
Drawing with Fat Edges?

Christian A. Duncan1, Alon Efrat2, Stephen G. Kobourov2, and
Carola Wenk3??

1 Department of Computer Science
University of Miami

Coral Gables, FL 33124
duncan@cs.miami.edu

2 Department of Computer Science
University of Arizona

Tucson, AZ 85721
{alon,kobourov}@cs.arizona.edu

3 Institut für Informatik
Freie Universität Berlin

Berlin, Germany
wenk@inf.fu-berlin.de

Abstract. In this paper, we introduce the problem of drawing with
“fat” edges. Traditionally, graph drawing algorithms represent vertices as
circles and edges as closed curves connecting the vertices. In this paper we
consider the problem of drawing graphs with edges of variable thickness.
The thickness of an edge is often used as a visualization cue, to indicate
importance, or to convey some additional information. We present a
model for drawing with fat edges and a corresponding polynomial time
algorithm that uses the model.

We focus on a restricted class of graphs that occur in VLSI wire rout-
ing and show how to extend the algorithm to general planar graphs. We
show how to take an arbitrary wire routing and convert it into a homo-
topic equivalent routing such that the distance between any two wires is
maximized. Moreover, the routing uses the minimum length wires. Maxi-
mizing the distance between wires is equivalent to finding the drawing in
which the edges are drawn as thick as possible. To the best of our knowl-
edge this is the first algorithm that finds the maximal distance between
any two wires and allows for wires of variable thickness. The previous
best known result for the corresponding decision problem with unit wire
thickness is the algorithm of Gao et al., which runs in O(kn2 log(kn))
time and uses O(kn2) space, where n is the number of wires and k is
the maximum of the input and output complexities. The running time
of our algorithm is O(kn + n3) and the space required is O(k + n). The
algorithm generalizes naturally to general planar graphs as well.

? This is a report of ongoing research. The full proofs and new results
will be maintained in the full version of the paper, which is available at
www.cs.arizona.edu/~alon/papers/fatedges.ps.gz

?? Supported by Deutsche Forschungsgemeinschaft, grant AL 253/4-3.

1 Introduction

In the area of graph drawing many algorithms have been developed for the classic
problem of visualizing graphs in 2D and 3D. If the underlying graph is weighted,
the edge weight information is typically displayed as a label near the edge. It
seems natural to assign to the edges a width (or thickness) proportional to their
weights. If the weights are in a large range then a logarithmic scale may be used.
Surprisingly, there does not seem to be any previous work on drawing graphs
with edges of varying thickness.

Some related work has been done in addressing a classic VLSI problem, the
continuous homotopic routing problem (CHRP) [2, 9]. For the CHRP problem,
we need to route wires with fixed terminals among fixed obstacles when a sketch
of the wires is given, i.e., each wire is given a specified homotopy class. If the
wiring sketch is not given or the terminals are not fixed, the problem is NP-
hard [10, 14, 15]. In the CHRP problem we are given a wiring layout and some
constant ε and we want to find if this wiring can be continuously transformed to
a new wiring in which the wire separation is at least ε. In this setting the graph
is given a fixed planar embedding and the maximum degree is 1. It is easy to
see that the CHRP problem can be rephrased as the following graph drawing
problem: does there exist a planar drawing in which all the wires can be drawn
with thickness ε?

In this paper we address a more general optimization problem which we call
the Fat Edge Drawing (FED) problem: given a planar weighted graph G with
maximum degree 1 and an embedding for G, find a planar drawing such that all
the edges are drawn as thick as possible and proportional to the corresponding
edge weights. The FED problem is a generalization of the CHRP problem since it
allows for edges of different weights and solves the maximization problem, rather
than the decision problem. The General Fat Edge Drawing Problem (GFED)
is the FED problem without the maximum degree condition. We present an
algorithm for the FED problem which easily generalizes to an algorithm for the
GFED problem.

1.1 Previous Work

Some of the early work on continuous homotopic routing was done by Cole and
Siegel [2] and Leiserson and Maley [9]. They show that in L∞ norm a solution
can be found in O(k3 log n) time and O(k3) space, where n is the number of
wires and k is the maximum of the input and output complexities of the wiring.
Maley [11] shows how to extend the distance metric to arbitrary polygonal dis-
tance functions (including Euclidean distance) and presents a O(k4 log n) time
and O(k4) space algorithm. Note that k cab be arbitrarily larger than n. In fact,
it is easy to construct examples in which k is arbitrarily large. More surprisingly,
even after shortest paths have been computed for each wire, k can be as large
as k = Ω(2n), see Figure 1. The best result so far is due to Gao et al. [4] who
present a O(kn2 log(kn)) time and O(kn2) space algorithm.

23w4w w 2w’1w 3 w’ 1w’4w’

Fig. 1. An example with exponential complexity: k = Ω(2n): On the left is the initial
wiring sketch, and on the right is the wiring after the shortest paths have been computed.
The number of edge segments in the shortest paths w′

1, w
′
2, w

′
3, w

′
4 is 1, 2, 4, 8. In general,

wire w′
i has 2i−1 edge segments. Note that on the right many edge segments are parallel.

