
Application of Micro-Specialization
to Query Evaluation Operators

Rui Zhang 1, Richard T. Snodgrass 2, and Saumya Debray 3

Department of Computer Science, University of Arizona
{ 1ruizhang, 2rts, 3debray}@cs.arizona.edu

Abstract—Relational database management systems support
a wide variety of data types and operations. Such generality
involves much branch condition checking, which introduces
inefficiency within the query evaluation loop. We previously
introduced micro-specialization, which improves performance by
eliminating unnecessary branching statements and the actual
code branches by exploiting invariants present during the query
evaluation loop. In this paper, we show how to more aggressively
apply micro-specialization to each individual operator within a
query plan. Rather than interpreting the query plan, the DBMS
dynamically rewrites its object code to produce executable code
tailored to the particular query. We explore opportunities for
applying micro-specialization to DBMSes, focusing on query
evaluation. We show through an examination of program ex-
ecution profiles that even with a simple query in which just
a few operators are micro-specialized, significant performance
improvement can be achieved.

I. INTRODUCTION

Relational database management systems are by their nature
general, in that they can handle whatever schema the user spec-
ifies and whatever query or modification is presented to them.
Relational operators work on essentially any relation and must
contend with predicates specified on any attribute of the under-
lying relations. Through such innovations as effective indexing
structures, innovative concurrency control mechanisms, and
sophisticated query optimization strategies, relational DBMSes
are very efficient. Such generality and efficiency has enabled
their proliferation and use in many domains.

This generality presents challenges to further increases in
performance. For instance, a relation scan operator needs to be
able to perform scans in both the forward and backward direc-
tions. In addition, when a predicate that involves the scanned
attribute(s) is present, the scan operator needs to locate these
attributes from each scanned tuple. When implemented in a
generic fashion, the scan operator relies on multiple code
branches and the associated branching statements to determine
at runtime which code branch (corresponding to a particular
scan direction) to execute. Such implementation also requires
code to determine whether certain attributes need to be iden-
tified from each retrieved tuple, based on the presence of
predicate(s). Nonetheless, once a query plan is generated, the
scan direction and the presence of predicate are both invariants
during the execution of the query. Thus the above condition
checkings are rather unnecessary and can introduce significant
overhead over the query evaluation loop.

Micro-specialization enables specialization to be applied
at a finer granularity, that of on values presented within
DBMSes [1]. The values on which to apply micro-
specialization reside across various components within a
DBMS. For instance, the values can appear in relation schemas
and in query plans. In this paper, we focus the discussion
on query plan-based specialization techniques. Specifically,
we identify opportunities for applying micro-specialization
on a query plan, essentially all of which is invariant during
the query. We explain how micro-specialization of query
evaluation, which requires dynamic object code manipulation,
is applied. In particular, object code blocks corresponding to
a plan operator node specialized for a particular query are
instantiated and stitched together at runtime to produce the
plan-specific executable code, termed a bee. We emphasize
that the specialized code is exactly that present in the code
of the DBMS, only without all the branching statements and
code branches not needed for that particular query.

While the code blocks for the plan operators need to be
provided by DBMS developers, the instantiation, invocation,
and destruction of the specialized code are managed entirely
by the DBMS. We thus consider the application of micro-
specialization on a per-query basis to be a self-managed task
performed by the DBMS.

In previous papers, we introduced the concept of micro-
specialization and described implementation of this ap-
proach [1, 2]. In this paper, we make the following contri-
butions.

• We focus on query bees, inserted into many kinds of
specific query evaluation operators.

• We introduce the mechanism of bee hot-swapping, which
extends the application of micro-specialization to not
only invariants, but for variables that have a deterministic
sequence of values; such variables are prominent in query
bees.

• We provide more detailed execution-profile analysis of
the performance benefits achieved by applying micro-
specialization.

We first provide background about micro-specialization in
the next section. We show that there are many specialization
opportunities that can be exploited within the well-engineered
PostgreSQL [3] DBMS and elaborate in detail on the newly
identified micro-specialization opportunities in Section IV.



The following section addresses the mechanism of instanti-
ating and invoking bees. In Section VI, we extend the appli-
cability of micro-specialization beyond invariants during query
evaluation, making this approach more widely applicable.
Finally, we show that multiple micro-specializations in concert
contribute to significant performance improvement to even a
simple query.

