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ABSTRACT
Database management systems (DBMSes) form a cornerstone of
modern IT infrastructure, and it is essential that they haveexcel-
lent performance. Much of the work to date on optimizing DBMS
performance has emphasized ensuring efficient data access from
secondary storage. This paper shows that DBMSes can also ben-
efit significantly from dynamic code specialization. Our approach
focuses on the iterative query evaluation loops typically used by
such systems. Query evaluation involves extensive references to
the relational schema, predicate values, and join types, which are
all invariant during query evaluation, and thus are subjectto dy-
namic value-based code specialization.

We introduce three distinct types of specialization, each correspond-
ing to a particular kind of invariant. We realize these techniques, in
concert termed micro-specialization, via a
DBMS-independent run-time environment and apply them to a high-
performance open-source DBMS, PostgreSQL. We show that micro-
specialization requires minimal changes to the DBMS and canyield
performance improvements simultaneously across a wide range of
queries and modifications, in terms of storage, CPU usage, and
I/O time of standard DBMS benchmarks. We also discuss an inte-
grated development environment that helps DBMS developersap-
ply micro-specializations to identified target code sequences.

1. INTRODUCTION
Database management systems (DBMS) play a fundamental rolein
industrial IT infrastructure. Because of this, it is essential that these
systems have excellent performance. The current state of the art
in this respect combines three different approaches. First, special-
purpose database architectures (e.g., stream DBs, column stores)
are used where appropriate to organize the data in a way that mini-
mizes access costs for specific types of applications [1, 30,31, 33].
Second, traditional compiler optimizations are used to compile the
DBMS source code into efficient machine code. Finally, database
query optimization is used to execute individual queries efficiently
(e.g., proximity rank join [19], replacement selection in external
sorting [20], and range query transformation [25], in just one track
of one conference). The general consensus in the database com-
munity is that, because hard disks are significantly slower than
CPUs, by far the most important are those approaches relatedto

organization and access of data from secondary storage: namely,
DBMS architecture and query optimization. That said, thereis also
a growing awareness that architecture-conscious approaches, fo-
cusing on costs such as main memory cache misses, are also useful
for improving DBMS performance.

Separately, there is a rich body of literature in the compiler com-
munity on code optimization. Early work on this topic focused
on static analyses and optimizations [3], but more recentlythere
has been a lot of work on dynamic optimization and specializa-
tion, both in the context of traditional compiled languagessuch as
C [6, 9, 10, 12, 13] as well as in the context of JIT compilers for
Java [2, 15, 34]. This work generally focuses on CPU-bound code;
database systems, conventionally considered to be I/O-bound, have
not received much attention in the context of such optimizations.
In this paper we show that this conventional wisdom is not entirely
correct and that significant DBMS performance improvementsare
achievable through dynamic code specialization.

The goal for JIT compilers is to optimize the byte code of the input
programs, without prior knowledge of their runtime behavior and
while incurring as little runtime overhead as possible. Ourwork is
similarly concerned with dynamic code specialization in the con-
text of an interpreter: in our case, the interpreter is the SQL engine
that forms the heart of the DBMS query processor, and the analog
of the JIT compiler’s input programs are the input SQL queries.
However, the details of the two situations are very different. Our
dynamic specialization is aimed not at the input SQL queries, but
rather at the underlying DBMS code that processes those queries.

Our approach takes advantage of information specific to the par-
ticular environment of a DBMS by identifying variables whose
values—typically, schema metadata or query-specific constants—
are invariantwithin the query evaluation loop. This information is
used for fine-grained specialization that eliminates unnecessary op-
erations along frequently-taken execution paths, leadingto further
optimized code that is both smaller and faster. Often this loop is
evaluated for every tuple in the underlying relation(s), thereby of-
fering the possibility of significant performance improvements. (A
note on terminology: a tuple is also informally called a row;a re-
lation is similarly called a table; and an attribute, a column.) Since
the invariants used for specialization are available only at runtime,
such specialization cannot be carried out using static techniques,
but has to be deferred to runtime. This implies that the specializa-
tion process itself has to be extremely lightweight.

In addition to specialization based on schema metadata and query-
specific values, we have identified another opportunity for dynamic
specialization: the values in the relations themselves. Ifsuch values
are relatively few or relatively common, specializing on such values
can be very effective. Our innovation is to show how to specialize



DBMS code based on data associated with an individual relation or
with individual tuples.

We refer to such fine-grained low-level dynamic specialization as
micro-specialization, to distinguish it from other, higher-level spe-
cializations effected in DBMSes. This paper describes DBMSmicro-
specialization, applies this concept to a complex
high-performance DBMS, and evaluates its effectiveness and cost.
Even just a few such specializations (adding 250 source lines of
code (SLOC) and another 900 SLOC of specialized versions of
existing code, comprising 0.3% of this 380,000 SLOC DBMS) can
improve query execution speeds by up to 33% across complex ana-
lytic queries, random modifications, and bulk loading, on standard
industrial benchmarks.

Our contributions are the following.

• We show that dynamic specialization oriented to the particu-
lars of an important class of software artifacts, that of DBM-
Ses, can achieve truly significant performance benefits.

• We identify several classes of opportunities for micro-special-
ization: schema information, data structures used in query
evaluation, and even individual values stored in the database.

• We show that the instantiation of specialized code can be
located at several points along the compile-time/run-timespec-
trum.

• We co-locate some of the specialized code with the data in
the DBMS and move some of the data in the tuples into that
code.

• We implemented an extensive run-time environment (HIVE-
RE) and have started developing a DBMS-independent inte-
grated development environment (HIVE), which in concert
support micro-specialization across this spectrum.

• We applied six instances of micro-specialization to a high-
performance DBMS and studied in detail the performance
improvements that accrue.

We first summarize the salient aspects of DBMS query evaluation.
We then walk through a single micro-specialization that improves
the performance of even simple queries. In this case study, we ex-
amine the specific code changes, predict the performance improve-
ment, and then validate our prediction with an experiment. Sec-
tion 4 examines micro-specialization opportunities broadly with a
taxonomy of three general classes of invariant value, whichinduce
three types of micro-specialization. We then introduce therun-
time environment and explain what happens at runtime. Section 5
briefly discusses the structure of the HIVE development environ-
ment for introducing micro-specializations into a complexDBMS
and outlines how to identify specialization targets, how todecide
which specialization approach to apply, and how to insert calls
to that API to effect the micro-specialization. We apply allthree
kinds of micro-specialization to PostgreSQL. We then character-
ize, through a set of experiments on the TPC-H and the TPC-C
benchmarks, the salutary effect of micro-specialization.Section 8
places micro-specialization in the broader contexts of DBMS and
compiler-based specializations.