Similar work has been done for a special class of grid graphs: finite subgraphs
of the planar rectangular grid. The first algorithms for such restricted versions
of the problem are presented by Mehlhorn and Kaufmann [6, 7], and by Schri-
jver [16, 17]. Work in this area is related to the river routing problem in VLSI
chips [2, 3, 12, 14].

A related problem was considered by Pach and Wenger [13]. They address
the problem of laying out a planar graph at predefined locations in the plane.
Given a planar graph on n vertices and a point set with n points, we want to
draw the graph subject to the condition that each vertex vi is mapped to a point
pi. This can be done with at most O(n) bends per edge using the algorithm of
Pach and Wenger [13]. In the wire routing setting, this implies that k = θ(n2).

As a part of our algorithm we use a geometric shortest path algorithm. For tri-
angulated polygons, the Euclidean shortest path between two points can be com-
puted in linear time using the algorithms of Chazelle [1] or Lee and Preparata [8].
The latter algorithm is known as the funnel algorithm and it can be extended to
river routing [2, 4, 9]. In our setting, the shortest paths can be found in optimal
O(nk) time using the algorithm of Hershberger and Snoeyink [5].

1.2 Our Results

We show how to solve the FED problem in O(nk +n3) time and O(n+k) space.
We describe the algorithm in the tradition of the homotopic wire routing where n
is the number of wires and k is the maximum of the initial and final complexities
of all the paths. We also show how to extend the FED algorithm to an algorithm
for the GFED problem with the same time and space bounds.

Our FED algorithm solves a more general problem than the CHRP problem
and is an improvement in both space and time complexity over the best known
algorithm for the CHRP problem.

2 Continuous Homotopic Routing

In this paper we use some basic definitions from Gao et al. [4]. Let W =
{w1, w2, . . . , wn} be a set of wires (also called paths). Paths are non-intersecting
planar continuous curves. Such a collection of wires is called collisionfree. Let
T = {wi(0), wi(1) : 1 ≤ i ≤ n} be the set of terminals (endpoints of the wires)
of W , |T | = 2n. Let V = T ∪O be the set of vertices, where O is a set of at most
O(n) point obstacles disjoint from W .

Let p, q : [0, 1] −→ IR2 be two continuous curves parameterized by arc-length.
Then p and q are homotopic with respect to a set V ⊆ IR2 if there exists a
continuous function h : [0, 1]× [0, 1] → IR2 with the following three properties:

1. h(0, t) = p(t) and h(1, t) = q(t), for 0 ≤ t ≤ 1
2. h(λ, 0) = p(0) = q(0) and h(λ, 1) = p(1) = q(1) for 0 ≤ λ ≤ 1
3. h(λ, t) /∈ V for 0 ≤ λ ≤ 1, 0 < t < 1

We call a set of paths P = {p1, p2, . . . , pn} a homotopic shift of a set of wires
W = {w1, w2, . . . , wn} if the following two conditions are met:

1. pi is homotopic to wi with respect to V, 1 ≤ i ≤ n
2. P is collisionfree, i.e., no two paths in P intersect

Let for each path p a weight ωp > 0 be given. Let the weighted distance
between two paths p and q be the minimum weighted distance between all point
pairs u and v with u ∈ p and v ∈ q, where the weighted distance between u and
v is the Euclidean distance multiplied by 2/(ωp + ωq). Note that if all weights
have unit weight this yields the Euclidean distance. Then the separation, s(P),
of a set of paths P is defined to be the minimum weighted distance between any
two paths pi, pj ∈ P .

In this paper we address the following Fat Edge Drawing (FED) problem:
Given a set W = {w1, w2, . . . , wn} of wires with terminal set T and obstacle
set O. Furthermore, for each wire wi let an associated weight ωi > 0 be given.
Find a homotopic shift P = {p1, p2, . . . , pn} of W with maximum separation,
i.e., s(P) ≥ s(Q) for all homotopic shifts Q of W .

Note that the maximum separation for a set of paths P directly yields the
maximum thickness with which the paths in P can be drawn without intersec-
tions. Indeed, if the weighted distance between two paths p and q is 2ε/(ωp+ωq),
then p can be drawn with thickness ωpε/(ωp+ωq), q can be drawn with thickness
ωqε/(ωp + ωq), and p and q are disjoint. Computing a homotopic shift for W , T ,
and O with maximum separation thus corresponds to drawing a planar graph,
with vertex degrees at most 1, with edges as thick as possible.

