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2 as FGHC, Janus, and Strand. Delay mechanisms allow clear and concise expressionof sophisticated control strategies, and can simplify programming signi�cantly.Despite the programming convenience provided by such features, they have thedrawback that implementations are forced to contend with the possibility of sus-pension. This can greatly a�ect the performance of such systems. A signi�cantproblem is that the possibility of suspension, and the general unpredictability ofwhen a suspended computationwill be reactivated and eventually actually executed,complicates data
ow analysis and can render many traditional compile-time opti-mizations inapplicable; in particular, e�ective utilization of machine-level resourcessuch as hardware registers becomes di�cult. Also, additional testing may be neces-sary at runtime to determine whether or not suspension is necessary. This situationis especially undesirable because many compiler optimizations are precluded evenfor programs (or program fragments) that do not exhibit any suspension, e�ectivelypenalizing good programmers and carefully crafted programs. For example, it hasbeen shown that signi�cant improvements in performance can be obtained by re-turning output values of procedures in registers instead of in memory [1, 21], orwith knowledge of lengths of dereference chains [17]. However, in a language withdelay mechanisms, there is always the possibility that \normal" execution may bepre-empted by a newly awakened goal that may overwrite a register containing anoutput value or change the length of a dereference chain, thereby making theseoptimizations inapplicable.In this paper we discuss simple analyses that can be used to detect situationswhere suspension e�ects can be ignored. The utility of this information is demon-strated by discussing a number of low-level compiler optimizations that rely onthis information. We have implemented the analysis, and compiler optimizationsbased on it, in the jc system [13]: we present performance results to show thatinformation about non-suspension is fundamental to a variety of low-level compileroptimizations that turn out to be very e�ective in producing signi�cant performanceimprovements. As a result, the performance of our system very often approachesor beats that of C code written in a \natural" C style and optimized extensively.It should be emphasized that an important aspect of this work was to developpractical analysis methods to identify and optimize the common case of proceduresand programs that do not make use of delay mechanisms. Simplicity, ease of im-plementation, and reasonable precision for commonly encountered programs weretherefore our primary concerns.2. De�nitions and NotationWe assume that the reader is acquainted with the basic concepts and terminology oflogic programming. The set of variables occurring in a syntactic object (i.e., term,atom, clause, etc.) t is denoted by vars(t). A logic program consists of a �nite setof predicate de�nitions; in addition, we suppose that we have (descriptions of) aset of queries of interest, from which analysis may be initiated. The set of all atomsof the language will be denoted by Atom. The set of (all alphabetic variants of)clauses de�ning a procedure p in the program under consideration will be denotedby clauses(p). The identity substitution over a set of variables V is denoted by idV ;when the set of variables under consideration is obvious from the context, we omitthe subscript. The most general uni�er of a pair of terms t1 and t2, which is unique



3up to variable renaming, is denoted by mgu(t1; t2). The set of all (idempotent)substitutions is denoted by Subst. The empty sequence is denoted by ". We denotethe Kleene closure of a set S, i.e., the set of all �nite sequences of its elements, byS�; and the re
exive transitive closure of a relation R by R ?.Delay primitives in Prolog-like logic programming languages usually have thebehavior that the execution of a goal suspends if certain variables, or argumentsin a procedure call, are unbound. Di�erent languages use di�erent mechanisms toindicate which variables or argument positions are to be tested when determiningwhether a computation should suspend. Suspension of computations is also sup-ported in concurrent logic programming languages, where a test in the guard of aclause suspends if the variables involved are not su�ciently instantiated. In orderto abstract away from syntactic idiosyncracies of particular languages, we followMarriott et al. [18] in assuming two (system-dependent) functions that specify thesuspension/resumption behavior of goals: delay(A;C; �) is true for a goal A, clauseC and substitution � if and only if the execution of the goal �(A) using clause Cshould be delayed;1 and, given a sequence of (suspended) goals G, the functionwoken(G; �) yields a sequence of goals in G that are awakened by the substitution�. Axioms specifying relationships between these functions are discussed in [18].We assume that programs are moded, i.e., for each predicate p in a program its ar-guments are known to be \input" (if p uses the value of that argument) or \output"(if p de�nes that argument, i.e., binds it to a value).The order in which awakened goals are executed, relative to each other and tothe goals that are currently ready to execute, may di�er in many ways depending onthe language. For example, SICStus Prolog usually schedules goals as soon as theyare awakened, ahead of other ready goals, though the relative order of goals that areawakened at the same time is unspeci�ed [3]; the default policy in jc is to scheduleawakened goals after all previously ready goals have �nished executing (the morecommon \schedule awakened goals immediately" behavior can be obtained via acompiler option). KL1 provides a system of priorities that must be respected whenawakened goals are executed [5]. To this end, we assume that there is a thirdsystem-dependent functioninsert : Atom� � Atom� �! Atom�such that, given a sequence of ready goals G and a sequence of awakened goals G0,insert(G;G0) is the sequence of goals obtained by \inserting" the awakened goalsG0 into the appropriate positions within the ready goal sequence G.3. Operational SemanticsTo simplify the discussion that follows, we assume a language that uses nondeter-ministic clause selection. Goals within a clause are assumed to be executed in theirleft-to-right order. The operational behavior of a program can be characterized bythe transition rules given below. A state consists of a sequence of \active" goals, asubstitution, and a sequence of suspended goals:State = Atom� � Subst � Atom�.1The delay function we consider is actually slightly di�erent from that of Marriott et al. [18],in that theirs does not take a clause as a parameter.



4 For notational simplicity we say that a clause C is variable-disjoint from a state S =(Ready ; �; Susp) if vars(C)\(vars(Ready )[vars(Susp)[vars(�)) = ;. The followingtransition rules specify the operational behavior of programs with suspension.1. Goal Reduction : Given a state S � (p(�u) :: Ready ; �; Susp), and a clauseC � p(�v) :� B 2 clauses(p) that is variable-disjoint from S, if it is the casethat delay(p(�u); C; �) = false and  = mgu(�(�u); �v) 6= fail , then the goalp(�u) is reduced to the clause body B:S r; (B :: Ready ;  � �; Susp)where `::' denotes concatenation of sequences. The annotation `r' in thetransition r; is intended as a mnemonic for \reduces."2. Variable Binding : Given a state S � (`t1 = t2' :: Ready ; �; Susp) such that� = mgu(�(t1); �(t2)) 6= fail, let  = � � �, and A = woken(Susp ;  ), thenS b; (insert(Ready ; A);  ; delete(Susp; A)).The annotation `b' in the transition b; is intended as a mnemonic for\binds."3. Suspension : Given a state S � (p(�t) :: Ready ; �; Susp), if there is no clausein clauses(p) that can reduce according to rule (1) above, but there is someclause C 2 clauses(p) such that C is variable-disjoint from S and for whichdelay(p(�t); C; �) is true, then the goal p(�t) suspends:2S s; (Ready ; �; p(�t) :: Susp).The annotation `s' in the transition s; is intended as a mnemonic for \sus-pends."4. Failure : Given a state S � (p(�t) :: Ready ; �; Susp), if there is no clause thatcan proceed via rules (1) or (2), or suspend according to rule (3) above, thenexecution fails. The action taken on failure depends on the language: ina Prolog-like language, it may trigger backtracking, while in a committed-choice language it may cause the entire execution to abort. For our purposes,it su�ces to postulate a functionfail action : State �! Statethat speci�es what happens on failure. The details of this function are notrelevant for the purposes of this paper, and are not discussed further. Wedenote failure transitions by f; .2Primitive operations, e.g., involving arithmetic operations, in clause bodies may also suspendif their arguments are under-instantiated. This can be modelled either by rewriting the programto introduce auxiliary procedures with the appropriate delay conditions, or by additional rulessimilar to this one. The extensions involved are straightforward, and for simplicity of expositionwe do not consider them explicitly.



