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a b s t r a c t

The notion of 1-planarity is among the most natural and most studied generalizations of graph planarity.
A graph is 1-planar if it has an embedding where each edge is crossed by at most another edge. The
study of 1-planar graphs dates back to more than fifty years ago and, recently, it has driven increasing
attention in the areas of graph theory, graph algorithms, graph drawing, and computational geometry.
This annotated bibliography aims to provide a guiding reference to researchers who want to have an
overview of the large body of literature about 1-planar graphs. It reviews the current literature covering
various research streams about 1-planarity, such as characterization and recognition, combinatorial
properties, and geometric representations. As an additional contribution, we offer a list of open problems
on 1-planar graphs.
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1. Introduction

Relational data sets, containing a set of objects and relations
between them, are commonlymodeled by graphs, with the objects
as the vertices and the relations as the edges. A great deal is known
about the structure and properties of special types of graphs, in
particular planar graphs. The class of planar graphs is fundamental
for both Graph Theory and Graph Algorithms, and is extensively
studied. Many structural properties of planar graphs are known
and these properties can be used in the development of efficient
algorithms for planar graphs, even where the more general prob-
lem is NP-hard [1].

Most real world graphs, however, are non-planar. For example,
scale-free networks (which can be used to model web-graphs,
social networks and biological networks) consist of sparse non-
planar graphs. To analyze such real world networks, we need
to address fundamental mathematical and algorithmic challenges
for sparse non-planar graphs, which we call beyond-planar graphs.
Beyond-planar graphs are more formally defined as non-planar
graphs with topological constraints, such as forbidden crossing
patterns, as is the case with graphs where the number of crossings
per edge or the number of mutually crossing edges is bounded by
a constant (see, e.g., [2–4]).

A natural motivation for studying beyond-planar graphs is vi-
sualization. The goal of graph visualization is to create a good
geometric representation of a given abstract graph, by placing all
the vertices and routing all the edges, so that the resulting drawing
represents the graph well. Good graph drawings are easy to read,
understand, and remember; poor drawings can hide important
information, and thus may mislead. Experimental research has
established that good visualizations have a number of geometric
properties, known as aesthetic criteria, such as few edge crossings,
symmetry, edges with low curve complexity, and large crossing
angles; see [5–8].

Visualization of large and complex networks is needed in many
applications such as biology, social science, and software engineer-
ing. A good visualization reveals the hidden structure of a network,
highlights patterns and trends, makes it easy to see outliers. Thus
a good visualization leads to new insights, findings and predic-
tions. However, visualizing large and complex real-world networks
is challenging, because most existing graph drawing algorithms
mainly focus on planar graphs, and consequently have made little
impact on visualization of real-world complex networks,which are
non-planar. Therefore, effective drawing algorithms for beyond-
planar graphs are in high demand from industry and other appli-
cation domains.

The notion of 1-planarity is among the most natural and most
studied generalizations of planarity. A graph is 1-planar if there

exists an embedding in which every edge is crossed at most once.
The family of 1-planar graphs was introduced by Ringel [9] in 1965
in the context of the simultaneous vertex–face coloring of planar
graphs. Specifically, if we consider a given planar graph and its
dual graph and add edges between the primal vertices and the
dual vertices, we obtain a 1-planar graph. Ringel was interested
in a generalization of the 4-color theorem for planar graphs, he
proved that every 1-planar graph has chromatic number at most
7, and conjectured that this bound could be lowered to 6 [9].
Borodin [10] settled the conjecture in the affirmative, proving that
the chromatic number of each 1-planar graph is at most 6 (the
bound is tight as for example the complete graph K6 is 1-planar
and requires six colors).

The aim of this paper is to present an annotated bibliography of
papers devoted to the study of combinatorial properties, geometric
properties, and algorithms for 1-planar graphs. Similar to [11], this
annotated bibliography reports the references in the main body of
the sections;we believe that this choice can better guide the reader
through the different results, while reading the different sections.
All references are also collected at the end of the paper, in order to
give the reader an easy access to a complete bibliography.
Paper organization. The remainder of this paper is structured as
follows.

• Section 2 contains basic terminology, notation, and defini-
tions. It is divided in two main parts as follows. Section 2.1
introduces basic definitions and notation about graphs,
drawings, and embeddings; this section can be skipped by
readers familiar with graph theoretic concepts and graph
drawing. Section 2.2 containsmore specific definitions for 1-
planar graphs and for subclasses of 1-planar graphs such as
IC-planar and NIC-planar graphs. Because different papers
on 1-planarity often use different terminology and notation,
this section is important for the rest of the paper.

• Section 3 is concerned with two fundamental and closely
related aspects of 1-planar graphs. Specifically, Sections 3.1
and 3.2 survey known results for the problem of character-
izing and recognizing 1-planar graphs, respectively. While
the recognitionproblem isNP-complete for general 1-planar
graphs, interesting characterizations and polynomial-time
recognition algorithms are known for some meaningful
classes of 1-planar graphs, such as optimal 1-planar graphs.

• Section 4 investigates structural properties of 1-planar
graphs, i.e., properties that depend only on the abstract
structure of these graphs. Specifically, this section contains:
the main results on the chromatic number, the chromatic
index, and on other coloring parameters (Section 4.1); upper
and lower bounds on the edge density for several classes
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of 1-planar graphs (Section 4.2); results on edge partitions
with specific properties on the edge sets (Section 4.3);
bounds on various graph parameters (Section 4.4); results
on the existence of subgraphs with bounded vertex degree
(Section 4.5); results on binary graph operations that pre-
serve 1-planarity (Section 4.6).

• Section 5 describes several results about geometric rep-
resentations of 1-planar graphs, which are of interest in
computational geometry, graph drawing and network vi-
sualization. In particular, the following types of represen-
tation are considered: straight-line drawings (Section 5.1);
drawings with right-angle crossings (Section 5.2); visibility
representations (Section 5.3); and contact representations
(Section 5.4).

2. Preliminaries

2.1. Basic definitions

In this section we introduce some preliminaries and definitions
about graphs and about drawings and embeddings of graphs. For
more details about graph theory, the reader is referred to classic
textbooks such as:

• [12] J. A. Bondy and U. S. R. Murty. Graph theory. Graduate
texts in mathematics. Springer, 2007.

• [13] R. Diestel. Graph Theory, 4th Edition, volume 173 of
Graduate texts in mathematics. Springer, 2012.

• [14] A. Gibbons. Algorithmic Graph Theory. Cambridge Uni-
versity Press, 1985.

• [15] F. Harary, editor. Graph Theory. Addison-Wesley, 1972.

Further graph drawing background can also be obtained in
several books and surveys on the topic, including:

• [16] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis.Graph
Drawing: Algorithms for the Visualization of Graphs. Prentice-
Hall, 1999.

• [17] M. Jünger and P. Mutzel, editors. Graph Drawing Soft-
ware. Springer, 2004.

• [18] M. Kaufmann and D. Wagner, editors. Drawing Graphs,
Methods and Models, volume 2025 of LNCS. Springer, 2001.

• [19] T. Nishizeki and M. S. Rahman. Planar graph drawing,
volume 12 of Lecture notes series on computing. World Scien-
tific, 2004.

• [20] K. Sugiyama. Graph Drawing and Applications for Soft-
ware and Knowledge Engineers, volume 11 of Series on Soft-
ware Engineering and Knowledge Engineering. World Scien-
tific, 2002.

• [21] R. Tamassia. Advances in the theory and practice of
graph drawing. Theor. Comput. Sci., 217(2):235–254, 1999.

• [22] R. Tamassia, editor. Handbook on Graph Drawing and
Visualization. Chapman and Hall/CRC, 2013.

In order to make this paper self-contained, we review several
basic definitions that will be used in the next sections.

2.1.1. Graphs
A graph is a mathematical discrete structure used to represent

a set of interconnected objects. Formally, a graph G = (V , E) is an
ordered pair comprising a finite and non-empty set V of elements
called vertices and a finite set E of elements called edges. An edge
e ∈ E is an unordered pair (u, v) of vertices; vertices u and v are
called end-vertices of e. We often write e = (u, v) to denote an
edge e with end-vertices u and v. Vertices u and v are said to be
adjacent, while e is incident to all of its end-vertices. The set of

vertices adjacent to a vertex v is called the neighborhood of v and
denoted by N(v). The number of edges that are incident to a vertex
v is called the degree of v and is denoted by deg(v). A graph G has
maximum vertex degree 1, if deg(v) ≤ 1 for every vertex v of G
and there is a vertex u of G such that deg(u) = 1. An edge of G is a
self-loop if its end-vertices coincide. Also, G containsmultiple edges
if it has two or more edges with the same end-vertices. A graph G
is simple if it has neither self-loops nor multiple edges. Note that
in a simple graph the degree of a vertex v corresponds to the size
of N(v). In the following we always refer to simple graphs, unless
specified otherwise.

A subgraph G′ of a graph G = (V , E) is a graph G′
= (V ′, E ′),

such that V ′
⊆ V and E ′

⊆ E. If V ′ is a subset of V , the subgraph
of G induced by V ′ is the graph G′

= (V ′, E ′), where E ′
⊆ E is the

subset of all edges in E connecting any two vertices that are in V ′. A
subgraph G′

= (V ′, E ′) of G = (V , E) such that V ′
= V is a spanning

subgraph of G.
A path is a graph whose set of vertices is V = {v1, . . . , vn} and

there exists an edge ei = (vi, vi+1) for i = 1, . . . , n − 1.
A component G′ of a graph G is a maximal subgraph of G such

that for every pair u, v of vertices of G′ there is a path between
u and v in G′. A graph that has exactly one component is said
to be connected. A separating k-set, k ≥ 1, of a graph G is a set
of k vertices whose removal increases the number of connected
components ofG. Separating 1-sets and2-sets are called cut vertices
and separation pairs, respectively. A connected graph is 2-connected
if it has no cut vertices. A 2-connected graph is 3-connected if it has
no separation pairs. In general, a graph is k-connected, k ≥ 2, if it
has no separating (k − 1)-sets. Clearly, if a graph is k-connected,
then it is also (k − 1)-connected.

A connected graph G is a cycle if every vertex of G has degree 2.
A graph is acyclic if it does not contain subgraphs that are cycles. A
connected acyclic graph is called a tree. A collection of trees (i.e., an
acyclic graph) is a forest.

A graph is complete if it has an edge connecting every pair of
vertices. A complete graph with n vertices is denoted by Kn. A
graph G is k-partite if the set of its vertices can be partitioned into
k ≥ 2 sets (also called parts), V1, . . . , Vk, such that every edge of G
connects a vertex in Vi to a vertex in Vj, for some 1 ≤ i ̸= j ≤ k. A
graph G is complete k-partite if it is k-partite and every two vertices
that belong to distinct parts are adjacent. A 2-partite graph is also
called a bipartite graph. A complete bipartite graph such that |V1| =

n1 and |V2| = n2 is denoted by Kn1,n2 .

2.1.2. Drawings and embeddings
Let G = (V , E) be a graph, a drawing on the plane, or simply

a drawing, Γ of G is a pair of functions ⟨ΓV , ΓE⟩, where ΓV maps
each vertex v to a point ΓV (v) of the plane and ΓE maps each edge
(u, v) to a simple open Jordan curve ΓE(u, v), whose endpoints are
ΓV (u) and ΓV (v). The curves representing the edges are allowed to
intersect, but they may not pass through vertices except for their
endpoints. In what follows, we will often refer to the vertices and
to the edges of a drawing as an abbreviation for the points and the
curves that represent the vertices and the edges of the depicted
graph.

A drawing is planar if there are no two edges that cross (except
at common endpoints). A planar graph is a graph that admits a
planar drawing.

