
Weighted Decision TreesSaumya Debray Sampath Kannan Mukul PaithaneDepartment of Computer ScienceUniversity of ArizonaTucson, AZ 85721, USAfdebray, kannan, mukulg@cs.arizona.eduAbstract: While decision tree compilation is a promisingway to carry out guardtests e�ciently, the methods given in the literature do not take into account eitherthe execution characteristics of the program or the machine-level tradeo�s betweendi�erent ways to implement branches. These methods therefore o�er little or noguidance for the implementor with regard to how decision trees are to be realized ona particular machine. In this paper, we describe an approach that takes executionfrequencies of di�erent program branches, as well as the costs of alternative branchrealizations, to generate decision trees. Experiments indicate that the performanceof our approach is uniformly better than that of plausible alternative schemes.1 IntroductionThere has been a great deal of research, in recent years, on the design and im-plementation of concurrent logic and constraint programming languages (see, forexample, [12, 13, 14, 15, 17]). Much of the implementation e�ort in this contexthas focussed on the so-called \at" versions of these languages: here, a procedurede�nition consists of alternatives, each alternative preceded by a guard that consistsof a set of ask actions or primitive tests. An alternative can be selected at runtimeonly if the corresponding guard tests can be satis�ed. For such languages, a com-pilation technique called decision tree compilation seems quite promising [6, 7, 8].The idea here is to improve program e�ciency by structuring the collection of allguard tests for a procedure into a \decision tree", thereby reducing the number ofredundant tests executed. Algorithms for decision tree compilation have been givenby Kliger and Shapiro [6, 7] and Korsloot and Tick [8].The algorithms given by the authors cited above are concerned primarily withgenerating a decision tree for a set of tests by choosing an order in which thetests should be executed. They use various heuristics to accomplish this, e.g., by�rst considering tests that are \cared about" by the largest number of clauses (themax-care heuristic), then choosing from such tests one that has the fewest di�erentresults (the min-variability heuristic). These algorithms generate \conceptuallyreasonable" decision trees. However, as far as we can see, these algorithms givelittle or no guidance towards the actual machine realization of a decision tree, i.e.,the actual structure and nature of branch instructions that should be generated atthe machine level for a particular program in a particular implementation, assumingthat certain characteristics of the program and the machine are given. There are anumber of reasons why this problem is not entirely trivial:1. Procedures are typically de�ned by more than one clause, and not all clausesare executed with equal frequency. For example, since programs typicallyspend most of their execution time in loops, the recursive clauses for a proce-dure are likely to be executed much more often than the non-recursive clausesthat terminate recursion. If the di�erent clauses for a procedure have di�er-



ent \weights", or execution frequencies, then the decision tree should be con-structed in such a way that the \heavier" a clause, i.e., the more frequentlyit is executed, the shorter the path from the root of the decision tree to thenode corresponding to a decision on that clause. (Note that this notion of the\weight" of a clause refers only to its frequency of execution, which determinesits importance in the context of decision tree compilation|it has nothing todo with its \granularity", i.e., computational cost.) Moreover, a good decisiontree compilation algorithm should be robust with respect to program transfor-mations such as loop unrolling or partial evaluation, which can change controlow characteristics and a�ect the relative execution frequencies of di�erentbranches.2. It is not enough to consider the weights of di�erent clauses in isolation whengenerating decision trees. For example, one could imagine a compilationscheme where a partial decision tree is generated considering the tests forthe heaviest clause �rst, after which any remaining tests for the next heaviestclause are \grafted" onto this tree, and so on down the other clauses. Such anapproach can give surprisingly poor performance, because a set of clauses mayhave weights that are not individually very large, but are collectively muchheavier than the clause with heaviest weight (we discovered this the hard waywhile experimenting with decision trees for the lexical analysis phase of acompiler).3. Conditional jumps can be implemented in a variety of ways using di�erentaddressing modes, and the alternatives have di�erent capabilities and di�erentcosts. For example, a multi-way jump can be implemented using a tree of 2-way conditional branches, or by an indirect jump through a \jump table".The former is cheaper|typically, one