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Figure 1: A screenshot of the REMatch system: input text query from a call for proposals (top-left), list of matching research
experts along with explanations (top-middle), college filter bar chart, position filter bar chart, research topics and matching
terms (top-right), map with matched researchers from the selected college.

Abstract—We describe a system designed to process, analyze
and visualize academic data, from research papers and research
proposals to list of courses taught, consulting, internal and
external service. This can be helpful in identifying experts in a
given field for future collaborations, as well as in putting together
strong multi-disciplinary teams to apply for future research
funding. Our REMatch system aims to support such tasks
by leveraging natural language processing, machine learning,
and interactive visualization. Specifically, REMatch provides a
functional system that implements in-the-browser, map-based
interactive navigation of a large underlying network, supporting
semantic zooming, panning, searching, and map overlays. A
prototype of the system is evaluated with a small-scale case study.

I. INTRODUCTION

The explosion of data leads to unexpected effects, where
solutions to critical problems are overlooked, since many tasks
need to cross several disciplines or domains that produce
considerable amounts of data but interact only minimally.

Swanson predicted this problem more than three decades ago,
and described it as undiscovered public knowledge:

“Knowledge can be public, yet undiscovered, if
independently created fragments are logically related
but never retrieved, brought together, and inter-
preted.” [46].

In this work we focus on the complex task of matching
academics to calls for proposals. This task impacts univer-
sities and other research-oriented organizations, which must
constantly answer difficult questions such as: How can we
identify experts in a given field? How can we identify gaps
in our strategic areas of expertise? How can we match calls
for proposals with the right set of experts? How can we put
together a strong multi-disciplinary team to apply for big
research proposals?



Importantly, although these are complex tasks, there is great
deal of data from sources such as research papers, research
proposals, and courses taught that can be used to address them.
This information can also be used to identify current strengths
and weaknesses, as well as finding patterns and trends over
time. The main challenge and our major contributions are in
gathering and processing the needed data, putting together a
collection of new and existing tools, designing an intuitive
interactive interface, and packaging all of this in a functional
system that non-experts can use.

A. Context

Encouraging research experts (tenure-track research faculty
and research scientists) to apply for external funding is an
important task for university research offices. This task is
simultaneously very difficult (given thousands of research ex-
perts across dozens of colleges and hundreds of departments),
while also of critical importance (given the major role of
research funding in the face of steady cuts in state and nation-
wide education funding). In the rest of this paper we focus on
the University of Arizona (UA), although the design principles
can be applied to other universities.

The Research Office (RO) staff collect information about
calls for funding from a wide range of sources (e.g., federal
funds, industry proposals, and named foundations), with the
aim of alerting research experts for whom the call is relevant.
In particular, they would like to encourage people who might
not have considered the call as being one for which they should
apply, or who might have missed the call altogether.

The continuous stream of information (calls for funding pro-
posals, information requests, white papers) is monitored and
filtered by the RO staff, and a weekly digest is emailed to all
university research experts. Small specialist teams (e.g., phys-
ical sciences, arts and humanities, clinical and biomedical)
consider the calls in their particular area, and, after filtering,
do one or both of two things: (a) they forward the calls to the
relevant College Dean of Research (e.g., Engineering, Arts
and Humanities, Science) asking them to in turn forward to
appropriate faculty in their colleges, and/or (b) they directly
contact particular individuals who are known to have specialist
knowledge in the area relating to the call. When contacting
individuals directly, RO staff rely on internal information
(faculty profiles) and commercial tools (e.g., the PIVOT
database, https://pivot.cos.com/). Despite these resources, RO
staff readily acknowledge that a major source of knowledge
about the research expertise of the institution’s researchers is
“in their heads” – personal knowledge that they have built up
over time through networking events and individual contacts,
and which is lost when RO staff members change jobs.

It is the process of “finding the perfect fit” that the RO
staff welcome support with – knowing exactly who would
be the best people to target and encourage to respond to a
particular call for funding. They would like to reduce the
amount of targeting emails that they send (so as to cut down on
emails considered “spam” by the university research experts),
while being confident that the sources of information that they

use in this targeting are robust enough to ensure both high
precision (the people targeted are appropriate) and high recall
(appropriate people are not omitted).