II. BACKGROUND

In a previous paper [1], we introduced the concept of
micro-specialization along with a taxonomy of its application,
which included query bees. We also introduced a prototype
that integrated the generic bee module into PostgreSQL. We
conducted an empirical evaluation of that prototype on both
the TPC-H and TPC-C benchmarks. In a subsequent paper [2],
we investigated bee-instantiation mechanisms for various kinds
of bees on the timeline from compile time to runtime. We
also proposed a sequence of steps needed to automate the
application of micro-specialization, which can greatly reduce
the complexity of applying this approach. We introduced the
HIVE development environment to assist DBMS developers
in realizing the envisioned automation.

In this paper, we narrow our focus to particular query eval-
uation operators, to aggressively apply micro-specialization
given a particular query plan. We thereby extend the appli-
cability and realizable benefits of micro-specialization. This
paper also introduces the novel idea of bee hot-swapping,
which extends the applicability of micro-specialization beyond
invariants.

Applying micro-specialization requires one or more vari-
ables whose value are constant within the query evaluation
loop to be identified. Micro-specialization then replaces a func-
tion or stretch of code with multiple copies, each particular to
a single value of each of those variables. For instance, the
code of a join operator needs to handle multiple join types.
Applying micro-specialization on the join type will result in
several version of the join, each tailored to one kind of join.

The application of micro-specialization consists of three
stages. In the first stage, the generic source code is studied
and converted to the corresponding specialized source code.
The specialized source code will be compiled into object
code in the second stage. Finally, the object code needs to
be properly instantiated into executable form. We term the
resulting executable code a bee, in that the specialized code is
specific only to a particular scenario during execution. Hence
the specialized code can be very small and efficient, resem-
bling the characteristics of real bees. We term the object code
generated in the second stage proto-bee, indicating that the
actual executable bees are instantiated from such object code.

As a general approach, micro-specialization raises two cen-
tral questions: where can micro-specialization be applied and
when during the timeline from DBMS compilation to query
evaluation can micro-specialization be done?

A. Where to Apply Micro-Specialization?
When a relation is defined, its schema can be viewed as an

invariant. Consider the catalog look-up routines which rely on

the schema. Instead of accessing the system catalog for every
relation, many variables incorporated in the schema can be
specialized on. In this case of relational schema, we specialize
on each attribute’s length, offset, alignment, and the presence
of nullable attributes, as well as on the number of attributes
in the relation.

Micro-specialization can be applied on internal data struc-
tures issued during query evaluation, for which some of the
values in the data structure are constant during the evaluation
loop of a query. For example, a query that involves predicate
operators will utilize a FuncExprState data structure (a
C struct defined in PostgreSQL) to encode the predicate.
For the predicate age <= 45, this predicate data structure
contains the ID of attribute age, the <= comparison operator,
and the constant operand 45. We can thus apply specialization
on these variables once we know the predicate from the query.
The bees resulting from specializing such query-related data
structures are thus termed query bees. In this paper, we further
exploit the specialization opportunities in each individual
query plan node. These two types of bees are differentiated
by the kind of variable specialized upon to create the bee. By
identifying values used by oft-executed code within the query
evaluation loop, many query bees can be created. Each bee
will independently speed up a subset of queries.

B. When Can Micro-Specialization be Applied?

Figure 1 depicts when individual bees of each kind are
compiled and instantiated. Relation proto-bees and query
proto-bees can be compiled at DBMS compilation time. For
instance, for relation bees, type-specific code branches, such
as value extraction code for specific types of attributes, can
be compiled along with DBMS compilation. The produced
proto-bees will then be used to instantiate relation bees. Query
proto-bees can also be compiled at schema definition time in
that at schema definition, additional information can be used to
decide whether certain special cases of a query bee is needed.
For instance, if a relation is empty, a query that references this
relation should directly return. We will provide more detailed
discussion in Section IV.

Relation bees are instantiated at relation-schema definition
time, one for each newly-created relation. Individual query
bees are instantiated immediately after query plan generation.
Once we have a query plan, we know the particulars of the
various data structures used in query evaluation, and so can
generate the highly-specific code that uses these structures.