2. BACKGROUND
Figure 1 shows, in very high level terms, the structure of a typical
DBMS query processing algorithm. We first construct the database
by defining a set of relation schemas and then populating the rela-
tions specified by these schemas. The schemas specify meta-data

/* construct database */
schemas := DefineRelationSchemas();
rels := PopulateRelations(schemas);

/* iterate over queries */
loop forever {

query := ReadQuery();
query_plan := OptimizeQuery(query , schemas);

/* process query: iterate over tuples */
ans := Exec(query_plan, rels , schemas);

Output(ans);
}

Figure 1: Thirty-thousand-foot View of Database Query Pro-
cessing

about each relation, such as the name of the relation, the number of
columns, their names, types, etc. This is followed by query eval-
uation: a query is read in; a query plan is generated by the query
optimizer; this plan is executed by the SQL engine; and the answers
so obtained are output. This process is repeated. The query opti-
mizer uses meta-data about the relations in the database to make
implementation-level decisions (e.g., a join operation inthe query
may be mapped to a implementation-level operations of hash-join
or sort-merge join) and determine an efficient execution plan for
the query operations. The query plan produced by the optimizer
is essentially a tree representation of the query where leafnodes
are database relations and internal nodes are operations. The query
evaluation engine applies the operations specified in the query plan
to the relations in the database, iterating over the tuples in the rela-
tions and using schema meta-data to parse the tuples to extract and
process the fields.

The query-evaluation process described above involves repeated in-
terpretation of a number of data structures that are invariant
through the evaluation of each query. For example, the set ofrela-
tions that have to be accessed is fixed for each query, which means
that the information about attribute types and offsets for each such
relation, obtained from its schema and used to parse its tuples, is
invariant through the execution of the query. However, because
relation schema information is not known when the DBMS code
is compiled, this information cannot be propagated into thequery
evaluation code, but must be obtained by interpreting the schema
data—an action that is repeated for each tuple that is processed.
As another example, an expression for aselector join operation
in a query is represented as a syntax tree, which has to be evalu-
ated for each tuple. This syntax tree—which is fixed for a given
query—cannot be compiled into code when the DBMS is compiled
because it becomes known only once a query has been read in.
Since processing a query in a database of reasonable size mayin-
volve looking at many millions of tuples, these interpretation over-
heads can accumulate into substantial overheads, in terms of both
instruction counts and instruction and data cache misses.

Our work on dynamic specialization of DBMS code is aimed at
reducing this interpretive overhead as much as possible. Wedo
this by identifying those portions of the DBMS’s query evalua-
tion loop that have a high number of references to query-invariant
values such as those described above, dynamically generating code
that has been specialized to the actual query-invariant values, and
splicing in (a pointer to) this dynamically generated code into the
DBMS’s query evaluation loop. The following case study shows



that such specialization can have a big impact on DBMS perfor-
mance.

3. CASE STUDY
In a DBMS, there are many variables which can in fact be invariant
(constant) within the query evaluation loop. For instance,once the
schema of a relation is defined, the number of attributes is a con-
stant. Moreover, the type of each attribute, the length of each fixed-
length attribute, as well as the offsets of some attributes (those not
preceded by a variable-length attribute) are constants forthis rela-
tion. Conventionally, the relation-specific information is stored in
the system catalog. Each tuple in the database is physicallyrep-
resented simply as a sequence of bytes; when queries are evalu-
ated, the catalog is consulted for the referenced relations, and the
above mentioned invariants are used to “parse” the tuple to iden-
tify and extract attribute values. Although catalog look-up has been
carefully engineered to be efficient, the generic implementation still
presents significant overhead, especially for large relations.

Listing 1 excerpts a function,slot_deform_tuple(), from the
source code of PostgreSQL [24]. This function is executed when-
ever a tuple is fetched; it extracts values from a stored tuple into an
array of long integers. The function relies on a loop
(starting on line 4) to extract each attribute. For each attribute, a
path in the code sequence (from line 5 to line 36) is executed to
convert the attribute’s value within the stored bytes of thetuple
into a long integer. (Bytes, shorts, and ints are cast to longs and
strings are cast to pointers. The catalog information for each at-
tribute is stored in a struct namedthisatt, which is located in
the function argument namelyslot. This argument contains both
the catalog information and the actual physical tuple. All the vari-
ables utilized in this function come directly from this argument. As
Listing 1 shows, attribute length (attlen), attribute physical stor-
age alignment (attalign), and attribute offset (attcacheoff) all
participate in selecting a particular execution path.

Within a conventional DBMS implementation, these variables are
used in condition checking because the values of these variables
depend on the specific relation being queried. Such generality pro-
vides opportunities for performance improvement. Micro-specializ-
ation focuses on such variables: when they are constant within the
query evaluation loop, the corresponding code sequence canbe dra-
matically shortened.

We utilize theorders relation from the TPC-H benchmark as an
example to illustrate the application of micro-specialization. To
specialize theslot_deform_tuple() function for theorders re-
lation, we first identify the variables that are constants. According
to the schema, no null values are allowed for this relation. There-
fore the null checking statements from lines 6 to 11 are not needed.
Instead, we can assign the entireisnull array tofalse at the be-
ginning of the function. Since each value of theisnull array is a
byte, we can collapse the assignments with a few type casts. For in-
stance, the eight assignments ofisnull[0] to isnull[7] can be
turned into a single, very efficient statement:(long*)isnull = 0;
This function is invoked to extract the values of a stored tuple.
Given that the relation schema does not allow nullable attributes,
the stored tuples are guaranteed to contain no null values (this is
checked elsewhere). Hence, the above optimization is made possible.

As discussed earlier, some of the variables in Listing 1 are constant
for any particular relation. For theorders relation, the value of the
natts (number of attributes) variable is 9. We applyloop unrolling
to avoid the condition checking and the the loop-counter increment
instructions in thefor statement. The resulting program simply
has nine assignment statements.

1 void slot_deform_tuple(TupleTableSlot *slot, int natts) {
2 ...
3 tp = (char *) tup + tup->t_hoff;

4 for (; attnum < natts ; attnum++) {

5 Form_pg_attribute thisatt = att[attnum];

6 if ( hasnulls && att_isnull(attnum, bp)) {

7 values[attnum] = (Datum) 0;
8 isnull[attnum] = true;
9 slow = true;

10 continue;
11 }
12 isnull[attnum] = false;

13 if (!slow && thisatt-> attcacheoff >= 0) {

14 off = thisatt->attcacheoff;

15 } else if (thisatt-> attlen == -1) {

16 if (!slow && off == att_align_nominal(off, thisatt-> attalign )) {

17 thisatt->attcacheoff = off;
18 } else {

19 if (!slow && off == att_align_nominal(off, thisatt-> attalign )) {

20 thisatt->attcacheoff = off;
21 } else {

22 off = att_align_pointer(off, thisatt-> attalign , -1, tp + off);

23 slow = true;
24 }
25 } else {

26 off = att_align_nominal(off, thisatt-> attalign );

27 if (!slow)
28 thisatt->attcacheoff = off;
29 }
30 values[attnum] = fetchatt(thisatt, tp + off);