B. The REMatch System

The Research Expert Matching (REMatch) System relies
on data gathered from university databases (e.g., current staff,
research proposals), as well as external sources (e.g., research
publications, research funding awards). This data is analyzed
using machine learning (ML) and natural language processing
(NLP) components and visualized with a interactive map-
based network and overlays. In particular, given a specific
call for proposal (CFP) or a research paper (or even a bit of
relevant text from a CFP or paper), we can find the research
experts who best match the query and locate them on the map.
The query can be refined by specifying one or more colleges
(e.g., show only experts in the College of Science), and further
refined by marking some of the phrases and words from the
input as “stop-words” (i.e., contentless words). Each person
matched is associated with an explanation, showing which
topics and terms were matched, and therefore explaining why
that person has been included in the list. Exploring the map
can show additional information, such as past collaborations,
past funding data, and citation counts.

We gather data from different sources (several university
databases, as well as external ones such as Google Scholar)
to build the collaboration network. We then use multi-level
force-directed placement, node overlap removal, and clustering
algorithms to represent the network as a map. Nodes, node
labels, polygon colors, and edges are transformed into Google
Map objects, which are then drawn in the browser using the
Google Maps API. Seven different level-of-detail (semantic
zoom levels) are precomputed, which entails determining
which nodes are present on a given level, computing label
font sizes, and ensuring no label overlaps. To process a text
query and find research experts that match it, we extract
research topics and terms associated with the query. Then
we perform multiple information retrieval queries on a pre-
computed Lucene index, which includes information about
each expert’s research topics, publication details, and grant
proposals. Figure. 2 shows an overview of our system.

The REMatch system provides several novel features: (a)
leveraging knowledge and information from different domains
to find relevant research expertise and research experts; (b)
combining machine learning, natural language processing and
visualization techniques in one functional system that (unlike
other stand-alone graph-drawing tools) is implemented in the
browser, and is therefore readily accessible; (c) providing
interactive map-based visualization of the network of research
experts and supporting common map-exploration interactions
such as multiple zooming levels, semantic zooming, panning,
and searching; and (e) overlaying additional information such
as collaborations, citations, and funding levels. The current
prototype of REMatch is already used by senior managers at
the university to identify potential new research collaborations
and to create multi-disciplinary research teams. As an open-



Figure 2: Overview of the REMatch system.

source system, we expect that REMatch can be customized to
different institutions and that additional features will make it
useful beyond the scope of the current prototype.

II. RELATED WORK

There is a great deal of related work in different domains:
from collaboration networks and topic analysis, to visualiza-
tion techniques for text data and large graphs.

Research collaboration networks are widely studied [24],
[33]. Words from paper titles have been used as indicators
for the content of a research topic, which in turn are used
to create topic visualizations [17], [47], [56]. Some earlier
approaches focus on analyzing specific journals, conferences,
or research areas, e.g., analyzing computer science conferences
and journals [17], trends in computer science research [15],
the International Conference on Data Mining (ICDM) [30],
publications in data visualization [21]. Domenico et al. [11]
quantify attractive topics (i.e., topics that attract researchers
from different areas). Sun et al. [44] build a network, with
computer science conferences as nodes and edges between two
conferences with common authors. Map-based visualization
has been used for document visualization [22], [42], [53].
Dunne et al. [13] built a tool to combine reference man-
agement, citation text, automatic summarization, ranking and
filtering, and network visualization for documents.

Citations are considered an important contribution measure-
ment [55] and are used in visualizations of scholar profiles [35]
and paper recommendation systems [51]. Citation data from
the Web of Science [34] and from Microsoft’s Academic
Graph [25] have been analyzed. CiteRivers [21] and Cite-

VIS [43] analyze and visualize IEEE VIS conference citations,
as do Ke et al. [26].