Fig. 1. When to Create Various Kinds of Bees

Each bee is the result of specializing on the possible values
of a variable. Note though that a variable available to an earlier
specialization is thus also available to a later specialization. So



for example a micro-specialization on an attribute’s offset in a
relation bee can be utilized in a query bee. Hence, as we travel
to the right along the timeline from DBMS compilation to
query evaluation, the number of variables available for micro-
specialization accumulate, making later bees highly efficient.

Where bee creation resides along the timeline affects how
efficient bee creation must be. Note however that we are not
discussing the design of a bee. As we will see in the next
section, the code to create the individual bees and to invoke
bees is manually inserted into the DBMS before it is compiled.
Here we are focusing on instantiation of individual bees, each
containing specialized code resulting from knowing the exact
values of the variable(s) evincing the specialization.

For relation bees, bee creation overhead is not critical.
Hence, when instantiating a relation bee, we can invoke gcc
to compile the specialized source code.

Because ad hoc queries need to be fast, the overhead of
instantiating query bees needs to be minimized. Recall a query
may require the join and predicate query bees. In the case of a
join plan-operator, all possible kinds of the join, such as (left,
semi, anti, etc.) can be enumerated and compiled into proto-
bees at DBMS compilation time. At query preparation time,
the associated join query bee is instantiated by selecting one
of the pre-compiled join query proto-bees.

Delving down into the details, there are two ways that
specialization affects query bee code. Some specializations,
such as on the join type for a join query bee, affect the branch
target of if statements in the code, thus resulting in multiple
versions of a bee. Other specializations, such as the attribute
ID for both the join and predicate bee, only affect constants in
the bee. For the latter, the bee is effectively cloned each time,
with different values substituted for the latter values; we will
discuss the details of this dynamic object code manipulation
mechanism in Section V.

It may seem that by instantiating individual bees, additional
code is being added to the DBMS. In fact, the introduced code
replaces the original code. Moreover, at run time a significant
number of instructions can be eliminated in the specialized
code, as we’ll see in the next section.

III. CASE STUDY

To illustrate in detail the mechanism of applying query
bees, we provide a case study of query14 from the TPC-H [4]
benchmark as an example.

SELECT l_extendedprice * (1 - l_discount)
FROM lineitem, part
WHERE l_partkey = p_partkey

AND l_shipdate >= date ’1995-04-01’
AND l_shipdate <

date ’1995-04-01’ + interval ’1’ month

The original query14 contains a complex SELECT clause
containing aggregations. Given that we have not yet investi-
gated micro-specialization with aggregation functions, we con-
vert the SELECT statement into a simple attribute projection.
We present the graphical query plan in Figure 2. As shown by
the plan, the inner relation part is hashed into memory first.

For each tuple fetched from the outer relation lineitem,
hashjoin is performed against the inner hash table. If the join
keys from both the inner and outer tuples match, the projected
attributes are returned by the SELECT statement.

In applying query bees for this query, each plan operator
requires a particular query bee that specializes that operator.
For instance, a scan contains several runtime invariants, which
include the scan direction and the presence of scan keys.
Micro-specialization is applied on these values to produce
multiple versions of the specialized scan operator (function),
with each version handling a particular direction as well as
the existence of scan keys. Similarly, micro-specialization is
applied across this query plan to produce specialized code for
each operator.

We ran this query in both a stock PostgreSQL and a bee-
enabled PostgreSQL. When running the query, we ensured that
the query plans generated by both DBMSes were identical.
The running time (with a warm cache) was 1220 milliseconds
for the former PostgreSQL and 961 milliseconds for the latter
DBMS, respectively. The performance was improved by 21%.

IV. KINDS OF QUERY BEES

We now elaborate on the details of how micro-specialization
is applied on each plan operator for this query.

A. Scan Query Bee

As mentioned earlier, the generic implementation of the
relation scan operator relies on branching statements to handle
multiple possible cases. First, the direction of the scan can be
forward, backward, or sometimes no movement. Second, when
a relation scan is executed, a scan key is present when there is
a predicate that is associated with one of the attributes in the
scanned relation. Moreover, depending on whether a relation is
empty, two code branches are implemented such that when the
relation is empty, a direct return statement will be executed.