A drawing divides the plane into topologically connected re-
gions, called faces. The infinite region is called the outer face. For
a planar drawing the boundary of a face consists of vertices and
edges, while for a non-planar drawing the boundary of a face may
contain vertices, crossings, and edges (or parts of edges). Given
a drawing Γ , the planarization Γp of Γ is the drawing obtained
by replacing each crossing point of Γ with a dummy vertex. The
vertices of Γ in Γp are called original vertices to avoid confusion.
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A drawing where all the edges are mapped to segments is
called a straight-line drawing. A polyline drawing is a drawingwhere
the edges are mapped to chains of segments. A drawing, either
straight-line or polyline, where all the vertices and all the possible
bend points aremapped to points with integer coordinates is a grid
drawing. The bounding box of a grid drawing Γ is the minimum
axis-aligned box containingΓ . If the bounding box has side lengths
X − 1 and Y − 1, then we say that Γ has area X × Y .

A rotation system of a graph is defined by an assignment of a
clockwise order of the edges incident to a vertex, for all vertices of
the graph. A drawing is said to respect a rotation system if scanning
around a vertex in clockwise order encounters the edges in the
prescribed order.

An embedding of a graph G is an equivalence class of drawings
of G that define the same set of faces and the same outer face. A
planar embedding is an embedding that represents an equivalence
class of planar drawings. Equivalently, an embedding of a graph is
an equivalence class of drawings under homeomorphisms of the
plane. For planar graphs the information carried in an embedding
is equivalent to that in a rotation system together with one face
indicated to be the outer face. More in general, a graph with a
fixed embedding comeswith a rotation system, a clockwise order of
(part of) edges around each crossing, and with one face indicated
to be the outer face. A plane graph is a graph with a fixed planar
embedding. Similarly as for a drawing, given a graph Gwith a fixed
embedding, the planarization Gp of G is the graph obtained by re-
placing each crossing of Gwith a dummy vertex. The vertices of G in
Gp are called original vertices to avoid confusion. The planarization
Gp is a plane graph, i.e., a planar graph with a fixed embedding
without crossings. It is worth recalling that a 3-connected planar
graph has a unique planar embedding up to the choice of the outer
face [23].

• [23] H. Whitney. Congruent graphs and the connectivity of
graphs. Am. J. Math., 54(1):150–168, 1932.

2.2. 1-planar graphs

A 1-planar drawing is one in which each edge is crossed at most
once. A graph is 1-planar if it admits a 1-planar drawing. A 1-planar
embedding is an embedding that represents an equivalence class of
1-planar drawings. A 1-plane graph is a graph with a fixed 1-planar
embedding.

A 1-planar graph G with n vertices has at most 4n − 8
edges [3,24] (see also Section 4.2). If G has exactly 4n − 8 edges,
then it is called optimal. A 1-planar graph G is maximum if it has
the maximum number of edges over all 1-planar graphs with n
vertices. Note that there exist graphs that are maximum but not
optimal (e.g., the complete graph with 5 vertices), whereas an
optimal 1-planar graph is also maximum. A 1-planar graph G is
maximal if no edge can be added to G without having at least
one edge crossed twice in every drawing of G. A 1-planar graph
is triangulated if it admits a drawing in which every face contains
either exactly three distinct vertices or exactly twodistinct vertices
and one crossing point.

• [24] R. Bodendiek, H. Schumacher, and K. Wagner. Be-
merkungen zu einem Sechsfarbenproblem von G. Ringel.
Abhandlungen aus dem Mathematischen Seminar der Univer-
sitaet Hamburg, 53(1):41–52, 1983.

• [3] J. Pach and G. Tóth. Graphs drawnwith few crossings per
edge. Combinatorica, 17(3):427–439, 1997.

Let Γ be a 1-planar drawing, and let Γp be its planarization. The
drawing Γ is of class Cx, for x ∈ {0, 1, 2}, if for every two dummy
vertices u1 and u2, it holds that |N(u1) ∩ N(u2)| ≤ x. A 1-planar

graph G is of class Cx, for x ∈ {0, 1, 2}, if it has a drawing of class Cx
and no drawing of class Cx−1 (if x > 0). A 1-planar graph of class
C0 is also called an IC-planar graph, where IC stands for independent
crossings (see, e.g., [25]). A 1-planar graph of class C1 is also called a
NIC-planar graph, where NIC stands for near-independent crossings
(see, e.g., [26]). Czap and Šugerek [27] observed that every 1-planar
graph belongs to one of the classes C0, C1, or C2. The concepts of
IC-planar and NIC-planar embedding, and of IC-plane and NIC-plane
graph, can be defined similarly as for the 1-planar case.

• [25] M. O. Albertson. Chromatic number, independence ra-
tio, and crossing number. Ars Math. Contemp., 1(1), 2008.

• [27] J. Czap and P. Šugerek. Drawing graph joins in the plane
with restrictions on crossings. Filomat, 31(2):363–370, 2017.

• [26] X. Zhang. Drawing complete multipartite graphs on the
plane with restrictions on crossings. Acta Math. Sin. English
Series, 30(12):2045–2053, 2014.

A drawing is outer 1-planar if it is 1-planar and all the vertices
belong to the outer face of the drawing. An outer 1-planar graph
is a graph that admits an outer 1-planar drawing. One can define
the concepts of outer 1-planar embedding and outer 1-plane graph
similarly as above.

3. Characterization and recognition

In this section we deal with the problems of characterizing and
recognizing 1-planar graphs. We recall that finding a characteri-
zation for a family F of graphs means finding a property P such
that a graph G has the property P if and only if G ∈ F , while
the recognition problem for a family of graphs F is the problem
of deciding whether a graph G belongs to F . The two problems
are closely related. In particular, if a property P can be verified in
polynomial timeon a graphG and P characterizes a family of graphs
F , then deciding whether G ∈ F can be done in polynomial time.
We investigate these twoproblems for general 1-planar graphs and
for several subfamilies of 1-planar graphs.

3.1. Characterization

In what follows we survey results concerning the characteri-
zation of general 1-planar graphs (Section 3.1.1), optimal 1-planar
graphs (Section 3.1.2), triangulated 1-planar graphs (Section 3.1.3),
and complete k-partite 1-planar graphs (Section 3.1.4).

3.1.1. General 1-planar graphs
The class of 1-planar graphs is not closed under edge-

contraction, and thus 1-planar graphs are not minor closed [28].
For example, the n×n×2 grid graphwhich is 1-planar and contains
Kn as a minor, see [29].

• [28] Z. Chen and M. Kouno. A linear-time algorithm for 7-
coloring 1-plane graphs. Algorithmica, 43(3):147–177, 2005.

• [29] V. Dujmović, D. Eppstein, and D. R. Wood. Struc-
ture of Graphs with Locally Restricted Crossings. CoRR,
abs/1506.04380, 2015. To appear in J. Discr. Math.

A minimal non-1-planar graph is a graph that is not 1-planar
and such that all its proper subgraphs are 1-planar. Korzhik and
Mohar [30] proved that the number of n-vertex distinct (i.e., non-
isomorphic) minimal non-1-planar graphs is exponential in n (for
n ≥ 63). These results can be seen as an indication that a character-
ization of 1-planar graphs by Wagner-type theorem using a finite
number of forbidden minors is unlikely. Similarly, for any graph
there exists a 1-planar subdivision, which implies the impossibility
of having a characterization of 1-planar graphs by Kuratowski-type
theorem using a finite number of forbidden subdivisions.
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(a) Q . (b) G.

Fig. 1. (a) A 3-connected planar quadrangulation Q and (b) the optimal 1-planar
graph G constructed by inserting a pair of crossing edges in each face of Q .

• [30] V. P. Korzhik and B. Mohar. Minimal obstructions for
1-immersions and hardness of 1-planarity testing. J. Graph
Theory, 72(1):30–71, 2013.

3.1.2. Optimal 1-planar graphs
We recall that an n-vertex 1-planar graph is optimal if it con-

tains 4n − 8 edges (see also Section 2.2). A planar quadrangulation
is a planar graph that admits a drawing in which each face f has
four vertices. LetQ be a 3-connected planar quadrangulation. Since
Q is 3-connected, it has a unique planar embedding up to the
choice of the outer face, and thus a uniquely defined set of faces
(or, equivalently, a unique planar embedding on the sphere). Let
f be a face of Q , such that in a closed walk along its boundary
we encounter its four vertices in this order: u1, u2, u3, u4. The
operation of inserting a pair of crossing edges in f means adding the
edges (u1, u3) and (u2, u4) inside f such that they cross each other.
Note that the two edges do not exist in G (since G is bipartite).
Note also that the resulting graph is clearly 1-planar. Bodendiek
et al. [24,31] (and later Suzuki [32]) proved that a 1-planar graph
G is optimal if and only if G can be obtained from a 3-connected
planar quadrangulation Q by inserting a pair of crossing edges
inside each face of Q ; see Fig. 1 for an illustration. Based on this
characterization, it is possible to prove that there are no n-vertex
optimal 1-planar graphs with n ≤ 7 or n = 9 vertices, while n-
vertex optimal 1-planar graphs always existwith n = 8 and n ≥ 10
vertices [24,31].

• [24] R. Bodendiek, H. Schumacher, and K. Wagner. Be-
merkungen zu einem Sechsfarbenproblem von G. Ringel.
Abhandlungen aus dem Mathematischen Seminar der Univer-
sitaet Hamburg, 53(1):41–52, 1983.

• [31] R. Bodendiek, H. Schumacher, and K. Wagner. Uber 1-
optimale Graphen.Mathematische Nachrichten, 117(1):323–
339, 1984.

• [32] Y. Suzuki. Optimal 1-planar graphs which triangulate
other surfaces. Discrete Math., 310(1):6–11, 2010.

The above characterization establishes a one-to-one mapping
between the set of 3-connected planar quadrangulations and the
set of optimal 1-planar graphs. A similar family of 1-planar graphs
are the kinggraphs [33]. They are defined as those 1-planar graphs
that can be generated by inserting a pair of crossing edges in each
quadrangular inner face of a square-graph (i.e., a plane graph in
which all inner faces have four vertices and every such vertex has
degree at least 4). These 1-planar graphs generalize the graphs that
represent all legal moves of the king chess piece on a chessboard,
called King’s graphs [34].

Let Q be a 3-connected planar quadrangulation. Let f be a face
of Q such that in a closed walk along its boundary we encounter
its four vertices in this order: u1, u2, u3, u4. The operation of face
contraction of f at {u1, u3} inQ identifies u1 and u3 and replaces the
two pairs of multiple edges (u1, u2), (u2, u3) and (u1, u4), (u3, u4)

with two single edges, respectively. The inverse operation is called
a vertex-splitting; see Fig. 2(a) for an illustration. These two opera-
tions can be applied only if they do not break the simplicity or the
triconnectivity of the graph. A 4-cycle addition to f is the operation
of adding a 4-cycle v1, v2, v3, v4 inside f and adding the crossing-
free edges (ui, vi), for i = 1, 2, 3, 4. The inverse operation is called
4-cycle removal; see Fig. 2(b) for an illustration. This last operation
can be applied only if it does not break the triconnectivity of
the graph. A planar quadrangulation is irreducible if neither face
contraction nor 4-cycle removal can be applied to H .

The pseudo double wheel W2k is a 3-connected planar quadran-
gulationwith 2k+2 vertices,while theX-pseudo doublewheel XW2k
is the corresponding optimal 1-planar graph. See Fig. 2(e) for an
illustration of the pseudo double wheel when k = 4, and Fig. 2(f)
for an illustration of the X-pseudo double wheel when k = 4.
Brinkmann et al. [35] proved that W2k (k ≥ 3) is the unique series
of irreducible 3-connected planar quadrangulations, and that every
3-connected planar quadrangulation can be obtained from the
graph W2k (k ≥ 3) by a sequence of vertex-splitting and 4-cycle
additions. The four operations defined above for 3-connected pla-
nar quadrangulations can be easily extended to optimal 1-planar
graphs. See also Fig. 2(c) and (d) for an illustration. In particular,
Suzuki [36] observed that every optimal 1-planar graph can be
obtained from the graph W2k (k ≥ 3) by a sequence of vertex-
splitting and 4-cycle additions. This characterization has been used
by Suzuki [32] to investigate the re-embeddability of optimal 1-
planar graphs.