3 Algorithm Overview

We are now ready to outline the general technique for finding the continuous
homotopic routing of maximum separation. We begin with the initial set of wires

W and compute for each w ∈ W the shortest path w′ homotopic to w, which
yields a set of shortest paths W ′ that is a homotopic shift of W . This can be
done in O(nk) time using a result from Hershberger and Snoeyink [5]. The idea
of the shortest path computation is to triangulate the region using the O(n)
terminals and obstacles, yielding a triangulation of size O(n). A shortest path
w′ homotopic to a given path w can be computed in time O(Cw +∆w), where Cw

is the complexity of w and ∆w is the number of times w intersects a triangulation
edge which is O(nCw). Since

∑
w∈W Cw = k, the total time taken to compute

all shortest paths becomes O(k + nk) = O(nk). The storage required by this
algorithm is O(n + k).

From W ′ we compute a wire routing with maximum separation by applying
the following kinetic approach: We let the wires simultaneously grow in thick-
ness over time, in a speed proportional to the individual weight of each wire.
Throughout this growth process, the wires remain as short as possible, and the
homotopy between wires is preserved. As a result, the line segments of the origi-
nal polygonal paths are deformed into two types of curves. We borrow the names
for these curves from plumbing jargon: straights and elbows. Straights are rect-
angular regions and elbows are formed by the arc of an annulus with two given
radii, Figure 2. We examine elbows and straights in depth in Section 4.

We introduce a compact routing data structure which allows us to represent
the thick wires, i.e., the straights and elbows, and to maintain the growth process
efficiently. From the beginning to the end of the growth process, the algorithm
that maintains the data structure requires O(n3) time and O(n2 + k) space. In
order to achieve this time bound independent of the complexity of the wires k
(which can be as large as Ω(2n)), we group wires together. Note that in W ′

many of the wires may travel in parallel, see Figure 1 for an example. We take
advantage of this and group such parallel wires into bundles and maintain straight
bundles and elbow bundles instead of single straights and elbows in our compact
routing structure.

In Theorem 2 we prove that the number of bundles stored in this data struc-
ture is only O(n) and in Theorem 3 we prove that the space required is O(n+k).
After the growth process stops we reconstruct the set of maximally separated
wires which consist of straight line segments and circular arcs.

4 Compact Routing Structure

4.1 Straights, Elbows, and Bundles

Definition 1. The wires in the routing are broken into connected sequences of
fat edge segments called elbows and straights, as described below (see Figure 2).
The thickness of each such segment f is determined by ωf t, where ωf is the
weight of the segment that corresponds to the weight of its initial wire, and
t > 0 represents the current time frame. Let V := T ∪ O be the set of vertices.

– An elbow segment, e, associated with a vertex v and two straight segments
from v to u and from v to w; u, v, w ∈ V ; is a connected region of the

Fig. 2. An example of wires composed of straights and elbows. The shaded regions are
bundles.

plane, formed by a piece of an annulus centered at v and having thickness
wf t. More formally e = {p ∈ IR2 : r1 ≤ ||p − v|| ≤ r2 with r2 − r1 =
wf t and the orientation of the segment pv ∈ [θ1, θ2]}. The elbow e main-
tains the property that for any point p ∈ e the line segment pv intersects
only other elbows associated with vertex v. Note that the half-disk and the
disk centered around v are also elbows. For notation, let us call these regions
terminal elbows. Let Ev = {e1, e2, . . . ed} be the set of elbows associated
with v.

– A straight segment, s, associated with a segment f from u ∈ V to v ∈ V
is a rectangular region (fully) connecting two elbows, ev ∈ Ev and eu ∈ Eu.
The thickness of the segment is equal to wf t. Let Suv = {s1, s2, . . . sd} be
the set of straight segments associated with edges between u and v.

Note that every non-terminal elbow has two associated straight segments.
Every terminal elbow has at most one straight segment, the one emanating from
the corresponding vertex. Throughout the algorithm the following disjointness
property is maintained:

Property 1. The only way two segments can intersect is along their boundary
while the interiors are disjoint. The only possible intersections are:

– Two straight segments intersect only if they are associated with the same
two vertices (u, v).

– Two elbow segments intersect only if they have the same associated vertex.
– A straight segment s intersects an elbow segment e if and only if e is one of

s’s two connecting segments.

The total number of elbow and straight segments depends on k which can be
very large, see Figure 1. In order to reduce this complexity, straights and elbows
are bundled and only the bundles are manipulated.

Definition 2. Straight bundles are made of straight edge segments and elbow
bundles are made of elbow segments as described below:

– A straight bundle, sb, of (u, v) is the rectangular region formed by the
union of straights associated with edges from u to v. We assume that the
bundles are maximized, that is, for s1, s2 ∈ Su,v, the straights s1 and s2

intersect if and only if s1 and s2 belong to the same bundle. Let SBuv =
{sb1, sb2, . . . sbd} be the set of straight bundles associated with u and v.

– An elbow bundle, eb, of v is a connected region formed by the union of
elbows associated with the same vertex and sharing the same straight bundles
on both ends. As with straight bundles, we assume that the elbow bundles
are maximized. Let EBv = {eb1, eb2, . . . , ebd} be the set of elbow bundles
associated with v. A terminal elbow has at most one straight segment and
belongs to its own elbow bundle.

