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Abstract. Reverse engineering of executable programs, by disassem-
bling them and then using program analyses to recover high level se-
mantic information, plays an important role in attacks against software
systems, and can facilitate software piracy. This paper introduces a novel
technique to complicate reverse engineering. The idea is to change the
program code repeatedly as it executes, thereby thwarting correct disas-
sembly. The technique can be made as secure as the least secure compo-
nent of opaque variables and pseudorandom number generators.

1 Introduction

To reverse-engineer software systems, i.e., to obtain an (at least partial)
understanding of the higher-level structure of an executable program,
a malicious attacker can subvert many recent advantages in program
analysis technology and software engineering tools. Thus, the existing
technology can help an attacker to discover software vulnerabilities, to
make unauthorized modifications such as bypassing password protection
or identifying and deleting copyright notices or watermarks within the
program, or to steal intellectual property.

One way to address this problem is to maintain the software in en-
crypted form and decrypt it is as needed during execution, using software
decryption [1], or specialized hardware [18]. Such approaches have the
disadvantages of high performance overhead or loss of flexibility, because
software can no longer be run on stock hardware.

To avoid these disadvantages, this paper instead focuses on an alter-
native approach using code obfuscation techniques to enhance software



security. The goal is to deter attackers by making the cost of reverse
engineering programs prohibitively high.

The seminal paper on decompilation and reverse engineering [4] con-
siders two major difficulties in the process of reverse engineering pro-
grams. The first problem is that data and code are indistinguishable, as
code on a Von Neumann computer is nothing more than a specific type of
(binary) data. The second problem relates to self-modifying code, which
does not follow the convention of static code that there is a one-to-one
mapping between instructions and memory addresses.

In this paper, we propose a novel technique to automatically aggravate
and/or introduce these problems in existing programs. The basic idea is to
mutate a program as it executes, so that a region of memory is occupied by
many different code sequences during the course of execution. We show
how this technique undermines assumptions made by existing analyses
for reverse engineering. Furthermore, we claim that our technique can be
made as secure as the least secure component of opaque variables [5] and
pseudorandom number generators [24].

The goal of this research is to deter “ordinary attackers” by making it
substantially more difficult to reverse engineer the obfuscated code; it is
consistent with the prior work on code obfuscation, which aims primarily
to raise the bar against reverse engineering high enough so as to deter all
but the most determined of attackers.

The remainder of this paper is structured as follows: Section 2 dis-
cusses related work. Our technique is introduced in Section 3. The secu-
rity of this technique is the topic of Section 4. An evaluation of the impact
on the size and execution time of the program is discussed in Section 5.
Finally, conclusions are drawn in Section 6.

2 Related Work

The only other paper we are aware of that proposes dynamic code mod-
ifications for obfuscation purposes is that of Kanzaki et al. [16], which
describes a straightforward scheme for dynamically modifying executable
code. The central idea is to scramble a selected number of instructions in
the program at obfuscation time, and to restore the scrambled instruc-
tions into the original instructions at run time. This restoration process
is done through modifier instructions that are put along every possible
execution path leading to the scrambled instructions. Once the restored
instructions are executed, they are scrambled again. It is however not



clear how the modifier instructions pose problems for a static analysis
targeted at restoring the original program.

There is a considerable body of work on code obfuscation that focuses
on making it harder for an attacker to decompile a program and extract
high level semantic information from it [6, 7, 21, 25]. Typically, these au-
thors rely on the use of computationally difficult static analysis problems,
e.g., involving complex Boolean expressions, pointers, or indirect control
flow, to make it harder to understand the statically disassembled pro-
gram. Our work is complementary to these proposals: we aim to make a
program harder to disassemble correctly to begin with, let alone recover
high level information. If a program has already been obfuscated using
any of these higher level obfuscation techniques, our techniques add an
additional layer of protection that makes it even harder to decipher the
actual structure of the program.

Researchers have looked into run-time code generation and modifi-
cation, including high-level languages and APIs for specifying dynamic
code generation [3, 12, 13] and its application to run-time code specializa-
tion and optimization [2, 17, 20]. Because that work focuses primarily on
improving or extending a program’s performance or functionality, rather
than hindering reverse engineering, the developed transformations and
techniques are considerably different from those described in this paper.