or two machine instructions|but islimited to two alternatives; the latter is more expensive|typically, six to tenmachine instructions|but can address many di�erent alternatives. Unlessthe realization choices are made intelligently, the machine-level overheads mayreduce considerably, or even nullify, the bene�ts of using decision trees.This entire discussion is predicated on being able to associate execution frequencies(or, when normalized, estimated execution probabilities) with the clauses de�ninga procedure. For a discussion of this issue in the context of compilers for traditionallanguages, see [2, 9, 10, 18, 19]; techniques for estimating execution frequencies oflogic programs from their call graph structure are discussed in [3, 16]. A point tonote is that the techniques described in [3, 16] involve a simple and e�cient linear-time traversal of the call graph of the program (i.e., a graph describing the caller-callee relationships between predicates): there is no iterative �xpoint computation ofthe sort encountered in global dataow analyses. Thus, the overhead of estimatingexecution frequencies using such techniques is small. An alternative is to pro�lethe program on sample inputs to estimate execution frequencies: as the results ofGorlick and Kesselman [5] indicate, the overhead for this approach is also small.The primary technical contribution of this paper is to give an algorithm toconstruct \weighted" decision trees. The idea is to reduce the expected machine-level cost of executing the decision tree by taking into account estimated executionprobabilities of the di�erent clauses of a procedure, together with the executioncosts of alternative machine realizations for (conditional) branches. We argue thatin general, it is not enough to consider only the probabilities given, but that a



related information-theoretic notion of entropy can be used to advantage. Oneinteresting|and apparently novel|aspect of our algorithm is that in the processof generating a \good" decision tree for a procedure, it may generate tests that donot appear in the original source program, but which can be used to improve theexecution characteristics of the decision tree. Experiments indicate that in mostcases, the decision trees so generated correspond very closely to what one woulddesire for the particular weight distributions and machine instruction costs.2 Preliminaries2.1 Normalized ProgramsTo simplify the discussion that follows, we assume that programs are in a normalizedform satisfying the following two properties:1. the guards for any procedure are exhaustive, i.e., for any possible values ofactual parameters to that procedure, there is at least one guard that will notfail; and2. all ask actions are of the form `f(v1; : : : ; vn) op c', where op is a comparisonoperator, f(� � �) is an n-ary \evaluable function", and c is a constant over atotally ordered domain.These requirements may appear to be very restrictive, but it turns out that pro-grams can be transformed to satisfy these conditions fairly easily. First, consider aprocedure p whose guards are fG1; : : : ; Gng: such a procedure can be made exhaus-tive simply by adding \default" clauses that catches any input that causes each ofthe guards G1; : : : ; Gn to fail: the guards for these default clauses is obtained bytransforming the formula :G1 ^ � � � ^ :Gn to disjunctive normal form. The detailsare fairly obvious, and not pursued here further. An important point to note is thatthere is no need to determine whether the guards G1; : : : ; Gn in the original de�ni-tion are already exhaustive: the \default" clause(s) can be added blindly withouta�ecting the behavior of the program in any way. If G1; : : : ; Gn are exhaustive, thenthe guard of each default clause so generated is unsatis�able, so the transformationdoes not a�ect program semantics.Next, consider transforming ask actions to normal form: we assume that thelanguage under consideration allows (only) the following kinds of ask actions:Relational Tests on Values : Given a test of the form `expr1 op expr2' where opis a comparison operator,1 let expr1 � expr 01 + c1 and expr2 � expr 02 + c2,then the normal form test is `(expr 01 � expr 02) op (c2 � c1).' E.g., the test`X > Y + 5' becomes transformed to the normal form test `X � Y > 5'.Tests on Types : We assume that the language has a �nite set of base types�1; : : : ; �n, with corresponding type tests is �1; : : : ; is �n. In the transfor-mation to normal form, the extraction and checking of type tags is madeexplicit via an operation tag(e) that returns the tag bits of the value of theexpression e. Assume that the tag bit patterns for the types �1; : : : ; �n are�1; : : : ; �n respectively. Then, a type test `is �i(expr )' is transformed to anormal form test `tag(expr ) = �i'.1We assume that there is some reasonable set of operators can be allowed in the expressionsexpr1 and expr 2, e.g., the usual arithmetic operators, selectors for extracting components ofcompound structures and aggregates, etc.