For any vertex v there may be many elbow bundles. It is not hard to show that
for any pair of vertices (u, v) there may be at most 3 straight bundles between
them — one below both vertices, one above both vertices, and a “diagonal”
bundle, that is below one vertex and above the other.

Lemma 1. If the number of straight bundles in our compact routing structure
is m then there are at most O(m) elbow bundles.

Proof Sketch: This proof relies on the fact that the bundles are “ordered” on
both sides of a group of elbows. As one elbow bundle ends, one straight bundle
must also end on one of the two sides of the elbow groups. ut

4.2 Compact Routing Structure S
Given the two types of segments and bundles we show how they can be stored
and updated in a manageable data structure.

Definition 3. The compact routing structure S represents a fat-wire routing as
follows:

– Terminals and obstacles are stored with pointers to their terminal elbows
– Elbow and straight bundles are stored along with their weights
– Elbow and straight bundles store the ordered list of wires they represent
– A straight bundle sb stores:

• two linked lists of left and right adjacent elbow bundles
• the number of straight segments it represents
• its weight (the sum of the weights of each of its straight segments)

– An elbow bundle eb stores:
• the set of elbow bundles adjacent to it (both above and below)
• the two adjacent straight bundles
• the number of elbow segments that it represents
• its weight (the sum of the weights of each of its elbow segments)
• its layered weight (the sum of the weights of each of the elbow segments

between the elbow bundle and the vertex center, not counting its own
weight)

merge

split

sb1 sb2

eb

sb

x x

Fig. 3. Split and merge operations. The split operation splits the straight bundle at an
elbow bundle into a straight-elbow-straight bundle sequence. The merge operation merges
a sequence of straight-elbow-straight bundles into a single straight bundle.

After the homotopic shortest paths have been computed, we need to find
out which bundles participate in the compact routing structure and what is the
order of the wires inside each bundle. The next lemma descirbes this process.

Lemma 2. Given a set of shortest paths W ′ the compact routing structure S
can be initialized in O(n2 + k) time.

For the proof of this lemma see Appendix A.

4.3 Maintaining S
Lemma 3. We can maintain the following operations in constant time:

– report(sb or eb) is an operation that returns a description of the bundle at
the current time frame

– split(sb, x) (see Figure 3) is an operation that splits a straight bundle sb
into three connected bundles sb1, eb, and sb2 such that:
• x is an elbow bundle that initially intersects sb at the boundary
• sb1 is adjacent to all elbow bundles on the left portion of sb
• sb2 is adjacent to all elbow bundles on the right portion of sb
• eb is adjacent to sb1 and sb2 and is associated with the same vertex as x
• The wire lists, weights, and number of segments for the three new bundles

are the same as the wire list, weight, and number of segments for sb
– merge(sb1, eb, sb2) (see Figure 3) is an operation that merges two straight

bundles and an elbow bundle into one straight bundle sb such that:
• eb is adjacent to sb1 and sb2

• eb has arc length 0, implying that sb1 intersects sb2

• sb represents the region sb1∪sb2 and is adjacent to the left elbow bundles
of sb1 and the right elbow bundles of sb2

• The wire lists, weights and number of segments for all the bundles are
the same

– bundlemerge(sb1, sb2) is an operation that merges two straight bundles sb1, sb2 ∈
SBuv, that intersect along their boundary, into a single straight bundle sb
such that:

• the weight (the number of straights) for sb is the sum of the weights (the
numbers of straights) for sb1 and sb2

• the linked list of left and right elbow bundles of sb is the concatenation
of the corresponding linked lists of sb1 and sb2

• the wire list of sb is the concatenation of the wire lists for sb1 and sb2

If the left (resp. right) elbow bundles of sb are adjacent to the same straight
bundle to their left (resp. right), then those elbow bundles get merged into
a single elbow bundle eb. The wire list, weight, layered weight, and number
of elbows eb represents follow from the corresponding entries in the elbow
bundles being merged.

– bundlesplit(sb, eb) is an operation that splits a straight bundle sb ∈ SBuv

at the adjacent elbow bundle eb into two straight bundles sb1, sb2 ∈ SBuv,
that intersect along their boundary, such that:
• eb is the first elbow bundle in the left or right adjacency list of sb2

• the linked lists of left and right elbow bundles of sb are the concatenation
of the corresponding linked lists of sb1 and sb2

• the wire list of sb is the concatenation of the wire lists for sb1 and sb2

• the weight (the number of straights) for sb2 is the sum of the weights (the
number) of the adjacent elbow bundles

• the weight (the number of straights) for sb is the sum of the weights (the
numbers of straights) for sb1 and sb2

If sb is adjacent (on the side not adjacent to eb) to exactly one elbow bundle,
then this elbow bundle also gets split into two elbow bundles. The weights,
layered weights, and numbers of elbows those two elbow bundles represent
follow from the entries in sb1 and sb2.