A run-time code generation techniques that to some extent resem-
bles the technique proposed in this paper was proposed by Debray and
Evans [11] for applying profile-guided code compression. To reduce the
memory footprint of applications, infrequently executed code is stored in
compressed format, and decompressed when it needs to be executed. At
any point, only a small fraction of the infrequently executed code is in
decompressed form. Because of the large decompression overhead how-
ever, the frequently executed code is always available in decompressed,
i.e., the original, form. Hence this compression technique does not hide
the frequently executed portions of a program, which are generally also
likely to contain the code one might wish to protect.

3 Dynamic Software Mutation

This section discusses the introduction of dynamic software mutation into
a program. We consider two types of mutation: one-pass mutation, where
a procedure is generated once just before its first execution, and cluster-
based mutations, where the same region of memory is shared by a cluster
of “similar” procedures, and where we will reconstruct procedures (and



thus overwrite other procedures) as required during the execution. We
first discuss our novel approach to run-time code editing (Sec. 3.1). This
will enable us to treat the one-pass mutations (Sec. 3.2). Next, we look at
how “similar” procedures are selected (Sec. 3.3) and clustered (Sec. 3.4).
Finally, we propose a protection method for the edit scripts against at-
tacks (Sec. 3.5) and discuss our technique’s applicability (Sec. 3.6).

3.1 The Run-time Edit Process

Our approach is built on top of two basic components: an editing engine
and edit scripts. When some procedure, say f , is to be generated at run-
time, it is statically replaced by a template: a copy of the procedure in
which some instructions have been replaced by random, nonsensical, or
deliberately misleading instructions. All references to the procedure are
replaced by references to a stub that will invoke the editing engine, passing
it the location of the edit script and the entry point of the procedure.
Based upon the information in the edit script, the editing engine will
reconstruct the required procedure and jump to its entry point.

Edit Script. The edit script must contain all the necessary information
to convert the instructions in the template to the instructions of the origi-
nal procedure. This information includes the location of the template and
a specification of the bytes that need to be changed and to what value.
The format we used to encode this information is the following:

editscript = address <editblock>1 <editblock>2 . . . <editblock>l $

editblock = m <edit>1 <edit>2 . . . <edit>m

edit = offset n byte1 byte2 . . . byten

An edit script starts with the address of the template, i.e., the code ad-
dress where the editing should start. It is followed by a variable sequence
of edit blocks, each of which specifies the number of edits it holds and
the sequence thereof, and is terminated by the stop symbol $. An edit
specifies an offset, i.e., a number of bytes that can be skipped without
editing, followed by the number of bytes that should be written and the
bytes to write. As all the values in the edit script, except the address, are
bytes, this allows us to specify the modifications compactly, while still
maintaining enough generality to specify every possible modification.

Editing Engine. The editing engine will be passed the address of the
edit script by the stub. It will save appropriate program state, such as the



register contents, interpret the edit script, flush the instruction cache if
necessary, restore the saved program state and finally branch to the entry
point of the procedure, passed as the second argument. Note that the
necessity of flushing the instruction cache depends on the architecture:
on some architectures, such as the Intel IA-32 architecture used for our
current implementation, an explicit cache flush is not necessary.

Our approach to dynamic code editing modifies the template code in

situ. This is an important departure from classical sequence alignment
and editing algorithms [9], which scan a read-only source sequence, copy-
ing it over to a new area of memory and applying modifications along
the way where dictated by the edit script. With in situ modifications this
copying can be avoided, thereby increasing performance. Insertion opera-
tions are however still expensive, as they require moving the remainder of
the source. Consequently, we do not support insertion operations in our
edit scripts. Instead only substitution operations are supported. Deletion
operations may be implemented by overwriting instructions with no-op
instructions, but as this introduces inefficiencies, we will avoid this as
much as possible.

3.2 One-Pass Mutations

We are now ready to discuss one-pass modifications. With this technique,
we scramble procedures separately, meaning that each procedure will have
its own template. Consequently, different procedures are not mapped to
the same memory location. The idea at obfuscation time is to alter por-
tions of a procedure in the program. At run-time, these alterations are
undone via a single round of editing, just before the procedure is executed
for the first time. To achieve this, we place the stub at the entry point of
the procedure. At the first invocation of the editing engine, this stub will
be overwritten with the original code of the procedure. This way, the call
to the editor will be bypassed on subsequent calls to the procedure.