Also related to our work are many graph visualization
techniques and tools; see surveys by Von Landesberger et
al. [49] and Vehlow et al. [48]. Graph layout algorithms
are provided in several libraries, such as GraphViz [3],
OGDF [10], MSAGL [32], and VTK [40], which however,
do not support interaction, navigation, and data manipula-
tion. Visualization toolkits such as Prefuse [20], Tulip [7],
Gephi [8], and yEd [52] support visual graph manipulation,
and while they can handle large graphs, their rendering does
not: even for graphs with a few thousand vertices, the amount
of information rendered statically on the screen makes the
visualization difficult to use. Further, there are research papers
that describe interactive multi-level interfaces for exploring
large graphs such as ASK-GraphView [6], topological fisheye
views [18], and Grokker [37]. Software applications such
as Pajek [12] for social networks, and Cytoscape [41] for
biological data provide limited support for multi-level network
visualization. These approaches rely on meta-graphs, made
out of meta-vertices and meta-edges, which make interactions
such as semantic zooming, searching, and navigation counter-
intuitive. Not many of the tools and systems above provide
browser-level navigation and interaction for large graphs.

Liu et al. collect publications and projects of potential
supervisors from internal data sources of University of Leeds
so that new PhD applicants can find potential supervisors [27].
As this approach relies on manually defined rules, it does not
easily extend to larger scale datasets such as ours. Automated
recommender systems such as blended recommending [28],
expertise recommender [29], ruled-based mapping [31], and
group recommender systems [50] deal with large-scale prob-
lems such as ours, but are not clearly applicable to academic
publications, research grant proposals, and course descriptions.

Commercial organizations provide access to (and,
in most cases, visualizations of) data about research
activity for an institutional fee. SciVal (Elsevier,
www.elsevier.com/solutions/scival) “offers quick, easy
access to the research performance of 8,500 research
institutions and 220 nations worldwide,” and Academic
Analytics (www.academicanalytics.com) focusses on research
universities in the United States and the United Kingdom,
specifically supporting “the strategic decision-making process
as well as a method for benchmarking in comparison
to other institutions.” In profiling an institution, Pure
(Elsevier, www.elsevier.com/solutions/pure) “aggregates
your organization’s research information ... enables your
organization to build reports, carry out performance
assessments, manage researcher profiles, enable research
networking and expertise,” while InCites (Thomson Reuters,
http://clarivate.libguides.com/incites) allows you to “analyze
institutional productivity, monitor collaboration activity,
identify influential researchers, showcase strengths, and
discover areas of opportunity.” Universities pay hundreds of
thousands of dollars for these services, typically in the form
of multi-year contracts, yet these services lack some critical



pieces of information that we do have access to (e.g., past
research proposals) and do not match research experts to calls
for proposals.

Our work builds on this previous knowledge, and proposes
an integrated search and visualization platform for the impor-
tant task of matching research experts with calls for proposals,
a challenging task that is currently handled manually by
university staff.

III. REMATCH SYSTEM OVERVIEW

The REMatch system relies on a wide range of data
collected from the following internal and external sources:

1) UAVitae: an internal online system for university faculty
and staff, which includes research publications;

2) UAIR: university internal analytics and institutional re-
search, which keeps track of staff arrivals and departures;

3) UAR: UA’s research activity system, which keeps track
of research proposals and awards information internally;

4) Google Scholar Profiles: we scraped UA Google Scholar
profiles for publications data (e.g., title, abstract, citations,
research areas);

5) Google Scholar Topics: we scraped half a million research
profiles from the top one thousand universities (according
to the Center for World University Rankings [2]), in order
to build a topic network connecting co-occurring research
topics.

These data sources are integrated so as to associate a rich
individual research profile with each member of the institution.

The system interaction entails the entry of a URL address
for a call for proposals (CFP) or plain text, typically the
content-rich passages from a CFP. The output is a ranked list of
research experts who match the CFP, i.e., a list of people who
RO staff might reasonably contact and encourage to respond
to the CFP. Clicking beside each name reveals the relevant
matching research topics and terms. A bar chart shows the
number of matches in each college and clicking on it filters
the results. Another bar chart shows the number of matches by
type of position (e.g., Assistant Professor) and clicking on it
further filters the results. The set of the keywords extracted
from the CFP is shown - clicking on any of them makes
them stop-words for this query (removing them from the set)
and the list of experts is updated with this reduced set. The
collaboration map highlights the research experts in the current
matched list - this map can be navigated and explored to find
more information about the highlighted experts, including their
collaborators, the nature of these collaborations (titles of joint
papers or research proposals), level of current funding, and
number of citations.