Lemma 4. Given S we can uncompress the bundles of S into straight segments
and elbow segments in time O(k) where k is the final complexity of the paths.

Proof Sketch: The idea is to go through the structure using the wire identities
in the wire list and greedily unzip the bundles segment by segment starting at
any terminal and progressing along its path. The paths obtained in this way
consist of straight line segments and circular arcs. ut

4.4 Bounding the number of bundles in S
In this section we argue that our compact routing structure S contains O(n)
bundles in total. We do this by showing that S is (nearly) a planar graph implying
the stated size.

Definition 4. A planar fat embedding of a graph G = (V, E) is an embed-
ding of G with the following properties:

– Every vertex v ∈ V is represented by a simply connected closed region Pv.
– Every edge f = (u, v) ∈ E is represented by a simply connected closed region

Pf = Puv.

– For any pair of vertices, u, v ∈ V , the two associated regions are disjoint,
Pu ∩ Pv = ∅.

– For any pair of non-incident edges, f, g ∈ E, the two associated regions are
disjoint, Pf ∩ Pg = ∅.

– For any pair of incident edges, f, g ∈ E, the interiors of the two associated
regions are disjoint, while their boundaries might intersect: Pf ∩ Pg ⊆ δPf .

– For any edge f ∈ E and vertex v ∈ V , Pf ∩Pv 6= ∅ if and only if v is incident
to f , i.e. f is an edge between v and some other vertex.

In other words, all vertices and edges are represented by simply connected regions.
All such regions are disjoint except for between edges and vertices that share
endpoints.

We now show that a planar fat embedding is indeed a planar embedding.

Theorem 1. A graph G = (V, E) is planar if and only if it can be represented
by a planar fat embedding.

Proof Sketch: One direction is straightforward: if G is planar then there exists
a regular planar embedding, which is a planar fat embedding.

To show the other direction, we need to show how to map a planar fat
embedding E into a regular planar embedding E ′. We do this by showing how
to embed the graph using points for vertices and paths for edges. First, for any
vertex v ∈ V , we place the vertex at any point pv ∈ Pv. Next for any edge
f = (u, v) ∈ E, we route the edge along the shortest path from pu to pv that
lies completely within Pu ∪Pf ∪Pv. Notice since Pf must intersect both Pu and
Pv the region is connected and a path exists.

The new embedding is planar since no two vertices can share the same point,
and if two edge paths intersect the two edges must share a vertex endpoint in
common. In fact, since the paths used are the shortest possible, if two edges
intersect they touch and remain touching until they reach the shared endpoint.
This implies that the embedding has no crossings and so G must be planar. ut

To show that the number of bundles in our compact routing structure is
O(n), we describe how it represents a planar fat embedding which implies that
it also represents a planar graph that has O(n) size, where n is the number of
vertices.

Theorem 2. Let S be a compact routing structure for a set of wires W =
{w1, w2, . . . , wn} with O(n) terminal and obstacle vertices. The number of bun-
dles stored in S is O(n). The total storage required for S is O(k).

Proof Sketch: We show how the representation in S can be mapped to a planar
fat embedding of a graph G = (V, E). Let V be the set of terminals and obstacles.
For each vertex v ∈ V we let Pv be the simply connected region formed by the
regions in EBv (the elbow bundles of v). For each pair of vertices u, v ∈ V
let us consider the set of straight bundles SBuv. We know that |SBuv| ≤ 3. If
|SBuv| > 0 we define f := (u, v) ∈ E and let Puv = Pf be one of the three
bundle regions, namely sb1.

split

Fig. 4. A split event. The elbow bundle pushes the straight bundle up such that it gets
replaced by a straight-elbow-straight bundle sequence.

These regions form a planar fat embedding for G = (V, E). It follows from
Theorem 1 that G is planar. Therefore, |E| is O(|V |) and the total number of
bundles stored in S is O(n).

Since besides the lists of wires S stores only a constant amount of information
for each bundle, the total storage space for S is O(k + n) = O(k). ut

5 Algorithm

The algorithm uses the following steps:

1. Compute the set of shortest paths W ′ from the given wire set W
2. Initialize the compact routing data structure S with W ′

3. Thicken the wires in W ′ (maintaining S) until maximum possible thickness
4. Extract paths from the bundles in S

We argued in Section 3 that the computation of the shortest paths can be
done in time O(nk) with O(n+k) space complexity. In Section 4 we argued that
the initialization of the compact routing data structure, i.e., the bundling of the
edges, can be done in O(k +n2) time. The final extraction of the paths from the
elbow and straight bundles in the compact routing structure for the maximum
possible thickness can be done in time O(k), see Section 4. In the remainder of
this section we concentrate on step 3, the wire thickening process, and show that
it can be done in O(n3) time and O(k + n) space.