3.3 Cluster-Based Mutations

The general idea behind clustering is to group procedures of which the
instruction sequences are sufficiently similar to enable the reconstruction
of the code of each of them from a single template without requiring too
many edits. The procedures in a cluster will then be mapped to the same
memory area, the cluster template. Each call to a clustered procedure
is replaced by a stub that invokes the editing engine with appropriate
arguments to guide the edit process, as illustrated in Figure 1.



To avoid reconstructing a procedure that is already present, the edit-
ing engine will rewrite the stub of a constructed procedure in such a way
that it branches directly to that procedure instead of calling the edit-
ing engine. The stub of the procedure that has been overwritten, will be
updated to call the editing engine the next time it needs to be executed.

Fig. 1. Run-time code mutation with clustered procedures

Clustering. Clustering is performed through a node-merging algorithm
on a fully-connected undirected weighted graph in which each vertex is
a cluster of procedures and the weight of an edge (A,B) represents (an
estimate of) the additional run-time overhead (i.e., the cost of the edits)
required when clusters A and B are merged.

The number of run-time edits required by a cluster, i.e., the number of
control flow transfers between two members of that cluster, is estimated
based on profiling information drawn from a set of training inputs.

As usual, the clustering process has to deal with a performance trade-
off. On the one hand, we would like every procedure to be in an as large
as possible cluster. The larger we make individual clusters –and therefore,
the fewer clusters we have overall– the greater the degree of obfuscation
we will achieve, since more different instructions will map to the same
addresses, thus moving further away from the conventional one-to-one
mapping of instructions and memory addresses.

On the other hand, the larger a cluster, the more differences there
will likely be between cluster members, resulting in a larger set of edit
locations, and hence a greater run-time overhead. Furthermore, this will
result in an increasing number of transitions between members within
a cluster. With transition, we mean the execution of one member of a
cluster after the execution of another member. Clearly, each transition



requires editing the next procedure to be executed. Both these factors
increase the total run-time cost of the dynamic modification.

When our greedy clustering algorithm starts, each cluster consists of a
single procedure. The user needs to specify a run-time overhead “budget”
(specified as a fraction φ of the number of procedure calls n that can be
preceded by a call to the editing engine, i.e, budget=n×φ). As we want all
procedures to be in an as large as possible cluster, we proceed as follows.
First we try to create two-procedure clusters by only considering single-
procedure clusters for merging. The greedy selection heuristic chooses
the edge with the lowest weight and this weight is subtracted from the
budget. We then recompute edge weights by summing their respective
weights to account for the merge. When no more two-procedure clusters
can be created, we try to create three-procedure clusters, using the same
heuristic, and so on.

Merging clusters is implemented as node coalescing. This sets an upper
bound to the actual cost and hence is conservative with regard to our
budget. This is repeated until no further merging is possible. A low value
for the threshold φ produces smaller clusters and less run-time overhead,
while a high value results in larger clusters and greater obfuscation at the
cost of higher overhead. It is important to note that two procedures that
can be active together should not be clustered. Otherwise, their common
template would need to be converted into two different procedures at the
same time, which obviously is not possible.

Fig. 2. The creation of clusters, φ=0.1



These concepts are illustrated in Figure 2. The call graph is shown
in Figure 2(a). It is transformed into a fully connected new graph, where
the initial nodes are clusters consisting of exactly one procedure. The
weight given to the other edges between two clusters is the number of
transitions between the respective procedures in those clusters, i.e., the
number of calls to the editor that would result from merging these two
procedures. These values are collected from a set of training inputs. The
resulting graph is shown in Figure 2(b). We furthermore assume that
φ=0.1 and as the maximum number of procedure calls to the editing
engine n is 1000 (10+3*20+50+2*150+160+200+220), a budget of 100
calls is passed to the clustering algorithm. To avoid clustering procedures
that can be active at the same time, the edges between such procedures
are assigned the value infinity, as illustrated in Figure 2(c).

As our clustering algorithm starts with clusters consisting of a single
procedure, the algorithm looks for the edge with the smallest value, which
is (f3, f5). The weights of the edges of the merged cluster to the other
clusters are updated accordingly. Our graph now consists of three clusters
consisting of single procedure (f1, f2, and f4) and one cluster consisting
of two procedures (Figure 2(d)). As it is still possible to make clusters
of two procedures, the edge with the smallest weight between the three
clusters consisting of a single procedure will be chosen (if its weight is
smaller than our budget). This way, procedure f2 and f4 are clustered
(Figure 2(e)). As we can no longer make clusters of two procedures, the
algorithm now tries to make clusters of size three. This is impossible,
however, and so the algorithm terminates.