The steps in this process are therefore (1) building the
university-wide collaboration map, (2) building a database of
research expertise, (3) extracting research topics and terms
from the CFP, (4) identifying the relevant faculty members,
(5) displaying them on the map, (6) filtering with respect to
college, (7) removing irrelevant keywords. We discuss each of
these steps below.

IV. RESEARCH COLLABORATION MAP

We chose to use a map-based visualization to show the
results in the context of cross-university collaboration. Maps
have been shown to be effective and memorable representa-
tions of networks [19], [38], [39]. In our case, the underlying
data is a collaboration network, in which each node is a person,
and an edge exists between two nodes if the corresponding
pair have past collaborations (e.g., joint research paper, joint
research proposal). Collaborations are based on publication
data in the databases scraped (described in the previous
section). Named-entity recognition is one of the challenging
issues when working with multiple datasets. In all internal
university systems, researchers are identified by an unique
ID. Each Google Scholar profile also assigns unique IDs. We
match IDs from different databases using a semi-automated
system based on OpenRefine [5].

We use the GMap framework [19] to generate a map-like
visualization of the collaboration network and extend it to
support semantic zooming. The process can be summarized
as follows: (1) embed the collaboration network in the plane,
(2) group nodes into clusters, (3) create the geographic map
representation, (4) compute multiple level-of-detail views, and
(5) provide support for interactions (pan, zoom, search) and
overlays.

We embed the network using a scalable force-directed algo-
rithm (sfdp from graphviz) and then group the nodes using
k-means clustering. To create the geographic-map look, we use
a modified Voronoi diagram based on the obtained embedding
and clustering. The geographic regions are colored such that no
two adjacent countries have colors that are too similar, using
the spectral vertex labeling method [19]. We use the GraphViz
implementation of node-overlap removal provided by prism.
Note that prism provides non-overlapping labels only for the
complete basemap (showing all nodes), and not for the other
6 level-of-detail views, needed for semantic zooming.

The semantic zoom in REMatch requires modifications to
nodes, edges, clusters, and heatmap overlays; see Fig. 3. We
use the Google Maps API which handles most of these issues,
with the notable exception of node-overlap (and hence node-
label overlap), which is a natural side effect of zooming.
To ensure that neither nodes nor labels overlap on any level
of detail, we compute different node visibilities for different
zoom-levels. For each level, we sort the nodes by their weight
(node-weight is determined by the degree of the node, or
amount of funding, or number of citations). We make the i-
th node visible on the j-th level if the bounding box of the
i-th node does not overlap with the bounding boxes of nodes
1,2, · · · ,(i−1). This algorithm requires O(n2) time but it could
be improved using different techniques as in [14].

V. MATCHING RESEARCH EXPERTS

In this section we describe how we find the research experts
who best match a given text query, (e.g., a CFP). We treat this
as an information retrieval (IR) problem, where the text query
forms the (large) input query, and each individual researcher



Figure 3: Top: a high level view of the collaboration map;
Bottom: zooming in one level deeper provides more details; a
mouse-over event highlights a node and its strongest connec-
tions.

is represented as a single “document” containing all asso-
ciated research materials (e.g., research topics, publications,
submitted proposals). We further extend this process with a
ML component, as described below.

A. Building a Database of Research Expertise

We first assign research topics to all researcher experts. In
general, Google Scholar (GS) profiles provide self-reported
description of a researcher’s interests or research topics. How-
ever, many researchers do not have a GS profile and many
have a profile that is very sparse (containing only one or
two research topics), which complicates the IR task addressed
in this section. To mitigate this problem, we implement an
ML component that predicts five research topics for such
researchers.

Out of the current total 2,187 researchers at UA, 1,127 have
GS profiles. Of these, 314 provide the maximum possible
five research topics and no prediction is necessary. For all
others we use the method described below. When a researcher
has no GS profile we use the top 5 predicted topics. When
a researcher has a GS profile with fewer than 5 topics, we
augment the given topics with our prediction to again obtain
exactly 5 topics. The prediction process relies on a multi-class,
multi-label classification with regularized logistic regression
which is implemented in the LiblineaR package.