2.2 De�nitions and NotationThe techniques in this paper for generating decision trees rely heavily on our abilityto \decompose" the set of primitive tests in a procedure de�nition into subsets oftests where tests in any subset are \independent" of the other tests. To formalizethis notion we need the following de�nitions. An outcome of a primitive test is theresult of the test for a particular assignment of values to the variables in the test.The set of possible outcomes of a test t is denoted by outcomes(t). The idea canbe extended to a set of tests S: assume an arbitrary (but �xed) ordering for theelements of S, then the set of possible outcomes for S is denoted by outcomes(S),where an element � 2 outcomes(S) is a tuple h�1; : : :�jSji where �i represents theoutcome of the ith test in S.De�nition 2.1 An outcome � = h�1; : : :�jSji 2 outcomes(S) is consistent if thereis some substitution of values for the variables of S that makes the outcome of theith test in S equal �i for every i, 1 � i � jSj. The set of all consistent outcomes ofa set S of primitive tests is denoted outcomes�(S).De�nition 2.2 Given a set of tests U , S � U is an equivalence class if S isminimal with respect to the property that for every � in outcomes�(S) and � inoutcomes�(U � S), there exists a valuation � of the variables in U such that �(S)has outcome � and �(U � S) has outcome � .Although it is not immediately obvious, it can be shown that the classes de�nedabove are indeed equivalence classes and induce a partition on the set of tests. Apoint to note is that this generalizes the intuitive notion of a pair of tests being(in)dependent: according to this notion, we can only talk of the dependence of a setof tests, which means that the outcome of one of them provides some informationabout the possible outcomes of the others (this is roughly analogous to the notionof a set of vectors being linearly (in)dependent).Example 2.1 Consider the following clause:p(X, Y) :- X < 0, X > Y | ...Previous authors have considered the notion of a clause \caring" about a test (e.g.,see [7]): a clause C cares about a test g if there is a test g0 in the guard of C suchthat exactly one of the tests g0 ^ g, g0 ^ :g is satis�able. By this de�nition, theclause given above does not care about the test Y > 0. However it is clear that theguard tests `X < 0; X > Y' cannot be satis�ed if Y > 0 is true. In our notion, thethree tests fX < 0; X > Y; Y > 0g would be in the same equivalence class, since itis the minimal set of tests in this case that satis�es the de�nition of an equivalenceclass above (no proper subset of this set satis�es the de�nition). 2As this example illustrates, the notion of an equivalence class di�ers from thenotion of \cares about" in that we consider all possible outcomes of the tests in anequivalence class, not just the outcomes where the guard tests are true. The intutivejusti�cation for this is that we get valuable information not only from �nding outthat certain guard tests hold, but also from �nding out that certain guard tests donot hold.



The algorithmic problem of breaking up a set of primitive tests into equivalenceclasses is in general rather complex. A sophisticated algorithm would analyze therelations (if any) between the variables mentioned in the primitive tests and takethese relations into account in deciding equivalence classes. It is not hard to provethat the general equivalence class �nding problem is NP-Complete. In practice,however, a good heuristic is to put two tests in the same equivalence class if thetests both involve a common variable. Algorithms for �nding equivalence classes arenot the main focus of this paper, since in most examples that we have encountered,this is far easier than the other tasks involved in �nding the optimal decision tree.In the next section we describe the algorithm to �nd the optimal decision tree.At a very high level, the algorithmbreaks up the problem of sequencing the primitivetests in a procedure de�nition into hierarchical problems of sequencing the variousequivalence classes of queries and sequencing the queries within an equivalence class.We show that there is no loss of optimality in this hierarchical breakup and thatthe sequencing between equivalence classes is independent of the weights on thevarious possible actions. The weights only a�ect the sequencing of tests within eachequivalence class.In order to describe our heuristic for ordering the tests within an equivalenceclass we borrow the notion of entropy (also known as the uncertainty function) frominformation theory[1]:De�nition 2.3 Let X be a random variable that takes on a �nite number of pos-sible values