5For notational convenience in the discussion that follows, we will concatenate themnemonic annotations on transitions to denote the union of the correspondingtransition relations. Thus, rbf; denotes the relation r; [ b; [ f; , i.e., theset of transitions not involving any suspension. Finally ; denotes all possibletransitions, i.e., rbsf; .4. Data
ow Analysis for Non-suspension4.1. PreliminariesGiven the \concrete" transition semantics described in the previous section, a col-lecting semantics associates a set of states with each program point. The obviousapproach to de�ning a data
ow analysis would be to abstract sets of states to\abstract states" and de�ne \abstract operations" over these objects to mimic thecorresponding operations over the concrete domain. Correctness could then be in-ferred from the relationships between these objects and operations, using resultsof abstract interpretation [8]. However, the details can get quite complicated: forexample, abstracting a sequence of goals into a sequence of abstract goals neednot produce a Noetherian abstract domain, and an additional level of abstractionmay be necessary to ensure termination. For example, the \star abstraction" ofCodish et al. [6] allows at most one \abstract atom" with a particular predicatesymbol, while Marriott et al. require bounds on the sizes of the multisets describingdelayed goals [18]. Since our analysis algorithms are really quite straightforward,we felt that trying to formalize them as full-blown abstract interpretations wouldserve mainly to introduce a plethora of notation and to obscure, rather than illu-minate, the essential underlying intuitions. For this reason, we have chosen to givedirect proofs of correctness instead of formalizing them as abstract interpretations(though it will be obvious that we use ideas, such as \abstract substitutions" and\concretizations", that are derived from abstract interpretation).Just as the concrete computation propagates substitutions, the analysis prop-agates descriptions of (sets of) substitutions that we refer to as \abstract substi-tutions". The set of abstract substitutions is denoted by ASub. We assume thatthere is a partial ordering v over ASub and that (ASub;v) forms a complete latticewith meet and join operations u and t respectively. We also assume that there isa functionconc : ASub �! }(Subst)that speci�es the set of substitutions described by an abstract substitution. Thisfunction is assumed to be monotone, so that given a1; a2 2 ASub, a1 v a2 impliesconc(a1) � conc(a2). Thus, the higher an abstract substitution is in the lattice(ASub;v) the larger a set of concrete substitutions it denotes, and therefore thelesser the information it conveys.The basic idea behind our approach is very simple and quite general. Supposewe are given a (top-down) data
ow analysis for an \ordinary" logic programminglanguage without any delay primitives, i.e., one whose operational semantics is de-�ned by omitting the suspension rule from the transition rules de�ned in Section



6 3|in other words, by the transition relation rbf; .3 Such an analysis, which werefer to as the underlying analysis in the discussion that follows, can be extendedin a simple way to deal with programs containing delay primitives, and the in-formation gathered used to detect non-suspending procedures and calls. Broadlyspeaking, such an analysis typically iterates over the predicates in a program, an-alyzing each of the clauses for each predicate in turn, maintaining \abstract envi-ronments" at each program point that describe the possible bindings for variablesat that point. Analysis usually starts with these abstract environments initializedto be empty, and information is propagated iteratively until there is no change toany of the information gathered: termination is ensured using additional mecha-nisms such as memo tables. Assume that the analysis provides two operations:analyse call : Atom� ASub �! ASub, which describes the e�ects of a procedurecall; and extend abs env : ASub � ASub �! ASub, which describes how to extendan abstract environment to take into account the e�ects of a procedure call or uni-�cation. The analysis of a clause `p(�u) :� q1(�u1); : : : ; qn(�un)', given an abstractsubstitution � for a call, proceeds as follows:1. Abstract the e�ects of head uni�cation with the formal parameters �x, giventhe abstract substitution � describing the actual parameters, so as to obtainan initial abstract environment A1.2. Let the abstract environment at the program point immediately before theliteral qi(�ui) be denoted by Ai, 1 � i � n.For i := 1 to n do:A0i := analyse call(qi; Ai);Ai+1 := extend abs env (Ai; A0i);3. Compute and return the abstract environment An+1 projected on the argu-ments in the head of the clause.A call to a procedure is analyzed by processing each clause for that procedure, inturn, as described above. For each clause, the analysis yields an abstract environ-ment, and these can be \summarized"|for example, using the join operator t onASub|to yield an abstract environment describing the substitutions that may beobtained when that call returns.In the following sections, we describe how the underlying analysis describedabove can be extended to detect situations where suspension e�ects can safelybe ignored. The underlying intuition is that, as long as we can guarantee that the\normal" left-to-right control 
ow of a clause will not be disrupted due to suspensione�ects, we can use (approximations to) the underlying analysis and be guaranteedsoundness. There are two ways in which normal left-to-right execution can bedisrupted: (i) a goal may suspend; and (ii) a suspended goal may be awakened andexecuted ahead of other ready goals. Section 4.2 discusses how to deal with the3Strictly speaking, since there is no suspension, the operational semantics of such a languagecould be somewhat simpler than this: there is no need for list of suspended goals in a state, andthe variable binding rule could be simpli�ed. For the development of this paper, however, it isconvenient to work with states whose structure is as in Section 3 but where the list of suspendedgoals is always empty, and have delay(A;C; �) be false for all A, C, and �.



7�rst of these situations. We handle the second situation by analyzing the programto identify situations where no suspended goal will be awakened: this is discussedin Section 4.3.4.2. Weak Non-SuspensionDe�ne the parent relation on pairs of goals as follows: if a computation has a reduce-transition (L :: Ready ; �; Susp) r; (B1 :: � � � :: Bn :: Ready ; �0; Susp) via a clause`H :� B1; : : : ; Bn' then the goal L is said to be the parent of the goals B1; : : : ; Bn.The descendant relation on pairs of goals is simply the re
exive transitive closureof the parent relation. A goal L is said to be weakly non-suspending if none of thedescendants of L (which includes L itself) will suspend, i.e., take a s; -transition.A key notion in our approach to the analysis of weak non-suspension is thatof the \demand" of a procedure. Intuitively, this is a description of the circum-stances under which none of the clauses de�ning that procedure will suspend. Moreformally, we have the following de�nition:De�nition 4.1. Given a procedure p de�ned by clauses C1; : : : ; Cn in a programP , the demand of p, denoted by demand (p), is given bydemand (p) = uf� 2 ASub j 8� 2 conc(�) 8C 2 clauses(p) : :delay(p(�x); C; �)g:where �x is a tuple of distinct variables.Example 4.1. Consider the following procedure to compute the factorial function:the language is our current incarnation of Janus, where guard tests suspend untilthe values of the operands are available:fact(N, A, F) :- N = 0 | F = A.fact(N, A, F) :- N > 0 | fact(N-1, N*A, F).Suppose abstract substitutions map variables to the values ground and any, de-noting, respectively, the set of ground terms and the set of all terms of thelanguage. It is easy to see that neither guard will suspend if the �rst ar-gument is bound to a (any) ground term. Thus, the demand of fact/3 isfN 7! ground; A 7! any; F 7! anyg.The analysis to identify weak non-suspension is a conceptually straightforwardextension to the underlying analysis described in the previous section. With eachliteral L in a clause body (respectively, predicate p in the program) is associateda 
ag L.nosusp (respectively, p.nosusp), indicating whether that literal (predicate)is weakly non-suspending. Initially, all these 
ags have the value true, indicatingthat our initial assumption is that no procedure or call will suspend. The programis �rst processed to compute demand (p) for each procedure p in the program (notethat this is a strictly local computation, and does not require any kind of global�xpoint computation). After this, a global �xpoint computation is carried out toidentify weakly non-suspending procedures and calls. The processing of a clause`p(�u) :� L1; : : : ; Ln' is shown in Figure 1. When processing a body literal Li �qi(: : :) under an abstract environment Ai, we �rst verify whether its activationcan be guaranteed to perform at least one goal reduction step without suspending



