in the
slice that does not post-dominateJ . If this is the case, we
transform the code as follows:

1) if the slice is reachable along thetrue edge ofJ but
not along thefalseedge, we “unconditionalize”J , i.e.,
replaceJ by a direct jump to the target ofJ ;

2) if the slice is reachable along thefalseedge ofJ (i.e.,
along the fall-through) but not along thetrue edge, we
removeJ ;

3) if the slice is reachable along both thetrue and false

unpacked code

Unpack(src)

src = &malicious code

N

B0

today() == date1?

exit

N

B1

today() == date2?

Y

Y

B2

Figure 4. A dynamic defense with a compound predicate

edges ofJ , J is left unchanged.

This process is repeated until there is no further change to
the slice.

The first two cases above are fairly obvious. To see the
need for the third case, consider Figure 4, which modifies
the code in Figure 3(b) so that the unpacker now runs on
two different days. In this case, suppose that blockB0
is processed first by our algorithm. The unpacker code is
reachable from both itstrue and falsebranches of this test,
so the test is left unchanged (case 3 above). BlockB1
is processed next, and case 1 is found to apply, so the
conditional branch inB1 is replaced by an unconditional
jump to B2. In the next iteration, we consider blockB0
again, and again find that the unpacker code inB2 is
reachable along both thetrue and falseedges out ofB0, so
there is no change to the slice, and the algorithm terminates.
Notice that in this example, even though the test in block
B0 remains as part of the slice, the dynamic defense has
effectively been disabled: control goes to the unpacker code
regardless of the outcome of this test.

As noted earlier in Section IV, it may not be possible
to eliminate a dynamic defense if the value tested in the
defense predicate is related to a value used for unpacking.
We can identify this situation by examining data dependency
relationships in the slice code.

3) Sandboxing:Once dynamic defenses have been elim-
inated, we further transform the code to ensure that memory
accesses are handled correctly. There are two components to
this: address translation, which redirects accesses to global
memory regions (code and static data) to the appropriate
locations; andstack shadowing, which deals with stack
accesses from the malware code.

I. Address Translation:The need for address translation
arises out of the fact that the runtime unpacking of a
malware binary takes place within an executing malware
file, while in our static unpacking tool it occurs within a
tool where each section comprising a malware binary is
represented as a dynamically-allocated data object. Each
such object—which we refer to as ans-object(for “section
object”)—contains meta-data about the section it represents,
such as its name, size, virtual address, etc., as well as the
actual byte sequence of the contents of the section (where
appropriate). These section meta-data are obtained from the
section header table of the binary. Because of these different
representations, memory references in the unpacking code
US(t)—which refer to virtual addresses in the malware
binary, e.g.,0x401000 for the Hybris code of Figure 1—
have to be translated to addresses that refer to s-objects in
the static unpacker’s memory.

We achieve this translation by traversing the instruction
sequence resulting from the instruction simplification step,
discussed in the previous section. For each instruction that
accesses memory (except those that access through the stack
pointer), the following instrumentation and transformation
is performed. First, a new instruction is added that cal-
culates the virtual address used by the original instruc-
tion and stores the result in a registerr0. The function
VirtualAddr2UnpackerAddr() is called with the value inr0

as a parameter, and returns the value of the corresponding
address in static unpacker memory. The return value is stored
back into some registerr1 (it could ber0, but doesn’t have
to be), and the original instruction is transformed so that
it accesses memory indirectly throughr1. Finally, instru-
mentation code is added before and after these instructions
that save and restore the values of all registers as needed.
Thus, the correct memory location is used by the original
instruction, and the instruction acts on the current machine
state. The implementation ofVirtualAddr2UnpackerAddr()
is straight forward. We note that virtual address space forms
a contiguous block of memory addresses starting with the
base address as given in the file header. Our static unpacker
memory likewise forms a contiguous block of memory of the
same size with a known start address, thus there is a one-to-
one correspondence between virtual addresses and unpacker
addresses. Translation, then, amounts to calculating the
offset of the virtual address from the file header base address,
and adding that offset to the start of the unpacker memory
space. This approach also allows us to identify attempts to
access memory outside of the program address space.

To deal with calls to library routines, we use a set of
“wrapper” routines we have created for commonly-used
library functions. At program startup, we construct our own
version of the executable’s Import Address Table (IAT) and
build a mapping from these IAT functions and addresses to
our known wrapper functions and addresses. This mapping
is maintained as a global data structure. Function calls are

handled as follows. If it is a direct call and the target is
within the unpacker slice, it is rewritten to transfer control
to the appropriate instruction within the slice. If it is an
indirect call, we instrument the code with a call to a handler
routine. At runtime, the call handler first tries to determine
if the call target is within the slice. If it is, it translatesthe
address and returns it. The returned value is substituted for
the original value, and the call instruction is executed. Ifthe
target is not in the slice, the call handler assumes the call is a
library call. In this case, if the tool is running undercygwin
(a Unix-like environment within Microsoft Windows), and
the target is one of the set of wrapper routines we have
created, the wrapper library routine is called; otherwise we
skip the call instruction.