During the evaluation of an individual query, we found that
the execution path is always unique. This means that these
variables that are included in the branching statements are in
fact invariants. For instance, the direction of a scan operation
is not changed during the execution of a query; also, the
presence of predicates determines whether the relevant scan-
key processing is ever needed. In general, only a small portion
of the generic code in the relation scan operator is executed
for every query.

Based on such observation, we construct all the scan query
proto-bees, each corresponding to a particular case. Given that
each variable involves just two distinct values, a total of eight
versions of the proto-bees are needed.

Removing these superfluous branching statements and the
code branches themselves simultaneously decreases the code
size and improves the execution efficiency of the code.

B. Hash Query Bee

When a hash operator is executed, it first extracts a physical
tuple from the child plan node under this hash operator.
Depending on the type of child plan node, this tuple can be



Fig. 2. A Query Plan Produced by PostgreSQL for the Example Query

directly fetched from a scan operator, returned as an inner
tuple, or returned as an outer tuple. Concerning a specific
hash operator in a query plan, the kind of its child plan node
and hence the source of the associated tuples are invariants
during the evaluation of the query. Furthermore, the number
of attributes to be hashed from each tuple is also a constant
which can incorporated into the query plan.

The tuple fetching code in the hash operator utilizes a
switch statement to direct the tuples to be retrieved from
the correct source. We eliminate the switch statement and
construct three distinct versions of the hash query proto-bee.

Another specialization opportunity resides in hash com-
putation. Hashing various types of values demands various
computation algorithms. For instance, hashing a string and
hashing an integer number requires two approaches that differ.
An optimization already present in PostgreSQL for type-
specific operations is to utilize function pointers. A function
that performs string hashing can be associated with a hash
operator in the form of a pointer during query plan gen-
eration. This approach eliminates the necessity of a rather
inefficient switch statement that directs the execution to the
appropriate code branch at runtime. Nevertheless, a function
pointer can only be invoked by indirect function calls, which
can become a significant overhead when accumulated in the
query evaluation loop.

Instead of utilizing function pointers, we convert each such
indirect invocation statement into a direct CALL instruction
with a dummy target address associated. The dummy addresses
are unique integer numbers that can be easily identified from
the object code. At runtime, we substitute these magic numbers
with the actual function pointers, which are essentially the
addresses of the functions. We therefore replace indirect calls
with direct function calls.

C. Hashjoin Query Bee

For a hashjoin operator, many scenarios need to be handled
in the generic implementation. First, various types of joins,
such as left-join, semi-join, and anti-join take different exe-
cution paths at runtime. Second, a hash join operator takes
two tuples from the inner sub-plan and the outer sub-plan
nodes, respectively. Each such node may require a different
routine to fetch the associated tuples. For instance, an outer
sub-plan can either be a hash operator or a scan operator. The

type of sub-plan node is identified by a variable name type

provided by the PlanState data structure in PostgreSQL. A
dispatcher, which is essentially a complex switch statement,
recognizes the sub-plan node and invokes the corresponding
tuple fetching function. Furthermore, join-key comparison is
another type-specific computation that involves the invocation
of function pointers.

The type of join is determined by the query plan; the
kinds of both inner and outer sub-plans are also invariants
once the query plan is computed. Given that PostgreSQL
defines eight types of joins, we construct eight versions of
the hashjoin query proto-bee. We eliminate the dispatchers
by again utilizing magic numbers which will be replaced
by the addresses of the proper tuple-processing functions at
runtime. Finally, we also convert the invocations of the join-
key comparison functions into direct calls.

D. Predicate Query Bee

A predicate evaluation is similar to the join key comparison
in that a predicate also involves type-specific comparison.
We thus apply the same technique to produce the predicate
query proto-bee with the comparison function’s address as a
placeholder. In addition, we found that a dispatcher is utilized
to extract the constant operand, such as ’1995-04-01’ in the
predicates each time a tuple is fetched from the lineitem

relation. Instead of extracting this value every time, we tailor
each predicate query bee to be specific to a single predicate
operand by removing the value fetching code. Instead, for
each predicate query bee, we substitute in the object code
another magic number that represents the operand with the
actual value. This new magic number is specified in the source
code of the predicate query proto-bee as one of the input
arguments to the predicate comparison function. The resulting
code is effectively equivalent to that in which the value had
been hardcoded in the predicate evaluation code.