Let t ≥ 0 be a general thickness parameter which we also refer to as time. At
time frame t we assign to each wire w′ ∈ W ′ with weight ω′ the thickness ω′t.
Starting at t = 0 with all wires in W ′ having thickness 0, we let t monotonically
grow, such that the thicknesses of the wires also grow monotonically, and we
maintain the invariant that the wires are as short as possible. As the wires
grow three types of events can happen: Split events, merge events, and stop
events. In a split event (see Figure 4) an elbow bundle touches and then bends
a straight bundle, such that this straight bundle gets replaced by a straight-
elbow-straight bundle sequence. In a merge event (see Figure 5) an elbow bundle
straightens, such that the corresponding straight-elbow-straight bundle sequence
gets replaced by a single straight bundle. In a stop event two elbow bundles touch
each other, which means that at this time the growth process stops, because two
elbow bundles cannot bend or push each other away anymore.

We construct a priority queue of events, with the key being the time at
which the events occur. For increasing time we update the compact routing data

sb1 sb2

sb

v

eb

v

merge

Fig. 5. A merge event. Vertex v pushes the left straight bundle sb1 up such that the
elbow bundle eb in the middle disappears. The straight-elbow-straight bundle sequence
sb1 − eb − sb2 gets replaced by a single straight bundle sb.

structure and the event queue successively for each event. We obtain the events
we store in the queue by considering for each bundle the next event it will cause
independent of other bundles:

– For each straight bundle we store the time at which it hits the next elbow
bundle (not taking any other straight bundles into account).

– For each elbow bundle we store the time at which it hits the next straight
bundle or elbow bundle (not taking any other bundles into account).

– For each elbow bundle we store the time when it gets straightened (only
taking the two incident straight bundles into account).

The first item corresponds to a split event, the second to a split or a stop
event, and the third to a merge event. Note that the time at which an elbow
bundle gets straightened as well as the time at which two bundles hit can be
computed in constant time. Thus, for a fixed bundle the bundle it will hit next
can be found in O(n) time. We initialize the event queue by inserting the next
event for each bundle, which takes O(n + log n) time per bundle, thus O(n2) in
total.

Lemma 5. Merge or split event are done in O(n) time.

For the proof of this lemma see Appendix A.

Lemma 6. Let sb(t) ∈ SBv1v2 be a straight bundle defined by the vertices v1(t)
and v2(t), where t is some time frame and v(t) denotes the union of elbow bundles
EBv at time t. Let v3 be another vertex, and assume that v3(t0) is disjoint from
sb(t0) at time t0.

Then either v3(t) never causes a split event with sb(t) for all t ≥ t0, or there
exists a time t1 such that for all t ≥ t1 sb(t) 6∈ SBv1v2 ,i.e., v3(t) keeps splitting
sb(t) for all t ≥ t1.

Proof Sketch: It can be seen that it suffices to model the situation as follows:
Assume v1(t), v2(t), and v3(t) are disks growing proportional to t, and consider

sb(t) to be a line tangent to v1(t), v2(t). Assume that v1(t) and v2(t) lie on
different sides of sb(t). Using the tangency conditions and similarity of triangles it
is easy to show that sb(t) rotates around a fixed center for increasing t. Plugging
in another tangency condition for v3(t) gives a unique time where sb(t) is tangent
to v1(t), v2(t), and v3(t). Details are omitted from this extended abstract. ut

Although there are examples with Ω(n) vertices that are each involved in
Ω(n) events with a single wire, we can show that the total number of events
that occur during the growth process is bounded by O(n2).

Lemma 7. The total number of events that the structure goes through is O(n2).

Proof. Consider the case of a split event between an elbow bundle around a
vertex v and a straight bundle sb defined by two vertices u and w. WLOG let sb
lie above both u and w. Once sb gets split there will never again be a straight
bundle between u and w touching both u and v from above, because the bundles
grow thicker monotonically in time. This follows from Lemma 6. Since there are
only O(n2) possible straight bundles this proves the claim for split events.

For merge events the argument is similar: Let the two straight bundles about
to merge be sb1 and sb2. Let sb1 and sb2 be defined by (u, v), and (v, w), respec-
tively. Let u be the vertex with many elbows around it that pushes the straight
bundle sb1 between u and v up. Then, either sb1 or sb2 can never occur again.
Indeed, once u has lifted sb1 up above u the only way to make sb2 touch v again
is for a vertex to push sb1 down, but this again destroys sb1 as a straight bundle
forever. Similarly sb2 could also be destroyed in order to make sb1 appear again.
In any case, either sb1 or sb2 will never appear again. And since there are only
O(n2) possible straight bundles this proves the claim for merge events.