31 off = att_addlength_pointer(off, thisatt-> attlen , tp + off);

32 if (thisatt->attlen <= 0)
33 slow = true;
34 }
35 ...
36 }
37 }

Listing 1: The slot_deform_tuple() Function

values[0] = ...;
values[1] = ...;

...
values[8] = ...;

Now let’s focus on the type-specific attribute extraction statements.
The first attribute of theorders relation is a four-byte integer.
Therefore, we don’t need to consult theattlen variable with a
condition statement. Instead, we directly assign an integer value
from the tuple with this statement.

values[0] = *(int*)(data);

Note that thedata variable is a byte array in which the physical tu-
ple is stored. Since the second attribute is also an integer,the same
statement also applies. Given that the length of the first attribute is
four bytes, we add four todata as the offset of the second attribute.

values[1] = *(int*)(data + 4);

The resulting specialized code for theorders relation is presented
in Listing 2. (We will elaborate on thebee_id parameter in Sec-
tion 6.4.) Although the code looks longer that the original,thefor
loop in Listing 1 has been unrolled nine times. As a result, the spe-
cialized code will execute many fewer instructions than thestock
code. Manual examination of the executable object code found that
thefor loop executes about 340 machine instructions (x86) for the
orders relation in executing the following query.

SELECT o_comment FROM orders;
To execute the specialized code, we simply insert a functioncall
to theGetColumnsToLongs() function to replace thefor loop.
The specialized code has only 146 instructions, for a reduction of
approximately 190 instructions.

The specializations described above then follow directly from the
fact that the metadata describing various attributes of each tuple,
obtained from the schema metadata, is invariant in the code shown
in Listing 1, and can be automated using techniques discussed else-
where in the literature [10, 21, 23].



1 void GetColumnsToLongs(char bee_id, int address, char* data, int* start_att,
2 int* offset, bool* isnull, Datum* values) {
3 *(long*)isnull = 0;
4 isnull[8] = 0;
5 values[0] = *(int*)data;
6 values[1] = *(int*)(data + 4);
7 values[2] = (long)(address + bee_id * 32 + 1000);
8 *start_att = 3;
9 if (end_att < 4) return;

10 *offset = 8;
11 if (*offset != (((long)(*offset) + 3) & ~((long)3)))
12 if (!(*(char*)(data + *offset)))
13 *offset = (long)(*offset + 3) & ~(long)3;
14 values[3] = (long)(data + *offset);
15 *offset += VARSIZE_ANY(data + *offset);
16 *offset = ((long)(*offset) + 3) & ~((long)3);
17 values[4] = (*(long*)(data + *offset)) & 0xffffffff;
18 *offset += 4;
19 values[5] = (long)(address + bee_id * 32 + 1001);
20 *start_att = 6;
21 if (end_att < 7) return;
22 if (!(*(char*)(data + *offset)))
23 *offset = (long)(*offset + 3) & ~(long)3;
24 values[6] = (long)(data + *offset);
25 *offset += VARSIZE_ANY(data + *offset);
26 values[7] = *(int*)(address + bee_id * 32 + 1002);
27 if (!(*(char*)(data + *offset)))
28 *offset = (long)(*offset + 3) & ~(long)3;
29 values[8] = (long)(data + *offset);
30 *start_att = 9;
31 }

Listing 2: The Micro-Specialized GCL() Function

To determine the actual performance benefit, consider the instruction
savings. This query requests a sequential scan over theorders re-
lation, which has 1.5M tuples (with the scale factor set to one for
the TPC-H dataset). Given that the specialized code saves 190 in-
structions and the code is invoked 1.5M times (once per tuple), the
total number of instructions is expected to decrease by 285M. Us-
ing callgrind [11] to obtain the total number of executed instruc-
tions for both a stock PostgreSQL and one with the specialized code
shown in Listing 2, we find that stock PostgreSQL executes a total
of 3.447B instructions on this query, which implies that this micro-
specialization should produce an (estimated) instructioncount re-
duction of about 8.3%. The total number of instructions actually
executed by the specialized PostgreSQL is 3.153B, a (measured)
reduction of 8.5%, consistent with our earlier estimate. Wethen
measured the total running time of the query on the stock PostgreSQL
and the specialized version. The improvement in running time
(7.4%) is consistent with the profile analysis. Thus, by specializing
just the genericslot_deform_tuple() function, on just a few
variables, we were able to achieve a 7.4% running time improve-
ment on a simple query. This improvement suggests the feasibility
and benefits of applying micro-specialization more aggressively.

How did this improvement come about? First, the developer identi-
fied slot_deform_tuple as a candidate for
micro-specialization. Such candidates must satisfy four criteria:
each such code sequence must (i) appear in the query evaluation
loop, (ii) constitute a significant portion of the runtime ofquery
evaluation, (iii) reference variable(s) whose value can bedeter-
mined to be invariant across the query evaluation loop, and (iv) ben-
efit significantly from micro-specialization, by removing branches
and accesses on those variables. Second, the developer specifies
code fragmentssuch as those given earlier that can be combined
into a micro-specialized function, as well as code to stringthese
fragments together given a relation schema. (As an optimization,
this composition is actually done on the machine code version, to
avoid calling the compiler at runtime.) Then the call to the function
is replaced with a call to the correct micro-specialized function.

We now elaborate on this idea, identifying other kinds of micro-
specializations and evaluating their impact on the performance of
the DBMS.

4. APPROACH
Each micro-specialization identifies one or more variableswhose
value will be constant within the query evaluation loop. It then

replaces a function or small stretch of code with multiple copies,
each particular to a single value of each of those variables.In the
example given above, the variables concerned the relation being
scanned. Hence, we need a specialized version ofGetColumnsToLongs()
for each relation.

We first introduce terminology for the specifics of our approach.

• The specialized code, in this case associated with a particu-
lar relation is termed abee, in this case, arelation bee. There
will be a unique bee for every relation defined in a database.
Given that the specialized code is small, efficient, and spe-
cific to a particular task, such code resembles the character-
istics of bees.

• A bee can have multiplebee routines, each produced by a
particular micro-specialization at a certain place in the DBMS
source code on one or more variables that have been identi-
fied as being invariant across the query evaluation loop.

In the example given above, micro-specialization is applied on val-
ues (attribute length, etc.) that are constant for each relation, and
so a relation bee routine results. We term this particular bee rou-
tineGCL, as shorthand for the specializedGetColumnsToLongs()
routine. We specialized another PostgreSQL function named
heap_fill_tuple that constructs a tuple to be stored from an in-
teger array, resulting in a separate bee routine namely
SetColumnsFromLongs() (SCL) for each relation. So each re-
lation bee now has two bee routines.