V. DYNAMICALLY SPECIALIZING QUERY BEES

So far we have seen many places (operators) where micro-
specialization is applicable. We now turn to the mechanism of
instantiating and then combining several query bees to perform
a particular query plan.

During query evaluation, once a query plan is determined,
all its nodes will be invariant for the query evaluation. We
insert statements that instantiate the actual query bees from
the proto-bees. A query bee is instantiated simply by loading
the proper version of the related proto-bee into an executable
memory region. If a particular operator, such as a hashjoin
operator, appears multiple times in a query plan, the hashjoin
proto-bee needs to be instantiated several times, with each
resulting bee associated with a distinct plan node.

Query bees are instantiated based on the selected proto-
bees. The resulting query bees are stitched together to form
the executable code for a query plan. All the versions of
each proto-bee are stored in a pointer array, with each pointer
referencing the start address of each version of the proto-bee
code. To select the proper hashjoin proto-bee, we utilize the



if (!scan->rs_inited) {
...
scan->rs_inited = true;

} else {
...

}

Listing 1. Code Excerpt of the Scan Operator

join type, which is an integer value ranging from 0 to 7 to
index the corresponding versions. Take the hashjoin operator
presented in Figure 2 as an example, once the proto-bee is
selected, the magic numbers, as mentioned earlier, will be
replaced with the correct addresses of the target functions.
An actual query bee is thus instantiated. The instantiation step
is in fact very similar to dynamic linking.

Given that the instantiation of all the query bees require
just a few memory copies and several in-place memory up-
dates, query bee instantiation is thus very efficient and incurs
minimal overhead.

VI. HOT-SWAPPING BEES

To this point, we have focused on applying micro-
specialization on invariants: a variable that takes on a constant
value during query evaluation. We now generalize to variables
that each take on a deterministic sequence of values during
query evaluation.

As an example, let’s examine the scan operator, in particular,
the two code branches shown in Listing 1. The rs_inited

variable indicates whether the scan operator has been initial-
ized. In other words, the variable represents if the current tuple
is the first one being fetched from the scanned relation within a
query. This variable is then assigned to true for the rest of the
query. By definition, this variable is strictly not an invariant.
Nonetheless, due to the fact that this variable is known to be
a constant right after the first tuple is fetched, evaluating the
condition statement is redundant for the rest of the tuples. This
is a simple example of a variable that takes on a sequence of
values, here, true then false.

Hence, we produce two additional versions of the scan query
proto-bees. The first version contains the first code branch in
the above code and the second version contains code from
the other code branch. Given that there are already eight
versions of the scan query proto-bee, a total of 16 versions are
now needed. However, one may notice that when a relation
is empty, there is no need to know the scan direction and
whether it is the first time to extract tuples. Therefore, careful
examination of the relationships among the invariants can
reduce the total number of distinct proto-bee versions.

Unlike the other bees whose object code is fixed after
instantiation, an instantiated scan query bee is subject
to self modification. We illustrate such mechanism with
a call graph shown in Figure 3. In this figure, bees are
represented as rectangles. In the stock implementation, the
function SeqNext calls function heap_getnext to fetch
the next tuple in the heap file. Function heap_getnext

then calls a function namely heapgettup_pagemode

to retrieve the actual tuple located on the currently

scanned page. If it is the first time that heap_getnext

is called, some initialization needs to be done. In Figure 3,
heapgettup_pagemode_init is a bee representing
the specialized version of heapgettup_pagemode

with just the initialization code branch included.
Similarly, heapgettup_pagemode_regular contains
only the other code branch. During the execution of
heapgettup_pagemode_init, the object code of the
heap_getnext bee will be modified such that the original
call to the _init version will be hot-swapped to the
_regular version. Hot-swapping is simply done by the in-
place update of a function call address, in this case, changing
the call of the _init bee to a call to the _regular bee.
From then on, the latter bee will be called. For a sequence of
values, there will be multiple hot-swaps, each swaps-in a call
to the next specialized version. Hot-swapping requires that
the caller to the bees that are swapped-in to also be a bee, so
that this caller bee can be modified.

