
TSQL: A Design Approach

Richard Snodgrass

Department of Computer Science

University of Arizona

Tucson, AZ 85721

rts@cs.arizona.edu

May 8, 1992

I believe that many within the temporal database research community perceive that the time
has come to consolidate approaches to temporal data models and calculus-based query languages,
to achieve a consensus query language and associated data model upon which future research can
be based. While some two dozen query language proposals exist, with a diversity of language
and modelling constructs, common themes keep resurfacing. However, the community is quite
fragmented, with each research project being based on a particular and different set of assumptions
and approaches. Often these assumptions are not germane to the research per se, but are made
simply because the research required a data model or query language with certain characteristics,
with the particular one chosen rather arbitrarily. It would be better in such circumstances for
research projects to choose the same language. Unfortunately, no existing language has attracted
a following large enough to become the one of choice.

Gio Wiederhold of DARPA has long pressed for a consensus extension to SQL that could
form a common core for future research. Let’s term this extension the Temporal Structured Query

Language, or TSQL (not to be confused with an existing language proposal of the same name). In
this white paper I outline a proposal for a process by which a design for TSQL could be produced
by the research community.

1 Scope

The scope of the TSQL language design should be restricted so that a coherent design is possible.
In this section I propose aspects that should be included, and perhaps more importantly, those
that should not be included.

• TSQL is to be a relational query language.

Given that SQL is “intergalactic dataspeak” (Mike Stonebraker’s term), TSQL
should whenever possible be consistent with standard SQL, specifically, SQL89.
It simply doesn’t make sense to base TSQL on competing (and arguably better)
query languages such as Quel, Datalog, or Daplex. (Given that my language design
work is based on Quel, I find it particularly painful that SQL has dominated over
that superior language.) While I strongly agree that interesting research is possible
and even desirable in extending the other languages to include temporal support,
such extensions are necessarily outside of the scope of TSQL.

1



• TSQL need not be consistent with existing standards.

In general, TSQL need not be consistent with SQL2, which is in the final stan-
dardization process, nor SQL3, which is currently being designed. SQL2 contains
severe flaws in its (minimal) handling of time-stamps, and SQL3 is a moving tar-
get which, in its present state, is regarded by many as a baroque design with a
bewildering array of features. Consistency with the non-temporal aspects of ex-
isting standards for SQL, including SQL89, SQL2, and SQL3, is desirable if such
consistency does not conflict with other goals.

• TSQL will not be another standard.

While the goal is a fully elaborated language design, there is no expectation that
this design will be made into a standard. Of course, one hopes that our results
would be acceptable to the standards bodies; at a minimum, our design should
be communicated to these bodies. However, it is important to keep in focus the
objective of the TSQL design: to provide a basis for future research in temporal
databases. It also must be emphasized that TSQL should in no way limit or
constrain future research in temporal databases, which should be free to adopt or
propose whatever linguistic constructs are appropriate.

• TSQL will not be an object-oriented query language.

While temporal object-oriented query languages are being actively investigated,
it would be distracting and counter-productive at this stage to attempt to merge
the rather disparate approaches of object-oriented and relational languages while
also addressing the temporal processing needs. Those involved in object-oriented
language design are encouraged to produce, in parallel with this effort, a temporal
object-oriented extension to SQL. At a later date, the two extensions could be
merged.

• TSQL should be comprehensive.

TSQL should have constructs, extended in a natural fashion, that support all of
the functionality of SQL, including update, aggregates, and schema specification
and evolution. Consistent with the modifier “temporal”, TSQL should support
both valid and transaction time.

• The language design should include a formal semantics.

Fortunately, there is a tradition of rigor in the temporal database community. The
recent publication in TODS of a straightforward semantics of SQL will also help
here.

• The language will have an associated algebra.

Such an algebra would demonstrate the existence of an executable equivalent to
the declarative constructs in the language, and would suggest implementation
strategies.

2



• TSQL will be a language design.

The TSQL design should not attempt to define storage structures, indexing struc-
tures, access methods, fourth-generation interfaces, support for distributed sys-
tems or heterogeneous databases, or optimization techniques. Such aspects, while
important, are more properly the target of the research efforts that will utilize
TSQL as a common substrate.

• TSQL should reflect areas of convergence.

The design of TSQL should avoid active areas of research where new results are
generated frequently. Such areas include historical indeterminacy and temporal
database design.

2 Language Design Process

It is in everyone’s best interest to have as many participants in the design as possible. It would be
wonderful to tap the extensive expertise available in the research community. On the other hand,
the process must balance the desirability for input with the necessity of a design by a small number
of designers, to avoid “design by committee” and all the difficulties such a design necessarily brings
upon itself. Fortunately, there is a natural limiting mechanism available. Simply put, the design
should be done by those researchers willing to expend the (considerable) effort to produce initial
proposals and/or to modify designs in response to comments from a much larger community of
evaluators.