x1; x2; : : : ; xm with probabilities p1; p2; : : : ; pm, respectively, such thatpi > 0; 1 � i � m, and Pmi=1 pi = 1. The entropy of X, denoted H(X), is de�nedto be Pmi=1�pi log2(pi).At �rst glance the choice of this particular function seems somewhat arbitrary,but it can be shown that this is the only function that satis�es some very reason-able axioms on the behaviour of an uncertainty function (see [1] for details). Thenotion of entropy extends in a straightforward way to tests: if a test t has m pos-sible outcomes, with probabilities p1; : : : ; pm respectively, then the entropy of t isH(t) = Pmi=1�pi log2(pi). The underlying idea here is that execution frequenciesfor di�erent clauses (i.e., guards) can be normalized to give us estimates of exe-cution probabilities for the guard tests, whence we can use entropies to guide thegeneration of decision trees.Intuitively, the way to think of entropies in our situation is that, when we entera procedure de�nition, the average amount of uncertainty we have to dispel beforechoosing the clause to execute is represented by the entropy. Each test that weperform dispels a certain amount of uncertainty based on the probabilities of eachof the outcomes of that test. The relevant property of entropy here is that, givenan initial entropy e1, if we perform a test with etropy e2, then the average amountof uncertainty that remains given the outcome of the test is e1 � e2. Hence, teststhat dispel a greater amount of uncertainty make greater progress towards ourgoal. Another feature that makes this approach very attractive is that the entropyfunction (and a normalized version of it) is especially useful for comparing teststhat take di�ering numbers of instructions to perform (i.e., have di�erent costs)and have di�erent numbers of outcomes.2 For instance we can use a normalizedentropy function to compare a binary decision, as exempli�ed by an if statement,2Initially, we looked for more elementary ways to solve what we hoped would be a simplecompilation problem. However, we were unable, after considerable thought, to come up with a



with a multiway decision, as exempli�ed by a case or switch statement. To thisend we de�ne the normalized entropy of a test as follows:De�nition 2.4 The normalized entropy of a test t with entropy H(t) and cost Cis given by bH(t) = H(t)=C.We defer a discussion of the use of this de�nition to the next section. In thenext section we will see the application of entropy (or uncertainty) to ordering testswithin an equivalence class.3 Generating Weighted Decision Trees3.1 The Mutually Exclusive CaseRecall that a set of guards is exhaustive if any consistent outcome of the primitivetests comprising the guards turns on at least one of the guards. In practice mostprocedure de�nitions satisfy a further property which we call mutual exclusion.De�nition 3.1 A pair of tests t1 and t2 is mutually exclusive if and only if 9(t1^t2)is not satis�able.A set of tests is mutually exclusive if the tests are pairwise mutually exclusive.In this section we will focus on procedure de�nitions where the set of guardsare exhaustive as well as mutually exclusive | i.e. every consistent outcome of theprimitive tests turns on exactly one of the guards.For such procedure de�nitions we can rigorously establish the `form' of the (prov-ably) optimal decision tree. Our results in this section will apply to arbitrary pro-cedure de�nitions that are mutually exclusive and exhaustive (note that that thegeneral problem of generating an optimal decision tree where the tests may not bemutually exclusive and exhaustive is NP-Complete [4]). We can show that in anyprocedure de�nition where the guards are mutually exclusive and exhaustive, thereis a single equivalence class such that each guard \cares about" this class. In otherwords, the outcome of the tests in the equivalence class must be determined beforewe can decide which guard is turned on.De�nition 3.2 An equivalence class is said to be dominant if the outcome of thetests in the equivalence class must be determined before we can decide if any of theguards is true.Theorem 3.1 In any procedure de�nition where the guards are exhaustive and mu-tually exclusive, there is a dominant equivalence class of tests.The proof is omitted due to space constraints. This result immediately suggestsan optimal algorithm for generating a decision tree in the case where the procedurede�nition is mutually exclusive and exhaustive:1. Find a dominant equivalence class.reasonable approach using only execution weights that would be able to compare the relative costsof two-way branches using conditional branches and multi-way branches using a branch table.