8 1. Given an abstract substitution � describing the actual parameters in thecall, abstract the e�ects of head uni�cation with the formal parameters �u toobtain an initial abstract environment A1.2. Let the abstract environment at the program point immediately before theliteral Li � qi(�ui) be denoted by Ai, 1 � i � n.For i := 1 to n do:Li:nosusp := qi :nosusp ^ (Ai v demand (qi));A0i := analyse call(qi; Ai);A00i := extend abs env (Ai; A0i);Ai+1 := if :Li :nosusp then Ai tA00i else A00i ;3. p:nosusp := p:nosusp ^ (^ni=1Li :nosusp);4. return the projection of the abstract environment An+1(�x) on the argumentsin the head of the clause.Figure 1. Weak Non-Suspension Analysis: Processing a clause `p(�u) :� L1; : : : ; Ln'by checking whether Ai v demand (qi).4 Then, as in the underlying analysis, wedetermine the abstract environmentA00i that would be obtained if Li were to executewithout any suspension. The main change, compared to the underlying analysis, isthat at this point, we compute the resulting abstract environment Ai+1 as A00i if Lican be guaranteed to not suspend, and as AitA00i otherwise: here, AitA00i expresseswhat can happen whether Li suspends or not. As before, a call to a procedureis processed by analyzing each clause de�ning that procedure, and summarizingthe results. The analysis of a program involves iterating until there is no changeto either the calling and success patterns computed for each procedure, or thesuspension 
ags of any procedure or literal.De�ne a suspending transition sequence to be any sequence in rbf;? s; . Thefollowing theorem states that, as long as we do not have to contend with goalsbeing awakened, the algorithm of Figure 1 computes suspension bits correctly inthe sense that any literal or predicate that may suspend has its nosusp bit set tofalse.Theorem 4.1. Let L � p(�u) be a literal in a program such that for some initial queryQ, it is the case that (Q; idvars(Q); ");? (p(�u); �; Susp); and (p(�u); �; ") rbf;? s; Sfor some state S and suspended goals Susp. Then, L.nosusp and p.nosusp areset to false by the analysis algorithm.Proof. Suppose that L � p(�u) is a literal in a program such that for some4W. Winsborough has pointed out [22] that this check can be made more precise by checkingalso whether it may be possible to guarantee that some clause for the called predicate will reduce,in which case the possible suspension of other clauses is moot: this can be done, in the presenceof type information, using the notion of covering discussed in [9].



9initial query Q, (Q; idvars(Q); ");? (p(�u); �; Susp). Consider transitions from thestate (p(�u); �; "). We show, by induction on the length n of suspending transitionsequences that if (p(�u); �; ") rbf;? s; S, then the 
ags L.nosusp and p.nosusp are setof false by the analysis algotithm.In the base case, n = 1, and it must be the case that (p(�u); �; ") s; S. Fromthe rules de�ning the transition semantics, this can happen only if the goal p(�(�u))is not able to reduce using any clause for p, and there is at least one clause Csuch that delay(p(�u); C; �). Since the underlying data
ow analysis is assumed to besound, it must be the case that � 2 conc(A) for the abstract environment A inferredimmediately before L. Now suppose that A v demand (p). From the de�nition ofdemand (p), this means thatconc(A) � f� 2 Subst j 8C 2 clauses(p) : :delay(p(�u); C; �)g,i.e., the goal p(�(�u)) does not suspend. This is a contradiction, whence we concludethat it must be the case that A 6v demand (p). It is then straightforward to see, fromthe de�nition of the analysis, that L:nosusp is set to false immediately. Becauseof this, in step (3) of the algorithm the 
ag p:nosusp also becomes set to false.For the inductive case, assume that the theorem holds for all suspending tran-sition sequences with length less than k, and consider a suspending transitionsequence from (p(�u); �; ") to S with length k. Then, there must be a clauseC � `p(�x) :� L1; : : : ; Ln' in clauses(p) such that C is variable-disjoint from p(�u),:delay(p(�u); C; �), and  = mgu(�x; �u) 6= fail , so that(p(�u); �; ") r; (L1 :: � � � :: Ln;  � �; ") rbf; � � � rbf; s;| {z }k�1 S.Now consider the transition sequence (L1 :: � � � :: Ln;  � �; ") rbf; � � � s; S withlength k�1 : it must be the case that for some Li, 1 � i � n, there is a suspendingtransition sequence from (Li; �; ") to S of length less than k, where � is somesubstitution. Suppose that the predicate symbol for Li is q, then from the inductionhypothesis, the 
ags Li :nosusp and q :nosusp will be set to false during analysis.Suppose that this happens during the jth iteration of the algorithm, j � 0: since thevalues of some 
ags have changed during this iteration, the algorithm will iterateone more time. In the next iteration, p:nosusp will be set to false because thenosusp 
ag for the body literal Li in the clause C de�ning p has become false.This change in the value of a 
ag will cause the algorithm to iterate once more,and this time the 
ag L:nosusp will be set to false. The theorem follows.Termination follows from the fact that there are only a �nite number of 
agsmanipulated by the algorithm, since each 
ag can change only from true to false.The analysis described above is aimed at inferring, for any goal p(�u), whether anydescendant of this goal can suspend. This information, while potentially interesting,is in general not su�cient for our purposes: we are interested in data
ow analysisfor various low-level optimizations, such as register allocation and optimization ofuni�cation code, that require a more precise identi�cation of what may happen atruntime. The problem that arises is the following: suppose that we have inferredthat none of the descendants of a goal p(�u) will suspend. However, if p(�u) isexecuted in a state where there are already some suspended goals, it may happenthat in the course of the resulting computation a variable x gets a binding thatcauses the awakening and execution of a suspended goal q(�v). Without a great