Task: Determine Top-5 research topics from an expert’s
data.

Figure 4: Preprocessing text for the machine learning step.

Data: We scraped GS profiles, gathering the self-reported
areas of expertise and publication details. Note that multiple
research topics are typically mentioned in each profile. We
consider all publications in a given profile as belonging to
each of the research areas provided in the profile. We use
this data as training data. To predict the Top-5 research topics
associated with each researcher, we use all associated data
(research publications, grant proposals, etc.).

Data preprocessing: To prepare the dataset for the machine
learning model we first extract important phrases (i.e., noun
phrases) from the documents. We rely on the Natural Lan-
guage Toolkit (NLTK) [4] for this task, using the grammar
NP : {(< JJR > | < JJS > | < JJ > | < NN >| < NNS >
| < NNP > | < NNPS >)∗}. We then stem the phrases with
using a series of operations from Lucene [1]: StandardFilter,
LowerCaseFilter, StopFilter, and SnowballFilter. Finally we
compute term frequency as shown in Fig 4.

Training: Formally, we consider the self-reported research
topics in GS profiles for the 1,127 academics as labels (Y ). For
all researchers, we build a matrix X from their publications:
each row corresponds to an individual publication; each col-
umn represents a noun phrase found in the corresponding text,
with a value set to its term frequency (TF) in the corresponding
document. The label(s) assigned to rows in X are taken from
all research topics reported by the corresponding researchers
in GS. The matrix X used for training contains 38,886 rows
and 8,462 columns. This matrix is used to train the multi-class
logistic regression classifier.

Prediction: At prediction time, the model returns classifi-
cation probabilities as a n× k matrix, where k is the number
of research topics, and n is the number of researchers to be
classified. We take only the top five columns for each person,
i.e., the top predicted research topics of a person. Where
needed (e.g., for researchers with fewer than 5 topics in their
GS profile) we augment the list to obtain the Top-5, making



sure there are no repeats.

B. Extracting Google Research Topics

In a topic network, topics are the nodes and edges indicate
that topics are related to each other. Extracting topics from
research articles (with topic co-occurrence within an article
indicating topic relationship) is a popular approach to creating
a knowledge network [17], [54]), but these methods do not al-
low for easy identification of general topics (e.g., mathematics,
physics), nor do they include very specific topics (e.g., sym-
metry detection algorithms, interactive graph visualization) as
nodes.

Our approach for creating a topic network relies on the
assumption that people know the topics that they work on:
nobody is better placed to categorize researchers’ topic areas
than the researchers themselves, and, while document analysis
might automatically identify and extract topic labels from
an article, only the researchers who wrote the article know
precisely the key topics of the paper. We therefore use the self-
reported areas of study in the Google Scholar (GS) database,
as defined by researchers themselves and the co-occurrence
of topics within a researcher’s list indicates a relationship
between them in our knowledge network. Specifically, the
topics network is generated using the following steps:

1) Data Scraping: Our data gathering is limited to GS entries
associated with the world’s top 1,000 universities (accord-
ing to the Center for World University Rankings [2]). We
extracted the institution IDs from GS and then scraped the
URL associated with each institution to collect research
profiles of all individuals associated with the institution,
focusing on the list of research topics from each research
profile. The total number of topics extracted from this
raw data was 190,137, but after standardizing the topic
separators within the topic list, and using beautifulsoup
[2] to tidy up html tags for consistency, the number of
distinct topics rose to 222,459.

2) Data Cleaning: We removed leading or trailing spaces,
inconsistent use of upper and lower case letters, un-
necessary punctuation and control characters, and du-
plicate topics. Many topics were phrases or composite
terms (e.g., “statistics for neuroscience,” “data and model
management,” “group theory and combinatorics,” “sym-
metries of graphs”); we removed conjunctions (and, or)
and other words with no semantic weight (for, of), thus
splitting topic phrases into their constituents.

3) Topic Correction: Typos and acronyms frequently occur.
We used Google’s OpenRefine [5] to identify and resolve
typing errors, and to find alternate representations of
the same topic [9], [16], [23] (e.g “Computer Human-
Interaction” is equivalent to “Human-Computer Interac-
tion”; “Primary education” is the same as “Elementary
education”). This process reduced the number of unique
topics to 210,588.