Since there are O(n) different elbow bundles the number of stop events is
clearly O(n2). Since the processing of each split or merge event introduces only
a constant number of new events, the number of invalid events in the event
queue, i.e., events that refer to non-existing straight or elbow bundles, is also
O(n2). Thus the total number of events in the queue is O(n2). ut

The growth process stops at the first stop event. From Lemma 7 we know
that this will happen after at most O(n2) events. Each event can be processed
and the data structure maintained in O(n) time according to Lemma 5, which
yields a total runtime of O(n3). We need O(k) space for the compact routing
data structure and O(n2) space to store the events, for a total of O(n2 + k).
This directly yields our main theorem:

Theorem 3. The continuous homotopic wire routing with maximum separation
can be computed in O(n3 + nk) time and O(n + k) space.

Proof. Lemmas Lemma 5 and Lemma 7 yield the result save for the O(n + k)
space. We can reduce the space needed for the algorithm from O(n2 + k) to
O(n+k) without increasing the asymptotic running time. This is done as follows:
After computing the compact routing structure, the only place where superlin-
ear space is needed is in the priority queue, used for discovering future events.

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

(a) (b)

vu w

Fig. 6. The FED algorithm applied to general planar graphs. In both graphs shown the max
degree is 3 and all vertices have uniform weights. Vertices of different degree have different
sizes, more precisely, a vertex of degree i has diameter i. (a) The algorithm stopped because
vertices u and v touched. However, vertices u and v need not be that large since their edges
“fan out.” (b) In this case vertex w has to be large since its edges do not fan out.

Instead of keeping all future events, we divide the execution of the algorithm
into O(n) phases, where in each phase O(n) events happen. The priority queue
then contains only the next O(n) events, so only O(n) space is needed. After
each phase, we find the next O(n) events by checking each bundle against each
other bundle (which is done in O(n2) time), so the total time spent for finding
future events remains O(n3), as before. ut

6 General Planar Graphs

We presented a O(nk+n3) time algorithm for the FED problem. Since the FED
problem restricts us to graphs with maximum degree 1, we would like to extend
it to general graphs which yields the GFED problem. It is easy to extend our
algorithm to an algorithm for general planar graphs. Recall the GFED problem:
given a weighted planar graph (not necessarily of degree 1) and an embedding
for it, find a planar drawing with the edges drawn as thick as possible with
thicknesses proportional to the edge weights. We can modify our algorithm as
follows: Let each vertex grow at a rate proportional to its degree. In this setting
our modified algorithm will find the optimum solution. However, the solution
may not be optimal in the sense that some vertices may occupy more space than
they need, thus causing the algorithm to terminate earlier, see Figure 6.

This problem can be addressed by allowing vertices to have a variable rate of
growth as follows. Each vertex is the smallest circle such that its adjacent edges
do not overlap outside that circle. Note that the largest diameter circle needed
for a vertex of degree i is i. The problem with this approach is that the angles
of the adjacent edges change dynamically throughout the algorithm and hence
would require updates at every event for every elbow.

7 Open Problems

Some of the open problems related to the FED and GFED problems include:

– Is k = Ω(2n) the worst case complexity for the FED problem or can it be
worse than that?

– Can the FED algorithm be extended to non-point obstacles?
– What is a “good” model for the GFED problem?
– Can the FED algorithm be modified to an algorithm for the GFED problem

with vertices growing at varying rates?

References

1. B. Chazelle. A theorem on polygon cutting with applications. In 23th Annual
Symposium on Foundations of Computer Science, pages 339–349, Los Alamitos,
Ca., USA, Nov. 1982. IEEE Computer Society Press.

2. R. Cole and A. Siegel. River routing every which way, but loose. In 25th Annual
Symposium on Foundations of Computer Science, pages 65–73, Los Angeles, Ca.,
USA, Oct. 1984. IEEE Computer Society Press.

3. D. Dolev, K. Karplus, A. Siegel, A. Strong, and J. D. Ullman. Optimal wiring
between rectangles. In Proceedings of the 13th Annual ACM Symposium on Theory
of Computation, pages 312–317, Milwaukee, Wisconsin, 11–13 May 1981.

4. S. Gao, M. Jerrum, M. Kaufmann, K. Mehlhorn, W. Rülling, and C. Storb. On con-
tinuous homotopic one layer routing. In Proceedings of the 4th Annual Symposium
on Computational Geometry, pages 392–402, New York, 1988. ACM Press.

5. Hershberger and Snoeyink. Computing minimum length paths of a given homotopy
class. CGTA: Computational Geometry: Theory and Applications, 4, 1994.

6. Kaufmann and Mehlhorn. On local routing of two-terminal nets. JCTB: Journal
of Combinatorial Theory, Series B, 55, 1992.

7. M. Kaufmann and K. Mehlhorn. Routing through a generalized switchbox. Journal
of Algorithms, 7(4):510–531, Dec. 1986.

8. D. T. Lee and F. P. Preparata. Euclidean Shortest Paths in the Presence of
Rectilinear Barriers. Networks, 14(3):393–410, 1984.

9. C. E. Leiserson and F. M. Maley. Algorithms for routing and testing routability of
planar VLSI layouts. In Proceedings of the Seventeenth Annual ACM Symposium
on Theory of Computing, pages 69–78, Providence, Rhode Island, 6–8 May 1985.