2. Produce a decision tree for the equivalence class (along the lines of Figure 1),and recursively construct trees for the subproblems at each of the leaves ofthis tree.The optimality of the algorithm follows from the fact that the outcome of testsin the dominant equivalence class must be determined by any scheme to evaluatethe procedure de�nition.The central part of the above algorithm is to produce an optimal decision treefor an equivalence class. This is the subject of our next subsection.3.2 Generating the Decision Tree for an Equivalence ClassIn this section we present a heuristic for �nding a near-optimal decision tree foran equivalence class using the notion of normalized entropy de�ned in the previoussection. This is the portion of our general algorithm for mutually exclusive andexhaustive procedure de�nitions that is not necessarily optimal. Recall that eachtest is assumed to be of the form `f(�x) op c', where f is an evaluable functionand c is a constant over a totally ordered domain. Given an equivalence class oftests S for which to generate a decision tree, we �rst group the elements of S intopartitions, called families, such that tests in the same family compute the same\left hand side" expression f(�x). For example, given the testsfI > 0, J > 0, I-J < 0, I-J = 0, I-J >= 1gwe get three families: fI > 0g, fJ > 0g, and fI-J < 0, I-J = 0, I-J >= 1g. Togenerate the decision tree for the original equivalence class, we have to construct thedecision tree for each family so generated. As discussed at the end of the previoussection, at each point we construct a decision tree for a dominant equivalence classof tests. There may be semantic dependencies that impose an ordering, e.g., it maybe necessary to test that a variable is bound to a cons cell before attempting toaccess the head of that cell: if there are such dependencies, we assume that thedi�erent families are ordered in a way that respects these dependencies and yieldsa legal ordering. Our choice of an order for processing these families may alsobe guided by low-level considerations, e.g., we may choose an order that groupstogether di�erent families that test the same variables, so as to improve our use ofregisters and better exploit the cache. For all these reasons, we do not focus on theordering between families in this paper, although this ordering has a bearing on theaverage number of instructions executed.According to earlier treatments of decision tree compilation, the next step,namely the construction of a decision tree for a family of tests, which is of theform ff(�x) op1 c1; : : : ; f(�x) opn cng, is trivial: we generate a multi-way jumpbased on the value of the expression f(�x). This does not address the crucial im-plementation decision of how this multi-way branch is to be realized. Dependingon the addressing modes available on our target architecture, there may be a vari-ety of options available, with di�erent capabilities and costs: for example, we mayuse a tree of conditional branches (corresponding to if-then-else statements),or an indirect jump through a branch table (corresponding to a case or switchstatement), or possibly a combination of both. In general, each option has di�erentcapabilities and di�erent costs: for example, a conditional branch takes two or threemachine instructions but is able to address only two alternatives, while an indirectjump through a branch table may take a total of six to ten machine instructions,



but can address a large number of alternatives. Further, even if we decide to use aconditional test rather than jump through a branch table, we still have to make thechoice of what that test should be. Typically, the best choice will be a test that triesto balance, as far as possible, the weights corresponding to each of its outcomes:this may produce a test that does not appear in the original source program. Oneof the novel features of our algorithm is that it (when appropriate) generates testswhich do not occur in the source program, resulting in improved performance.Our aim is to generate a decision tree that reduces, as far as possible, the ex-pected length (in machine instructions) over all paths. To do this, we use normalizedentropies (see De�nition 2.4) to compare the \merit" of alternative realizations, andpick the best.3. The justi�cation for using normalized entropy is as follows: Whatwe would like to do is to minimize the average path length which is the weightedaverage of the number of instructions it takes to get to each leaf of the tree. Onthe average, we need to dispel an amount of uncertainty equal to the entropy of theprobability distribution induced by the weights on the leaves before we can get tothe leaves. In order to �nd the way that takes the fewest number of instructions todispel this uncertainty, we use the greedy heuristic and pick the test that dispelsthe greatest amount of entropy per instruction. Of course, this is only a heuristicand we can construct somewhat pathological examples where it is not optimal. Ouralgorithm is described below and the decision trees produced by our algorithm forsome examples are described in the next section. To simplify the discussion thatfollows, we assume that there are only two alternative realizations possible: condi-tional jumps, with cost Cbranch, and indirect jumps through a branch table, withcost Cswitch: the algorithm can be extended to deal with other realizations (e.g.,where a set of tests is realized using a switch after \lopping o�" the boundariesusing two if-then-else statements) without much trouble. We use the followingnotation:{ the probability (i.e., normalized weight) of a test t is denoted by prob(t);{ because not every set of tests can be realized using a branch table (for example,if there are tests of the form x > 0), we assume that there is a predicateswitchable(S) that is true if and only if the set of tests S can be implementedusing a branch table; and{ given a family of tests S, we use the notation `hS1; c; S2i = split(S)' to indicatethat(i) S is partitioned into two pieces S1 and S2 such that the total weight ofthe tests in S1 is as close as possible to the total weight of tests in S2;and(ii) c is the \dividing line" between the tests S1 and S2, i.e., tests in S1 implythat the expression being evaluated has a value less than c, while testsin S2 imply that this value is greater than (or equal to) c.The algorithm, which is given in Figure 1, can be extended in a straightforward wayto consider more than two alternative realizations. In the function gen tree, it is3If one were only interested in �nding the optimal binary decision tree for the example above,techniques for generating optimal binary search trees using dynamic programming would apply,but these techniques do not permit an easy comparison of this tree with a decision tree usingmultiway branches.