Fig. 3. Object Code Hot-Swapping

A more detailed study of the PostgreSQL source code
revealed that the sort merge join operator can also benefit from
such specialization. The sort merge join algorithm involves
several states, each associated with a distinct code branch in
a generic function. The execution of the sort merge algorithm
switches among these states with each state being followed
by a unique state. For instance, an EXEC_MJ_JOINTUPLE

state is always followed by an EXEC_MJ_NEXTINNER state,
meaning after a pair of tuples are joined, the next inner tuple
is immediately needed.

We thus propose two simple rules indicating in what situ-
ation such specialization should be applied. First of all, there
should only be a few distinct values associated with a variable
that is used in branching statements. Second, each value is
uniquely associated with another value such that the version
of the bee to be invoked next is deterministic.

Dynamic object code manipulation raises a concern in
a multi-threaded query execution environment: when a hot-
swapping bee is invoked by multiple threads to update the
object code of the bee, synchronization needs to be carefully
handled. However, PostgreSQL employs just one process to
execute each query, such consideration is not taken into
account in our implementation. Moreover, given that each
query evaluation requires a distinct instantiation of the query
bees, code reentrancy is preserved even the object code is
dynamically modified at runtime, because each thread will
utilize its own bees.



VII. EVALUATION

In this paper, we focus our study on the example query pro-
vided in Section IV. In particular, we compare the execution
of the query on a stock PostgreSQL and a query bee-enabled
PostgreSQL. We utilize the TPC-H benchmark to prepare the
dataset on which the query is evaluated. In generating the
TPC-H relations, we set the scale factor to one, resulting in
200K and 6M tuples in the part relation and the lineitem

relation, respectively. Our experiment machine is configured
with a 2.8GHz Intel i7 860 CPU and 8GB of main memory.
We used PostgreSQL version 8.4.2 as the experiment DBMS.
The DBMS and the bees are compiled with gcc version 4.4.3,
with optimization -O2 enabled. Note that this paper focuses
on the performance benefit of reducing the number of executed
instructions; therefore the experiments were carried out with
a warm cache.

As mentioned in Section IV, the running time of the query
is improved by 21% with the bee-enabled PostgreSQL. We
now study in detail the source of such improvement.

It is worth noticing that the overhead of invoking the
compiler is not included in the performance analysis. This is
because the compiler is never invoked at runtime during query
evaluation. Instead, the proto-bees are compiled before query
evaluation and hence at runtime, the overhead of dynamically
instantiating and invoking the executable bees is trivial. Micro-
specialization does not degrade runtime performance at all.

We utilized callgrind [5] to produce the execution profile
for executing the query on both DBMSes. We present in
Listing 2 and Listing 3 excerpts of the profile output of
executing the example query on the stock DBMS and the
bee-enabled PostgreSQL, respectively. Note that the notation
Ir represents the number of executed instructions. As shown
by the profile result, the stock DBMS executed a total of
7429M instructions. The bee-enabled DBMS on the other hand
executed 4940M instructions, or an improvement of 34% in
the number of executed instructions.

We delve into the instruction counts for specific functions
to explain the performance improvement. The most significant
improvement is from the slot_deform_tuple function. This
function transforms a physical tuple into an array of long
integers. Note that this function is invoked for each tuple in
both relations referenced in the query. Therefore, specializing
this function achieves the most significant benefit. As Listing 3
shows, the slot_deform_tuple is highly specialized by
invoking the two relation bees, represented as their in-memory
locations at 0x441b3c0 and 0x442e7c0, respectively. As a
result of such specialization, 20% instructions are reduced in
total when the query was executed.

The presence of the predicates provides another
opportunity for applying micro-specialization. The
ExecMakeFunctionResultNoSets function in the stock
DBMS performs predicate evaluation. By contrast, the two
predicates presented in the query were evaluated by two
predicate bees, as shown in Listing 3 as their addresses in

Ir ... file:function
------------------------------------------------------------------------------
7,429,490,994 ... TOTAL
2,603,135,278 ... src/backend/access/common/heaptuple.c:slot_deform_tuple
944,852,915 ... src/backend/executor/execQual.c:ExecMakeFunctionResultNoSets

...
438,256,918 ... src/backend/access/heap/heapam.c:heapgettup_pagemode

...
8,273,670 ... src/backend/executor/execProcnode.c:ExecProcNode(2)

...
2,273,640 ... src/backend/executor/execProcnode.c:ExecProcNode

...