• [35] G. Brinkmann, S. Greenberg, C. S. Greenhill, B. D. McKay,
R. Thomas, and P. Wollan. Generation of simple quadrangu-
lations of the sphere. Discrete Math., 305(1–3):33–54, 2005.

• [34] G. J. Chang. Algorithmic Aspects of Domination in Graphs,
pages 221–282. Springer, New York, NY, 2013.

• [33] V. Chepoi, F. Dragan, and Y. Vaxès. Center and diameter
problems in plane triangulations and quadrangulations. In
ACM-SIAM SODA 2002, pages 346–355. SIAM, 2002.

• [36] Y. Suzuki. Optimal 1-planar graphs which triangulate
other surfaces. Discrete Math., 310(1):6–11, 2010.

• [32] Y. Suzuki. Re-embeddings of maximum 1-planar
graphs. SIAM J. Discrete Math., 24(4):1527–1540, 2010.

3.1.3. Triangulated 1-planar graphs
A map M is a partition of the sphere into finitely many regions.

Each region is a closed disk and the interiors of two regions are
disjoint. Some regions are labeled as countries and the non-labeled
regions are called holes. Two countries are adjacent if they touch.
Given a graph G, a mapM realizes G if the vertices of G are in bijec-
tionwith the countries ofM , and two countries ofM are adjacent if
and only there is an edge between the two corresponding vertices
of G. A graph that can be realized as a map is called a map graph.
Note that h > 1 countries meeting at a point implies the existence
of a complete graph Kh as a subgraph ofG. If nomore than h regions
meet at a point, then M is an h-map and G an h-map graph. Also, if
a map M has no holes, then it is called a hole-free map and its map
graph G is a hole-free map graph. We refer the reader to papers by
Chen et al. [37–39] and by Thorup [40] for more details and results
on this family of graphs. In particular, Chen et al. [39] observed that
3-connected hole-free 4-map graphs are exactly the triangulated
1-planar graphs, that is, a 3-connected graph is triangulated 1-
planar if and only if it can be realized as a hole-free 4-map. Note
that the family of 1-planar graphs includes the family of 4-map
graphs, but the opposite is not true [38]. The relationship between
1-planar graphs and map graphs has been further investigated by
Brandenburg [41].

• [41] F. J. Brandenburg. On 4-map graphs and 1-planar graphs
and their recognition problem. CoRR, abs/1509.03447, 2015.
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Fig. 2. The face contraction and vertex splitting operations for (a) planar quadrangulations and (c) optimal 1-planar graphs. The 4-cycle addition and 4-cycle removal
operations for (b) planar quadrangulations and (d) optimal 1-planar graphs. (e) The pseudo double wheelW8 . (f) The X-pseudo double wheel XW8 .

• [37] Z. Chen, M. Grigni, and C. H. Papadimitriou. Planar map
graphs. In STOC 1998, pages 514–523. ACM, 1998.

• [38] Z. Chen, M. Grigni, and C. H. Papadimitriou. Map graphs.
J. ACM, 49(2):127–138, 2002.

• [39] Z. Chen, M. Grigni, and C. H. Papadimitriou. Recog-
nizing hole-free 4-map graphs in cubic time. Algorithmica,
45(2):227–262, 2006.

• [40] M. Thorup. Map graphs in polynomial time. In FOCS
1998, pages 396–405. IEEE, 1998.

3.1.4. Complete k-partite 1-planar graphs
While it is known that the complete graph Kn is 1-planar if and

only if n ≤ 6, Czap and Hudák [42] characterized the complete
k-partite 1-planar graphs. Specifically, Kn1,n2 is not 1-planar for
n1, n2 ≥ 5, Kn1,3 is 1-planar if and only if n1 ≤ 6, and Kn1,4 is 1-
planar if and only if n1 ≤ 4 (recall that Kn1,1 and Kn1,2 are planar
for all values of n1). For h ≥ 7, the graph Kn1,...,nh contains K7 as
a subgraph, hence it cannot be 1-planar. For 3 ≤ h ≤ 6, the
characterization is based on case analysis and we let the reader
refer to [42] for details.

• [42] J. Czap and D. Hudák. 1-planarity of complete multipar-
tite graphs. Discrete Appl. Math., 160(4-5):505–512, 2012.

3.2. Recognition

In what follows we refer to the problem of deciding whether
a graph G is 1-planar as the 1-planarity problem . In general this
problem in NP-hard (Section 3.2.1), although it can be solved
in polynomial time in some restricted cases (Section 3.2.2). 1-
planarity problem has been studied also in the setting where the
input graphhas a fixed rotation system (Section 3.2.3), and in terms
of parameterized complexity (Section 3.2.4).

3.2.1. NP-hardness results
The 1-planarity problem is NP-complete [30,43]. The first

proof was by Grigoriev and Bodlaender [43], and was based on
a reduction from the 3-partition problem. We recall that the 3-
partition problem is an NP-complete problem defined as follows
(see also [44]). Given a set A of 3m elements, an integer B ∈ N, and
an integer s(a) ∈ N for each a ∈ A such that B/4 < s(a) < B/2
and

∑
a∈As(a) = mB, the problem asks if A can be partitioned into

m subsets A1, . . . , Am such that, for 1 ≤ i ≤ m,
∑

a∈Ai
s(a) = B.

On a high level, the reduction works by constructing a graph G that
separates the plane into m large regions R1, . . . , Rm, such that the
boundaries between each region cannot be crossed in a 1-planar
drawing of G. Each region Ri has 3 buckets to place the elements of
Ai, and B buckets to place the elements of A.

A second proof was later given by Korzhik and Mohar [30],
who used a reduction from the 3-coloring problem for planar graphs
(see [44]).

• [44]M. R. Garey andD. S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H. Freeman,
1979.

• [43] A. Grigoriev andH. L. Bodlaender. Algorithms for graphs
embeddable with few crossings per edge. Algorithmica,
49(1):1–11, 2007.

• [30] V. P. Korzhik and B. Mohar. Minimal obstructions for
1-immersions and hardness of 1-planarity testing. J. Graph
Theory, 72(1):30–71, 2013.

The 1-planarity problem remains NP-complete even for graphs
with bounded bandwidth, pathwidth, or treewidth [45], and for
graphs obtained from planar graphs by adding a single edge [46].

• [45] M. J. Bannister, S. Cabello, and D. Eppstein. Parameter-
ized complexity of 1-planarity. InWADS 2013, volume 8037
of LNCS, pages 97–108. Springer, 2013.
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• [46] S. Cabello and B. Mohar. Adding one edge to planar
graphs makes crossing number and 1-planarity hard. SIAM
J. Comput., 42(5):1803–1829, 2013.

Brandenburg et al. [47] proved that the problem of deciding
whether a graph G is IC-planar is also NP-complete, by using a
reduction from the 1-planarity problem. A similar reduction holds
for NIC-planar graphs as well [48].

• [48] C. Bachmaier, F. J. Brandenburg, K.Hanauer, D.Neuwirth,
and J. Reislhuber. NIC-planar graphs. CoRR, abs/1701.04375,
2017.

• [47] F. J. Brandenburg, W. Didimo, W. S. Evans, P. Kinder-
mann, G. Liotta, and F.Montecchiani. Recognizing and draw-
ing IC-planar graphs. Theor. Comput. Sci., 636:1–16, 2016.

3.2.2. Polynomial-time results
Brandenburg [49] recently showed that the characterization for

optimal 1-planar graphs given by Suzuki [36] (see Section 3.1)
can be exploited to efficiently recognize optimal 1-planar graphs.
Specifically, given an n-vertex graphwith 4n−8 edges, there exists
an O(n)-time algorithm to decide whether G is optimal 1-planar
and if G is optimal 1-planar, then the algorithm returns a valid
embedding of G.

• [49] F. J. Brandenburg. Recognizing optimal 1-planar graphs
in linear time. Algorithmica, 2016.

Triangulated 1-planar graphs can be recognized in polynomial
time, since these graphs correspond to 3-connected hole-free 4-
map graphs (see Section 3.1), and n-vertex hole-free 4-map graphs
can be recognized in O(n3) time [39]. See also [41]. Note that, since
optimal 1-planar graphs are triangulated, this implies that a cubic
time recognition algorithm exists also for these graphs.

• [41] F. J. Brandenburg. On 4-map graphs and 1-planar graphs
and their recognition problem. CoRR, abs/1509.03447, 2015.

• [39] Z. Chen, M. Grigni, and C. H. Papadimitriou. Recog-
nizing hole-free 4-map graphs in cubic time. Algorithmica,
45(2):227–262, 2006.

Let T = (V , ET ) be a maximal plane graph with n vertices and
letM = (V , EM ) be amatching. Brandenburg et al. [47] proved that
there exists an O(n3)-time algorithm to test if G = (V , ET ∪ EM )
admits an IC-planar drawing that preserves the embedding of T .
If the test is positive, the algorithm computes a feasible drawing.
The interest in this special case is motivated by the fact that every
IC-planar graph with maximum number of edges is the union
of a triangulated planar graph and of a set of edges that form a
matching [50].

• [47] F. J. Brandenburg, W. Didimo, W. S. Evans, P. Kinder-
mann, G. Liotta, and F.Montecchiani. Recognizing and draw-
ing IC-planar graphs. Theor. Comput. Sci., 636:1–16, 2016.

• [50] X. Zhang and G. Liu. The structure of plane graphs
with independent crossings and its applications to coloring
problems. Open Math., 11(2):308–321, 2013.

Auer et al. [51] and Hong et al. [52] independently proved that
recognizing outer 1-planar graphs can be done efficiently. Both
proofs are based on O(n)-time algorithms that decides whether an
n-vertex input graph G admits an outer 1-planar embedding. In the
positive case both algorithms return a valid embedding of G. In the
negative case, the algorithm described in [51] also returns one of
six possible minors that are not outer 1-planar.

• [51] C. Auer, C. Bachmaier, F. J. Brandenburg, A. Gleißner,
K. Hanauer, D. Neuwirth, and J. Reislhuber. Outer 1-planar
graphs. Algorithmica, 74(4):1293–1320, 2016.

• [52] S. Hong, P. Eades, N. Katoh, G. Liotta, P. Schweitzer,
and Y. Suzuki. A linear-time algorithm for testing outer-1-
planarity. Algorithmica, 72(4):1033–1054, 2015.

Triangulated IC-planar and NIC-planar graphs can be recog-
nized in cubic time [53], while optimal NIC-planar graphs can be
recognized in linear time [48].

• [48] C. Bachmaier, F. J. Brandenburg, K.Hanauer, D.Neuwirth,
and J. Reislhuber. NIC-planar graphs. CoRR, abs/1701.04375,
2017.

• [53] F. J. Brandenburg. Recognizing IC-planar andNIC-planar
graphs. CoRR, abs/1610.08884, 2016.

3.2.3. Fixed rotation system setting
The recognition problem has also been studied with the addi-

tional assumption that the input graph comes alongwith a rotation
system. Deciding whether a graph G with a given rotation system
R admits a 1-planar drawing that respects R is NP-complete, even
if G is 3-connected [54]. On the positive side, Eades et al. [55]
proved that there is an O(n)-time algorithm to decide if an n-
vertex graph G with a rotation system R has a maximal 1-planar
embedding (i.e., a 1-planar embedding in which no edge can be
addedwithout violating 1-planarity) that respects R. In the positive
case, the algorithm returns a valid embedding ofG. The algorithm is
based on the following two properties (proved in [55]). First, in any
maximal 1-planar embedding, the subgraph induced by the edges
that do not intersect any other edge is spanning and 2-connected.
Second, if G admits a maximal 1-planar embedding that respects R,
then the embedding is unique.