Input : A set of tests S forming an equivalence class.Output : A decision tree T realizing the tests S.Method : return T := gen tree(S);function gen tree(S) : decision treebeginnormalize the weights of tests in S;partition S into families;arrange these families in some order fS1; : : : ; Sng;for i := 1 to n do /* construct decision trees for each family */if switchable(Si) and entropy switch(Si) > entropy cond (Si) thengen switch(Si);elsegen cond(Si);�;odend;procedure gen switch(S)beginimplement the tests in S at n as an indirect jump through a jump table;endprocedure gen cond (S)beginlet S be a family of tests fE(�x) op1 c1; : : : ; E(�x) opn cng;let hS1; c; S2i = split(S);let p1 =Pfprob(t) j t 2 S1g and p2 =Pfprob(t) j t 2 S2g;generate the decision tree \if E(�x) < c goto U1 else goto U2;"where U1 = gen tree(S1) and U2 = gen tree(S2);endfunction entropy switch(S) : realbeginreturn (Pf�prob(t) log2(prob(t)) j t 2 Sg)=Cswitch;endfunction entropy cond (S) : realbeginlet hS1; c; S2i = split(S);let p1 =Pfprob(t) j t 2 S1g and p2 =Pfprob(t) j t 2 S2g;return �(p1 log2(p1) + p2 log2(p2))=Cbranch;endFigure 1: An Algorithm for Ordering Tests Within an Equivalence Class



important that the weights be normalized before proceeding with the construction:otherwise, in subsequent invocations of gen tree from within gen cond, the com-putations of weighted entropies may become distorted. Note that the proceduregen cond can introduce tests into the decision tree that are not present in the origi-nal source program. Given the treatment of type tests such as integer/1, atom/1,etc., described in Section 2.1, an esthetically pleasant consequence of this is that aset of type tests on a variable may compile into decision tree tests with non-equalitycomparisons on type tags, e.g., something like `if tag(X) < LIST : : : 'Example 3.1 The following example illustrates the working of the algorithm ofFigure 1. Let the cost of an indirect branch through a jump table be 10 instructions,while that of a test/conditional-branch combination is 2 instructions (these are theassembly instruction counts for switch and if statements in C on Sparcstations).Consider the predicate p/1 de�ned by 100 clauses:p(X) :- X = 1 | true....p(X) :- X = 100 | true.Suppose that the weights of the clauses, for di�erent values of the argument X, aregiven by the following table (the distribution is somewhat arti�cial, but it illustratesthe algorithm in a simple way and produces a pretty decision tree):X weight normalized wt.1 520 0.52002{49 3 0.003050 236 0.236051{100 2 0.0020We �rst consider the root node of the decision tree. The weighted entropy bHjt fora jump table implementation of this node is given bybHjt = 110 ((�0:52 log2 0:52) +P49i=2�0:003 log2 0:003 + (�0:236 log2 0:236) +P100i=51�0:002 log2 0:002)= 0.308.For a conditional branch implementation, the \split point" that balances the nor-malized weights best, given the distribution given above, is 2 (i.e., the test generatedwill be `X < 2'). The weighted entropy bHcb for a conditional branch implementa-tion is given bybHcb = 12((�0:52 log2 0:52) + (�0:48 log2 0:48)) = 0:499:Since bHcb > bHjt, a conditional branch `if (X < 2) ...' is used to implement thisnode.One of the children of this node is the node 1, which is a leaf node that does notneed a decision tree. The other child requires a decision tree for the cases 2{100.For this, the recursive call to the function gen tree results in a renormalization ofthe relevant weights, which produces the following:



X weight normalized wt.2{49 3 0.006350 236 0.491751-100 2 0.0042Computing weighted entropies as above, with the split point for the conditionalbranch case being at 50, we get bHjt = 0:437, bHcb = 0:442. Since bHcb > bHjt , aconditional branch `if (X < 50) ...' is used to implement this node.One of the children of this node is for the cases 2{49. Each of these cases has anormalized weight of 0.0208. With the split point for the conditional branch at 25,the weighted entropies are computed as bHjt = 0:558, bHcb = 0:500. Since bHjt > bHcb,this subtree is implemented using a jump table.The other child is for the cases 50{100. On normalization, we haveX weight normalized wt.50 236 0.702451-100 2 0.0059In this case, with the split point for the conditional branch at 51, the weightedentropies are computed as bHjt = 0:254, bHcb = 0:439. Since bHcb > bHjt , a conditionalbranch `if (X < 51) ...' is used to implement this node.One child of this node is the leaf node 50, which does not need a decision tree.The other child is for the cases 51{100, for which each test has a normalized weightof 0.02. In this case, with the split point for the conditional branch at 25, theweighted entropies are computed as bHjt = 0:564, bHcb = 0:500. Since bHjt > bHcb,this subtree is implemented using a jump table.The overall decision tree that is produced for this example is shown in Figure2. The average number of instructions executed for this tree, given the weightdistribution and implementation costs assumed above, is 5.78. By comparison, theaverage cost is 10 instructions if the decision tree is implemented as a single switchstatement, and between 12 and 14 instructions (depending on the exact structure ofthe tree) if it is implemented as a binary tree without taking weights into account.