4) Topic Removal: We dropped topics that were associated
with four or fewer people (aware that these topics might
be topic labels in which there were typing errors that were

Table I: Data summary.

Field Data Description #Records

F1
Research paper titles, abstracts 165501
Grant proposals 44970
Abstracts of grant proposals 1355

F2 Top 5 research predicted areas 2544

F3

Courses taught 240823
Internal and external service 18256
Teaching and research interests 1706
Consulting 1690
Biography 1222
Research activity / Work in progress 2032
Research goals and progress 6844

not captured by OpenRefine), and topics that we identified
as not being in English. This reduced the number of topics
to 39,067.

5) Topic Merging: Merging was required for topics that
are similar, but are listed slightly differently; for ex-
ample, “algorithm,” “algorithms,” “algorithmics” are all
the same topic, as are “organization,” “organizational”
and “organizing.” We used snowball [36] to find the
root word by applying stemming processes (removing
endings such as -s, -ed, -ing). “Algorithm,” “algorithms”,
and “algorithmics” thus all become “algorithm;” however
“applied” and “applications” become the meaningless
term “appli.” To mitigate against nonsensical resolution,
we choose the main topic to be the one with the highest
frequency amongst all topics with the same stem.

C. Lucene Indexing

As mentioned earlier, we treat the problem of matching
academics with a given research topic as an IR task, which we
implemented using Apache Lucene [1]. In particular, we con-
struct a Lucene document for each individual researcher, with
two data fields. The first field (F1) contains titles and abstracts
of research papers and grant proposals. The second field (F2)
contains the research topics of the corresponding person (from
their GS profile, or predicted as described above). The third
field (F3) contains information from biographies/CVs, list of
courses taught, internal and external service, consulting, etc.;
see Table I.

This approach allows us to combine three sources of infor-
mation in a single query: F1 contains data that is (more or
less) objective since it comes from academic publications, but
it may be too verbose, F2 contains precise information, but
which may be biased since it is self-reported, and F3 contains
high level research areas that are not covered by F1 and F2.

D. Query Pre-Processing

Given an input query (e.g., a URL for a CFP, plain text, or
a collection of keywords), we convert it to an actual Lucene
query as follows: The text is cleaned, tokenized, and stemmed.
We next compute the term frequency of unigrams, bigrams,
and trigrams, which become our candidate research topics.
Then we match the candidate research topics with the research
topics extracted from GS, by taking the intersection of the
two sets of topics (in our network we only include topics that



Figure 5: Top: collaborations within the College of Medicine;
Middle: collaboration (indicated by font size), citations
(heatmap), and funding (green circles); Bottom: information
about an individual researcher.

occur more than once in the 500,000 analyzed GS profiles).
The result is a collection of known research topics associated
with the input query. This set of research topics is denoted by
Q1, while the list of unigrams in the input query is denoted
by Q2.

E. Lucene Queries and Score Merge

Using this information, we construct three separate queries,
and compute a combined score through linear interpolation
(with hyper parameters λi), as follows:

Score1: Normalized score for phrase query on index field F2,
using query Q1;

Score2: Normalized score for query on index field F2, with
query Q2;

Score3: Normalized score for query on index field F1, with
query Q2.

Score4: Normalized score for phrase query on index field F3,
using query Q1;

The overall score S for a given research expert p is then
computed as: S(p) = ∑

4
1{λi×Scorei(p)} where λ1+λ2+λ3+

λ4 = 1. Since Score1 captures a match between the research
areas of the input query and the expert’s research areas λ1
is larger than λ2 and λ3. In our implementation we use λ =
[0.3,0.1,0.1,0.5], that is, F1 and F2 contribute a combined
50% and F3 the other 50% of the total score.