10 procedure analyse clause(C)beginlet C � p(�x) :� L1; : : : ; Ln;for each body literal Lj � q(�y) doif q :s nsusp = false then Lj :s nsusp := false;else for each variable z in an output position in Lj doif (9y 2 aliases(z))(9Li to the left of Lj) : y occurs in an input positionof Li and Li is not weakly non-suspending thenLj :s nsusp := false;�if (9u 2 aliases(z)) : u is an output argument in the head of C andthere is a call site M for p such that M :s nsusp = false thenLj :s nsusp := false;�od /* for */�odp:s nsusp := p:s nsusp ^ (^ni=1Li :s nsusp);end /* analyse clause */Figure 2. The function analyse clause for strong non-suspension analysisdeal of knowledge about the possible suspended goals that may be awakened at anypoint, and about the scheduling policy for these awakened goals, it is very di�cultto predict the behavior of the system under these circumstances (Marriott et al.show how a simple scheduling strategy, such as that used by SICStus Prolog, can betaken into account to some extent [18]; however, for more sophisticated strategies,e.g. involving multiple priority levels as in KL1, the task seems more di�cult).It is for this reason that the statement of Theorem 4.1 assumed that the set ofsuspended goals is empty. In the next section, we describe an additional data
owanalysis that can be used to identify situations where it can be guaranteed that nosuspended goal will be awakened in the course of a computation.4.3. Strong Non-SuspensionA goal is said to be strongly non-suspending if it is weakly non-suspending andcan additionally be guaranteed to not awaken any suspended goal. For stronglynon-suspending goals, unpredictabilities arising from dynamic suspension and re-sumption of goals can be guaranteed to not arise, making their execution behaviormuch simpler to predict and enabling a variety of low-level optimizations to becarried out.The intuition behind our analysis to detect strong non-suspension is very simple.Consider a clause `p(�x) :� L1 : : : ; Li; : : : ; Ln:' Suppose that a variable z occurs inan output position in Li, and assume that the analysis described in the previoussection has identifed Li as weakly non-suspending. Since the literals in the bodyof this clause are assumed to be executed from left to right, it is not di�cult to seethat if all occurrences of z in input positions in the body occur to the right of Li,



11i.e., in Lj where j > i, then none of the literals Lj that need the value of z willbe executed before Li. Moreover, since Li is weakly non-suspending, neither it norany of its descendants will suspend, so they will produce a binding for z before anyof the literals Lj that need the value of z are executed. We can generalize this ideaslightly and require only that if z occurs in any Lk to the left of Li, then Lk shouldbe (weakly) non-suspending as well|in other words, that Lk does not actuallyuse the variable z (the commonest example of this situation is where the Lk takesthe variable z and simply puts it inside a structure without actually examining itsvalue, e.g., in programs using di�erence lists).Of course, this simple analysis is not quite adequate, for two reasons. First, allpossible aliasing has to be taken into account. More importantly, it may happenthat the variable z in question is also an output variable in the head of the clause,in which case it is necessary to consider all call sites for p to determine whetherthere may be any activation suspended on the corresponding actual parameter. Ateach such call site, the reasoning proceeds as before, and may involve looking atthe call sites for the clause containing the call site, and so on. Overall, this givesrise to an iterative analysis algorithm that proceeds as follows:1. initialize all strong non-suspension bits to true;2. for every literal L (procedure p) that is not weakly non-suspending, setL.s nsusp (p.s nsusp) to false;3. iterate over the clauses in the program, and for each clause C execute theprocedure analyse clause(C) (shown in Figure 2), until there is no changeto any strong non-suspension bit.To reason about the soundness of this algorithm, we need the notion of the rankof a goal in a sequence of states obtained during a computation starting from aninitial query. This notion is de�ned as follows:1. Each atom in the initial query has rank 0.2. If a state (p(�u) :: Ready ; �; Susp) reduces to a state (L1 :: � � � :: Ln ::Ready ; �0; Susp) via a clause C � `p(�v) :� L1; : : : ; Ln' 2 clauses(p), andthe reduced goal p(�u) has rank k, then each of L1; : : : ; Ln has rank k + 1.3. The rank of a goal does not change if it suspends or is awakened.The following establishes the correctness of this algorithm.Theorem 4.2. If a literal L (respectively, procedure p) in a program is not stronglynon-suspending, then L:s nsusp (respectively, p:s nsusp) is set to false by thealgorithm of Figure 2.Proof. (sketch) : A literal or procedure may fail to be strongly non-suspendingfor either of two reasons: (i) it may not be weakly non-suspending; or (ii) itsexecution may result in a variable binding that causes an awakened goal to execute.In the �rst case, Theorem 4.1 implies that it is inferred to be weakly non-suspending. In this case, its strong non-suspension bit is set to false at thebeginning, before the analysis proper begins. Since the algorithm only changes



12 strong nonsuspension bits from true to false, the value of this bit remains falseat the end of the analysis.In the second case, consider a goal L1 that is weakly non-suspending, but thatfails to be strongly non-suspending because there is some initial query Q duringwhose execution the goal L1 is executed and causes a suspended goal L2 to awaken.This implies that there is a clause C in the program that is a \common ancestor"of both L1 and L2, i.e., whose body B contains literals B1 and B2 such that L1 isa descendant of B1 and L2 is a descendant of B2;5 moreover, since L1 awakenedL2, it must be the case that L2 suspended before the execution of L1, so B2 mustbe to the left of B1. Let the rank of L1 be m, and that of B1 be m0. Since L1 is adescendant of B1, it must be the case that m0 � m. We proceed by induction onm �m0.In the base case, m �m0 = 0. In this case, B1 is the same as L1. Since B2 hasa descendant that suspends, B2 is not weakly non-suspending. Since B2 is to theleft of B1 (i.e., L1) in the clause C, it can be seen from Figure 2, that L:s nsusp isset to false by the algorithm.In the inductive case, assume that the theorem holds for m � m0 � k, andconsider a situation where m �m0 = k + 1. In this case, suppose that L1 occursin the body of a clause for a procedure p, then there must be a goal L00 with rankm00 that reduced using this clause. By the de�nition of rank, m = m00 + 1, whichmeans m00 � m0 = k. From the induction hypothesis, L00:s nsusp is set to falseby the algorithm. This means that at the next iteration of the algorithm, the factthat L00:s nsusp = false for the call site L00 will be detected, and L:s nsusp willbe set to false.As with the algorithm for weak non-suspension, termination follows from thefact that there are only a �nite number of 
ags manipulated by the algorithm, andeach 
ag can change only from true to false.5. Implementation5.1. BackgroundJanus is a committed-choice logic programming language that, in its present in-carnation, closely resembles Strand [10]. The jc system is a sequential imple-mentation where clause bodies are executed from left to right as in Prolog. Thejc compiler translates Janus programs to C and then uses a C compiler (theperformance numbers in this paper correspond to gcc 2.6.3 invoked with -O2-fomit-frame-pointer) to compile the resulting program to executable code. Anearly version of the system is described in [13], and a prototype of the system, in-cluding the data
ow analyses and the optimizations based on this analysis that arediscussed in Section 6, is available by anonymous FTP from ftp.cs.arizona.edu.As with many other committed-choice languages, Janus uses data
ow synchroniza-tion. Thus, a procedure call will suspend if the input arguments are su�cientlyunderinstantiated that none of the clause guards for that clause can commit and5It may help the reader's intuition to think of (the body of) C as a common ancestor of L1 andL2 in a proof tree for the query Q, although the presence of delays complicates the connectionsbetween the proof trees for queries and their operational behavior.