Listing 2. Profile Result Excerpt of the Stock PostgreSQL

Ir ... file:function
---------------------------------------------------------------------------
4,940,361,293 ... TOTAL
738,149,445 ... 0x000000000441b3c0 (relation bee -- lineitem)
362,774,120 ... src/backend/access/common/heaptuple.c:slot_deform_tuple
300,357,772 ... src/backend/access/heap/heapam.c:heapgettup_pagemode_bee

...
294,059,535 ... 0x0000000004425fc0 (predicate bee1)
156,870,266 ... 0x000000000442d3c0 (predicate bee2)

...
8,000,000 ... 0x000000000442e7c0 (relation bee -- part)

...

Listing 3. Profile Result Excerpt of the Bee-Eanbled PostgreSQL

memory. The two predicate query bees alone reduced about
7% total executed instructions.

While the each micro-specialization improves performance,
some micro-specialization may have less significant impact.
The heapgettup_pagemode function is responsible for scan
a relation. We discussed the implementation of this function in
Section IV. In the stock implementation, this function needs
to examine the direction of the scan and check the existence
of predicates. As the profile result shows, by applying micro-
specialization on these invariants, approximately 32% of the
instructions of that function itself are reduced. The reduction
of 138M instructions translates to around two percent within
the total improvement. The dispatcher utilized by the stock
implementation, ExecProcNode (in the profile there are two
such instances) contributes a total of 11M instructions. In the
bee-enabled PostgreSQL, this overhead is completely elimi-
nated. In total, when micro-specialization applied aggressively
across multiple operators, another approximately 7% of in-
structions were reduced by the query bees that have relatively
less performance benefit.

Note that instantiating bees at runtime requires additional
instructions to be executed. However, callgrind was not able
to collect such data given that this additional overhead is too
small even to be counted.

To summarize, query bees are utilized by first identifying
the invariants during the query evaluation loop. The associated
proto-bees are then dynamically instantiated as the executable
query bees. By applying several optimizations, such as elim-
inating unused code branches and turning indirect function
calls into direct calls, significant performance benefits can
be achieved. Although techniques such as branch prediction
supported by modern CPUs can also achieve a similar effect,
the benefits of micro-specialization go beyond that of branch
prediction. The profile analyses suggest that the instruction
reduction is consistent with the execution time improvement.
Therefore, even though optimization techniques employed by
micro-specialization can be partially realized by other means,
micro-specialization still can significantly further improve
performance.



VIII. RELATED WORK

Krikellas et al. employed an approach to produce spe-
cialized code to replace the entire original generic query
evaluation routines implemented in conventional DBMSes [6].
The proposed method uses code templates to form the spe-
cialized code for processing specific queries. The code is then
compiled and executed to evaluate the queries. The scope of
the code replacement is vast: the entire query evaluation code
base, often tens or hundreds of thousands of lines, must be
moved into templates that are then stitched together.

Neumann, Rao, et al., Sompolski et al., and Zane et
al. [7–10] utilize similar mechanisms in compiling queries
during their execution, that of converting query plans into
source code and producing executable code by compiling the
specialized source code. Unlike these approaches, micro-
specialization does not require the compiler to be invoked at
query evaluation time. More importantly, given that micro-
specialization focuses on specialization opportunities at a
finer granularity, exploiting invariants within query evaluation
code, micro-specialization can be applied aggressively at many
places during the query evaluation loop. Moreover, micro-
specialization requires minimal changes to the DBMS.

The MAL language [11] incorporated in MonetDB uses a
query-evaluation code specialization approach for that column-
oriented DBMS. Specifically, when a query is evaluated,
the SQL statement is first translated into a MAL program.
This initial program is further optimized and transformed by
MonetDB. The resulting MAL program, which is a sequence
of MAL instructions, is interpreted linearly by the MonetDB
kernel [12]. In contrast, micro-specialization manipulates ob-
ject code directly without relying on additional languages.
Therefore, micro-specialization can be applied without affect-
ing the query plan optimizer in the DBMS.

