
Growing Fat Graphs

A. Efrat, S. Kobourov,
M. Stepp and C. Wenk
Dept. of Computer Science

University of Arizona
Tucson, AZ 85721

1. INTRODUCTION
We present an algorithm for growing fat graphs. Tradi-

tionally, graph drawing algorithms represent vertices as cir-
cles and edges as closed curves connecting the vertices. The
thickness of an edge is often used as a visualization cue, to
indicate importance, or to convey some additional informa-
tion. We show how to grow fat graphs with edges of variable
thickness. For the purpose of the demonstration we focus on
a restricted class of graphs that occur in VLSI wire routing.
This class corresponds to planar, max-degree-1 graphs. The
underlying algorithm also extends to general planar graphs
as shown in [2]. In VLSI wire routing it is often desirable
to maximize the distance between different wires. Maximiz-
ing the distance between wires is equivalent to finding the
drawing in which the edges are drawn as thick as possible,
i.e., allowing the graph to grow as fat as possible.

The continuous homotopic routing problem [1, 3, 5] is a
classic VLSI problem. The input is an initial sketch of the
wiring (i.e., each wire is given a specified homotopy class),
where the wires have fixed terminals. The goal is to route
the wires with maximal separation between the wires, while
preserving the homotopy. It is easy to see that this problem
can be rephrased as the following fat-graph problem: find a
planar drawing in which all the edges are drawn as fat as
possible. Note that if the wiring sketch is not given or the
terminals are not fixed, the problem is NP-hard [6].

The video shows the main steps of our algorithm: (1) an
arbitrary wire routing is converted to a homotopic equiva-
lent routing such that the distance between any two wires is
maximized and the routing uses the wire lengths are mini-
mized; (2) the wires are let to grow and (3) after the growth
process terminates, the medial axis of each fat edge is used
to route the corresponding wire. The running time of our
algorithm is O(kn + n3) and the space required is O(k + n)
where n is the number of wires and k is the maximum of the
input and output complexities. Note that k can be much
larger than n. Even after shortest paths have been com-
puted for each wire, k can be as large as k = Ω(2n) [2].

We are now ready to outline the general technique for

Copyright is held by the author/owner.
SoCG’02, June 5-7, 2002, Barcelona, Spain.
ACM 1-58113-504-1/02/0006.

Figure 1: An example with straights and elbows.

finding the continuous homotopic routing of maximum sep-
aration. We first define the concept of homotopic routing.

Let p, q : [0, 1] −→ IR2 be two continuous curves param-
eterized by arc-length. Then p and q are homotopic with
respect to a set V ⊆ IR2 if there exists a continuous function
h : [0, 1] × [0, 1] → IR2 with the following three properties:

1. h(0, t) = p(t) and h(1, t) = q(t), for 0 ≤ t ≤ 1

2. h(λ, 0) = p(0) = q(0), h(λ, 1) = p(1) = q(1), 0 ≤ λ ≤ 1

3. h(λ, t) /∈ V for 0 ≤ λ ≤ 1, 0 < t < 1

We call a set of paths P = {p1, p2, . . . , pn} a homotopic

shift of a set of wires W = {w1, w2, . . . , wn} if no two paths
in P intersect and pi is homotopic to wi with respect to
V, 1 ≤ i ≤ n.

We begin with the initial set of wires W and compute for
each w ∈ W the shortest path w′ homotopic to w, which
yields a set of shortest paths W ′ that is a homotopic shift
of W . This is done in O(nk) time using the algorithms of
Hershberger and Snoeyink [4]. The storage required by this
algorithm is O(n + k).

From W ′ we compute a wire routing with maximum sep-
aration by applying the following kinetic approach: We let
the wires simultaneously grow in thickness over time, in a
speed proportional to the individual weight of each wire.
Throughout this growth process, the wires remain as short
as possible, and the homotopy between wires is preserved.
As a result, the line segments of the original polygonal paths
are deformed into two types of curves. We borrow the names
for these curves from plumbing jargon: straights and elbows.
Straights are rectangular regions and elbows are formed by
the arc of an annulus with two given radii, Fig. 1.



merge

split

sb1 sb2

eb

sb

x x

Figure 2: Split and merge events. The split event splits the

straight bundle into a straight-elbow-straight bundle sequence. The

merge operation is the reverse.