Language designers will be self-selected persons who are willing to write white papers on some
specific aspect of the design. White papers will include a survey of relevant research and a concrete
proposal for some component of TSQL. Generally the proposal will include a formal syntax of the
suggested constructs, an informal semantics (in prose) of these constructs, and, ideally, a formal
semantics. These white papers should explicitly state the rationale behind important design
decisions, to enable concrete discussion of the proposals.

Evaluators will be self-selected persons willing to comment in writing on a white paper. The
comments will be collected, and addressed either by the author(s) of the initial white paper or by
other designers willing to produce a new draft of the white paper.

The process will be iterative, and will converge when everyone is satisfied or exhausted. Meet-
ings and workshops may be held to speed the design along.

Dissemination of the design can also be incremental, with consensus white papers being pub-
lished in such outlets as ACM SIGMOD Record and IEEE Data Engineering. Conference panels
might also be appropriate.

3 Tasks

Here I list a series of tasks that culminate in a fully elaborated language design. Each task has as
its goal the production of and agreement on a white paper that addresses the indicated portion of
the language.

3.1 Terminology

An agreed-upon set of concepts must be the first order of business. Fortunately, several researchers
are working on exactly this issue in conjunction with a book being written on temporal databases.

3



It appears that convergence will be achieved soon.

3.2 Physical Time Line and Time-stamp Representation

Current DBMS’s assume a time line starting at 1 A.D. or later and consisting of days or seconds,
up to 9999 A.D.. One difficulty is that there are several definitions of second and of day. Another
difficulty is that such a limited time line is of little use to many potential users of a temporal
database, such as geologists, archæologists, anthropologists, and astronomers. Such a time line
doesn’t even include all of recorded history, and so doesn’t fully support historians. Expanding
the time line back to the creation of the universe (approximately 15 billion years ago), raises other
definitional questions. For example, a solar year in the time of the dinosaurs was 400 days long.
A year is difficult to define more than 6 billion years ago, before the earth was formed.

What is needed is an application-independent identification of one or more physical clocks that
cover all of past time (15 billion years) and all of the foreseeable future. This definition of a physical
time line should be convertible to other definitions that might be useful. A representation as a
time-stamp data structure is also needed, with a precise semantics, i.e., a correspondence with a
particular time of this physical clock for each valid bit pattern. Decisions need to be made about
treating events as infinitely small points in time or as chronons of finite but nondecomposable
length, closed or open representations for intervals, granularity, discrete versus continuous time,
bounded versus unbounded time, and linear versus branching time.

3.3 User-defined Time Domain

In conventional as well as time-oriented databases, individual attributes can be associated with
a temporal domain, termed user-defined time. Such a domain is supported by the DBMS in
similar ways to other specialized domains, such as money, e.g., conversion to and from a string
representation and the availability of comparison predicates. While SQL2 and DB2’s SQL include
two time-oriented attribute domains, datetimes and intervals, these language variants are limited
to a single calendar, the Gregorian calendar, offer little or no support for anchored intervals,
do not support languages other than English, and exhibit many problems with the semantics of
arithmetic and boolean expressions. A proposal is needed that addresses these problems, while
providing appropriate constructs for schema definition, time value input and output, predicates,
arithmetic manipulation, and temporal functions.

3.4 Underlying Historical Relational Data Model

Determining the correct data model underlying TSQL will probably be the most difficult of all the
tasks. Unfortunately, and not coincidentally, this task is a central one, on which most of the other
tasks are predicated. To focus the design, I advocate that time be added to the data model in two
separate steps, with the first to add valid time and the second to later add transaction time.

A proposal is needed that confronts the controversies currently raging in the research com-
munity, including 1NF versus ¬1NF, temporally grouped versus temporally ungrouped, tuple
time-stamped versus attribute value time-stamped, homogeneous versus non-homogeneous, events
versus intervals, interpolated versus stepwise constant data, recurrent events, and whether keys
should be required.

3.5 Benchmark Queries

A basis is needed on which to compare language proposals. This task involves informally defining
an example schema containing several relations, populating this schema with example relation

4



instances, listing in English prose interesting queries on this schema, and displaying the results of
these queries on the example instances.

3.6 Historical Selection and Projection

Historical selection is the analogue of conventional selection: the identification of tuples that satisfy
some specified predicate, in this case a predicate on the time(s) the data elements (attribute values
or tuples) were valid. One design issue is whether the where clause in SQL should be extended,
or whether a new clause, such as the when clause in TQuel, is preferred.

Historical projection is an analogue of conventional projection, where component(s) of tuples
are retained, in this case, components of the time(s) the data elements were valid. One fundamental
question is whether the derived intervals must be subsets of the underlying intervals. A second
design issue is whether the target list in SQL should be extended, or whether a new clause, such as
the valid clause in TQuel, is preferred. The subject of temporal joins, such as time intersection,
time union, and temporal outer joins, also needs to be addressed here.

3.7 Aggregates

Extension of the current SQL aggregates is required, along with the definition of new time-oriented
aggregates (e.g., first), of temporal analogues of aggregate variants such as unique (e.g., moving
window), and of order-dependent predicates that operate on groups of tuples.