• [54] C. Auer, F. J. Brandenburg, A. Gleißner, and J. Reislhuber.
1-planarity of graphs with a rotation system. J. Graph Algo-
rithms Appl., 19(1):67–86, 2015.

• [55] P. Eades, S.-H. Hong, N. Katoh, G. Liotta, P. Schweitzer,
and Y. Suzuki. Testing maximal 1-planarity of graphs with a
rotation system in linear time. In GD 2012, volume 7704 of
LNCS, pages 339–345. Springer, 2013.

3.2.4. Parameterized complexity
Given its NP-hardness, it is natural to study the 1-planarity

problem in terms of parameterized complexity. That is,we seek ad-
ditional parameters (other than the numbers of edges and vertices)
thatmeasure the complexity of an input graph, and design recogni-
tion algorithmswhose running time is the product of a polynomial
in the input size and a non-polynomial function of these additional
parameters. For more details on parameterized complexity theory,
see [56,57]. In this direction, Bannister et al. [45] proved that,
for an n-vertex graph G, deciding whether G is 1-planar is fixed
parameter tractable for various graph parameters. More precisely,
the problem can be solved in time O(n + 2O(k2)) if G has cover
number k; in time O(n222d

2
+O(d)

) if G has tree-depth d; and in time
O(n + 2O((3c)!)) if G has cyclomatic number c .

• [45] M. J. Bannister, S. Cabello, and D. Eppstein. Parameter-
ized complexity of 1-planarity. InWADS 2013, volume 8037
of LNCS, pages 97–108. Springer, 2013.

• [56] R. G. Downey andM. R. Fellows. Parameterized Complex-
ity. Monographs in Computer Science. Springer, 1999.

• [57] J. Flum and M. Grohe. Parameterized Complexity Theory.
Texts in Theoretical Computer Science. An EATCS Series.
Springer, 2006.
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4. Structural properties

In this sectionwe deal with structural properties and invariants
of 1-planar graphs. In Section 4.1, we review results on the classic
coloring problem. In Section 4.2, we report bounds on the number
of edges of 1-planar graphs. Section 4.3 contains recent results on
the problem of partitioning the edges of a 1-planar graph, such
that each partition set induces a graph with predefined properties.
In Section 4.4 we describe bounds on various graph parameters
of 1-planar graphs. Section 4.5 contains results about the exis-
tence of subgraphs of bounded vertex degree in 1-planar graphs.
Finally, results related with binary graph operations that preserve
1-planarity are covered in Section 4.6.

4.1. Coloring

A coloring of a graph G is an assignment of labels called colors
to elements of G subject to certain constraints. Based on whether
the elements of G to be colored are its vertices, its edges, or both,
we distinguish among vertex coloring, edge coloring, and total
coloring, respectively. Coloring problems find application in task
scheduling and frequency assignment, register allocation, as well
as in pattern matching, designing seating plans, solving Sudoku
puzzles and others; see for example:

• [58] G. J. Chaitin. Register allocation & spilling via graph
coloring. SIGPLAN Not., 17(6):98–101, 1982.

• [59] R. Lewis. A Guide to Graph Colouring: Algorithms and
Applications. Springer, 2016.

• [60] D. Marx. Graph colouring problems and their appli-
cations in scheduling. Periodica Polytechnica Ser. El. Eng.,
48(1):11–16, 2004.

4.1.1. Vertex coloring
A proper vertex coloring of a graph G is an assignment of colors

to the vertices of G such that no two adjacent vertices receive
the same color. The smallest number of colors needed to obtain a
proper vertex coloring of a graph G is called the chromatic number
of G. A classic result in graph theory is that every planar graph has
chromatic number at most 4:

• [61] K. Appel and W. Haken. Every planar map is four col-
orable, volume 98 of Contemporary Mathematics. AMS, 1989.

Ringel [9] proved that every 1-planar graph has chromatic num-
ber at most 7, and conjectured that this bound could be lowered to
6. Borodin [10] settled the conjecture in the affirmative, proving
that the chromatic number of each 1-planar graph is at most 6. The
bound is tight as for example the complete graph K6 is 1-planar
and requires six colors. The same author later showed a relatively
shorter proof of this result [62]. However, Borodin’s proof does
not lead to an efficient algorithm for computing a proper vertex
coloring with 6 colors of a 1-planar graph. On the other hand,
there is an O(n)-time algorithm for computing a proper vertex
coloring with 7 colors of any n-vertex 1-planar graph [28]. If we
restrict to IC-planar graphs, then Král’ and Stacho [63] proved that
the chromatic number of IC-planar graphs is 5. Finally, it is NP-
complete to decidewhether a given1-planar graph admits a proper
vertex coloring using four colors [28].

• [10] O. V. Borodin. Solution of the Ringel problem on vertex-
face coloring of planar graphs and coloring of 1-planar
graphs.Metody Diskret. Analiz, 108:12–26, 1984.

• [62] O. V. Borodin. A new proof of the 6 color theorem.
J. Graph Theory, 19(4):507–521, 1995.

• [28] Z. Chen and M. Kouno. A linear-time algorithm for 7-
coloring 1-plane graphs. Algorithmica, 43(3):147–177, 2005.

• [63] D. Král’ and L. Stacho. Coloring plane graphs with inde-
pendent crossings. J. Graph Theory, 64(3):184–205, 2010.

• [9] G. Ringel. Ein Sechsfarbenproblemauf der kugel. Abhand-
lungen aus dem Mathematischen Seminar der Universitaet
Hamburg, 29(1–2):107–117, 1965.

Other forms of vertex coloring have been studied. An acyclic
coloring of a graphG is a proper vertex coloring ofG such that every
cycle of G uses at least three colors. The smallest number of colors
needed to obtain an acyclic proper vertex coloring of a graph G is
called the acyclic chromatic number of G. Borodin et al. [64] proved
that every 1-planar graph has acyclic chromatic number at most
20 and there is a 1-planar graph which requires at least 7 colors in
any acyclic coloring.

• [64] O. Borodin, A. Kostochka, A. Raspaud, and E. Sopena.
Acyclic colouring of 1-planar graphs. Discrete Appl. Math.,
114(1–3):29–41, 2001.

Given a graph G and a set L(v) of colors for each vertex v of G
(called a list), a list coloring is a proper vertex coloring of G such
that each vertex is assigned with a color in its corresponding list.
Wang and Lih [65] proved that 1-planar graphs have list colorings
with at most seven colors.

• [65] W. Wang and K.-W. Lih. Coupled choosability of plane
graphs. J. Graph Theory, 58(1):27–44, 2008.

4.1.2. Edge coloring
A proper edge coloring of a graph G is an assignment of colors to

the edges of G such that no two adjacent edges receive the same
color. The smallest number of colors needed to obtain a proper
edge coloring of a graph G is called the chromatic index of G. By
Vizing’s theorem [66], the number of colors needed to edge color a
graph Gwith maximum vertex degree 1 is either 1 or 1 + 1.

• [66] V. G. Vizing. On an estimate of the chromatic class of a
p-graph. Diskret. Analiz No., 3:25–30, 1964.

Zhang andWu [67] proved that every 1-planar graphwithmax-
imum vertex degree 1 ≥ 10 has chromatic index 1. Also, every 1-
planar graphwithout adjacent triangles andwithmaximumvertex
degree 1 ≥ 8 has chromatic index 1 [68]. Moreover, every 1-
planar graph without chordal 5-cycles and with maximum vertex
degree 1 ≥ 9 has chromatic index 1, and for each 1 ≤ 7
there exist 1-planar graphs with maximum vertex degree 1 and
chromatic index 1 + 1 [69]. The chromatic index of an IC-planar
graph G with maximum vertex degree 1 ≥ 8 is 1 [50]. The
chromatic index of outer-1-planar graphs with maximum vertex
degree 1 ≥ 4 is 1, and there are infinitely many outer 1-planar
graphswithmaximumvertex degree 3 and chromatic index 4 [70].
Based on these results, Zhang [71] argues that the chromatic index
of any outer 1-planar graph can be determined in polynomial time.

• [71] X. Zhang. The edge chromatic number of outer-1-planar
graphs. CoRR, abs/1405.3183, 2014.

• [68] X. Zhang and G. Liu. On edge colorings of 1-
planar graphs without adjacent triangles. Inf. Process. Lett.,
112(4):138–142, 2012.

• [69] X. Zhang and G. Liu. On edge colorings of 1-planar
graphs without chordal 5-cycles. Ars Comb., 104:431–436,
2012.

• [50] X. Zhang and G. Liu. The structure of plane graphs
with independent crossings and its applications to coloring
problems. Open Math., 11(2):308–321, 2013.

• [70] X. Zhang, G. Liu, and J.-L. Wu. Edge covering
pseudo-outerplanar graphs with forests. Discrete Math.,
312(18):2788–2799, 2012.
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• [67] X. Zhang and J.-L. Wu. On edge colorings of 1-planar
graphs. Inf. Process. Lett., 111(3):124–128, 2011.

The list variant of the proper edge coloring problem has also
been considered. Specifically, given a graphG and a set L(e) of colors
for each edge e of G (called a list), a list edge coloring is a proper
edge coloring of G such that each edge is assigned with a color in
its corresponding list. Every 1-planar graph with maximum vertex
degree 1 has a list edge coloring with 1 + 1 colors if 1 ≥ 16 and
with 1 colors if 1 ≥ 21 [72]. If G is IC-planar and 1 ≥ 8, then it
has a list edge coloring with 1 colors [50].

• [50] X. Zhang and G. Liu. The structure of plane graphs
with independent crossings and its applications to coloring
problems. Open Math., 11(2):308–321, 2013.

• [72] X. Zhang, J. Wu, and G. Liu. List edge and list total
coloring of 1-planar graphs. Front. Math. China, 7(5):1005–
1018, 2012.

4.1.3. Total coloring
A total coloring of a graph G is an assignment of colors to the

vertices and edges of G such that neither two adjacent edges,
two adjacent vertices nor an edge and its end-vertices receive the
same color. The smallest number of colors needed to obtain a total
coloring of a graph G is called the total chromatic number of G.
Behzad [73] conjectured that the total chromatic number of a graph
Gwith maximum vertex degree 1 is at most 1 + 2.

• [73] M. Behzad. Graphs and Their Chromatic Numbers. Ph.D.
thesis,Michigan State University, Department ofMathemat-
ics, 1965.

Zhang et al. [74] proved that the total coloring conjecture holds
for 1-planar graphs with maximum vertex degree 1 ≥ 13. Also,
Czap [75] proved that the total chromatic number of a 1-planar
graph Gwith maximum vertex degree 1 ≥ 10 is at most 1 + 3.

• [75] J. Czap. A note on total colorings of 1-planar graphs.
Inf. Process. Lett., 113(14–16):516–517, 2013.

• [74] X. Zhang, J. Hou, and G. Liu. On total colorings of 1-
planar graphs. J. Comb. Optim., 30(1):160–173, 2015.

The list variant of the total coloring problem has also been
studied. Specifically, given a graph G and a set L(e) (respectively,
L(v)) of colors for each edge e of G (respectively, vertex v of G), a
list total coloring is a total coloring of G such that each edge and
each vertex is assigned with a color in its corresponding list. Every
1-planar graph with maximum vertex degree 1 has a list total
coloring with 1 + 2 colors if 1 ≥ 16 and with 1 + 1 colors if
1 ≥ 21 [72]. If G is IC-planar and 1 ≥ 8, then it has a list total
coloring with 1 + 1 colors [50].

• [50] X. Zhang and G. Liu. The structure of plane graphs
with independent crossings and its applications to coloring
problems. Open Math., 11(2):308–321, 2013.

• [72] X. Zhang, J. Wu, and G. Liu. List edge and list total
coloring of 1-planar graphs. Front. Math. China, 7(5):1005–
1018, 2012.