3.4 Minimizing the edit cost

In this section, we will discuss how the template for a cluster is generated.
This is done in such a way that the number of edits required to construct
a procedure in the cluster from the template is limited.

This is achieved through a layout algorithm which maximizes the over-
lap between two procedures. First of all, basic blocks connected by fall-
through edges are merged into a single block, as they need to be placed
consecutively in the final program. In the example of Figure 3, fall-through
edges are represented by dashed lines. Therefore, basic blocks 1 and 2 are
merged. This process is repeated for all procedures in the cluster. In our
example, there are three procedures in the cluster and the procedures
each have two blocks. These blocks are placed such that the number of
edits at run-time is minimized, as illustrated in Figure 3. The cluster
template consists of sequences of instructions that are common to all the



Fig. 3.

procedures and locations that are not constant for the cluster. The loca-
tions that are not constant are indicated by the black bars labeled a, b,
c, and d. These locations will be edited by the editing engine.

3.5 Protecting Edit Scripts

With the code mutation scheme described thus far, it is possible, at least
in principle, for an attacker to statically analyze an edit script, together
with the code for the editor, to figure out the changes effected when the
editor is invoked with that edit script. To overcome this problem, we will
use a pseudorandom number generator seeded with an opaque variable [5].
A variable is opaque at point p in a program, if it has a property at p
which is known at obfuscation time, but which is computationally difficult
to determine analytically.

The basic idea is to combine the values statically present in the edit
script with a value generated by the pseudorandom number generator.
As we know the value of the seed (opaque variable) at obfuscation time,
we can predict the values that will be generated by the pseudorandom
number generator. Therefore, it is possible to write values in the edit
script which will produce the needed values when combined with the
pseudorandom numbers. Every byte in the edit script is then xor’ed with



a byte created by the pseudorandom number generator before it is passed
to the editing engine.

3.6 Applicability

Dynamic code mutation relies fundamentally on statically constructing
edit scripts that can be used to carry out run-time code mutation. This
presumes that a program’s code is statically available for analysis and
edit script construction. Because of this, the technique is not applica-
ble to code that is already self-modifying. Dynamic code mutation also
causes instruction opcodes and displacements to change. New instructions
are inserted in procedure stubs, and displacements in branch and call in-
structions may change as a result of code movement. This precludes the
application of dynamic code mutation to programs that rely on the actual
binary values of code locations (as opposed to simply their instruction se-
mantics), e.g., programs that compute a hash value of their instructions
for tamper-proofing.

Finally, the contents of the code locations change as dynamically mu-
tating code executes. This means that the technique cannot be applied to
reentrant code such as shared libraries. Note that while this is an issue for
multi-threaded programs as well, we can deal with multi-threading using
static concurrency analyses to identify code regions that can be executed
concurrently in multiple threads [19], and use this information to modify
clustering to ensure that code regions that can execute concurrently in
multiple threads are not placed in the same cluster for mutation.

4 Security Evaluation

In this section we will discuss the security of our technique against attacks.

4.1 Broken assumptions

While the omnipresent concept of the stored program computer allows
for self-modifying code, in practice, self-modifying code is largely limited
to the realm of viruses and the like. Because self-modifying code is rare
nowadays, many analyses and tools are based upon the assumption that
the code does not change during the execution.

Static disassemblers, e.g., examine the contents of the code sections
of an executable, decoding successive instructions one after another until
no further disassembly is possible [22]. Clearly these approaches fail if the
instructions are not present in the static image of the program.



Dynamic disassemblers by contrast, examine a program as it executes.
Dynamic disassemblers are more accurate than static disassemblers for
the code that is actually executed. However, they do not give disassemblies
for any code that is not executed on the particular input(s) used.

In order to reduce the runtime overheads incurred, dynamic disassem-
bly and analysis tools commonly “cache” information about code regions
that have already been processed. This reduces the runtime overhead of
repeatedly disassembling the same code. However, it assumes that the
intervening code does not change during execution.