(A cursory examination of the tree in Figure 2 suggests that it may be better, giventhe weight of the leaf labelled 50, to test for this case earlier, e.g., using the test `X= 50' immediately after the test `X < 2'. However, a careful examination indicatesthat the average number of instructions executed for such a tree would be 5.94,which is slightly higher than that of the tree obtained using our algorithm.)To simplify the discussion in this example, we have ignored the possibility ofsuspension due to underinstantiated inputs. To deal with suspension, it su�ces toadd a clause that speci�es when suspension should occur:p(X) :- tag(X) = VARIABLE | suspend(...).The weight of such a \suspension clause" will depend on the execution characteris-tics of the program. For example, if p/1 is almost always called with a non-variableargument, and therefore rarely suspends, then the suspension clause will have avery small weight, and the corresponding node in the decision tree generated usingour approach will be fairly deep, i.e., it will be considered towards the end. On the



�� ��X < 21 �� ��X < 50�� ��jump-table �� ��X < 512 ... 49 50 �� ��jump-table51 ... 100
�� @@�� @@�� @@�� CC �� CC
y ny ny nFigure 2: The decision tree produced for Example 3.1other hand, if p/1 is usually called with a variable argument and has to suspend (asmight happen in programs written in an \object-oriented" style), then the suspen-sion clause will have a high weight and its node in the decision tree will be close tothe root, i.e., it will be considered early in the execution of the predicate. As faras we can tell, earlier approaches, e.g., those of Kliger and Shapiro [6, 7], generatedecision trees that consider suspension in otherwise branches, which appear to beconsidered at the end if none of the non-otherwise branches is taken, and thereforedo not o�er this exibility. 23.3 The Non-Mutually Exclusive CaseIn this case, at any point there is a set of equivalence classes of tests, each of which is\cared about" by some subset of the set of clauses under consideration, rather thana single dominant equivalence class that every clause cares about. Theoretically,the notion of entropies seems less obviously applicable here, because the tests arenot mutually exclusive. However, it turns out that we get intuitively reasonableresults if we use weights or normalized entropies to order the di�erent equivalenceclasses, then apply the previous algorithm to the equivalence classes in this order.4 PerformanceIn this section, we compare the performance of the entropy based technique de-scribed earlier with those of a number of other plausible ways of implementingdecision tree for an equivalence class. Our experiments considered an equivalenceclass consisting of a single multiway branch, which corresponds to several tests onthe same group of variables. Our decision tree compiler takes a (switchable) setof tests with weights, together with machine cost parameters, and emits C codefor these tests. The results reported are execution times for the code so gener-ated, compiled using gcc on a Sparcstation-2: this allows us to examine the relativemachine-level costs of di�erent realizations of decision trees without obscuring theresults by including time spent in non-decision-tree computations. The results aregiven in Table 1. The di�erent approaches that we compare with our entropy-based



approach are as follows:If-Then-Else : Here, the n-way branch is implemented as a series of if-then-elsestatements. As a result, the last branch is executed only after n�1 tests havebeen performed. (This is not quite the same as not compiling a decision treeat all, since it is possible, in such a scheme, that tests from di�erent guardsare shared.)Weighted If-Then-Else : Similar to the above, except that the tests are ordered indecreasing order of weight, with the branch with the highest weight tested for�rst.Weighted Binary Tree : When the underlying set of values is totally ordered, it ispossible to organize a set of tests so that we e�ectively use a binary searchtree. The tests at the leaves of the tree are the tests that appeared originally inthe program and the tests on the internal nodes are the ones that are insertedsuch that the probability of execution of either branch is as equal as can