13Program Procedures Call Sitestotal non-susp total non-suspaquad 8 7 26 26bessel 11 10 35 35binomial 7 7 24 24chebyshev 3 2 9 9e 2 2 6 6fib 1 1 6 6log 6 5 27 27mandelbrot 10 2 27 19muldiv 1 1 7 7nrev 3 3 10 10pascal 15 14 49 49pi 3 3 9 9sum 2 2 4 4tak 1 1 8 8Total: 73 60 247 239Table 1. Weak Non-suspension Analysis : Precisionthey do not all fail; and even if a procedure call commits to a clause, primitive op-erations in the body of the clause will suspend if their operands are not su�cientlyinstantiated. Because of this, non-suspension analysis is crucial for any kind oflow-level compiler optimization.We have implemented weak non-suspension analysis in our system, based on avery simple groundness analysis. The underlying abstract domain for our analysisconsists of only two points: ground and any, denoting, respectively, the set of allground terms and the set of all terms of the �rst order language de�ned by theprogram under consideration. The ordering on this domain is ground v any . Weuse reexecution of primitive operations (see [16]) to improve the precision of theanalysis. We have not yet implemented strong non-suspension analysis. The reasonweak non-suspension has been su�cient so far is that by default, goals awakenedafter suspension are scheduled in \batch mode" in jc, i.e., executed at the endafter all non-suspended goals have been executed. In this case, there is no possi-bility that binding a variable will cause an awakened goal to be executed aheadof a ready goal. The more familiar scheme for scheduling awakened goals, wherea goal is executed as soon as possible after it is awakened, is available via a com-piler option, but optimizations based on non-suspension analysis, such as returningoutput values in registers instead of in memory, are currently turned o� in thiscase: we expect to relax this restriction in the future when strong non-suspensionanalysis is implemented and incorporated into our compiler. The algorithm forstrong non-suspension analysis is su�ciently similar structurally to that for weaknon-suspension analysis that we do not anticipate any signi�cant loss in precisionof analysis when strong non-suspension is taken into account.We have not separately measured the time taken to analyse programs, becausedata
ow analysis and optimization accounts for a very small part of the overall



14 compilation time. Because Janus programs are compiled to C code which is thenprocessed by a C compiler, most of the overall time for translation to the objectcode is spent in I/O operations and in the C compiler (other systems that compileto C, e.g., KLIC [5], report similar experiences). As a result, there is no perceptibledecrease in the overall compile time when data
ow analysis and optimizations areswitched o�.5.2. PrecisionSince our analysis is not tied to any particular abstract domain, the question ofprecision is, in some sense, moot: the overall precision of a non-suspension analysiscould, in principle, be improved where necessary simply by using a more precise un-derlying analysis with a more elaborate abstract domain. Our experience has beenthat in practice, the simple groundness analysis that we use, with a limited amountof reexecution, turns out to produce results that are quite reasonable. This is il-lustrated in Table 1. The benchmarks used include the following programs: aquadperforms a trapezoidal numerical integration R 10 exdx using adaptive quadratureand an epsilon of 10�8; bessel computes the Bessel function J75(3), and involvesboth integer (for factorial) and 
oating point (for exponentiation) computations;binomial computes the binomial expansionP30i=0 xiy30�i at x = 2:0; y = 1:0; cheby-shev computes the Chebyshev polynomial of degree 10000 at 1.0; e computes thevalue of e = 2:71828 : : : by iteratively summing the �rst 2000 terms of the series1 + 1=1! + 1=2! + 1=3! + � � �; �b computes the Fibonacci value F (16); log computesloge(1:999) using the expansion loge(1 + x) = Pi�0(�1)i+1xi=i, to an accuracy of10�6; mandelbrot computes the Mandelbrot set on a 17� 17 grid on an area of thecomplex plane from (�1:5;�1:5) to (1:5; 1:5); muldiv exercises integer multiplica-tion and division, doing 5000 of each; nrev is the usual naive reverse program onan input list of length 100; pascal is a benchmark, by E. Tick, to compute Pascal'striangle; pi computes the value of � to a precision of 10�3 using the expansion� = 4Pi�0 (�1)i2i+1 ; sum adds the integers from 1 to 10,000|it is essentially similarto a tail-recursive factorial computation, except that it can perform a much greaternumber of iterations before incurring an arithmetic over
ow; and tak, from theGabriel benchmarks, is a heavily recursive program involving integer addition andsubtraction. Of these programs, aquad, bessel, binomial, chebyshev, e, log, mandel-brot, and pi are 
oating-point intensive computations. These were chosen in part tofocus on numerical computations, which|according to folklore|are not consideredto be especially e�ciently executable in logic programming languages.The jc compiler works by �rst duplicating the code (i.e., the abstract syntaxtree) for each procedure in the module being compiled: the intent is that one copy isfor invocations that could potentially suspend, the other for invocations that can beguaranteed to be non-suspending. This is followed by weak non-suspension analy-sis, after which the program is transformed to take non-suspension information intoaccount. Two things happen during this transformation phase: non-suspending pro-cedure calls are modi�ed to call the non-suspending version of the called procedure;and possibly suspending primitive operations in clause bodies, e.g., arithmetic, aretransformed into out-of-line procedure calls to ensure correct behavior on suspen-sion and resumption. Finally, the call graph of the resulting program is examinedstarting at the roots, which correspond to the possibly-suspending versions of ex-



15ported procedures, and any version of a procedure that is found to be unreachableis deleted.Because of the initial duplication of code and the subsequent deletion of un-reachable versions, the number of procedures and call sites in the program that isactually compiled can be quite di�erent from that in the original source program.To reduce confusion, therefore, the numbers in Table 1 are given relative to theoriginal source program. Since the language semantics speci�es that each opera-tion in a clause body, regardless of whether it is a primitive operation or a callto a user-de�ned procedure, can potentially suspend, each body literal is countedas a \call site" that can, in principle, suspend. A procedure is then counted asnon-suspending if a non-suspending version of that procedure is retained in the�nal program, while a call site i.e., body literal, is counted as non-suspending if the�nal program contains a non-suspending instance of that literal. Columns 2 and 3of Table 1 give, respectively, the total number of procedures in the program andthe number inferred to be non-suspending, while columns 4 and 5 give the sameinformation for individual call sites. Note that some programs, such as aquad andbessel, have suspending versions of procedures but no suspending call sites: thisis because it is possible for the user to invoke the top level goal in a manner thatcauses it to suspend; our analysis infers, however, that once the top level exportedgoal commits, there will be no further suspension. For these programs, the programcontains a suspending version of the exported procedure, but there are no suspend-ing call sites in the program. Other programs, such as binomial and pi, have toplevel goals that do not take any user input (this can happen, for example, if the onlyexported procedure is main/0), and therefore cannot suspend: for these programs,the generated code contains neither suspending versions of any procedures nor anysuspending call sites.It can be seen that for most of the programs tested, most of the procedures andcall sites were inferred to be non-suspending. The mandelbrot benchmark is anexception to this, primarily because the underlying analysis is not sophisticatedenough to carry out the kind of inductive reasoning necessary to infer groundnessof arrays that are being de�ned an element at a time. However, as Tables 2 and 3show, enough information is available to allow the inner loops of this program to beoptimized, resulting in signi�cant performance improvements despite the apparentlypoor precision of analysis.In general, our experience has been that the precision of our non-suspensionanalysis is intimately tied to the precision of the underlying analysis. The simpleabstract domain used in our implementation is adequate for programs that do nothave much in the way of dependencies between variables, e.g., that do not usetechniques such as di�erence lists and where there is little aliasing. The precisionof our analysis degrades if the underlying analysis is not precise enough to allowus to determine whether or not the procedure demands are being satis�ed. Thesituation can sometimes become fairly subtle. As an example, consider the followingprocedure:p([]).p([msg(In,Out)|Msgs]) :- Out is In+100, p(Msgs).In order to allow us infer that p/1 is weakly non-suspending, the underlying analysismust be able to provide information about the structure of terms with considerableprecision. While such (underlying) analyses have been studied in the literature (see,