II. Stack Shadowing:There are two main reasons we
must explicitly handle stack accesses. First, correct execu-
tion of the program may depend on values on, or below,
the stack. For example, thePeed-44trojan uses an offset
from the stack pointer to reach below the stack to the
Thread Execution Block (TEB) to access a value that is
used to carry out the unpacking (the TEB is actually stored
in higher addresses, but we say “below” because the stack
grows towards lower address values.) Second, it is necessary
to protect the static unpacker’s runtime stack should the
malware try to write garbage to it or use the stack in an
unpredictable way. For example, theRustock.Cunpacker
uses a number ofpush and pop instructions to obfuscate
its code; at runtime, this has the effect of writing garbage
onto the stack.

We handle these issues by allocating a region of memory,
called theshadow stack region, that holds the contents of two
contiguous memory areas from the malware code’s exectuion
environment: its runtime stack and its TEB. The stack area of
the shadow stack region grows from high to low addresses,
similar to the actual runtime stack; the address of its top
is recorded in a global variable, theshadow stack pointer.
We locate the our TEB just below the stack, as is done
in Windows. Memory within the TEB area of this region,
as well as the shadow stack pointer, are initialized with
values one would expect when a Windows process begins
execution. Additionally, code is added to sliceUS so that the
runtime stack and shadow stack are switched immediately
before each instruction and switched back immediately after
the instruction.

C. Transition Point Detection

As mentioned above, not all potential transition points
are actual transition points. We can test for actual transition
points as follows. Execution of the static unpacker acts
on and records changes to our own copy of the program
memoryM . Before execution, we create a read-only copy
of memory M ′. Further, we instrument the slice code so
that before each instruction is executed, we can compare the
contents of the current memory to the contents of the original

memory at the address of the instruction. If these contents
have changed, then the instruction has been modified, and
we stop execution of the unpacker, otherwise we continue.
This approach assumes that given a transition point(ℓ, ℓ′)
there is an instruction at both of the addressesℓ and ℓ′.
This may not be true, e.g. if the packed bytes ofℓ′ did not
disassemble to a legal instruction. In this case, we can add
nop instructions as need to potential targets.

D. Putting it all together

Once the slice code has been generated, transformed and
instrumented as described above, we add wrapper code
around it to save the appropriate components of program
state on entry (e.g., stack and frame pointers, flags) and
restore this state prior to exit. The resulting instruction
sequence is then run through an assembler that traverses the
list of instructions and emits machine code into a buffer
allocated for this purpose. A driver routine in our static
unpacker then executes a function call to the beginning
of this buffer to effect unpacking; control returns from
the buffer to the code that invoked it once unpacking is
complete.

If a slice completes execution without finding a transition
point, it returns control to the driver routine. The driver then
restores the contents of malware memoryM from the read-
only copyM ′, and executes the next slice.

After the malware binary has been unpacked in this
fashion, we still have to extract the resulting unpacked
code. Since we know the transition point for the unpacker,
i.e., the address of the unpacked code, we can do this by
disassembling the code starting at this address. The resulting
disassembled unpacked code can then be processed using
standard control and data flow analyses.

VI. EXPERIMENTAL RESULTS

A. Static Unpacking

To evaluate the efficacy of our ideas, we implemented
a prototype static unpacker and tested it on five files –
four viruses, and one non-malicious program packed with
a common packer.(i) Hybris-C uses a single arithmetic
decryption operation where the decryption key is changed
via a rotation at each iteration of the unpacking routine,
(ii) Trojan.Peed-44looks into the TEB to get the value
to the top of the SEH chain. Since it has not loaded any
exception handlers, this value will be−1 if it is running
natively. It uses this value to calculate the start address of
the unpacking, then iterates through addresses and performs
a series of bit shifting and arithmetic on each.(iii) Rustock
rootkit uses two sequential decryptor loops that operate on
the same memory. Additionally, more than three quarters of
its unpacker instructions are obfuscation code that perform
various memory and stack operations which have no effect.
(iv) Mydoomis packed with commercial packer UPX, and
has a fairly elaborate algorithm consisting of nested loops

that may write to memory under different conditions.(v)
TextPad is not a malicious file, but we packed it with
tElock, a program often used to hide malware.tElock uses
the aam instruction, which ordinarily adjusts the result of
multiplication between two unpacked BCD values. Here,
it has the effect of an implicit decryption key.tElock also
uses several anti-disassembly tricks such as jumping into the
middle of instructions, near calls to load a value on the stack,
and int $0x20 instructions that appear to be in the control
flow, but never execute. For all the files above, our approach
does not require knowledge of the unpacking algorithm. It
only needs to identify the correct slice.