3.8 Schema Specification and Evolution

SQL has a create table statement. This will need to be extended to allow specification of time-
varying relations in addition to conventional relations. Other meta-data, such as the nature of
interpolation to be imposed on continuous data represented discretely, must be included in the
schema. Also, the schema of a relation may need to be changed to indicate a conversion from a
time-varying relation, or vice versa. This will probably be a particularly easy extension to design.

3.9 Add Transaction Time to the Data Model

Since transaction time is orthogonal to valid time, the design process will be simplified if these
two aspects are attacked separately. The hope is that once the impact of adding valid time to
the language has been adequately considered, the incorporation of transaction time will be easier.
Some feel that transaction time can be handled identically or almost identically to valid time;
clearly if this is possible it will simplify this task considerably.

3.10 Schema Versioning

When schema evolution and support for transaction time are both present, a database may contain
multiple versions of the schema, each in effect for disjoint intervals of transaction time. This aspect,
while difficult to implement, probably has little impact on the language design.

3.11 Transaction Time Selection and Projection

At a minimum, these constructs should support rollback. A design decision is whether the histor-
ical selection and projection constructs should be extended, or whether different constructs, such
as the as of clause in TQuel, are needed.

5



3.12 Incorporate All SQL Constructs

To arrive at a comprehensive language definition, the interaction between proposed language
constructs concerning time and all existing constructs, including modules, embedded SQL, views,
and protection, needs to be examined in a systematic fashion.

3.13 Core Algebra

This task involves the design of representations for temporal relations (the objects in the algebra)
and operators on these objects to support historical selection and projection. Issues including
uni-sorted versus multi-sorted, algebraic equivalences, closure, snapshot reducibility, and update
semantics should be considered.

3.14 Add Aggregates to the Algebra

Clearly the algebra should support all the aggregate variants present in the TSQL design.

3.15 Add Transaction Time to the Algebra

If schema versioning is to be supported in the algebra, this task must consider how algebra ex-
pressions are to be type checked in the presence of multiple schemas active at various transaction
times.

4 Prerequisites

Dependencies between the tasks result in a partial order on their completion, as shown in Figure 1.
These dependencies take the following considerations into account.

• The design of the time-stamp representation and of the user-defined time domain are in-
dependent of extensions of the underlying data model to incorporate valid or transaction
time.

• The constructs for historical selection should be consistent with those used in expressions
involving user-defined time.

• The constructs for historical selection and projection, unlike those for user-defined time,
require a specified data model.

• While constructs for schema specification do not require the operations of historical selection
and projection to be elaborated, the constructs for schema evolution will require new tuples
to be generated that are consistent with a modified schema.

• Schema versioning is only possible if transaction time is supported.

While white papers that address only one task are best, those that address several tasks in concert
will certainly still be welcome. Also, these dependencies are only suggestive; work can certainly
proceed on multiple tasks concurrently.

6



5 Mechanics

The first step is for the research community to reach a consensus on the process of language design.
Such a process has been outlined in this white paper. Either a modification of this paper, or a
replacement with an alternate proposal, is a necessary pre-condition for subsequent effort.

I volunteer to serve as a clearinghouse for white papers on the tasks listed above. I will maintain
a postal mailing list of people interested in receiving white papers. Additions to this list, as well
as corrections and deletions, will be sincerely appreciated. Such modifications may be sent to me
at either the postal or email addresses listed at the beginning of this paper. An email mailing
list has also been set up, to enable interactive discussion of the TSQL design. To add or remove
yourself from this mailing list, send mail to tsql-request@cs.arizona.edu. To send a message
to all those on this mailing list, send mail to tsql@cs.arizona.edu. These last two addresses
pertain to the email mailing list only.

Acknowledgements

The comments of many people who read a previous draft, especially those of Jim Clifford, Shashi
Gadia, Sushil Jajodia, Christian Jensen, Sham Navathe, Arie Segev, and Abdullah Tansel, are
appreciated. However, complaints and criticisms should be directed to the author.

7



'
&

$
%

'
&

$
%

-

?

��������������)

??

PPPPPPPPPPPPPPq

�������������������9

��������������)

B
B
B
B
B
B
B
B
B
B
B
B
BBN

�
�

�
�

��=

?

HHHHHHHHHHj

A
A
A
A
A
A
A
A
A
A
A
A
AAU?

�
�

�
��	

Q
Q

Q
Q

Q
QQs

?

?

�
�

�
�

�
��=

�
�

�
�

�
�
�

�
�
�

�
�
��

Q
Q

Q
Q

Q
QQs

Q
Q

Q
Q

Q
QQs

�
�

�
�

�
��+ ?

Time To Algebra

Add Transaction

Algebra
Full Temporal

TSQL

Full

All SQL Constructs

Incorporate

To Algebra

Add Aggregates

Spec. and Evolution

Algebra

Design Core

Queries

Benchmark

Data Model

Historical

Time

User-Defined

Time-stamp

Representation

Terminology

Aggregates

Schema

Versioning

Historical Schema

Selection and Proj.

Transaction Time

Selection and Proj.

Temporal

Data Model

Figure 1: Task Dependencies