In order to achieve this time bound independent of the
complexity of the wires k (which can be as large as Ω(2n)),
we group wires together. Note that in W ′ many of the wires
may travel in parallel, for an example, Fig. 1. We take ad-
vantage of this by grouping such parallel wires into bundles

and maintain straight bundles and elbow bundles instead of
single straights and elbows in our compact routing structure.

In [2] we prove that the number of bundles stored in this
data structure is only O(n) and that the space required is
O(n+k). After the growth process stops we reconstruct the
set of maximally separated wires which consist of straight
line segments and circular arcs.

In order to fatten the edges, we keep track of collision
events. Let t ≥ 0 be a general thickness parameter which
we also refer to as time. At time frame t we assign to each
wire w′ ∈ W ′ with weight ω′ the thickness ω′t. Starting at
t = 0 with all wires in W ′ having thickness 0, we let t mono-
tonically grow, such that the thicknesses of the wires also
grows monotonically, and we maintain the invariant that
the wires are as short as possible. As the wires grow three
types of events can happen: Split events, merge events, and
stop events, see Fig. 2 and Fig. 3. We construct a prior-
ity queue of events, with the key being the time at which
the events occur. For increasing time we update the data
structure and the event queue successively for each event.
We obtain the events we store in the queue by considering
for each bundle the next event it will cause independent of
other bundles:

• For each straight bundle we store the time at which
it hits the next elbow bundle (not taking any other
straight bundles into account).

• For each elbow bundle we store the time at which it
hits the next straight bundle or elbow bundle (not tak-
ing any other bundles into account).

• For each elbow bundle we store the time when it gets
straightened (only taking the two incident straight bun-
dles into account).

The first item corresponds to a split event, the second to
a split or a stop event, and the third to a merge event. Note
that the time at which an elbow bundle gets straightened as
well as the time at which two bundles hit can be computed
in constant time. Thus, for a fixed bundle the bundle it will
hit next can be found in O(n) time. We initialize the event
queue by inserting the next event for each bundle, which
takes O(n2) time. It can be shown that the total number
of events that the structure goes through from beginning to
end is O(n2) and each event can be processed in O(n) time
yielding O(n3) time overall.

(a) (b)

Figure 3: The two types of stopping condition: (a) collision of

two vertices (b) collision of two elbows.

2. THE VIDEO
The video shows examples of graph growth, illustrating

merge, split and stopping events and showing how bundles
form and break apart, Fig. 1 and Fig. 4. The implementation
has three distinct steps. Initial graphs are drawn in the Unix
Fig format using the xfig tool. The second step is to compute
the homotopic shortest paths which are then stored in a new
fig file. The third step is the fat edge visualizer, written in
Java 1.2 using the Swing graphics library and the Java2D
graphics package. This visualizer reads the output of the
shortest path algorithm and constructs an internal model of
the graph. The graph model changes over time as merge,
split and stop events occur, and these events are reflected
on the screen. The visualizer also illustrates the presence
of bundles in the graph. Implementation was done using a
1GHz Intel Celeron notebook with Java v1.2.

Figure 4: An example from the visualizer.

3. REFERENCES
[1] R. Cole and A. Siegel. River routing every which way, but

loose. In 25th Annual Symposium on Foundations of
Computer Science, pages 65–73, Los Angeles, Ca., USA,
Oct. 1984. IEEE Computer Society Press.

[2] C. A. Duncan, A. Efrat, S. G. Kobourov, and C. Wenk.
Drawing with fat edges. In 9th Symposium on Graph
Drawing (GD’01), pages 162–177, September 2001.

[3] S. Gao, M. Jerrum, M. Kaufmann, K. Mehlhorn, W. Rülling,
and C. Storb. On continuous homotopic one layer routing. In
Proceedings of the 4th Annual Symposium on Computational
Geometry, pages 392–402, New York, 1988. ACM Press.

[4] Hershberger and Snoeyink. Computing minimum length
paths of a given homotopy class. CGTA: Computational
Geometry: Theory and Applications, 4, 1994.

[5] C. E. Leiserson and F. M. Maley. Algorithms for routing and
testing routability of planar VLSI layouts. In Proceedings of
the 17th Annual ACM Symposium on Theory of Computing,
pages 69–78, 1985.

[6] C. E. Leiserson and R. Y. Pinter. Optimal placement for
river routing. SIAM Journal on Computing, 12(3):447–462,
Aug. 1983.