4.2. Edge density

The fact that a 1-planar graph G with n vertices has at most
4n − 8 edges has been proved multiple times [3,24,76,77]. This
bound is shown to be tight for every n = 8 and for n ≥ 10 [24].
Given the characterization of optimal 1-planar graphs discussed
in Section 3.1, this result can be easily observed as follows. Let

G be an optimal 1-planar graph with n vertices, and consider the
underlying 3-connected planar quadrangulation Q of G. Graph Q
has n− 2 faces and 2n− 4 edges. Inserting a pair of crossing edges
in each face of Q adds 2(n − 2) edges, which leads to 4n − 8 edges
in total. An optimal 1-planar graph is shown in Fig. 1(b).

• [24] R. Bodendiek, H. Schumacher, and K. Wagner. Be-
merkungen zu einem Sechsfarbenproblem von G. Ringel.
Abhandlungen aus dem Mathematischen Seminar der Univer-
sitaet Hamburg, 53(1):41–52, 1983.

• [76] Z.-Z. Chen. New bounds on the edge number of a k-map
graph. J. Graph Theory, 55(4):267–290, 2007.

• [77] I. Fabrici and T. Madaras. The structure of 1-planar
graphs. Discrete Math., 307(7–8):854–865, 2007.

• [3] J. Pach and G. Tóth. Graphs drawnwith few crossings per
edge. Combinatorica, 17(3):427–439, 1997.

If we consider only those 1-planar graphs that admit a 1-planar
straight-line drawing (see Section 5), then any such graph with n-
vertices has at most 4n − 9 edges, as proved by Didimo [78] (see
also the alternative proof by Ackerman [79]).

• [79] E. Ackerman. A note on 1-planar graphs. Discrete
Appl. Math., 175:104–108, 2014.

• [78] W. Didimo. Density of straight-line 1-planar graph
drawings. Inf. Process. Lett., 113(7):236–240, 2013.

Density considerations of 1-planar graphs are fundamentally
different from the equivalent considerations for planar graphs. For
example, Brandenburg et al. [80] proved that there exist maximal
1-planar graphs with n vertices and 45

17n −
84
17 < 2.65n edges; see

Fig. 3(a) for a sparsemaximal graph obtainedwith the construction
in [80]. This is in contrast with maximal planar graphs, which have
exactly 3n − 6 edges. Moreover, any n-vertex maximal 1-planar
graph has at least 28

13n −
10
3 edges [80]. Brandenburg et al. [80]

also studied the problem in the fixed rotation system setting. They
proved that, for infinitely many values of n, there are n-vertex
maximal 1-planar graphs with a fixed rotation system that have
7
3n − 3 edges, and that any maximal 1-planar graph with a fixed
rotation system has at least 21

10n −
10
3 edges.

• [80] F.-J. Brandenburg, D. Eppstein, A. Gleißner, M. T.
Goodrich, K. Hanauer, and J. Reislhuber. On the density of
maximal 1-planar graphs. In GD 2012, volume 7704 of LNCS,
pages 327–338. Springer, 2013.

An IC-planar graphGwith n vertices has atmost 3.25n−6 edges
and this bound is tight [50]. The graph in Fig. 3(b) is used in [50]
to prove the tightness of the result. A NIC-planar graph G with n
vertices has at most 3.6n − 7.2 edges and this bound is tight [27]
(see also [48]). For example, Fig. 3(c) shows a maximal NIC-planar
graph that matches this bound.

• [48] C. Bachmaier, F. J. Brandenburg, K.Hanauer, D.Neuwirth,
and J. Reislhuber. NIC-planar graphs. CoRR, abs/1701.04375,
2017.

• [27] J. Czap and P. Šugerek. Drawing graph joins in the plane
with restrictions on crossings. Filomat, 31(2):363–370, 2017.

• [50] X. Zhang and G. Liu. The structure of plane graphs
with independent crossings and its applications to coloring
problems. Open Math., 11(2):308–321, 2013.

Auer et al. [51] proved that an outer 1-planar graph G with
n vertices has at most 2.5n − 4 edges and this bound is tight.
Furthermore, every maximal outer 1-planar graph with n vertices
has at least 2.2n−3.6 edges and there existmaximal outer 1-planar
graphs that match this bound [51].
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Fig. 3. (a) A maximal 1-planar graph with 20 vertices and 44 edges. (b) A maximal IC-planar graph with 8 vertices and 20 edges. (c) A maximal NIC-planar graph with 12
vertices and 36 edges.

Fig. 4. (a) A maximal outer 1-planar graph with 8 vertices and 16 edges. (b) A maximal outer 1-planar graph with 8 vertices and 14 edges. (c) A maximal bipartite 1-planar
graph with 8 vertices and 16 edges.

• [51] C. Auer, C. Bachmaier, F. J. Brandenburg, A. Gleißner,
K. Hanauer, D. Neuwirth, and J. Reislhuber. Outer 1-planar
graphs. Algorithmica, 74(4):1293–1320, 2016.

Karpov [81] proved that a bipartite 1-planar graph with n ver-
tices has at most 3n − 8 edges for even n such that n ̸= 6, and at
most 3n − 9 edges for odd n and for n = 6. Also, for all n ≥ 4,
there exist examples showing that these bounds are tight [81];
Fig. 4(c) shows one of these graphs. Czap et al. [82] showed that
the maximum number of edges of bipartite 1-planar graphs that
are almost balanced is not significantly smaller than 3n − 8, while
the same is not true for unbalanced ones. In particular, if the size of
the smaller partite set is sublinear in n, then the number of edges
is (2 + o(1))n, while the same is not true otherwise.

• [82] J. Czap, J. Przybylo, and E. Skrabul’áková. On an extremal
problem in the class of bipartite 1-planar graphs. Discuss.
Math. Graph Theory, 36(1):141–151, 2016.

• [81] D. V. Karpov. An upper bound on the number of edges
in an almost planar bipartite graph. J. Math. Sci., 196(6):737–
746, 2014.

4.3. Edge partitions

A well-studied subject in graph algorithms and graph theory is
the coloring of the edges of a graph such that eachmonochromatic
set induces a subgraph with special properties. This problem is
studied in great details for planar graphs; see for example:

• [83] G. Ding, B. Oporowski, D. P. Sanders, and D. Vertigan.
Surfaces, tree-width, clique-minors, and partitions. J. Com-
bin. Theory Ser. B, 79(2):221–246, 2000.

• [84] E. S. Elmallah and C. J. Colbourn. Partitioning the edges
of a planar graph into two partial k-trees. In CGTC 1988, Con-
gressus numerantium, pages 69–80. Utilitas Mathematica,
1988.

• [85] D. Gonçalves. Edge partition of planar graphs into two
outerplanar graphs. In STOC 2005, pages 504–512. ACM,
2005.

• [86] K. S. Kedlaya. Outerplanar partitions of planar graphs.
J. Combin. Theory Ser. B, 67(2):238–248, 1996.

In the context of 1-planar graphs, an edge partition of a 1-planar
graph G is an edge coloring of G with two colors, say red and
blue, such that both the graph formed by the red edges, called
the red graph, and the graph formed by the blue edges, called
the blue graph, are planar. Note that, given a 1-planar embedding
of G, an edge partition of G can be constructed by coloring red
an edge for each pair of crossing edges, and by coloring blue the
remaining edges. Czap and Hudák [87] proved that every optimal
1-planar graph admits an edge partition such that the red graph is
a forest. This result has been later extended to all 1-planar graphs
by Ackerman [79].

• [79] E. Ackerman. A note on 1-planar graphs. Discrete
Appl. Math., 175:104–108, 2014.

• [87] J. Czap and D. Hudák. On drawings and decompositions
of 1-planar graphs. Electr. J. Comb., 20(2):P54, 2013.

Motivated by visibility representations of 1-planar graphs (see
also Section 5.3), Lenhart et al. [88] and Di Giacomo et al. [89]
studied edge partitions such that the red graph has maximum
vertex degree that is boundedby a constant independent of the size
of the graph. Specifically, Lenhart et al. [88] proved that if G is an
n-vertex optimal 1-plane graphwith an edge partitionwith the red
graph GR being a forest, then GR has n vertices (i.e., it is a spanning
subgraph of G) and it is composed of two trees. Based on this
finding, they proved that for any constant c , there exists an optimal
1-plane graph such that in any edge partition with the red graph
being a forest, the maximum vertex degree of the red graph is at
least c . On the positive side, if we drop the acyclicity requirement,
then every optimal 1-planar graph admits an edge partition such
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that the red graph has maximum vertex degree 4, and degree 4
is sometimes needed [88]. Also, every 3-connected 1-planar graph
admits an edge partition such that the red graph has maximum
vertex degree six, and degree six is sometimes needed, as shownby
Di Giacomo et al. [89]. Finally, for every n > 0 there exists an O(n)-
vertex 2-connected 1-planar graph such that in any edge partition
the red graph has maximum vertex degree Ω(n) [89].

• [89] E. Di Giacomo,W. Didimo,W. S. Evans, G. Liotta, H. Mei-
jer, F. Montecchiani, and S. K. Wismath. Ortho-polygon vis-
ibility representations of embedded graphs. Algorithmica,
2017.

• [88] W. J. Lenhart, G. Liotta, and F. Montecchiani. On par-
titioning the edges of 1-plane graphs. Theor. Comput. Sci.,
662:59–65, 2017.

More recently, Di Giacomo et al. [90] proved that every NIC-
plane graph admits an edge partition such that the red graph
has maximum vertex degree three, and that this bound on the
vertex degree is worst-case optimal. Moreover, deciding whether
a 1-plane graph admits an edge partition such that the red graph
has maximum vertex degree two is NP-complete. On the positive
side, deciding whether an n-vertex 1-plane graph admits an edge
partition such that the red graph has maximum vertex degree one,
and computing one in the positive case, can be done in O(n2) time.

• [90] E. Di Giacomo,W. Didimo,W. S. Evans, G. Liotta, H. Mei-
jer, F. Montecchiani, and S. K. Wismath. New results on edge
partitions of 1-plane graphs. CoRR, abs/1706.05161, 2017.

4.4. Graph parameters

In this section we present results that deal with bounds on
various graph parameters for the family of 1-planar graphs. In
particular, we first present recent results on the book thickness of
1-planar graphs (Section 4.4.1), and then list some bounds on the
treewidth (Section 4.4.2) and on the expansion (Section 4.4.3) of
these graphs.

4.4.1. Book thickness
A k-page book embedding, for some integer k ≥ 0, is a particular

representation of a graph G with the following properties: (i) The
vertices are restricted to a line, called the spine; (ii) The edges are
partitioned into k sets, called pages, such that edges in a same
page are drawn on a half-plane delimited by the spine and do not
cross each other. The minimum k such that G has a k-page book
embedding is the book thickness of G (also known as pagenumber
and stacknumber). Book embeddings have applications in VLSI
design, stack sorting, traffic control, graph drawing, and more; see
for example:

• [91] P. Angelini, G. Di Battista, F. Frati, M. Patrignani, and
I. Rutter. Testing the simultaneous embeddability of two
graphs whose intersection is a 2-connected or a connected
graph. J. Discrete Algorithms, 14:150–172, 2012.

• [92] M. Baur and U. Brandes. Crossing reduction in circular
layouts. In WG 2004, volume 3353 of LNCS, pages 332–343.
Springer, 2005.

• [93] F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg.
Embedding graphs in books: A layout problemwith applica-
tions to VLSI design. SIAM J. Algebraic Discr. Meth., 8(1):33–
58, 1987.

• [94] P. C. Kainen. The book thickness of a graph. II. In CGTC
1990, number v. 5 in Congressus numerantium, pages 127–
132. Utilitas Mathematica, 1990.

• [95] T. McKenzie and S. Overbay. Book embeddings and zero
divisors. Ars Comb., 95, 2010.

• [96] M. Wattenberg. Arc diagrams: visualizing structure in
strings. In IEEE INFOVIS 2002., pages 110–116. IEEE, 2002.