16 Benchmark Execution Time (�secs) RT/M RU/MM RT RUaquad 45600 33242 20569 0.729 0.451bessel 12516 12467 12364 0.996 0.988binomial 4362 3924 5720 0.900 1.311chebyshev 23689 23689 8500 1.000 0.359e 12495 12372 9832 0.990 0.787fib 12330 4774 4711 0.387 0.382log 35025 35432 17198 1.011 0.491mandelbrot 64888 71464 23942 1.101 0.369muldiv 13285 13303 12705 1.001 0.956nrev 7842 8006 8018 1.021 1.022pi 25031 27860 12144 1.113 0.485sum 1691 1691 1694 1.000 1.002tak 13505 4732 5340 0.350 0.395Geometric Mean 0.844 0.623Key:M : memory returns onlyRT: register and memory returns (tagged registers only)RU: register and memory returns (tagged and untagged registers)Table 2. Output Value Placement in Registers: Performance (jc on a Sparcstation-IPC)for example, [14, 20]), whether or not it is reasonable to expect this degree of pre-cision from the underlying analysis depends on the kinds of programs one expectsto encounter and perhaps also on the speed with which the compiler is expectedto work (though our experience has been that the time taken for I/O operationscan in many cases dominate the overall compilation time, suggesting that withinreasonable limits, e�ciency of analysis is not as critical as one might imagine).Nevertheless, it is important to note that imprecision in non-suspension analysis isdue fundamentally to shortcomings in the underlying analysis: that is, the lost pre-cision in suspension analysis can be recovered simply by improving the underlyinganalysis, with no changes necessary to the suspension analysis algorithms.6. Applications6.1. Returning Output Values in RegistersMost implementations of logic programming languages treat input and output ar-guments to procedures in a fundamentally asymmetric way: input values are passedin registers, but output values are returned in memory. For programs where predi-cate modes are known, output arguments can be returned in registers instead. This



17avoids unnecessary work arising from memory reads and writes due to initializationand dereferencing, and can cause signi�cant performance improvements. For lan-guages that support suspension of activations, however, the problem is complicatedby the fact that if a call to a procedure can suspend, the output registers will con-tain garbage when control returns to the caller (since the suspended computationwill not have computed values into them) unless additional work is done|bothat suspension time and when the suspended activation is resumed|to ensure thatvalues are propagated correctly. This can become fairly complicated and incur per-formance penalties. A much simpler solution that works well in practice (see [1])is to consider returning output values in registers only for procedures that can beguaranteed to be non-suspending. It turns out, however, that weak non-suspensionis inadequate for this optimization. The reason is that if an output value is returnedin a register, that register must not be overwritten until that value has been usedor stored into memory. However, if a procedure p that returns some outputs inregisters can only be guaranteed to be weakly non-suspending, it may happen thatsome awakened goal is executed as soon as p has �nished executing, but beforethe goal that would have used the value returned in a register by p. This wouldeither overwrite the register containing p's output value and thereby produce in-correct results, or would require complex and expensive runtime schemes to saveand restore output value registers where necessary. This problem can be avoided ifoutput values are returned in registers only for procedures that can be inferred tobe strongly non-suspending.This optimization (returning output values in registers) has been implementedin jc: the interested reader is referred to [1]. Performance results for a number ofbenchmark programs on a Sparcstation-IPC (with garbage collection turned o�)are shown in Table 2.6.2. Maintaining Unboxed ValuesIn languages with delay operations, the low level representation of a data object ata particular program point cannot always be predicted in a precise way at compiletime, since this depends on whether the value of an expression has been computedor not, which in turn depends on the suspension behavior of the program. Thecode generated for programs in such languages must, therefore, be able to deal withdi�erent kinds of representations that may arise at runtime. There are two di�erentbut related issues that arise here. First, it is necessary to be able to determine howa bit pattern, encountered at runtime, is to be interpreted|e.g., as an unboundvariable or as a value of a particular type. Second, di�erent data objects may havedi�erent sizes: for example, the size of an integer value may not be the same asthat of a double precision 
oating point value. The usual way to address the �rstproblem is to attach a descriptor to each value, to specify how its bit pattern isto be interpreted: such descriptors are usually referred to as tags [12, 19]. Thesecond problem is usually handled by making values of di�erent sizes \look thesame" by manipulating pointers to them rather than the values themselves: suchan indirect representation is often referred to as a boxed representation. In general,therefore, operations have to contend with the manipulation of tags and/or a levelof indirection, and as a result incur a performance penalty.This performance overhead is especially serious in numerical computations, be-cause implementations of logic programming languages very often represent 
oating



18 point numbers as boxed values (see, for example, [4]). This incurs a signi�cant per-formance penalty, for a number of reasons. First of all, since 
oating point valuesare heap-allocated, numerical computations involving boxed 
oating point valuesfail to exploit hardware registers e�ectively, and generate a lot more memory traf-�c. The allocation of fresh heap cells may also result in additional checks for heapover
ow. Finally, the high rate of memory usage also results in increased garbagecollection and adversely a�ects cache and paging behavior. However, if enoughinformation is available, at compile time, about a value at a particular programpoint, it is possible to (generate code to) maintain the value in its native machinerepresentation, i.e., without any tagging or boxing, and thereby avoid these over-heads. For example, in general it is not enough to know that a value will be anumber|we need to know whether it will be an integer or a 
oating point value.Such information can be obtained in various ways, e.g., via type analyses or fromprogrammer annotations: the details are orthogonal to the topic of this paper, andare not discussed further.The problem of optimizing the low-level representations of objects by maintain-ing them in untagged and unboxed form becomes more complicated in languageswith delay operations because in this case it is no longer enough to have precisetype information about an object: it is necessary to guarantee also that for allexecutions of the program (for the inputs of interest), the value of that object willhave been computed by the time control reaches the program point of interest. Thereason for this is not di�cult to see: since a value in native machine format doesnot have a descriptor that can be used to identify its type, it may not be possible,in general, to distinguish an unbound variable from an untagged integer or 
oatingpoint value. We therefore need (weak) non-suspension analysis to identify variableswhose values can be guaranteed to have been computed at a particular programpoint.This optimization has been implemented in jc [2]. At this time, only numericvalues, i.e., integers and 
oating point values, are considered for untagged andunboxed representation. The use of untagged values is not restricted to intra-procedural computations: untagged values may be stored on the stack, passed toother procedures as arguments, and returned from procedures as outputs. Sinceuntagged values may be stored on the stack, the garbage collector must be modi�edso that it can correctly identify objects in stack frames: this is done by adding aword to each stack frame that can be used by the garbage collector to index intoa symbol table that identi�es the procedure that frame belongs to and speci�esthe structure of its stack frames. Currently, untagged values on the heap are notsupported because the structure of the heap is a lot less predictable than that of thestack, making the identi�cation of untagged objects during garbage collection moredi�cult. This has to do primarily with the tagging scheme used by an implemen-tation: if the tagging scheme used by an implementation is rich enough to supportdescriptors that encode the structure of (some types of) heap-allocated objects, inparticular information about elements that are untagged, then the problem withidenti�cation of untagged values on the heap goes away. In this case, our approachcan be readily extended to handle untagged values on the heap. We are currentlyconsidering extensions to our tagging scheme to allow untagged objects on the heap.However, these details are largely orthogonal to the topic of this paper.Table 3 shows the improvements in speed and memory usage resulting from theuse of untagged and unboxed values (garbage collection was turned o� for these