Many other tools for program analysis and reverse engineering cannot
deal with dynamically mutating code either. For example, a large num-
ber of analyses, such as constant propagation or liveness analysis require
a conservative control flow graph of the program. It is not yet fully un-
derstood how this control flow graph can be constructed for dynamically
mutating code without being overly conservative. Through the use of self-
modifying code, we cripple the attacker by making his tools insufficient.

4.2 Inherent Security

While undermining assumptions made by existing analyses and tools adds
a level of protection to the program and will slow down reverse engineer-
ing, its security is ad-hoc. However, no matter how good reverse engineer-
ing tools will become, a certain level of security will remain. As long as
the opaque variable or the pseudorandom number generator are not bro-
ken, an attacker cannot deduce any other information than guessing from
the edit script. Assuming that the opaque variable and pseudorandom
number generator are secure, it corresponds to a one-time pad.

Depending on the class of expressions considered, the complexity of
statically determining whether an opaque variable always takes on a par-
ticular value can range from NP-complete or co-NP-complete[8], through
PSPACE-complete[23], to EXPTIME-complete[14].

A lot of research has gone into the creation of secure pseudoran-
dom number generators. For our purposes, we need a fast pseudorandom
number generator. ISAAC [15] for example meets this requirement and,
in practice, the results are uniformly distributed, unbiased and unpre-
dictable unless the seed is known.

5 Experimental Results

We built a prototype of our dynamic software mutation technique us-
ing Diablo, a retargetable link-time binary rewriting framework[10]. We



evaluated our system using the 11 C benchmarks from the SPECint-2000
benchmark suite. All our experiments were conducted on a 2.80GHz Pen-
tium 4 system with 1 GiB of main memory running RedHat Fedora Core
2. The programs were compiled with gcc version 3.3.2 at optimization
level -03 and obfuscated using profiles obtained using the SPEC training
inputs. The effects of obfuscation on performance were evaluated using
the (significantly different) SPEC reference inputs.

The prototype obfuscator is implemented on top of the tool Diablo,
which only handles statically linked programs. In real-life however, most
programs are dynamically linked. To mimic this in our experiments, and
obtain realistic results, our prototype obfuscator does not obfuscate li-
brary procedures.

Table 1. Number of procedures that can be protected

Table 1 shows the number of procedures that are scrambled by ap-
plying our new obfuscation technique. The value of φ was set to 0.0005.
Procedures containing escaping edges1 can’t be made self-modifying in
our prototype, as it is impossible to make sure that the targeted proce-
dure of the escaping edge is present in memory. On all other procedures,
we first applied the clustering mutation. After this first pass, we scram-
bled the remaining procedures with the one-pass mutation. On average
this combined application of the two mutation technique is capable of
protecting 92% of all (non-library) procedures in the programs.

In Figure 4 the distribution of the number of procedures per cluster
is shown. The value of φ was set to 0.0005. On average, there are 3.61
procedures per cluster.

Table 2 shows the run-time effects of our transformations. On average,
our benchmarks experience a slowdown of 17.7%; the effects on individ-
ual benchmarks range between slight speedups (for gzip and vpr), to an
almost 2x slowdown (for vortex). This slight speedup experience is due

1 Escaping edges are edges where control jumps from one procedure into another
without using the normal call/return mechanism for interprocedural control trans-
fers. They are rare in compiler generated code, and can most often be avoided by
disabling tail-call optimization.



Fig. 4. Number of procedures per cluster

Table 2. Relative execution time, φ=0.0005

to cache effects. In general, frequently executed procedures, and espe-
cially frequently executed procedures that form hot call chains, will be
put in separate clusters. Hence these procedures will be mapped to differ-
ent memory regions. If the combined size of the templates of all clusters
becomes smaller than the instruction cache size, the result is that all hot
call chains consist of procedures at different locations in the cache. Hence
few or none hot procedures will throw each other out of the instruction
cache. For gzip and vpr, the resulting gain in cache behavior more than
compensates for the, already small, overhead of executing the edit scripts.

Figure 5 summarizes the run-time overhead of our transformations for
different φ’s. On average benchmarks are 31.1% slower with a φ=0.005
and 5.9% slower with φ=0.00005.

6 Conclusion

This paper introduces an approach to dynamic software protection, where
the code for the program changes repeatedly as it executes. As a result,
a number of assumptions made by existing tools and analyses for reverse
engineering are undermined. We have further argued that the technique



Fig. 5. Execution time slowdown for different values of φ

is secure as long as the opaque variables or random number generator
have not been broken.
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