bemade, depending on the probability values of the original program branches.Unlike the decision tree compilation schemes suggested in the literature, thisscheme can generate (internal node) tests that do not appear in the originalprogram.Jump Table : The most obvious way of coding an n-way branch is using an indirectjump through a jump table. However, this approach is not suitable for non-equality tests, e.g., x > 2.The benchmarks tested were the following:1. Lexical Analyzer: In a compiler front-end, a lexical analyzer must examineeach character of the input program to determine the lexical structure of the pro-gram. This requires a decision tree with an n-way branch, where n is the size ofthe alphabet. We restricted our alphabet to digits and lower case letters, so thatthe decision tree had 36 leaves. Letters were given heavier weight than digits (eachletter had a weight of 10, and each digit a weight of 1). We used a 2 Mbyte text �leas test input for our experiments. The decision tree produced by the entropy-basedscheme in this case was a binary tree.2. Final Code Generator: After all �nal code generation decisions have beenmade in the back end of a compiler, it is necessary to actually emit the instructionsto create an object �le. For this, the compiler must examine the opcode of eachinstruction (which is typically in some internal representation) to determine theexact bit patterns to emit. Thus, it is necessary to create a decision tree based onthe relative (static) frequencies of di�erent opcodes. We used gcc to compile itselfon a Sparcstation and generate an assembler �le, then used the static instructioncounts obtained from this to estimate the relative frequency of di�erent opcodes.The decision tree in this case had 53 leaves. The decision tree produced by ourentropy-based approach was an indirect jump through a branch table. The timereported is the time taken to process the gcc opcodes.



Approach Lexical Analyser Code Generator Byte-Code Interpreterentropy-based 1.000 1.000 1.000jump table 1.114 1.000 1.000binary tree 1.114 1.347 1.470if-then-else 2.770 1.732 > 5weighted-if-else 1.033 1.732 2.625Table 1: Normalized Performance Figures3. Byte-Code Interpreter: Many programming language implementations usebyte code interpreters, where programs are compiled to (a byte-code encoding of)a virtual machine instruction set, which is then interpreted by a machine-level pro-gram. Many well-known Prolog implementations follow this approach. Such aninterpreter requires a decision tree on byte-code instruction opcodes. While the in-ner loop of such interpreters is typically implemented as an indirect branch througha jump table, it is not obvious that this is necessarily the best implementation, sincethis fails to take into account the relative (dynamic) frequencies of di�erent opcodes.For our experiments, we instrumented SB-Prolog to obtain dynamic opcode tracesfor a number of medium-sized Prolog programs (e.g., boyer, the SB-Prolog com-piler, the Berkeley PLM compiler, a dataow analyser for Prolog, etc.), then usedthe opcode frequencies so obtained to measure the time taken by di�erent decisiontree realizations to process the traces so obtained. In this case, the decision treehad 91 leaves, and the particular byte-code encodings used, the dynamic opcodedistribution, and the relative machine level costs assumed caused the entropy-basedmethod to generate an indirect branch through a jump table.5 ConclusionsWhile decision tree compilation is a promising way to carry out guard tests ef-�ciently, the methods given in the literature do not take into account either theexecution characteristics of the program or the machine-level tradeo�s betweendi�erent ways to implement branches. These methods therefore o�er little or noguidance for the implementor with regard to how decision trees are to be realized ona particular machine. In this paper, we describe an approach that takes executionfrequencies of di�erent program branches, as well as the costs of alternative branchrealizations, to generate decision trees. Experiments indicate that the performanceof our approach is uniformly better than that of other plausible alternatives.Acknowledgements: Comments by Evan Tick and the anonymous refereeshelped improve the presentation of the paper. The work of the �rst and thirdauthors was supported in part by the National Science Foundation under grantnumber CCR-8901283; that of the second author was supported by the NationalScience Foundation under grant number CCR-9108969.References[1] R. B. Ash, Information Theory, Dover Publications, NY, 1965.[2] T. Ball and J. Larus, \Optimally Pro�ling and Tracing Programs", Proc. 19th.ACM Symp. on Principles of Programming Languages, Albuquerque, NM, Jan.
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