• [97] D. R. Wood. Bounded degree book embeddings and
three-dimensional orthogonal graph drawing. In GD 2001,
volume 2265 of LNCS, pages 312–327. Springer, 2002.

One of the fundamental results is that the book thickness of
planar graphs is at most 4 [98], although a planar graph requiring
four pages is yet to be found.

• [98] M. Yannakakis. Embedding planar graphs in four pages.
J. Comput. Syst. Sci., 38(1):36–67, 1989.

Since a graph with m edges has book thickness O(
√
m) [99],

it immediately follows that an n-vertex 1-planar graph has book
thickness O(

√
n) (see also Section 4.2). A constant upper bound

equal to 39 for the book thickness of 1-planar graphs has been
proved by Bekos et al. [100]. Alam et al. [101] further improved
this bound to 16 for general 1-planar graphs, and to 12 for 3-
connected 1-planar graphs. Bekos et al. [102] observed that there
are 1-planar graphs with book thickness exactly 4; see also Fig. 5.
A SAT formulation for the book thickness problem has been given
in the same paper [102], where the authors also hypothesized the
existence of 1-planar graphs requiring at least five pages, although
the experiments could not confirm this hypothesis.

• [101] M. J. Alam, F. J. Brandenburg, and S. G. Kobourov. On
the book thickness of 1-planar graphs.CoRR, abs/1510.05891,
2015.

• [100] M. A. Bekos, T. Bruckdorfer, M. Kaufmann, and
C. N. Raftopoulou. 1-planar graphs have constant book thick-
ness. In ESA 2015, volume 9294 of LNCS, pages 130–141.
Springer, 2015.

• [102] M. A. Bekos, M. Kaufmann, and C. Zielke. The book
embedding problem from a SAT-solving perspective. In GD
2015, volume 9411 of LNCS, pages 125–138. Springer, 2015.

• [99] S.Malitz. Graphswith E edges have pagenumberO(
√
E).

J. Algorithms, 17(1):71–84, 1994.

4.4.2. Treewidth
A tree decomposition of a graph G = (V , E) is a tree T and a one-

to-one mapping from the vertex set of T to a collection B1, . . . , Bk
of subsets of V such that: (i) every vertex of G is in Bi for some
1 ≤ i ≤ k; (ii) every edge of G has both end-vertices in Bi for
some 1 ≤ i ≤ k; (iii) If Bi and Bj (i ̸= j) both contain a vertex v

of G, then all vertices of T in the (unique) path between Bi and Bj
contain v as well. The width of a decomposition is one less than
the maximum number of vertices in any subset Bi. The treewidth
of a graph is the minimum width of any tree decomposition. The
pathwidth of a graph can be defined analogously as the treewidth
but is restricted to tree decompositions in which the tree T is a
path.

Dujmović et al. [29] proved that an n-vertex 1-planar graph G
has pathwidth and treewidth atmostO(

√
n). This upper bound also

implies that G has a 1
2 -separator of size at most O(

√
n). We recall

that for ε ∈ (0, 1), a set S of vertices in an n-vertex graph G is an ε-
separator of G if each component of G\S has atmost ε ·n vertices. A
similar upper bound on the size of balanced separators of 1-planar
graphs was already proved by Grigoriev and Boadlander [43], who
took advantage of this result to show that many optimization
problems admit polynomial time approximation schemes (PTAS)
when restricted to these graphs [43].

In addition, Dujmović et al. [29] proved that every 1-planar
graph has layered treewidth atmost 12 (see [103] for the definition
of layered treewidth).
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Fig. 5. (a) A 1-planar graph Gwith book thickness 4. (b) A 4-page book embedding of G. Solid edges above (below) the spine belong to the same page, as well as dotted edges
above (below) the spine.

• [29] V. Dujmović, D. Eppstein, and D. R. Wood. Structure
of graphs with locally restricted crossings. SIAM J. Discrete
Math., 31(2):805–824, 2017.

• [103] V. Dujmović, P. Morin, and D. R. Wood. Layered sepa-
rators in minor-closed families with applications. J. Combin.
Theory Ser. B., 2017. doi:10.1016/j.jctb.2017.05.006.

• [43] A. Grigoriev andH. L. Bodlaender. Algorithms for graphs
embeddable with few crossings per edge. Algorithmica,
49(1):1–11, 2007.

4.4.3. Expansion
A t-shallow minor of a graph G is a graph formed from G by

contracting a collection of vertex-disjoint subgraphs of radius t ,
and deleting the remaining vertices of G. A family of graphs has
bounded expansion if there exists a function f such that, in every
t-shallow minor of a graph in the family, the number of edges
over the number vertices is at most f (t). Graphs with bounded
expansion have interesting properties as shown in [104], and if
the function f is polynomial than there exist polynomial-time
approximation schemes for several optimization problem [105].
Note that the graphs with bounded expansion form a broader class
than those that are minor-closed.

Nešetřil et al. [106] proved that 1-planar graphs have bounded
expansion. This is also implied by the fact that n-vertex 1-planar
graphs have 1

2 -separators of size at most O(
√
n) [29].

• [105] S. Har-Peled and K. Quanrud. Approximation algo-
rithms for polynomial-expansion and low-density graphs.
In ESA 2015, volume 9294 of LNCS, pages 717–728. Springer,
2015.

• [104] J. Nešetřil and P. O. de Mendez. Sparsity - Graphs,
Structures, and Algorithms, volume 28 of Algorithms and com-
binatorics. Springer, 2012.

• [106] J. Nešetřil, P. O. de Mendez, and D. R. Wood. Char-
acterisations and examples of graph classes with bounded
expansion. Eur. J. Comb., 33(3):350–373, 2012.

4.5. Subgraphs with bounded vertex degree

In this sectionwe review some results concerning the existence
of subgraphs of bounded vertex degree in 1-planar graphs.

Fabrici and Madaras [77] proved that each 1-planar graph con-
tains a vertex of degree at most 7, and that each 3-connected 1-
planar graph contains an edge with both end-vertices of degree
at most 20. Hudák and Šugerek [107] proved that each 1-planar
graph of minimum degree 1 ≥ 4 contains an edge having one
end-vertex with degree 4 and the other with degree at most 13,
or one with degree 5 and the other one with degree at most 9, or
one with degree 6 and the other one with degree at most 8, or both
with degree 7.

• [77] I. Fabrici and T. Madaras. The structure of 1-planar
graphs. Discrete Math., 307(7–8):854–865, 2007.

• [107] D. Hudák and P. Šugerek. Light edges in 1-planar
graphs with prescribed minimum degree. Discuss. Math.
Graph Theory, 32(3):545–556, 2012.

Hudák and Madaras [108] proved that each 1-planar graph of
minimum vertex degree 5 and girth1 4 contains: (i) a vertex with
degree 5 adjacent to a vertex with degree at most 6; (ii) a 4-cycle
such that every vertex in this cycle has degree at most 9, (iii) a
complete bipartite graph K1,4 with all vertices having degree at
most 11.

• [108] D. Hudák and T. Madaras. On local structure of 1-
planar graphs of minimum degree 5 and girth 4. Dis-
cuss. Math. Graph Theory, 29(2):385–400, 2009.

Hudák et al. [109] proved that every optimal 1-planar graphs
with at least k vertices contains a path on k vertices such that the
sum of the degrees of these k vertices is at most 8k − 1; and that
each 3-connectedmaximal 1-planar graphwith at least 2k vertices
contains a path on k vertices whose vertices have degree at most
10k each.

• [109] D. Hudák, T. Madaras, and Y. Suzuki. On properties
of maximal 1-planar graphs. Discuss. Math. Graph Theory,
32(4):737–747, 2012.

4.6. Binary operations

In this section we report results concerning binary graph oper-
ations that preserve 1-planarity.

The join product G + H of two graphs G and H is obtained from
vertex-disjoint copies of G and H by adding all edges between the
vertices of G and the vertices of H . Let Cn and Pn denote the cycle
and the path with n vertices, respectively. Czap et al. [110] studied
the problemof characterizing those graphpairswhose join product
yields a 1-planar graph. They proved that, in the case when both
G and H have at least three vertices, the join G + H is 1-planar if
and only if the pair [G,H] is subgraph-majorized (that is, both G
and H are subgraphs of graphs of the major pair) by one of pairs
[C3 ∪ C3, C3], [C4, C4], [C4, C3], [K2,1,1, P3].

• [110] J. Czap, D. Hudák, and T. Madaras. Joins of 1-planar
graphs. Acta Math. Sin. English Series, 30(11):1867–1876,
2014.

A lexicographic product G ◦ H of two graphs G and H is a graph
whose vertex set is the Cartesian product of the vertex set of G and
the vertex set of H , and two vertices (u, v) and (x, y) are adjacent

1 The girth of a graph is the length of the shortest cycles contained in the graph.
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Fig. 6. (a) A B-configuration. (b) A W-configuration. (c) A T-configuration.

in G ◦ H if and only if either u is adjacent to x in G or u = x and
v is adjacent to y in H . Note that the lexicographic product is not
commutative, i.e. G ◦ H ̸= H ◦ G in general. Bucko and Czap [111]
studied lexicographic products that yield a 1-planar graph. For
example, they proved that if G has minimum vertex degree three
and H is a single vertex, then G ◦ H is 1-planar if and only if G is
1-planar.

• [111] J. Bucko and J. Czap. 1-planar lexicographic products
of graphs.AppliedMathematical Sciences, 9(109):5441–5449,
2015.

5. Geometric representations

This section is devoted to geometric representations of 1-planar
graphs. In Section 5.1, we survey results on the problemof comput-
ing straight-line drawings of 1-planar graphs. In Section 5.2, we
report results on straight-line and polyline drawings of 1-planar
graphs with the additional property that edges cross only at right
angles. Finally, Sections 5.3 and 5.4 contain results on visibility
representations and contact representations of 1-planar graphs,
respectively.

5.1. Straight-line drawings

We first review results related to the problem of computing
embedding-preserving straight-line drawings of 1-plane graphs.
More precisely, given a 1-plane graph G, we say that G has an
embedding-preserving straight-line drawing if there exists a (1-
planar) straight-line drawing Γ of G that defines the same set of
faces and the same outer face of G (see also Section 2).

In 1988, Thomassen [112] proved that a 1-plane graph G admits
an embedding-preserving straight-line drawing if and only if G
contains neither B-configurations nor W-configurations as sub-
graphs; see Fig. 6. Based on this characterization, Hong et al. [113]
described a linear-time algorithm to test whether a 1-plane graph
G has an embedding-preserving straight-line drawing. The algo-
rithm by Hong et al. [113] is based on an efficient procedure
that checks whether G contains any of the above mentioned for-
bidden configurations, and, if not, returns a valid drawing of G.
The authors observed that the area requirement of embedding-
preserving straight-line drawings of 1-plane graphs may be expo-
nential [113]. More recently, Hong and Nagamochi [114] proved
that given a 1-plane graphG, it can be tested in linear timewhether
a 1-planar embedding of G exists such that it preserves the pairs of
crossing edgeswith respect to the original embedding and it can be
realized as a straight-line drawing. Fig. 7(a) shows a 1-plane graph
that does not admit an embedding-preserving straight-line draw-
ing due to the presence of a B-configuration as a subgraph (drawn
with bold edges). Fig. 7(b) shows a different 1-planar embedding
of the same graphwhere the B-configuration is removed. Note that
the graph in Fig. 7(b) contains the same pairs of crossing edges as
the graph in Fig. 7(a). Finally, Fig. 7(c) shows a straight-line drawing
that realizes the embedding in Fig. 7(b).

• [113] S. Hong, P. Eades, G. Liotta, and S.-H. Poon. Fáry’s
theorem for 1-planar graphs. In COCOON 2012, volume 7434
of LNCS, pages 335–346. Springer, 2012.

• [114] S. Hong and H. Nagamochi. Re-embedding a 1-plane
graph into a straight-line drawing in linear time. In GD 2016,
volume 9801 of LNCS, pages 321–334. Springer, 2016.