Figure 5 summarizes the results of our experiments. These
numbers were obtained as follows:

1) We dump the program’s memory imagePorig at the
point where it begins execution. We execute the code
in a debugger, setting a break point at the first un-
packed instruction, and dump the program’s unpacked
memory imagePunpD . The size of this unpacked
image | PunpD |, is reported in column 1 of Figure
5.

2) Column 2 gives the number of bytes unpackedNunp ,
calculated as the number bytes that differ between
Porig andPunpD .

3) We run our static unpacker on a file, and if it finds that
a potential transition point is a true transition point, it
dumps the memory image. We denote thisPunpS . The
value of∆ given in column 3 is the number of bytes
wherePunpD andPunpS differ.

4) Column 4 gives the accuracy of static unpacking,
expressed as the percentage of bytes wherePunpS and
PunpD agree.

For all programs in Figure 5 , we have verified that the
differences betweenPunpS and PunpD are the result of
differences in program metadata, specifically entries in the
Import Address Table, and not the bytes that are actually
being unpacked. (The IAT is a section of a file used to deal
with the invocation of dynamically-linked library routines.)
Rustockloads no functions from external .dll files,Hybris-
C loads one function,Peed-44 loads six functions, and
tElock loads two. The differences for these files are the
result of the four byte addresses of these functions not
getting loaded into the IAT by our static unpacker. The
case ofMydoomis similar. UPX-packed binaries have two
separate parts to the unpacker. First, original program bytes
are uncompressed and loaded into memory. Second, the list
of imported functions is unpacked and the IAT is rebuilt
manually. We have confirmed through manual analysis that
the 2,708 bytes that differ forMydoomall result from this
second step. The results of Figure 5 represent a single phase
of unpacking. We do not handle cases where multiple phases,
e.g. malware packed multiple times, are required to fully
unpack the original binary. This case is left for future work.

Memory image size Bytes unpacked Memory difference % correct
Program | PunpD | (bytes) Nunp ∆ (bytes) 1 − ∆/|PunpD |

Hybris-C 28,672 21,576 4 99.99
Mydoom.q 73,728 57,367 2,708 96.33
Peed-44 151,552 1,872 48 99.97
Rustock.C 69,632 22,145 0 100.0
tElock 1,974,272 6,140 8 99.99

Figure 5. Experimental results: static unpacking

B. Handling Dynamic Defenses

To evaluate the detection of dynamic defenses, we con-
structed several variants of theHybrisprogram incorporating
various control-based dynamic defenses. We varied the struc-
ture of the code so that, for different variants, the dynamic
defense code appeared above, or below, or intermixed with,
the actual unpacker code. In each case, the static unpacker
was able to successfully identify and eliminate the dynamic
defense code.

VII. R ELATED WORK

The usual approach to dealing with packed malware
binaries is via dynamic analysis, i.e., by monitoring the
behavior of the binary as it executes [4], [5], [6]. The only
other work that we are aware of on static unpacking of
malware binaries is that of signature-based schemes such as
PEid [1], which look for syntactic signatures in the packed
binary in an attempt to identify the packer used to create
it. If a packer is identified, the corresponding unpacker can
then be invoked to unpack the binary. The problem with
such an approach is that it only works for known packers
and requires that the signature be found. It therefore does
not work if the malware binary uses a custom packer (or
one not previously encountered) or if the packed binary is
modified to expunge the signatures that identify its packer.
Our approach, by contrast, does not rely on knowledge
about the packer to obtain the unpacker; rather, it uses static
analyses to identify and extract the unpacker code.

There is a great deal of research literature on alias
analysis (see, for example, the discussion by Hind and Pioli
[20] and the survey by Rayside [21]) and program slicing
(see the survey papers by Tip [22] and Xuet al. [23]).
Bergeronet al.discuss the use of static slicing techniques for
identifying malicious behavior in unpacked binaries [24].We
are not aware of the application of any of this work towards
automatic unpacking of malware.

VIII. C ONCLUSIONS

This paper proposes an alternative approach to dynamic
analysis techniques used by researchers. It uses well-
understood static analysis techniques to identify the unpack-
ing code that comes with a given malware binary, then uses
this code to construct a customized unpacker for that binary.