10. C. E. Leiserson and R. Y. Pinter. Optimal placement for river routing. SIAM
Journal on Computing, 12(3):447–462, Aug. 1983.

11. F. M. Maley. Single-Layer Wire Routing. PhD thesis, Massachusetts Institute of
Technology, 1987.

12. A. Mirzaian. River routing in VLSI. Journal of Computer and System Sciences,
34(1):43–54, Feb. 1987.

13. J. Pach and R. Wenger. Embedding planar graphs at fixed vertex locations. In
Proc. 6th Int. Symp. Graph Drawing (GD ’98), pages 263–274, 1998.

14. R. Pinter. River-routing: Methodology and analysis, 1983.
15. D. Richards. Complexity of single layer routing. IEEE Transactions on Computers,

33:286–288, 1984.
16. Schrijver. Disjoint homotopic paths and trees in a planar graph. Discrete &

Computational Geometry, 6, 1991.
17. A. Schrijver. Edge-disjoint homotopic paths in straight-line planar graphs. SIAM

Journal on Discrete Mathematics, 4(1):130–138, Feb. 1991.

A Appendix

Lemma 2. Given a set of shortest paths W ′ the compact routing structure S can be
initialized in O(n2 + k) time.

Proof. Assume for simplicity that there are no three collinear vertices. We start with
bundling multiple edge segments between the same pair of vertices into one bundle,
which can be done by traversing the wires in O(n2 + k) time. This process yields a
planar graph with O(n) vertices and (bundled) edges. Our next goal is to assign a linked
list Le of wire names to each bundle e which represents the order of the wires inside e.
Note that the same wire can appear many times. We define an arc to be a connected
part of the wire that uses (the interior) of a bundle edge. Thus, a bundle edge might
contain many arcs that all belong to the same wire. We maintain with each bundle its
“capacity” which is the number of arcs using this bundle. We sort the bundles around
each vertex, according to their orientations, which can be done in O(n log n) time.

Since wires in W ′ are shortest paths, the turn angle of a wire around a vertex v
must be at least π. Therefore we can assign to every vertex vi an angle θi and a ray ri

emerging from vi in orientation θi as follows: For each wire w that touches vi, where
vi is not one of w’s terminals, the number of arcs in w touching vi with orientation in
the range [θi − π, θi) is the same as the number of arcs touching vi with orientation in
the range [θi, θi +π). For a fixed bundle e adjacent to a vertex vi, consider the division
of the other bundles adjacent to vi that lie on the same side of ri as e into the set of
bundles with smaller and the bundles with greater orientation angles than e. We store
for each bundle e the sum of the capacities of the bundles in both sets.

We next traverse the graph along each wire w. Assume that a1, a2 . . . are the arcs
of w, in the order they appear along w, and assume ai is the arc leading from vertex
vi to vertex vi+1, so v1 is one of the terminals of w. Note that vi is not necessarily
distinct from vj .

Suppose that we know the position of arc ai in the bundle carrying ai. Using this
information we compute the position of ai+1 in its bundle as follows. Let ei and ei+1 be
the bundles carrying ai and ai+1, respectively. Consider the other bundles adjacent to
vi+1 whose orientations lie in the greater angle between ei and ei+1. Then ri+1 divides
these bundles into those being on the same side of ri+1 as ei, and those being on the
same side as ei+1. However, we know that the sum of arcs in the bundles on the side
of ei plus the position of ai in ei has to equal the corresponding sum on the other
side of ri+1. Using the sums of bundle capacities that we stored for ei and ei+1 we can
compute the position of ai+1 in ei+1 in constant time. Starting with a1, which has to
be the uppermost or lowermost arc in the bundle that contains it, we can thus traverse
w incrementally and track the position of the arcs in the bundles in time proportional
to the length of w. Therefore all lists Le can be constructed in O(k) time in total. ut

Lemma 5. Merge or split event are done in O(n) time.

Proof. In a split event one straight bundle gets replaced by a straight-elbow-straight
bundle sequence. For each of the three new bundles we need to compute its next event
and insert it in the event queue. This can be done in O(n) time.

In a merge event a straight-elbow-straight bundle sequence gets replaced by a single
straight bundle. Clearly the next elbow bundle causing a possible split event with this
new straight bundle can be found and inserted in the queue in O(n) time.

Both split and merge events cause other events in the event queue to become invalid
because bundles are removed from the compact routing data structure which might still
be referred to in some events in the queue. When an invalid event which still contains
one existing bundle has to be processed, it is deleted from the queue, and the next
event for this bundle is found and inserted in the queue in O(n) time. If the invalid
event only refers to non-existing bundles it is simply removed.

Note that a split event might cause two straight bundles to become parallel such
that they have to be merged. Similarly a merge event might cause a straight bundle to
be split into two straight bundles. This can be checked easily and done in constant time
using the operations bundlesplit and bundlemerge of the compact routing structure
described in Section 4. ut