This general approach raises two central questions: onwhichvalues
can micro-specialization be applied andwhenduring the timeline
from relation-schema definition to query evaluation can bees be in-
stantiated? The answers to these questions lie in the structure of
DBMS query processing, shown in Figure 1. Different kinds of
information become invariant (with respect to the inner query pro-
cessing loop) at different points in the query processing algorithm.
Information about individual relations become fixed once relation
schemas are defined. This information is then invariant for the sub-
sequent iteration over queries. For each query, the predicates and
constants specific to the query plan become fixed after query opti-
mization. We take advantage of this invariance structure tocarry
out specialization in different ways, evincing three different types
of bees.

Therelation beesdescribed above (one per relation in the database)
arise from specialization based on the relationalschema, where
we specialize on each attribute’s length, offset, alignment, and the
presence of nullable attributes, as well as on the number of at-
tributes in the relation.

We can also specialize on the internal data structures issued during
query evaluation, for which some of the values in the data structure
are constant during the evaluation loop of a query. For example,
a query that involves the predicate ‘age <= 45’ will use a pred-
icate data structure that contains the ID of attributeage, the ‘<=’
operator, and the constant45. We can apply specialization on these
variables once we know the predicate from the query. The bees
resulting from specializing such query-related data structures are
termedquery bees.

We can extend this idea even further, down to the level of indi-
vidual tuples, by specializing on the values of particular attributes
within a tuple. The idea is that for an attribute that is known(e.g.,
from schema meta-data) to have only a small set of possible values,
we can use a precomputed set of simple assignments, one for each



value in the underlying domain, to replace the generic database
code that computes length, offset, and alignment of the attribute
from the relation schema to access its value. We refer to these as
tuple bees.

For example, for an attribute such as “gender,” which takes on one
of the two values ‘M’ or ‘ F’, it suffices to use a single assignment
such as ‘values[x] = ’M’’ to extract the value of this attribute
for any given tuple. This assignment occurs within a tuple bee
associated with that tuple; the particular tuple bee corresponding to
a given tuple is indicated by including in such tuples a shortindex
termed abeeID. So we might just have two tuple bees, one for each
gender, or we might also specialize on other attributes, as long as
the beeID is sufficient in uniquely identifying all the tuplebees, so
that a small number of tuple bees are generated for all the tuples in
the relation.

To address the question of when specific bees are instantiated, we
again consider the structure of DBMS query processing shownin
Figure 1. Obviously, specialization can be performed, and bees
instantiated, only when the underlying data values become known
and fixed. Once this happens, moreover, there does not seem to
be much benefit from delaying specialization to a later pointin
the query processing since, in general, later points correspond to
more deeply nested loops and hence greater execution frequency.
Based on these considerations, the points when individual bees of
each kind are instantiated are shown in Figure 2. Relation bees
are instantiated at relation schema definition time, one foreach
newly-defined relation. Individual query bees are instantiated dur-
ing query plan generation. Once we have a query plan, we know
the particulars of the various data structures used in queryevalu-
ation, and so can generate the highly-specific code that usesthese
structures. Tuple bees are instantiated during the evaluation of tu-
ple insertions and updates, deep within the query evaluation loop.
Interestingly, bees of all three types can also be instantiated before
compilation time, if the possible values for the invariant variables
are known and if the total number of possible bees (usually the
product of the number of possible values for each variable) is small.

Figure 2: When to Instantiate Various Kinds of Bees

Where bee instantiation resides along the timeline shown inFigure
2 affects how lightweight and efficient bee instantiation has to be.
Note however that we are not discussing the design of a bee routine.
As we will see in the next section, the code to instantiate theindi-
vidual bees and to invoke bee routines is manually inserted into the
DBMS before it is compiled. Here we are focusing on instantiation
of individual bees, each containing specialized code resulting from
knowing the exact values of the variable(s) evincing the specializa-
tion. For relation bees, which are instantiated when relations are
defined and before the query evaluation process begins, bee instan-
tiation overhead is not critical. Hence, when instantiating a relation
bee, we can invokegcc to compile the source code, as shown in
Listing 2, to produce the executable object code for the bee.

Because ad hoc queries need to be fast, the overhead of instantiat-
ing query bees needs to be minimized. Recall that query bee may
contain the join and predicate evaluation routines. In the case of
join, all possible combinations of the join routines, such as differ-
ent types of joins (left, semi, anti, etc.) can be enumeratedand

compiled ahead of time. At query preparation time, the associated
join bee routine is selected from the set of the pre-compiledjoin
evaluation routines.

Delving down into the details, there are two basic mechanisms for
bee instantiation. The invariant values that don’t participate in con-
trol constructs can be easily converted to “holes” in the templates
with magic numbers. These magic numbers are easy to identify
in the produced object code, such that at run-time, these holes can
be filled with the correct values provided in the execution context.
An example is the attribute ID for both the join and predicatebee
routines, which appears in assignment statements but not incontrol
constructs in the bee routine. The bee can be cloned each time, with
different values substituted for such values, representedas magic
numbers.

Alternatively, if an invariant appears in a control construct and if
this invariant is known to be associated with just a few values, such
branching statements and the associated branches can be removed
from the specialized code. This is essentially aggressive constant
folding, to be done either manually or by the compiler (see a dis-
cussion of this in Section 3). An example is the specialization on
hasnulls on line 6 of Listing 1. This invariant appears in an if
statement and so aggressive constant folding during compilation
can eliminate several lines of code if this value is false. Specializ-
ing on variable(s) referenced in control constructs results in multi-
ple versions of a bee routine.

Consider two query bee routines, namely
EvaluatePredicate() (EVP) andEvaluateJoin() (EVJ). We
use the following query that is based on the TPC-H schema as an
example:

SELECT l_extendedprice, p_type
FROM lineitem, part
WHERE l_partkey = p_partkey
AND l_shipdate <= date ’1995-04-01’

This query contains a equi-join of thelineitem and thepart re-
lations, on thel_partkey andp_partkey attributes, as well as
an additional predicate, onl_shipdate. This latter predicate con-
tains three invariants in the life cycle of this query, whichare the
compared constantdate ’1995-04-01’, the ID of the attribute
l_shipdate in thelineitem relation, and the<= operator on the
date data type. In the original implementation, each operand is
treated as a generic object, in that operands of different types can
appear on both sides of the operator. Hence expensvie operand pro-
cessing is required when the operator is evaluated, which turns out
to be inefficient. For instance, even though the value of the predi-
cate constant is known, it is stored in a generic data structure that is
accessed each time through a chain of function calls to extract the
value’1995-04-01’.

Micro-specialization effectively addresses the inefficiency in ac-
cessing the operands. For the predicate constant, instead of access-
ing its container data structure each time the predicate is evaluated
with many functions, this value is stored in the specializedcode
which can be directly referenced by consequent code in the query
evaluation, saving a significant amount of unnecessary instructions.
For the attribute operand, the value of the attribute ID is similarly
stored in the specialized code rather than being extracted for each
tuple, such that the attribute value extraction routine canbe directly
invoked without going through a series of function calls.