19Program Memory Returns Reg+Mem. ReturnsT U U/T T U U/Taquad 45600 27300 0.599 33242 20569 0.619bessel 12516 11013 0.880 12467 12364 0.992binomial 4362 5919 1.357 3924 5720 1.458chebyshev 23689 8500 0.359 23689 8500 0.359e 12495 9641 0.772 12372 9832 0.795fib 12330 12260 0.994 4774 4711 0.987log 35025 16174 0.462 35432 17198 0.485mandelbrot 64888 24875 0.383 71464 23942 0.335muldiv 13285 12708 0.957 13303 12705 0.955nrev 7842 7851 1.001 8006 8018 1.001pi 25031 11944 0.477 27860 12144 0.436sum 1691 1694 1.002 1691 1694 1.002tak 13505 13462 0.997 4732 5340 1.128Geometric Mean : 0.727 0.738(a) Execution Time (�secs)Program Memory Returns Reg+Mem. ReturnsT U U/T T U U/Taquad 30884 10255 0.3320 23332 544 0.0233bessel 689 418 0.6067 689 452 0.6560binomial 1208 249 0.2061 1026 6 0.0058chebyshev 30002 6 0.0002 30002 6 0.0002e 6005 6 0.0010 6005 6 0.0010fib 6389 6389 1.0000 5 5 1.0000log 28870 12 0.0004 28866 6 0.0002mandelbrot 69533 654 0.0094 69533 654 0.0094muldiv 5 5 1.0000 5 5 1.0000nrev 7842 7851 1.001 8006 8018 1.001pi 20007 9 0.0004 20007 6 0.0003sum 5 5 1.0000 5 5 1.0000tak 7121 7121 1.0000 5 5 1.0000(b) Heap Usage (words)Key : T : tagged values; U : untagged valuesTable 3. Performance Improvements due to Untagged and Unboxed Objects



20 timings, so the speed improvements do not take into account reductions in garbagecollection time due to reduced heap usage). Programs that involve mostly integerarithmetic may not bene�t much from this optimization, since integers do not needto be boxed, and operations on tagged integers are not much more expensive thanon untagged ones: this is illustrated by fib. However, for programs that involvea lot of 
oating point computation, the use of untagged values generally leads tosigni�cant improvements in speed and memory usage (The binomial program is anexception: its slowdown using untagged values is due to the use of C as the back-end compiler for jc, and the concomitant lack of control over hardware registerallocation). Overall, this optimization produces a speed improvement of about30% for the programs tested.6.3. InliningInlining refers to the replacement of a procedure call by (the appropriate instanceof) the body of the called procedure. One reason inlining is potentially importantfor logic-based languages is that such languages lack nestable iterative constructs,but instead implement iteration using tail recursive procedures. This can incursigni�cant performance penalties, relative to traditional imperative languages, dueto additional procedure calls. As an example, the multiplication of two n � nmatrices requires three di�erent tail-recursive procedures in a logic-based language,one of which is called n times and the other n2 times. Thus, the multiplication oftwo 100�100 matrices|which requires no procedure calls in a nested-loops Fortranimplementation|can incur the cost of 10; 100 procedure calls in a straightforwardimplementation of a logic-based language.Inlining is conceptually straightforward in languages that do not support delayprimitives. The situation is more complicated for languages that allow suspensionbecause of the need to save state information when an activation suspends andrestore it when it is resumed. An implementation that allows suspension at ar-bitrary program points has to deal with saving and restoring arbitrary amountsof local state, leading to implementation complications and runtime performanceoverheads. An alternative approach|taken, for example, by SICStus Prolog [3]and jc [13]|is to allow suspension to occur only at speci�c predetermined pro-gram points. Such schemes require the manipulation of only a limited amount ofstate during suspension and resumption and are much simpler to implement thanthe previous scheme, but they essentially rule out inlining since inlining a proce-dure that may suspend can cause suspension to occur at arbitrary program points.Thus, inlining presents implementation problems in languages that support delayprimitives no matter how we deal with suspension and resumption. However, theseproblems disappear if we restrict inlining to procedures that can be guaranteed tonot suspend. In particular, note that in traditional algorithms designed for imper-ative languages|for example, the matrix multiplication routine mentioned above,or any other scienti�c program|computations necessarily do not suspend. Thisimplies that in logic programs implementing such algorithms, procedures can be in-lined in order to avoid the overheads of additional procedure calls associated withthe lack of nestable iterative constructs in logic programming languages.With regards to the implementation of inlining, it is not di�cult to see that inorder to inline a goal L, it su�ces to check whether L is weakly non-suspending.However, depending on the language semantics for the scheduling of awakened goals,



21it may also be necessary to determine whether L is strongly non-suspending. Thisis because otherwise, inliningL may change the behavior of the program if there areawakened goals that are required to be executed as soon as they are awakened: if Lis not inlined, such awakened goals would be executed before L, but if L is inlinedthis is not possible (otherwise we are faced with the earlier problem of saving andrestoring an arbitrary amount of state so that L can be correctly executed later).Currently, the jc system implements a special case of this optimization: in gen-eral, numerical operations such as `X = Y+Z' occurring in clause bodies are com-piled as out-of-line procedure calls where the called procedure checks whether theoperands are available, and suspends if they are not. However, numerical operationsthat can be guaranteed to not suspend are compiled into in-line code. This is signif-icantly faster and more compact than the general case. We have not implementedgeneral procedure inlining at this time, but intend to do so soon.6.4. Reducing Suspension TestsObviously, a procedure p that has been inferred to be non-suspending will not sus-pend, and therefore need not test its arguments to check whether it should suspend.For this, it su�ces to verify that at each call site L for p we have AL v demand (p),where AL is the abstract environment obtained at the end of weak non-suspensionanalysis at the program point immediately before L. The pragmatic bene�ts ofthis optimization depend greatly on the details of how suspension is implemented.For example, in jc we have optimized the system for non-suspending code, andsuspension testing is done at the end after all other tests, so the main bene�t ofdeleting suspension tests would be a reduction in code size. However, Marriott etal., using SICStus Prolog 2.1, report signi�cant performance improvements fromthe removal of suspension tests [18].6.5. General Prolog OptimizationsIn recent years there has been a great deal of work on optimization of (non-suspending) Prolog. For example, M�arien et al. show that signi�cant performanceimprovements are possible for Prolog programs if the lengths of dereference chainscan be statically predicted [17], while Van Roy shows that execution speed can beimproved signi�cantly if the initialization of variables can be avoided [21]. All ofthese optimizations become applicable for (strongly) non-suspending programs inlogic programming languages with delay mechanisms.7. DiscussionWhile delay mechanisms can be very convenient for programming purposes, theymake control 
ow di�cult to predict and thereby render many low level compileroptimizations di�cult or impossible. We have described simple compiler analyses toidentify program fragments whose control 
ow can be guaranteed to not be a�ectedby suspension and resumption of activations, and several low level optimizationsthat rely on this information. We have implemented weak non-suspension analysisin the jc system: this turns out to be of fundamental importance to the compileroptimizations we perform. In this section we discuss some of the performance