This customized unpacker can then be executed or emulated
to obtain the unpacked malware code. Our approach does not
presuppose any knowledge about the software or algorithm
used to create the packed binary. Preliminary results from
a prototype implementation suggest that our approach can
effectively unpack a variety of packed malware, including
some constructed using custom packers and some obtained
using commercial binary packing tools.

ACKNOWLEDGMENT

This work was supported in part by the Air Force Office
of Scientific Research via grant no. FA9550-07-1-0019, and
by the National Science Foundation via grant nos. CNS-
0410918 and CNS-0615347, as well as by a GAANN
fellowship from the Department of Education award no.
P200A070545.

REFERENCES

[1] “PEid,” http://www.secretashell.com/codomain/peid/.

[2] “Aspack software,” http://www.aspack.com/asprotect.html.

[3] M. F. X. J. Oberhumer, L. Molnár, and J. F. Reiser, “UPX: the
Ultimate Packer for eXecutables,” http://upx.sourceforge.net/.

[4] M. G. Kang, P. Poosankam, and H. Yin, “Renovo: A hidden
code extractor for packed executables,” inProc. Fifth ACM
Workshop on Recurring Malcode (WORM 2007), Nov. 2007.

[5] P. Szor,The Art of Computer Virus Research and Defense.
Symantek Press, Feb. 2005.

[6] R. Warrior, “Guide to improving polymorphic engines,”
http://vx.netlux.org/lib/vrw02.html.

[7] M. Hypponen, “Mobile malware,” Aug. 2007, invited talk,
USENIX Security ’07.

[8] V. A. Mahadik, “Reverse engineering of the honeynets
SOTM32 malware binary,” the Honeynet Project,
http://www.honeynet.org/scans/scan32/sols/
4-Vinay_A_Mahadik/Analysis.htm.

[9] A. Danielescu, “Anti-debugging and anti-emulation tech-
niques,” CodeBreakers Journal, vol. 5, no. 1, 2008,
http://www.codebreakers-journal.com/.

[10] Black Fenix, “Black Fenix’s anti-debugging tricks,”
http://in.fortunecity.com/skyscraper/
browser/12/sicedete.html.

[11] S. Cesare, “Linux anti-debugging techniques (foolingthe
debugger),” Jan. 1999, vX Heavens.
http://vx.netlux.org/lib/vsc04.html.

[12] L. Julus, “Anti-debugging in win32,” 1999, vX Heavens.
http://vx.netlux.org/lib/vlj05.html.

[13] H. Chang and M. Atallah, “Protecting software code by
guards,” inSecurity and Privacy in Digital Rights Manage-
ment, ACM CCS-8 01, Philadelphia, PA, USA, November 5,
2001, Revised Papers, 2001, pp. 160–175.

[14] J. Maebe and K. De Bosschere, “Instrumenting self-
modifying code,” inProc. Fifth International Workshop on
Automated Debugging (AADEBUG2003), Sep. 2003, pp. 103–
113.

[15] P. Ferrie, “Prophet and loss,”Virus Bulletin, Sep. 2008,
www.virusbtn.com.

[16] A. V. Aho, R. Sethi, and J. D. Ullman,Compilers – Principles,
Techniques, and Tools. Reading, Mass.: Addison-Wesley,
1985.

[17] G. Balakrishnan, “Wysinwyx: What you see is not what you
execute,” Ph.D. dissertation, Computer Science Department,
University of Wisconsin, Madison, 2007.

[18] G. Balakrishnan and T. Reps, “Analyzing memory accesses
in x86 executables,” inProc. 13th. International Conference
on Compiler Construction, Mar. 2004, pp. 5–23.

[19] M. Harman and S. Danicic, “A new algorithm for slicing
unstructured programs,”Journal of Software Maintenance,
vol. 10, no. 6, pp. 415–441, 1998.

[20] M. Hind and A. Pioli, “Which pointer analysis should I
use?” inISSTA ’00: Proceedings of the 2000 ACM SIGSOFT
International Symposium on Software Testing and Analysis,
2000, pp. 113–123.

[21] D. Rayside, “Points-to analysis,” MIT Open-
CourseWare, Massachusetts Institute of Technology.
http://ocw.mit.edu/.

[22] F. Tip, “A survey of program slicing techniques,”Journal of
Programming Languages, vol. 3, pp. 121–189, 1995.

[23] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen, “A brief survey
of program slicing,”SIGSOFT Softw. Eng. Notes, vol. 30,
no. 2, pp. 1–36, 2005.

[24] J. Bergeron, M. Debbabi, M. M. Erhioui, and B. Ktari, “Static
analysis of binary code to isolate malicious behaviors,” in
Proc. IEEE 8th International Workshop on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises (WET
ICE ’99), Jun. 1999, pp. 184–189.