PostgreSQL utilizes function pointers to perform type-specific
predicate-operand comparison efficiently. Since the function



address of the operator is known at the query planning stage,this
address can directly be injected into aCALL instruction as a direct
call at runtime. We create a magic number, which is associated with
the CALL instruction where the comparison function is invoked,
in the EVP routine. When the source code of theEVP routine is
compiled, this magic number is easily identified from the object
code. At run-time, this number will be replaced by the address of
the associated comparison function. Alternatively, we could use a
mechanism similar to relocations (used by linkers to patch binaries)
to effect the same goal.

A join operator shares the same mechanism to a predicate in evalu-
ating the join condition. The only difference is that both operands
are attributes from relations. The same specialization canbe ap-
plied here. First, both attribute IDs are stored in the specialized
code. Second, the address of the comparison function replaces the
magic number at run-time, instantiating the template bee routine
with the correct query-specific information.

In addition to join condition evaluation, invariants are identified in
the join algorithms themselves. Three join algorithms are usually
adopted in DBMSes, including nested-loop join, sort-mergejoin,
and hash join. A common invariant across all three kinds of joins
is the join type, which can be inner join, outer join, naturaljoin,
semi join, and anti join. The difference among these types ofjoins,
in terms of implementation, is that each type relies on a distinct
code path to deal with various matching requirements. The check-
ing of thejs.jointype and the associated branches that do not
belong to a particular kind of join can be eliminated via constant
folding when the kind of join is known in the query plan. Sim-
ilarly, two other such invariant variables, each allowing two dis-
tinct values, are specialized on in the same fashion. Consequently,
each join algorithm requires 20 distinct versions of the object code,
each corresponding to one possible combination of the values of
these invariants. Instead of creating 20 versions of sourcecode, we
compile the generic version of source code for each algorithm with
20 value combinations, when the DBMS is compiled enabling the
compiler to eliminate the unnecessary condition checking and the
associated basic blocks, resulting in highly-optimized object code.
In PostgreSQL, a total 57K bytes of the specialized join routines
are created; this amounts to about 2% of PostgreSQL’s total text
section size of 2.63MB.

It may seem that by instantiating individual bees, additional code
is being added to the DBMS. In fact, the introduced code replaces
the original code. Moreover, at run time, a significant amount of
instructions can be reduced by the specialized code, as illustrated
in the case study.

5. APPLYING MICRO-SPECIALIZATION
Micro-specialization can be applied to a DBMS in a systematic
fashion by performing the following steps in sequence, which we
now discuss in some detail.

1. Identify the query evaluation loop.To accurately extract
the portion of the code that represents the query evaluationloop
from the rather large and complex executable code of a DBMS, we
start by constructing a static call graph of the basic blocksinside
the DBMS. We then compute strongly connected components from
this graph. The strongly connected components provide us with the
set of basic blocks that represent just the query evaluationloop.

2. Identify the invariants.To spot the invariants, dynamic
analysis is required. Profile tools such ascallgrind are invoked
along with query evaluation to produce accurate run-time memory
access traces. The traces, containing a list of triples in the form

of <address, opcode, operand>, are combined with the pre-
viously computed query evaluation loop basic block set and the
dynamic data flow graph to identify those variables whose values
are invariant in query evaluation.

3. Pin-point the invariants in the source code.We then
map the invariant variables back to data structures defined in the
source code. The identified invariants are memory locations, repre-
sented in the object code as operands in instructions. We utilize the
.debug_line section to trace the instruction back to the source
code to identify the actual references and decalarations ofthese in-
variants.

4. Decide which code sequence(s) should be micro-
specialized.We examine each target code sequence to be spe-
cialized, specifically to determine the exact boundry for each se-
quence. To do so, we rely on static data flow analysis to locatethe
code sequences over which the value is invariant. These codese-
quences can either be early in the call graph or near its leaves. The
ideal specialization targets contain a relatively large number of uses
within a short code sequence.

5. Decide when to compile and instantiate bees.For
different kinds of bees, various compilation and instantiation alter-
natives are appropriate. For instance, all versions of the join algo-
rithms and the predicate evaluation query routine can be compiled
when the DBMS is compiled. On the other hand, a relation bee
routine can be compiled only at schema definition time. Relation
bees are instantiated at schema definition time, whereas a query
bee can be instantiated only after the query has been received by the
DBMS. The developer thus decides in what kind of bee this special-
ized code sequence should reside (and hence, form a bee routine)
and when, that is, at DBMS compile time or DBMS runtime, the
bee routine should be compiled. (The bee is always instantiated at
runtime.)

6. The target source code is converted to snippets, to
install a bee routine.Consider a relation bee routine. This rou-
tine would probably deal with all of the relation’s attributes. Say
it is specialized on the types of the attributes. The actual relation
bee routine would have to be constructed out of snippets, onefor
each possible type, stitched together according to the schema. In
this particular case, we extract the snippets from the switch state-
ment. As another example, consider the for loop over the attributes
on line 4 of Listing 1. We create a snippet from the body of that
loop.

If the code sequence contains a call to another function, andthat
call passes one of the invariant values as a parameter, that called
function is also specialized as part of this bee routine after inlining
the function invocation. (Otherwise, the bee just retains the func-
tion call.)

For each attribute value incorporated into a tuple bee, the actual at-
tribute value appears as a parameter to the tuple bee routine. Hence,
the tuple bees of each relation can effectively share the same routine
code in that the tuple bees are based on the schema of the relation.
We create a storage space designated to the tuple bee values.We
term this spacedata section.

7. Add bee invocations and supportng code to the DBMS
source.The code that was specialized is now removed from the
DBMS, replaced with a call to the corresponding bee routine.

Adding a bee may impact other portions of the DBMS (hopefully
in highly circumscribed ways). For example, an attribute stored in



a tuple bee is no longer stored in the relation itself. In theorders
relation from TPC-H, we specialize on three attributes, namely
o_orderstatus, o_orderpriority, and o_shippriority,
which have small discrete value domains. These attributes are re-
moved from the schema as their values are stored in the instatiated
bee for each tuple. Code must be added to the DBMS to effect this
change.

8. Run confirmatory experimental performance anal-
yses.It is important to verify the performance benefits of each
added bee on queries that should utilize that bee. We utilizebench-
marks to study the performance by comparing the bee-eanbledDBMS
and the stock version. The detailed study include running time of
queries, throughput of transactions, and profile of instruction and
cache statistics, which are discussed in Section 7.

We proposed the eight steps to address the known challenges in ap-
plying micro-specialization based on our manual experience. Ap-
plying the first routine took several months. Applying the last two
bee routines, that ofEVP andEVJ, took only a couple of days, fol-
lowing these eight steps. Hence, DBMS developers can benefit
greatly from these steps when applying micro-specialization.

To assist developers in carrying out these steps, we are building
a set of tools aimed at simplifying and automating the process of
micro-specialization. Currently, our toolset—which we refer to as
HIVE (Highly-Integrated deVelopment Environment)—allows us to
automate the first and last steps described above and partially auto-
mate the second step. In fact, the results of Section 7 were gener-
ated using HIVE. Our future plans for extending HIVE to automate
all eight steps are described in Section 9.