• [112] C. Thomassen. Rectilinear drawings of graphs. J. Graph
Theory, 12(3):335–341, 1988.

In general, any 1-planar graph admitting a 1-planar straight-
line drawing has at most 4n−9 edges, and this bound is tight [78].
Since 1-planar graphs can have 4n − 8 edges, this implies that
not all 1-planar graphs admit a 1-planar straight-line drawing,
regardless of the embedding. Every 3-connected 1-planar graph G,
however, does have a 1-planar grid drawing such that all edges are
drawnas straight-line segments, except for atmost one edge on the
outer face that requires one bend, as shown by Alam et al. [115].
The algorithm described in [115] takes as input a 1-plane graph
but may produce a 1-planar drawing that does not preserve the
embedding of the input graph. This is due to a preprocessing step in
which the graph is first augmented by adding edges such that the
four end-vertices of each pair of crossing edges induce a K4 (the
missing edges can be added without introducing crossings in the
drawing); and then any B-configuration is removed by rerouting
one of its edges. Since 3-connected 1-planar graphs contain atmost
one W-configuration, the graph produced by this preprocessing
step contains at most one forbidden configuration, i.e., at most
one W-configuration on its outerface. The area of the computed
drawing is O(n)× O(n) and the algorithm runs in O(n) time, where
n is the number of vertices of the input graph.

• [115] M. J. Alam, F. J. Brandenburg, and S. G. Kobourov.
Straight-line grid drawings of 3-connected 1-planar graphs.
In GD 2013, volume 8242 of LNCS, pages 83–94. Springer,
2013.

• [78] W. Didimo. Density of straight-line 1-planar graph
drawings. Inf. Process. Lett., 113(7):236–240, 2013.

The triconnectivity requirement can be dropped if the input
graph is IC-planar. More precisely, given an n-vertex IC-plane
graph G, there exists an O(n)-time algorithm that computes a 1-
planar straight-line drawing ofG on a grid of sizeO(n2)×O(n2) [47].
The algorithm in [47] is based on an augmentation technique that
makes G 3-connected by adding edges. This step might change
the embedding of the input graph, but the new embedding is
guaranteed to be IC-planar. Note that, unlike the case for general
1-planar graphs, this implies that every IC-planar graph can be
augmented to be 3-connected without losing 1-planarity.

• [47] F. J. Brandenburg, W. Didimo, W. S. Evans, P. Kinder-
mann, G. Liotta, and F.Montecchiani. Recognizing and draw-
ing IC-planar graphs. Theor. Comput. Sci., 636:1–16, 2016.

Straight-line drawings of outer 1-planar graphs have been stud-
ied by Di Giacomo et al. [116]. They proved that every outer 1-
planar graph G with maximum vertex degree 1 admits an outer
1-planar straight-line drawingΓ , with the additional property that
Γ uses O(1) different slopes for the edge segments. Also, drawing
Γ can be computed in O(n) time, where n is the number of vertices
of G. Since outer 1-planar graphs are planar graphs2 , Di Giacomo
et al. [116] also proved that every outer 1-planar graph G with
maximum vertex degree 1 admits a planar straight-line drawing
that uses at most O(12) slopes.

2 More precisely, every outer 1-planar graph can be drawn on the plane without
crossings if we do not restrict the position of the vertices.
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Fig. 7. (a) A 1-plane graph containing a B-configuration (bold edges). (b) A different 1-planar embedding of the graph in (a) where the B-configuration is removed. (c) A
1-planar straight-line drawing that realized the embedding in (b).

• [116] E. Di Giacomo, G. Liotta, and F. Montecchiani. Drawing
outer 1-planar graphs with few slopes. J. Graph Algorithms
Appl., 19(2):707–741, 2015.

Erten and Kobourov [117] showed that a 3-connected planar
graph and its dual (which always form a 1-planar graph) can be
drawn on a grid of size (2n − 2) × (2n − 2), where n is the total
number of vertices in the graph and its dual. All the edges are
drawn as straight-line segments except for one edge on the outer
face, which is drawn using two segments. Also, each dual vertex
lies inside its primal face, and a pair of edges cross if and only if the
edges are a primal–dual pair. The algorithm runs in O(n) time.

• [117] C. Erten and S. G. Kobourov. Simultaneous embedding
of a planar graph and its dual on the grid. Theory Comput.
Syst., 38(3):313–327, 2005.

We conclude this section by observing that every n-vertex 1-
planar graph has a crossing-free straight-line drawing in 3D with
vertices placed at integer coordinates and such that the occupied
volume is O(n log n). This result follows from the following argu-
ment. Every n-vertex 1-planar graph has layered treewidth atmost
12 [29] and, as a consequence of a result by Dujmović et al. [103],
it has track-number O(log n) (see [103] for the definition of track-
number). This, together with the fact that every 1-planar graph
has a proper vertex coloring with at most six colors, imply the
existence of the desired drawing, as proved by Dujmović and
Wood [118].

• [29] V. Dujmović, D. Eppstein, and D. R. Wood. Structure
of graphs with locally restricted crossings. SIAM J. Discrete
Math., 31(2):805–824, 2017.

• [103] V. Dujmović, P. Morin, and D. R. Wood. Layered sepa-
rators in minor-closed families with applications. J. Combin.
Theory Ser. B., 2017. doi:10.1016/j.jctb.2017.05.006.

• [118] V. Dujmović and D. R. Wood. Three-dimensional grid
drawings with sub-quadratic volume. In Towards a Theory of
Geometric Graphs, volume342 of ContemporaryMathematics,
pages 55–66. AMS, 2014.

5.2. RAC drawings

A k-bend Right-Angle-Crossing (RAC) drawing of a graph is a
polyline drawing where each edge has at most k bends and edges
cross only at right angles. A 0-bend RAC drawing is also called a
straight-line RAC drawing. Fig. 8 shows a 1-planar drawing inwhich
each edge has atmost one bend and crossings occur at right angles,
i.e., a 1-planar 1-bend RAC drawing. The study of RAC drawings is
motivated by several cognitive experiments suggesting that while
edge crossings in general make a drawing less readable, this effect
is neutralized if edges cross at large angles [5,119,120].

Fig. 8. A 1-planar 1-bend RAC drawing.

• [119] W. Huang. Using eye tracking to investigate graph
layout effects. In APVIS 2007, pages 97–100. IEEE, 2007.

• [5] W. Huang, P. Eades, and S.-H. Hong. Larger crossing
angles make graphs easier to read. J. Vis. Lang. Comput.,
25(4):452–465, 2014.

• [120] W. Huang, S.-H. Hong, and P. Eades. Effects of crossing
angles. In PacificVis 2008, pages 41–46. IEEE, 2008.

5.2.1. Straight-line RAC drawings
It is known that any n-vertex graph that admits a straight-line

RAC drawing has at most 4n − 10 edges and that this bound is
tight [121]. This implies that there are 1-planar graphs that admit a
1-planar straight-line drawing but do not admit a straight-line RAC
drawing. Moreover, it is known that graphs with a straight-line
RAC drawing that are not 1-planar do exist [122]. More recently,
Bekos et al. [123] proved that deciding whether a graph has a 1-
planar straight-line RAC drawing is NP-hard in general and in the
fixed-rotation-system setting.

• [123] M. A. Bekos, W. Didimo, G. Liotta, S. Mehrabi, and
F. Montecchiani. On RAC drawings of 1-planar graphs.
Theor. Comput. Sci., 2017. doi:10.1016/j.tcs.2017.05.039.

• [121] W. Didimo, P. Eades, and G. Liotta. Drawing
graphs with right angle crossings. Theor. Comput. Sci.,
412(39):5156–5166, 2011.

• [122] P. Eades and G. Liotta. Right angle crossing graphs and
1-planarity. Discrete Appl. Math., 161(7-8):961–969, 2013.

The situation is different for IC-planar graphs and outer 1-
planar graphs. Brandenburg et al. [47] proved that every n-vertex
IC-planar graph has an IC-planar straight-line RAC drawing. The
algorithm in [47] has O(n3) time complexity if an initial IC-planar
embedding (which may be changed by the algorithm) is given as
part of the input. The computed drawingsmay require exponential
area and exponential area is sometimes necessary for IC-planar
straight-line RACdrawings [47]. Finally, every outer 1-planar graph
G has a straight-line RAC drawing that preserves the embedding of
G [124].
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• [47] F. J. Brandenburg, W. Didimo, W. S. Evans, P. Kinder-
mann, G. Liotta, and F.Montecchiani. Recognizing and draw-
ing IC-planar graphs. Theor. Comput. Sci., 636:1–16, 2016.

• [124]H. R. Dehkordi and P. Eades. Every outer-1-plane graph
has a right angle crossing drawing. Int. J. Comput. Geometry
Appl., 22(6):543–558, 2012.

Brightwell and Scheinerman [125] proved that every 3-
connected planar graph and its dual (which always form a 1-planar
graph) can be simultaneously drawn in the plane with straight-
line edges so that the primal edges cross the dual edges at right
angles, provided that the vertex corresponding to the outer face
is located at infinity. The result exploits the fact that every 3-
connected planar graph G can be represented as a collection of
circles, one circle representing each vertex and each face, so that,
for each edge of G, the four circles representing the two endpoints
and the two neighboring faces meet at a point. Moreover, the
circles representing vertices cross the circles representing faces
at right angles. Mohar [126] extends the results of Brightwell and
Scheinerman by showing an approximation algorithm that given a
3-connected planar graph G and a rational number ε > 0 finds an
ε-approximation for the radii and the coordinates of the centers for
the primal–dual circle representation for G, such that the angles of
the primal–dual edge crossings are arbitrarily close to π

2 . Neither
of these two methods produce drawings in polynomial area.

• [125] G. R. Brightwell and E. R. Scheinerman. Representa-
tions of planar graphs. SIAM J. Discrete Math., 6(2):214–229,
1993.

• [126] B. Mohar. Circle packings of maps in polynomial time.
Eur. J. Comb., 18(7):785–805, 1997.

5.2.2. k-bend RAC drawings with k > 0
If we allow bends, it is known that every 1-planar graph has

a 1-planar 1-bend RAC drawing [123]. Specifically, there is an O(n)
time algorithm that takes as input an n-vertex 1-plane graph G and
computes a 1-planar 1-bend RAC drawing of G (the algorithmmay
change the 1-planar embedding of G) [123]. This algorithm may
produce drawings that use exponential area.

• [123] M. A. Bekos, W. Didimo, G. Liotta, S. Mehrabi, and
F. Montecchiani. On RAC drawings of 1-planar graphs.
Theor. Comput. Sci., 2017. doi:10.1016/j.tcs.2017.05.039.

Finally, Liotta and Montecchiani [127] proved that every IC-
plane graph has a 1-planar 2-bend RAC drawing in quadratic area.
Their technique is based on the construction of a visibility repre-
sentation as intermediate step; see also Section 5.3.

• [127] G. Liotta and F. Montecchiani. L-visibility drawings of
IC-planar graphs. Inf. Process. Lett., 116(3):217–222, 2016.

5.3. Visibility representations

A visibility representation of a graph Gmaps the vertices of G to
geometric objects (such as bars or polygons), while the edges of G
are lines of sight between pairs of objects. The first visibility model
studied in the literature are the bar visibility representations. In
a bar visibility representation of a graph G each vertex v of G is
mapped to a distinct horizontal segment b(v) (called bar) and each
edge (u, v) of G corresponds to a vertical unobstructed segment
(called visibility) having one endpoint on b(u) and the other one
on b(v). Such a representation is clearly planar (since edges are
parallel segments) and every planar graph can be realized as a bar
visibility representation [128–133].

• [128] P. Duchet, Y. O. Hamidoune, M. L. Vergnas, and
H. Meyniel. Representing a planar graph by vertical lines
joining different levels.DiscreteMath., 46(3):319–321, 1983.