VI. MAP OVERLAYS

Currently the REMatch system provides the following over-
lays:

Citation Heatmap: highlights highly-cited experts, based
on citation counts or normalized citation counts

Funds Overlay: shows funding levels (overall or from
specific funding agencies) using a green circle with radius
proportional to current funds associated with each research
expert

Edges: shows all connections between research experts, as
by default these are not shown, relying on Tobler’s first law of
geography: “everything is related to everything else, but near
things are more related than distant things”

College Overlay: highlights all research expert (nodes)
from a given college and/or all collaborations between pairs
of research experts from the same college

Individual Details: We provide basic search functionality
which locates people on the map. Clicking on a node shows
the name of the person, along with the number of connections,
citations count, and college affiliation; edges to collaborators
are also shown; see Fig. 5. By clicking on an edge we can see
information about the collaborative work.

Label Size: Depending on what we want to show, we can
change node importance (which is reflected in the font sizes of
the labels) by considering the degree of the node, the research
funding amount, or number of citations associated with this
node; see Fig. 6.

Several of these overlays can be shown concurrently, which
helps visualize different data dimensions, e.g., identifying
research experts who are producing highly cited work, research
experts who are well-connected in the university, and research
experts who are good at securing funding; see Fig. 5.

VII. IMPLEMENTATION

Given a CFP, a research paper, or even a bit of relevant text
from a CFP or paper, our system matches the best experts (as
described in Section V) and shows the results on the map.
We can filter by college and explore the explanations for the
matches. Moreover, the system shows the important single
terms identified from the query, any of which can be marked
as stop-words. Clicking on a word removes it from the query



Figure 6: Node and label sizes are determined by one of three
variables: number of collaborations (node degree), funding
amounts, and citations. This is illustrated for the same portion
on the map above. Note that some nodes disappear (when they
drop below the threshold size for the current level of detail)
and that their font sizes change.

and can improve the results. Figure 1 shows a screenshot of
the system.

We use a variety of tools to clean, store, and process
our data: mongodb scripts, sqllite, python, R, Java-Lucene,
openrefine. Google maps API and jquery are used for map
drawing and to handle interactions in the web application.
We run python-django for the webserver and mongodb for
database storage and queries.

GMap produces a “basemap” from the given graph, which is
a static image that is not well-suited for user interaction, such
as zooming, panning, and searching. We enable interactions
with the help of the google maps API [45]. Specifically, we
take the output from GMap and convert it into google map
objects, i.e., google.maps.SymbolPath, google.maps.Polygon,
google.maps.Polyline, etc. For the web interface we provide
7 levels of details, showing different subgraphs, depending on
the zoom level.

VIII. EVALUATION

We performed a case-study evaluation with two Research
Office (RO) staff members, both of whom perform the task of
matching funding calls to faculty on a regular basis – one in the
Medical and Biological Sciences, and one in Environmental
Science. They each brought two relevant funding calls to the
meeting, together with a list of people they would target for
these calls, having followed their normal processes in devising
these lists. We gave a live demonstration of the system – for
each call, we entered relevant content-rich paragraphs into
the system, showed the list of names, filtered by colleges as
appropriate, and discussed the results with them. There were
three responses to each of the four lists:

1) Why is X there? This happened in the cases where the
RO staff members know a specific person well, and are
surprised to see them matched for the particular call.

2) Why is X not there? This happened for people included
on the RO staff member’s list who are ranked low on the
REMatch list or do not appear at all.

3) I don’t know X. These are people that the RO staff
member does not know at all, and would be interested
in finding out why they were included in the list.

(1) and (2) were responses that are a result of personal
knowledge of the RO staff – they rely on the information about
faculty that they keep in their heads – information that can be
lost with staff turnover and which is hard to collect given
thousands of university researchers. (3) is a positive response,
since this encourages the RO staff to find out more about
university researchers who they do not already know. It also
is useful for new RO staff members.

In discussion, we discovered that anomalies were closely
related to context. For example, for one of the calls, an
extensive multi-disciplinary team is needed, spanning several
colleges – requiring separate filtering for each relevant college.
In another, people were missed because they have joint cross-
college appointments (and did not show up in the first college
selected). For one proposal, a senior team of established
researchers was needed, and so names of junior university
researchers are not good matches. We discovered that several
people were included on the REMatch list because of very
generic terms (e.g., “environment”) and the facility to “turn
off” such all-encompassing stop-words was welcomed.