6. THE HIVE RUNTIME ENVIRONMENT
This section discusses in depth the HIVE runtime environment (HIVE-
RE) and how the types of bees are instantiated and invoked during
DBMS execution.

6.1 HIVE-RE Components
HIVE-RE consists of about 6000 lines of C code, responsible for
bee instantiation, storage, invocation, and garbage collection. HIVE-
RE consists of the following central components, which operate
without administrative intervention.

• TheBee Snippet Repositorycontains a collection of source code
snippets used in forming the actual bee routines during bee in-
stantiation. This repository is created by the developer during
the sixth step discussed earlier. TheBee Assembleris responsi-
ble for stitching together the provided code snippets to form bee
routines.

• The Bee Makerperforms two tasks. First, the formed bee rou-
tine source code is sent to the bee maker for compilation. The
compiled routines are then attached to the associated bees.We
term this stepbee creation. Second, at run-time, the bee maker
instantiatesthe compiled bee routines with correct values.

• The Bee Cacheis an on-disk repository where all instantiated
bees are stored. TheBee Cache Managermanipulates this
storage. When bees are created by the bee maker, the bee-cache
manager stores the newly created bees to the bee cache. When
DBMS server starts, the bee-cache manager loads all the bees
from the bee cache to main memory for later invocation.

• TheBee Placement Optimizercontrols the residence of bees in
memory, which directly affects the occupancy of the bees in
the CPU caches, particularly the level-1 instruction (I1) cache.

Given that bees introduce additional code which does not bene-
fit from locality optimization applied to DBMS at compile time,
sloppy placement of bees can degrade performance.

• TheBee Collectorperforms garbage collection on dead bees. For
instance, when aDROP TABLE command is issued, the bees as-
sociated with the dropped relation are no longer needed. Thebee
collector will remove such bees from the bee cache.

We now describe specifically how each type of bee is manipulated
(created, for tuple bees, and instantiated) by the HIVE-RE.

6.2 Relation Bees
When the schema of a relation is defined, as the result of aCREATE
TABLE SQL statement, the code snippets that are associated with
the attributes in this relation are stitched together as thesource
code of a relation-specific bee routine that performs value extrac-
tion. This source code is then compiled, resulting in an object file
in ELF representation (on a Linux OS). The HIVE-RE extracts the
executable function body from the object file, and inserts the corre-
sponding function address in-place, for any (non-specialized) func-
tion(s) invoked by that bee routine.

The extracted routines are stored in a bee cache, ready for execu-
tion. (We discuss relation bee invocation below, as all beesare
invoked similarly.)

6.3 Query Bees
When instantiating a query bee, the holes (special values) in the bee
routine are filled with values provided from the query data struc-
ture. A special case of this is PostgreSQL function pointersfor
type-specific predicate-operand comparison.

6.4 Tuple Bees
Tuple bees are distinct in that they contain holes where tuple attribute
values have been referenced by the target code. These holes are in-
dicated by magic numbers (cf. lines 7, 19, and 26 of Listing 2). Af-
ter the tuple bee code in that listing is compiled, the magic numbers
are replaced with a computed offset from the current instruction to
the beginning of the data section.

When a tuple bee is instantiated, only the data section need be cre-
ated. The code on these lines then can compute the address of the
attribute value within the data section associated with that beeID,
allowing the relevant attribute value to be referenced.

When a query is being evaluated, tuples are fetched from the re-
lation. As a tuple is being fetched, its beeID, represented as the
bee_id variable in Listing 2, is associated with the address of the
tuple in the buffer. The beeID and the tuple address are then passed
to the bee routine by the invocation statement that replacesthe orig-
inal targeted code from which the bee was created. The bee routine
locates the appropriate data section using the beeID and fetches the
specialized attribute values. This routine also computes the offsets
and extracts the values for the non-specialized attributes, without
looking up the catalogs. Relations with no specialized attributes
have a single instantiated bee used by every tuple, in which case
the single tuple bee is in reality a relation bee. Both relation and tu-
ple bees perform the tuple extraction and construction tasks. Hence
the GCL and SCL routines are present in both kinds of bees. The
difference is that tuple bees store particular columns along with the
bees; therefore, the GCL routine for a tuple bee does not needto ex-
tract such value(s) from the stored tuple, but rather from constants
stored in the bees.



7. EMPIRICAL EVALUATION
We have investigated the performance impact of micro-specialization
in many contexts: simple select queries such as discussed inthe
case study, OLAP-style queries in the TPC-H benchmark, and
OLTP-style queries and modifications in the TPC-C benchmark.

To generate the dataset in TPC-H, we utilized theDBGEN
toolkit [32]. The scale factor for data generation was set toone, re-
sulting in the data of size 1GB. For TPC-C, we used theBenchmark-
SQL-2.3.2[17] toolkit. Thenumber of warehousesparameter was
set to 10 when the initial dataset was created. Consequently, a to-
tal of 100 terminalswere used (10 per warehouse, as specified in
TPC-C’s documentation) to simulate the workload. We also added
DDL clauses to identify the handful of low-cardinality attributes
the TPC-H relations. Other than specifying the scale factorand
number of warehouses, we made no changes to other parameters
used in the TPC-C and TPC-H toolkits for dataset preparation.

All the experiments were performed on a machine with 8GB main
memory and a 2.8GHz Inteli7 860 CPU, which contains four cores.
Each core has a 64KB Level-1 (L1) cache, which consists of a
32KB instruction (I1) and a 32KB data cache. The CPU is also con-
figured with a 256K unified level-2 (L2) cache. Our prototype im-
plementation used PostgreSQL version 8.4.2, compiled using gcc
version 4.4.3 with the default build parameters (where the optimiza-
tion level, in particular, is–O2).

7.1 The TPC-H Benchmark
We start with the TPC-H benchmark to compare the performance
of the bee-enabled PostgreSQL with the stock DBMS. The TPC-H
benchmark creates a database resembling an industrial dataware-
house. The queries used in the benchmark are complex analytic
queries. Such a workload, featured with intensive joins, predicate
evaluations, and aggregations, involves large amount of disk I/O
and catalog lookup.

All 22 queries specified in TPC-H were evaluated in both the stock
and bee-enabled PostgreSQL. The running time was measured as
wall-clock time, under a warm-cache scenario. We first focuson
the warm-cache scenario to study the CPU performance: keeping
the data in memory eliminated the disk I/O requests.

We ran each query twelve times. The highest and lowest measure-
ments were considered outliers and were therefore dropped.The
running time measurement for each query was taken as the av-
erage of the remaining ten runs. We usequery11, which is the
fastest query among all the 22 queries in the TPC-H benchmark,
as an example to study the impact of measurement variance to the
percentage improvement. The percentage improvement interval is
computed as

[
((ts − sds)− (tb + sdb))

(ts − sds)
,
((ts + sds)− (tb − sdb))

(ts + sds)
],

in whichts andtb are the running time of the stock PostgreSQL and
the bee-enabled DBMS, respectively;sd is the standard deviation
of the measurements. Forquery11, this range is from 1.9% to 6.6%.
Given that other queries take much longer to run, we believe that
measurment error has a less significant impact overall.