• [129] R. H. J.M. Otten and J. G. V.Wijk. Graph representations
in interactive layout design. In IEEE ISCSS, pages 914–918.
IEEE, 1978.

• [130] P. Rosenstiehl and R. E. Tarjan. Rectilinear planar
layouts and bipolar orientations of planar graphs. Discr. &
Comput. Geom., 1:343–353, 1986.

• [131] R. Tamassia and I. G. Tollis. A unified approach to
visibility representations of planar graphs. Discr. & Com-
put. Geom., 1(1):321–341, 1986.

• [132] C. Thomassen. Plane representations of graphs. In
Progress in Graph Theory, pages 43–69. AP, 1984.

• [133] S. K.Wismath. Characterizing bar line-of-sight graphs.
In SoCG 1985, pages 147–152. ACM, 1985.

In this section we consider four different visibility models used
to represent 1-planar graphs. The first model extends bar visibility
representations by allowing edges to ‘‘see’’ through vertices. The
other three visibility models extend bar visibility representations
by allowing more complex shapes for the vertices and two orthog-
onal directions for the edges.

5.3.1. Bar 1-visibility representations
A bar k-visibility representation is a bar visibility representation

where each visibility can intersect at most k bars [134]. In other
words, each edge can cross atmost k vertices. For values of k greater
than zero, this model allows for representing non-planar graphs.
In particular, every n-vertex 1-planar graph has a bar 1-visibility
representation on a grid of size O(n) × O(n), as independently
proved by Brandenburg [135] and by Evans et al. [136]. Both papers
are based on constructive linear-time algorithms that take as input
a 1-plane graphG and thatmay change the embedding ofG in order
to construct the final representation.

• [135] F. J. Brandenburg. 1-visibility representations of 1-
planar graphs. J. Graph Algorithms Appl., 18(3):421–438,
2014.

• [134] A. M. Dean, W. S. Evans, E. Gethner, J. D. Laison,
M. A. Safari, andW. T. Trotter. Bar k-visibility graphs. J. Graph
Algorithms Appl., 11(1):45–59, 2007.

• [136] W. S. Evans, M. Kaufmann, W. Lenhart, T. Mchedlidze,
and S. K. Wismath. Bar 1-visibility graphs vs. other nearly
planar graphs. J. Graph Algorithms Appl., 18(5):721–739,
2014.

5.3.2. L-visibility representations
In an L-visibility representation of a graph G, every ver-

tex is represented by a horizontal and a vertical segment
sharing an end-point (i.e., by an L-shape in the set { , ,

, }), and each edge of G is drawn as either a horizontal or a ver-
tical visibility segment joining the two L-shapes corresponding to
its two end-vertices. Either the vertical segment or the horizontal
segment of an L-shape might have zero length. See Fig. 9 for an
illustration, and refer to:

• [137] W. S. Evans, G. Liotta, and F. Montecchiani. Simulta-
neous visibility representations of plane st-graphs using L-
shapes. Theor. Comput. Sci., 645:100–111, 2016.

Liotta andMontecchiani [127] proved that every IC-plane graph
Gwith n vertices admits an L-visibility representation inO(n2) area,
which can be computed in O(n) time. The algorithm may change
the embedding of G, but the final representation is such that each
visibility is crossed at most once and no two crossed visibilities are
incident to the same L-shape.
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Fig. 9. (a) An IC-plane graph G and (b) an L-visibility representation of G.

• [127] G. Liotta and F. Montecchiani. L-visibility drawings of
IC-planar graphs. Inf. Process. Lett., 116(3):217–222, 2016.

5.3.3. Rectangle visibility representations
A rectangle visibility representation of a graph G maps each ver-

tex v of G to a distinct rectangle r(v) and each edge (u, v) of G cor-
responds to a vertical or horizontal unobstructed segment (called
visibility) having one endpoint on r(u) and the other one on r(v). In
this model horizontal and vertical visibilitiesmay cross each other,
whereas rectangles are not crossed. Given a rectangle visibility
representation, we can extract a drawing from it as follows. For
each vertex v, place a point inside the corresponding rectangle
r(v) and connect it to all the attachment points of the visibilities
on the boundary of r(v); this can be done without creating any
crossing and preserving the circular order of the edges around
the vertices. An embedded graph G has an embedding-preserving
rectangle visibility representation Γ if the drawing extracted from
Γ preserves the embedding of G.

Recently, Biedl et al. [138] proved that a 1-plane graph G with
n vertices admits an embedding-preserving rectangle visibility
representation if and only if G does not contain B-configurations,
W-configurations, and T-configurations; see Fig. 6. The absence of
these three configurations can be checked in O(n) time, and if G
contains none of them, then an embedding-preserving rectangle
visibility representation of G can be computed in O(n) time on
a grid of size O(n) × O(n) [138]. For example, Fig. 10(a) shows
a rectangle visibility representation of the complete graph K5,
while Fig. 10(b) shows a 1-plane graph that does not admit an
embedding-preserving rectangle visibility representation due to
the presence of a W-configuration as a subgraph. Moreover, there
exist 1-planar graphs that do not admit rectangle visibility repre-
sentations (for any 1-planar embedding), unless a linear number of
edges is removed [138].

• [138] T. C. Biedl, G. Liotta, and F. Montecchiani. On visi-
bility representations of non-planar graphs. In SoCG 2016,
volume 51 of LIPIcs, pages 19:1–19:16. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2016.

In general, the complexity of testing whether a 1-planar graph
admits a rectangle visibility representation is unknown, although
the problem is NP-hard in general [139], and it likely to remain
NP-hard even for 1-planar graphs.

• [139] T. C. Shermer. On rectangle visibility graphs. III. Exter-
nal visibility and complexity. In CCCG 1996, pages 234–239.
Carleton University Press, 1996.

5.3.4. Ortho-polygon visibility representations
Di Giacomo et al. [89] introduced ortho-polygon visibility rep-

resentations (OPVR), where vertices can be orthogonal polygons

rather than just rectangles, while edges are still horizontal or
vertical segments between the corresponding pairs of polygons.

It is proved that every 1-plane graph G with n vertices admits
an embedding-preserving OPVR on a grid of sizeO(n)×O(n), which
can be computed in O(n) time [89]. (The notion of embedding-
preserving OPVR can be defined similarly as for rectangle visi-
bility representations.) For example, Fig. 10(b) shows a 1-plane
graph (that does not admit an embedding-preserving rectangle
visibility representation), and Fig. 10(c) shows an OPVR of G. In
order to control the complexity of the polygons representing the
vertices in an OPVR, Di Giacomo et al. [89] proved that if G is 3-
connected, then G admits an embedding-preserving OPVR with
at most 12 reflex corners per vertex. The proof is based on an
algorithm that exploits the results on the edge partitions of 3-
connected 1-plane graphs described in Section 4.3. Also, there exist
3-connected 1-plane graphs that require at least 2 reflex corners
on some vertices in any embedding-preserving OPVR. Moreover,
there are 2-connected 1-planar graphs that require linearly many
reflex corners on some vertices in any OPVR (regardless of the
1-planar embedding) [89]. In general, given an n-vertex 1-plane
graph G, computing an embedding-preserving OPVR of G with the
minimum number of reflex corners per vertex can be done in
O(n

7
4
√
log n) time [89].

• [89] E. Di Giacomo,W. Didimo,W. S. Evans, G. Liotta, H. Mei-
jer, F. Montecchiani, and S. K. Wismath. Ortho-polygon vis-
ibility representations of embedded graphs. Algorithmica,
2017.

5.4. Contact representations

Alam et al. [140] studied contact representations of graphs in
which vertices are representedby axis-alignedpolyhedra in 3Dand
edges are realized by non-zero area common boundaries between
corresponding polyhedra. In particular, a box-contact representa-
tion are contact representations where vertices are axis-aligned
boxes. The authors described an O(n)-time algorithm for com-
puting box-contact representations of n-vertex optimal 1-planar
graphs without separating 4-cycles. Since not every optimal 1-
planar graph admits a box-contact representation, the authors also
considered contact representations where vertices are L-shaped
polyhedra, called L-contact representations, and they provided a
O(n2)-time algorithm for representing every n-vertex optimal 1-
planar graph with this model.

• [140] M. J. Alam, W. S. Evans, S. G. Kobourov, S. Pupyrev,
J. Toeniskoetter, and T. Ueckerdt. Contact representations of
graphs in 3D. InWADS 2015, volume 9214 of LNCS, pages 14–
27. Springer, 2015.
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Fig. 10. (a) A rectangle visibility representation of the complete graph K5 . A 1-plane graph G that does not admit a rectangle visibility representation due to the presence of
a W-configuration (bold edges). (c) An ortho-polygon visibility representation of G using at most one reflex corner per vertex.

6. Final remarks and open problems

In this paper we presented an annotated bibliography that
surveys the state of the art of the combinatorial, geometric and al-
gorithmic study of 1-planar graphs.We divided the covered results
in three main sections, namely, results related with the problems
of recognizing and characterizing 1-planar graphs, results that
investigate structural properties of 1-planar graphs, and results
that study geometric representations of 1-planar graphs.

The family if 1-planar graphs fits in themore general framework
of ‘‘beyond planarity’’, in which families of non-planar graphs
are defined based on forbidden edge crossing configurations. For
further details on this topic we refer the reader to the paper by
Liotta [141]:

• [141] G. Liotta. Graph drawing beyond planarity: some re-
sults and open problems. In ICTCS 2014., volume 1231 of
CEURWorkshop Proceedings, pages 3–8. CEUR-WS.org, 2014.

We conclude with a selection of open problems, grouped ac-
cording to the main sections of this paper.

Open problems related with the topics covered in Section 3.

1. What classes of 1-planar graphs are recognizable in polyno-
mial time with or without a rotation system? In particular,
what is the complexity of recognizing maximal 1-planar
graphs without a fixed rotation system?

2. What is the complexity of recognizing 1-planar graphs with
bounded vertex degree 1, say with 1 = 3?

3. It would be interesting to design and evaluate practical
algorithms for recognizing (classes of) 1-planar graphs.

Open problems related with the topics covered in Section 4.

1. Is it possible to compute a proper vertex coloring with at
most 6 colors of any n-vertex optimal 1-planar graph inO(n)
time?

2. What is the complexity of deciding whether a 1-planar
graph has a proper vertex coloring with at most 5 colors?

3. Every 1-planar graph admits an edge partition such that the
red graph is a forest. However, nothing can be said on the
structure induced by those crossing edges colored blue. Can
we color with two colors the crossing edges of a 1-plane
graph such that each monochromatic set induces a forest?

4. The star arboricity of a graph is the minimum number of
edge-disjoint forests that cover the graph, such that each
tree of each forest is a star. Planar graphs have star arboricity
5 [142]. What is the star arboricity of 1-planar graphs? Note
that it must be between 5 and 7.

5. An n-vertex planar graph G with minimum vertex degree
3 contains a matching of size at least (n + 2)/3 [143]. Can
we establish a similar lower bound for the cardinality of
maximummatchings in 1-planar graphs?

6. What is the book thickness of (optimal) 1-planar graphs?

Open problems related with the topics covered in Section 5.

1. Canwe characterize and/or recognize those 1-planar graphs
that admit a straight-line drawing with (strictly) convex
faces?

2. Is there a value of 1 such that every 1-planar graph with
maximum vertex degree 1 admits a 1-planar straight-line
RAC drawing?

3. The family of graphs that admit a bar 1-visibility represen-
tation includes 1-planar graphs. What is the complexity of
recognizing graphs in this family?

4. Every 3-connected 1-plane graph admits an embedding-
preserving ortho-polygon visibility representation with at
most 12 reflex corners, while 2 reflex corners are sometimes
needed on some vertices. Is 2 a tight bound?

5. What classes of 1-planar graphs, other than the optimal
ones, admit an L-contact representation?

6. Apart from the results in Sections 5.1 and 5.4, very little
is known in terms of 3-dimensional representations of 1-
planar graphs. We believe that this topic deserves further
attention.
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