Overall, the prototype REMatch system received a very
positive response from the RO staff, despite the few anomalies
in these four specific calls. For those names that they had not
thought of (category (3) above), they were intrigued (“[...] is
an interesting fit. Someone like that would be good.”; “none
of these are totally wacky”) and recognized the usefulness of
being directed to people they had not previously considered.
One approach that they use that is currently not supported is
the ability to identify people who have previously failed in a
funding bid. This information would enable the RO staff to
focus on people who might need support in further applica-
tions, or to identify other appropriate opportunities that a failed
bid might be recycled for. However, they acknowledge that



this is sensitive information. From a process perspective, the
two RO staff members were impressed with the fact that the
text entered can be customized – other research management
systems (for example, Academic Analytics) require the entry
of specified keywords, making them “not as intuitive and easy
to use as this system.” In effect, our system serves as a pre-
processing step by extracting the relevant keywords.

The RO staff members were confident that the REMatch
would be a very useful complement to their current processes,
and would save them a great deal of time. The ability to “easily
refine and hone down” results means that they have control
over the search, while taking advantage of the explanations,
collaboration map and faculty profile information that is easily
accessible.

IX. DISCUSSION AND LIMITATIONS

Anecdotally, our REMatch system seems to be fulfilling its
purpose well. For example, it placed all 8 of the actual princi-
pal investigators and senior personnel of a recent proposal sent
to the National Science Foundation TRIPODS program among
the top 15 matches (as shown in the accompanying video,
available at https://uamap-dev.arl.arizona.edu). Note that this
particular CFP is recent and was not included in the training
data for REMatch. Similarly, out of four recently submitted
proposals (that were also not part of the training data),
REMatch identified three of the Principal Investigators who
submitted proposals to these programs. The University’s Re-
search, Discovery & Innovation Office is using the REMatch
system to put together research teams for large-scale, multi-
disciplinary projects, even though it is still under development.
We plan to add new features based on suggestions we have
already received.

We rely on several internal and external sources for gather-
ing the data that makes REMatch work. For example, relying
on Google Scholar has some advantages (e.g., a large amount
of information) but also many disadvantages (e.g., the data
is not curated). Further, different research areas differ in the
extent of their representation in Google Scholar. For example,
there seem to be many more computer science and physics
profiles than history and psychology ones. Data from both
internal and external sources needs to be updated regularly in
order to provide current and relevant results.

Before arriving at our four-level scoring function (described
in Section V-E) we tried several simpler approaches, all
of which resulted in poor matches. We considered treating
both research experts and CFPs as documents represented by
high dimensional vectors of unigrams weighted by frequency
or TF/IDF (term frequency/inverse document frequency) and
finding the best matches via cosine similarity between the
angles of a given CFP vector and the research expert vectors.
This resulted in bad matches due to the high importance of
adjectives and articles. Limiting to noun-phrases did not help
as common CFP terms such as grants, proposers, projects car-
ried little signal. Treating such phrases as stop-words and even
using a different English language corpus as a baseline did not
yield the desired results. Several other attempts failed before

we arrived at the four-level scoring function we currently use.
Still, we hope to further improve our scoring function.

We are aware that our focus on the underlying computa-
tional processes and the map visualization means that our
interface could do with some improvements with respect to
human-computer interaction design, in particular when consid-
ering the nature of the users and their specific visual analytics
tasks.

X. CONCLUSIONS

The REMatch system helps identify areas of expertise, as
well as experts in a given field, which is useful in the context
of putting together strong multi-disciplinary research teams.
We consider the main challenge and our major contributions
to be in gathering and processing the needed data, putting
together a collection of new and existing tools, designing an
intuitive interactive interface, and packaging all of this in a
functional system that non-experts can use. In addition to the
case studies above, we plan to formally validate several of its
components, starting with the quality of the predicted research
topics and the quality of the proposal-person matches.

Despite non-trivial limitations, REMatch is novel as it
provides a functional system that implements in-the-browser,
map-based interactive navigation of a large underlying net-
work, supporting panning, zooming, and searching, as well
as map overlays. The REMatch system is open source and
a video showing the system in action is available at https:
//uamap-dev.arl.arizona.edu.
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