Figure 3 presents the percentage performance improvementsfor
each of the 22 queries with a warm cache, shown as the green
(lightly shaded) bars. We include two summary measurements,
termedAvg1 and Avg2, shown as the blue (more darkly shaded)
bars.Avg1is computed by averaging the percentage improvement
over the 22 queries, such that each queries is weighted equally.
Avg2 is computed by comparing the sum of all the query
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Figure 3: TPC-H Run Time Improvement (Warm Cache)

evaluation time. Given thatquery17andquery20took much longer
to finish, about one hour and two hours, respectively, whereas the
rest took from one to 23 seconds,Avg2was highly biased towards
these two queries. The range of the improvements is from 1.4%
to 32.8%, withAvg1 and Avg2 being 12.4% and 23.7%, respec-
tively. In this experiment, we enabled tuple bees, relationbees, and
query bees, involving theGCL, EVP, andEVJ bee routines. Since
the TPC-H benchmark contains complex queries without modifica-
tions, theSCL routine, which constructs tuples duringINSERT or
UPDATE, is not involved at all.

As shown by this figure, bothAvg1andAvg2are significant, in-
dicating that the performance improvement achieved in the bee-
enabled PostgreSQL are generally applicable, across various queries.
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Figure 4: TPC-H Run Time Improvement (Cold Cache)

To ascertain the I/O improvement achieved by tuple bees, we then
examined the run time of the 22 queries with a cold cache, where
the disk I/O time becomes a major component of the overall run
time. Figure 4 presents the run time improvement with a cold
cache. The improvement ranges from 0.6% to 32.8%, withAvg1
being 12.9% andAvg2 22.3%. A significant difference between
this figure and Figure 3 is that the performance ofq9 is signifi-
cantly improved with a cold cache. The reason is thatq9 has six
relation scans. Tuple bees are enabled for thelineitem, orders,
part, andnation relations. Therefore, scanning these relations,
in particular the first two benefits significantly from attribute-value
specialization and thus the near 17.4% improvement is achieved
with a cold cache.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 21 22 Avg1Avg2

P
er

ce
nt

ag
e 

Im
pr

ov
em

en
t

Query Number

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 21 22 Avg1Avg2

P
er

ce
nt

ag
e 

Im
pr

ov
em

en
t

Query Number

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 21 22 Avg1Avg2

P
er

ce
nt

ag
e 

Im
pr

ov
em

en
t

Query Number

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 21 22 Avg1Avg2

P
er

ce
nt

ag
e 

Im
pr

ov
em

en
t

Query Number

Figure 5: Instruction Cache Reference Improvement

7.1.1 The Impact of Instruction Reduction
Figure 5 plots the instruction cache reference (Ir ) count, which
is also the number of executed instructions. The reductionsin Ir



(shown as the lightly-shaded green bars in Figure 5) range from
0.5% to 41%, withAvg1andAvg2of 14.7% and 5.7%, respectively.
Note that when profiling withcallgrind, program execution usu-
ally takes around two hundred times longer to finish. We were not
able to collect the profile data forq17andq20, Therefore, we omit-
ted the profile related results for these two queries. This plot indi-
cates that the running time improvement is highly correlated with
the reduction of instructions executed, further emphasizing that the
benefit of micro-specialization stems from the reduced instruction
executions.

7.1.2 Bee Code Placement
Since dynamic specialization introduces new code into the system,
it seems plausible that it would be important to place this code care-
fully so as to avoid instruction cache conflicts with other hot code
in the system. To this end, we experimented with various code
placement algorithms to evaluate the effect of bee code placement
on performance. As expected, placement had a significant effect on
the i-cache miss rate within the bee code itself. For most queries
provided in the TPC-H benchmark, however, we observe that the
I1 cache miss rate is around a mere 0.3%. Therefore, even a signif-
icant improvement in the cache miss rate does not translate into a
significant improvement in overall system performance.

7.1.3 Impact of Multiple Bee Routines
Performance improvement for each query is accomplished by all
the bees that are invoked. Recall that in Section 3, just theGCL rou-
tine of a relation bee achieved 7.4% improvement. A fundamental
question is that how much improvement can be further achieved by
adding more bees? More importantly, would many bees adversely
impact each other?

We examine the effect of enabling various bee routines. We sum-
marize the results in Figure 6. As shown by this figure, the aver-
age improvement with just theGCL routine is 7.6% forAvg1and
13.7% for Avg2. By enabling theEVP routine, the average im-
provement reaches up to 11.5% (Avg1) and 23.4% (Avg2). Among
all the queries,q6 shows the most significant improvement, from
15.1% to 30.6%, by enablingEVP on top ofGCL. This is because
q6contains complicated predicates whereas the the query scans just
one relation. Finally, we enable all three bee routines. Although
the overall improvement is slightly increased, we found that a few
queries, such asq2 and q5 were improvement significantly. Not
surprisingly, both queries have complicated join condition evalu-
ations. A key observation is that by adding more bee routines,
the improvement achieved by the already enabled routines isnot
compromised. (Note that the running time of queries such asq4
andq22 shows a small decrease when all three bee routines—we
believe that this is due to measurement errors arising from clock
granularity issues.) The implication is that the micro-specialization
approach can be applied over and over again. The more places
micro-specialization is applied, the better efficiency that a DBMS
can achieve. We term this property of incremental performance
achievementbee additivity.

Most performance optimizations in DBMSes benefit a class of
queries or modifications but slow down others. For example, B+-tree
indexes can make joins more efficient but slow down updates. Bee
routines have the nice property that they are only beneficial(with
two caveats to be mentioned shortly). The reason is that if a bee
routine is not used by a query, that query’s performance willnot be
affected either way. On the other hand if the bee routine is used
by the query, especially given that the bee routine executesin the
query evaluation loop, that query’s performance could be improved
considerably.

Note that both Figure 3 and Figure 6 show difference among the
performance improvements. For instance,q1, q9, q16, andq18all
experience relatively lower improvements. The reason is that these
queries all have complex aggregation computation as well assub-
query evaluation that have not yet been micro-specialized with our
implementation. These queries with low improvement point to ag-
gregation and perhaps sub-query evaluation as other opportunities
for applying micro-specialization.

7.2 The TPC-C Benchmark
Since specialization relies on invariance of values, it is natural to
ask how our approach does in the presence of database updates.
To this end, we evaluated our system using the TPC-C benchmark,
which focuses on throughput. This benchmark involves five types
of transactions executing in parallel. The throughput is measured
as the number ofNew-Order transactions processed per minute
(tpmC). The other four types of transactions produce a mix ofran-
dom queries and modifications, which altogether intensively invoke
the bee routines.