In general, micro-specialization employs dynamic object
code manipulation techniques to avoid expansive compiler
invocation at runtime. In particular, the code that is executed
is exactly that present in the source code of the DBMS, only
without all the branching statements and dead code not needed
for that particular query. Moreover, the fine-granularity of
micro-specialization enables the DBMS to entirely manage the
associated tasks without user intervention. More importantly,
the property that micro-specialization is applied at low level
present opportunities that it can be utilized in concert with all
the above mentioned approaches. Specifically, by exploiting
invariants and variables that take on deterministic sequences of
values that are present in executable code, micro-specialization
can be employed independently of the particular query opti-
mizer or data storage model and can further improve query
evaluation efficiency without affecting the DBMS architecture
and existing optimizations.

IX. CONCLUSION AND FUTURE WORK

We have presented the application of micro-specialization
on query plans as a self-managed task performed entirely by
DBMSes. In the case study of a particular query, we pointed
out the exact values where micro-specialization can be applied

on and the associated approaches to dynamically manipulating
object code. The DBMS automatically instantiates query bees
based on the provided proto-bees. The bee instantiation is
performed by replacing the magic numbers presented in the
object code with correct addresses of the invoked functions,
which effectively connects the involved query bees and the
host DBMS execution environment. We presented detailed
performance analysis of the specific query which confirmed
the performance benefit introduced by micro-specialization.
We also outlined the steps to achieved the query plan-based
application of micro-specialization.

We plan in the future to investigate more opportunities
for applying micro-specialization across the wide range of
operations in query evaluation. We want to move towards com-
plete automation of micro-specialization on query plans. Such
micro-specialization utilizes invariants across the entire query
evaluation loop. Automating bee hot-swapping will be more
challenging because the value being specialized on is not in-
variant, but rather takes on a deterministic sequence of values.
Moreover, given that query bees improve the efficiency of
individual operators, it would be helpful to incorporate such
effects into the cost model utilized by the plan optimizers.

REFERENCES

[1] R. Zhang, R. T. Snodgrass, and S. Debray, “Micro-Specialization in
DBMSes,” To appear in IEEE International Conference on Data Engi-
neering (ICDE), April 2012.

[2] R. Zhang, S. Debray, and R. T. Snodgrass, “Micro-Specialization:
Dynamic Code Specialization of Database Management Systems,” To
appear in International Symposium on Code Generation and Optimiza-
tion (CGO), March 2012.

[3] PostgresSQL Global Development Group, “PostgresSQL,” accessed
August 29, 2010. [Online]. Available: http://www.postgresql.org/

[4] TPC, “TPC Transaction Processing Performance Council - TPC-H,”
(accessed August 29, 2010). [Online]. Available: http://www.tpc.org/
tpch/

[5] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” in Proc. ACM Conference on Pro-
gramming Language Design and Implementation (PLDI), Jun. 2007, pp.
89–100.

[6] K. Krikellas, S. Viglas, and M. Cintra, “Generating Code for Holistic
Query Evaluation,” in IEEE International Conference on Data Engi-
neering (ICDE), 2010, pp. 613–624.

[7] J. Sompolski, M. Zukowski, and P. A. Boncz, “Vectorization vs.
Compilation in Query Execution,” in International Workshop on Data
Management on New Hardware (DaMoN), 2011, pp. 33–40.

[8] J. Rao, H. Pirahesh, C. Mohan, and G. M. Lohman, “Compiled Query
Execution Engine using JVM,” in IEEE International Conference on
Data Engineering (ICDE), 2006, p. 23.

[9] T. Neumann, “Efficiently Compiling Efficient Query Plans for Modern
Hardware,” Proceedings of the VLDB Endowment, vol. 4, no. 9, pp.
539–550, 2011.

[10] B. Zane, J. Ballard, and F. Hinshaw, “Optimized SQL Code Generation,”
U.S. Patent 7 430 549 B2, September 30, 2008.

[11] P. A. Boncz, S. Manegold, and M. L. Kersten, “Database Architecture
Evolution: Mammals Flourished Long Before Dinosaurs Became Ex-
tinct,” Proceedings of the VLDB Endowment, vol. 2, no. 2, pp. 1648–
1653, 2009.

[12] M. G. Ivanova, M. L. Kersten, N. J. Nes, and R. A. Gonçalves, “An ar-
chitecture for recycling intermediates in a column-store,” in Proceedings
of the 35th SIGMOD international conference on Management of data,
ser. SIGMOD ’09. New York, NY, USA: ACM, 2009, pp. 309–320.