22 Program Execution Time (�secs) J/gcc:2 J/cc:2 J/cc:4J gcc:2 cc:2 cc:4aquad 20569 16604 28883 26433 1.238 0.712 1.119bessel 12364 12644 20635 20123 0.978 0.599 0.614binomial 5720 5075 8894 6098 1.127 0.643 0.938chebyshev 8500 7207 18067 18065 1.179 0.470 0.470e 9832 9392 10148 10154 1.047 0.969 0.968fib 4711 4727 4598 4584 0.997 1.025 1.028log 17198 17487 35029 35029 0.984 0.491 0.491mandelbrot 23942 19403 78423 46195 1.234 0.305 0.518muldiv 12705 10605 11688 11669 1.193 1.087 1.089nrev 8018 4904 4900 4272 1.635 1.636 1.877pi 12144 11998 22528 22520 1.012 0.529 0.529sum 1694 1606 1606 406 1.055 1.055 4.172tak 5340 4384 4085 4070 1.218 1.298 1.303Geometric Mean : 1.134 0.752 0.940Key: J : jc -Ogcc:2 : gcc -O2cc:2 : cc -O2cc:4 : cc -O4Table 4. The speed of jc compared to optimized C (Sparcstation IPC)improvements accruing from these optimizations. The numbers shown are for a SunSparcstation IPC with 36 MB of main memory, running Solaris 2.3, with garbagecollection turned o�.The optimization of returning output values in registers is discussed in Section6.1. Performance numbers are given in Table 2. The average speed improvementis about 15% even without the use of unboxed values, which is quite signi�cantfor this kind of low-level optimization. For many programs the improvements aremuch greater: for example, the speed of the tak benchmark almost triples. Whenunboxed values are maintained, and the passing of arguments and return valuesvia unboxed registers allowed, the gains are even greater, averaging about 37%.Furthermore, while for most programs the improvements are primarily in speedand, in some cases, in the amount of stack space used (which can decrease becausefewer variables may have to be stored on the stack when outputs are returned inregisters), a few programs, such as aquad and fib, exhibit signi�cant reductionsin the amount of heap space used as well because fewer \unsafe" variables arenecessary.The optimization of maintaining unboxed values is discussed in Section 6.2, withperformance numbers given in Table 3. Again, the speed improvements of about26% on the average are quite signi�cant. Heap usage also improves dramatically, inmany cases to the point where giving an \improvement ratio" seems meaningless.



23Interestingly, it can be seen that on a few programs there is actually a small lossin performance when the two optimizations discussed so far are combined, andoutput values are allowed to be returned in unboxed registers. This is due partlyto suboptimal placements of format conversion operations in some cases, leadingto additional conversions from tagged to untagged form and back and partly tothe use of C as the target language, and the concomitant lack of control over theregister allocation decisions made by the underlying C compiler. However, it can beargued that these numbers provide a conservative lower bound on the performancelevel achievable using such low level optimizations.Table 4 shows the absolute performance of jc compared to heavily optimizedC code written in a style one would expect of a competent C programmer, i.e.,using iteration rather than recursion wherever possible, using macros and avoidingfunction calls where this is reasonable, and relying heavily on destructive assign-ment. For the simple programs we tested, jc is only about 13% slower than Ccode compiled under gcc and optimized at the highest level possible. For theSun C compiler cc, the results are even better: jc is almost 25% faster thancc -O2 and 6% faster than cc -O4.6 Moreover, jc outperforms cc on preciselythose programs|namely, 
oating-point intensive computations|where one wouldexpect a dynamically typed declarative language to do considerably worse than astatically typed imperative language. The superior performance of jc comparedto cc is due partly to the fact that cc does not generate especially good code for
oating point computations; however, as Tables 2 and 3 illustrate, this would nothave been possible without extensive low-level optimization. One program wherecc performs signi�cantly better than jc is sum: this is due greatly to the fact thatat optimization level -O4, cc inlines a user-de�ned function, while jc has not yetimplemented this kind of inlining. On small recursion-intensive benchmarks, thepresence of register windows on the SPARC architecture removes the need to saveand restore registers at recursive calls; because of this, and parameter passing inhardware registers, procedure calls at the C level are not as expensive as in olderarchitectures, and so the performance of the C code on recursion-intensive pro-grams such as aquad, fib and tak are not as bad as one might expect them tobe. Overall, our numbers illustrates the fact that it is possible for logic programsto outperform imperative programs that are written in a natural imperative style.This illustrates the fundamental importance of the sorts of low level optimizationswe have described in attaining good performance. Since all of our optimizations de-pend fundamentally on information about non-suspension, the analyses describedhere are crucial for attaining this level of performance.6Since jc uses gcc as its back end translator, one might wonder whether this comparisonwith cc -O4 is \fair" or question what it proves. We claim that jc's use of gcc is purely amatter of convenience: we could, in principle, have achieved the same results by writing ourown back ends and using all of gcc's technology in it. The point of this comparison, therefore,is merely to show that simple data
ow analyses and careful attention to low level concerns canallow implementations of declarative languages to attain performance that is competitivewith theperformance of imperative programs written in an imperative style. We acknowledge, of course,that performance comparisons between di�erent languages are fundamentally dubious and veryoften have a strongly religious 
avor, and caution the reader against reading too much into theseresults.



248. Related WorkThe work most closely related to this is that of Marriott et al. [18], who alsoconsider the analysis of sequential logic programs with delay primitives, and ofHanus, who considers the analysis of functional logic programs using residuation[15]. The main di�erence between their work and that reported here is that offocus. While our work is aimed at identifying program fragments that will notsuspend and data
ow behavior for such fragments, the work of both Marriott etal. and Hanus is aimed at accurately approximating the suspension behavior ofliterals and predicates, including when a particular atom is delayed, when it isawakened, and which atoms are delayed at some program point. Because of this,both Marriott et al. and Hanus makemore assumptions about the scheduling policyfor reawakened goals than we do|speci�cally, they assume that goals are executedas soon as they are awakened|and use this to obtain a more precise descriptionof the behavior of suspending programs. This additional precision comes at aprice, however: experiences with a prototype implementation of the analysis ofMarriott et al. indicate that large amounts of time and space may be needed toanalyze programs of even modest size if there are many goals that can suspend[11]. Moreover, the details of such an approach become somewhat complicatedunder more elaborate scheduling policies, e.g., the priority-based system of KL1[5]. Our approach, by contrast, makes no assumptions about how suspended goalsmight be scheduled after they are awakened. This results in a less precise analysis forcomputations that may suspend; on the other hand, the fact that our approach doesnot try to keep track of the set of suspended goals and predict which goals mightbe awakened at various program points simpli�es the implementation signi�cantlyand improves its e�ciency considerably.Also related is work on analysis of concurrent logic languages, e.g., the deadlockanalyses described in [6, 7]. The primary di�erence between the work of theseauthors and that described here is that they make no assumptions regarding thescheduler (we assume that goals in a clause body are executed from left to right),and as a result are faced with the formidable problem of accounting for all possibleinterleavings of primitive actions during the execution of a program. Moreover,it seems di�cult to reason about the kind of suspension behavior that we areinterested in without making any assumptions at all about the order in which thebody goals of a clause are executed, so in general the properties considered by theseauthors are very di�erent from those we consider.9. ConclusionsWhile language mechanisms that allow the execution of a goal to suspend untilcertain variables have become bound have become increasingly popular in logicprogramming languages, they can make the execution behavior of programs di�cultto predict, and thereby make many traditional compiler optimizations inapplicable.This paper discusses two di�erent notions of non-suspension in sequential logicprograms with delay mechanisms, describes simple data
ow analyses to identifynon-suspending programs, and discusses various low-level optimizations based onthis information. Experimental results from the jc system are presented to showthat such analyses can improve the performance of programs signi�cantly.
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