We performed experiments comparing the bee-enabled
PostgreSQL with the stock DBMS. Each DBMS was run for one
hour, to reduce the variance introduced by the experimentalsystem
as well as the DBMS, e.g., the auto vacuum processes.

Performing modifications with micro-specialization was actually
faster: the former completed 1898 transactions per minute while
the stock DBMS could execute 1760 transactions per minute, an
improvement of 7.3%.

The reason DBMS performance improves even in the presence of
modifications is that both modifications and queries rely on the
slot_deform_tuple function, discussed in Section 3, to extract
tuple values. Since this function is micro-specialized with theGCL
routine, significant performance improvement is achieved for vari-
ous scenarios in the TPC-C benchmark. Moreover, since the queries
in this workload involves predicates, theEVP routine (Section 6.3)
has also contributed to the improved throughput.

8. RELATED WORK
DBMS specialization is a common and effective approach to in-
creasing performance of DBMSes. These specialization approaches
can be applied over a wide spectrum:architectural: customiz-
ing the entire architecture to a subset of applications),component:
adding another version of a component customized to a particular
kind of data or query, anduser-stated:in which the user provides
most efficient SQL queries.

Micro-specialization is applied at a finer granularity, that of a short
sequence of low-level query evaluation code. Hence, it is orthog-
onal to and independent of other coarser-grained specializations.
Hence, it can be applied equally well to conventional DBMS ar-
chitectures (e.g., PostgreSQL, IBM DB2, Oracle, and Microsoft
SQLServer), to column-oriented stores such as MonetDB, Colum-
nDB, and C-store, to OLTP architectures such as VoltDB, and to
real-time and stream DBMSes. And it can be applied to various
modules arising from component specialization, and in conjunction
with user-stated specializations, e.g., within the code sequences
that implement triggers. Indeed, any code within a DBMS thatis
executed frequently and involves variables that are invariant over a
single time around the inner per-tuple processing loop is a potential
target for micro-specialization. Finally, micro-specialization in-
stantiates bees at runtime, because that is when the values for such
variables are known.
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Figure 6: TPC-H Run Time Improvement with Various Bee Routines Enabled (Warm Cache)

Pu et al. investigated invariant-based program specialization ap-
proaches, which significantly improved the performance of sys-
tem calls, for operating systems [26]. Their approach first iden-
tifies interpretationtasks, which are branching statements that con-
struct program control flow based on data present in branch con-
ditions. The program is then simplified with such data considered
as invariant. Rather than focusing on arbitrary data withina sys-
tem, micro-specialization is applied on invariants of three specific
classes, namely relational schema, query, and tuple, each associ-
ated with a particular kind of bee. Various application strategies are
employed for these types of invariants to minimize the overhead of
managing bees at DBMS runtime. These strategies enable micro-
specialization to be applied aggressively across many components
within a DBMSes.

Run-time program specialization, especially the approachof tem-
plate-based specialization [10], is quite similar to our bee instan-
tiation strategy. Our insight is to combine these two techniques
in the context of the particulars of a DBMS, including the pres-
ence of an oft-executed per-tuple inner loop and substantial oppor-
tunities for invariant values from the schema and query. Thebee-
instantiation problem involves customized runtime instantiation of
code templates, which has been studied in the context of dynamic
code specialization [9, 10].

There has been work in what is termedarchitecture-conscious
optimizations[7], such as reducing data cache misses in DBMSes
by re-organizing data page layout [4, 5] or by data partitioning [18,
28], blocking, as well as clustering [28], reducing instruction cache
misses by re-structuring the code execution paths as well askeep-
ing instructions in cache for sharing [14, 35], and minimizing cache
stall latency with prefetching strategies [8]. These particular efforts
can be classified generally as component specializations and thus
are orthogonal to (finer-grained) micro-specialization, which is it-
self an architecture-conscious optimization that has as its goal to
reduce instruction executions (and thus as a side effect both data-
cache and instruction-cache misses).

Finally, Krikellas et al. employed an approach to producingspe-
cialized code to replace the entire original generic query evalua-
tion routines implemented in conventional DBMSes [16]. Thepro-
posed method uses code templates to form the specialized code for
processing specific queries. The code is then compiled and exe-
cuted to evaluate the queries. The scope of the code replacement
is vast: the entire query evaluation code base, often tens orhun-
dreds of thousands of lines, must be moved into templates that are
then stitched together. Others have also utilized full-query compi-
lation [22, 27, 29]. These can be characterized as architectural spe-
cializations, reflecting their impact on the structure of the DBMS.
These approaches are thus much coarser-grained than
micro-specialization.

9. CONCLUSION AND FUTURE WORK
We have introduced a novel form of DBMS specialization, target-
ing small sequences of code, termedmicro-specialization. This
perspective utilizes the concept ofbees, which are highly optimized
code fragments obtained by dynamic code specialization based on
variables whose values are invariant within the query evaluation
loop. Bees containbee routinesthat can be invoked by the DBMS;
these replace code in conventional DBMS while performing the
same operations more efficiently. The generality of the DBMSis
preserved by micro-specialization. Moreover, micro-specialization
does not change the architecture of the DBMS nor does it add sig-
nificant complexity to DBMS.

We have defined three types of bees and have implemented the
DBMS-independent HIVE-RE runtime environment that supports
relation, query, and tuple bees. We also identified a spectrum of
times at which bee instantiation is possible, and showed howthe
HIVE-RE could effect specialization at each of these times:DBMS
compilation, schema definition, query preparation, and query ex-
ecution. We have started developing a DBMS-independent inte-
grated development environment (HIVE) that supports efficient ap-
plications of micro-specialization across this spectrum.We ap-
plied micro-specialization to the PostgreSQL DBMS, realizing six
bee routines, that of theGCL andSCL routines for relation bees,
the GCL and SCL routines for tuple bees, and theEVP and EVJ
routines for query bees. We studied the performance of the re-
sulting bee-enabled PostgreSQL, focusing on CPU performance in
complex analytic queries, and performance of random modifica-
tions. The bee-enabled PostgreSQL achieves around 12% improve-
ments over the stock version, simultaneously in I/O and CPU time,
with the TPC-H analytic queries; and about 7% on the update-
intensive TPC-C benchmark.

We plan to further investigate the many opportunities in micro-
specialization within PostgreSQL to ascertain the full potential of
this approach, for example, to identify addition types of bees. Since
micro-specialization is orthogonal to other DBMS specialization
approaches, we can apply this approach to other architectures, for
instance, a column-oriented DBMS. We also plan to considerably
enhance the HIVE bee development environment. Specifically, we
will design the necessary visualization components for effective
user interaction. For instance, we plan to integrate HIVE with the
Eclipse IDE to enhance source code analysis. Eventually, wewill
incorporate the (remaining) steps into HIVE and move towards au-
tomation of applying micro-specialization.
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