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Abstract
We present three general proposals for a next-

generation temporal data model. Each of these pro-
posals express a synthesis of a variety of contributions
from diverse sources within temporal databases. We
believe that the proposals may aid in bringing consen-
sus to the area of temporal data models.

The current plethora of diverse and incompatible
temporal data models has an impeding effect on the
design of a consensus temporal data model. A single
data model is highly desirable, both to the temporal
database community and to the database user commu-
nity at large. It is our contention that the simultane-
ous foci on the modeling, presentation, representation,
and querying of temporal data have been a major cause
of the proliferation of models. We advocate instead a
separation of concerns.

As the next step, we propose a data model for the
single, central task of temporal data modeling. In
this model, tuples are stamped with bitemporal ele-
ments, i.e., sets of pairs of valid and transaction time
chronons. This model has no intention of being suit-
able for the other tasks, where existing models may
perhaps be more appropriate. However, this model
does capture time-varying data in a natural way.

Finally, we argue that flexible support for physical
deletion is needed in bitemporal databases. Physical
deletion requires special attention in order not to com-
promise the correctness of query processing.

This paper appeared in Proceedings of the International Workshop on an Infrastructure for
Temporal Databases, Arlington, TX, June 14-16, 1993, pp. T-1 - T-10.

1 Introduction
The first generation of temporal data models sup-

ported only snapshot relations and had no special no-
tions of time built into the query languages. At best,
a user-defined time domain was supported. This re-
stricted temporal support is in principle similar to
the support for other domains, such as text strings
and monetary values. However, adequate support for
user-defined time has proven to be considerably more
involved than support for other domains. The use

of multiple units of time is one complicating factor
[DS92]. For example, there exists at least half a dozen
definitions of a second. The use of multiple calen-
dars, possible with variable spans (e.g., month), is an-
other source of complication [SS92b, SSD+92, SS92a].
Current commercial database management systems,
as well as the SQL89 [ANS89] and SQL2 [Mel90] stan-
dards, support first generation temporal data models.

The second generation of temporal data models
supports one or more built-in notions of time. Most
such data models support relations where facts have
an implicit valid-time dimension, indicating when the
facts are true in the modeled reality. Other mod-
els support transaction-time relations, where it is
recorded for each fact when it was current in the re-
lation. Finally, some second generation data models
support both valid time and transaction time. Rela-
tions in such models are termed bitemporal relations
[JCG+92].

More than two dozen second generation data mod-
els exist [Sno92]. We have come to a point where the
novelty of data models often is only in the mix—the
ingredients have often and to a large extent been pre-
viously used in earlier data models. The continued
production of such models may be a disadvantage to
the field. Rather than continued fragmentation among
researchers, each with their own data model, there is
a need for creating consensus.

We envision a third generation of temporal data
models that, unlike the second generation models, are
consensual and comprehensive. We hope that the
three proposals presented here will help in achieving
this goal.

The first proposal is that there be a separation of
concerns in the design of a temporal data model. We
feel that the plethora of temporal data models amply
demonstrates that the design of a single data model
that satisfies the diverse modeling, presentation, and
efficient representation and processing requirements is
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not possible. We advocate instead that multiple data
models be used, with well-defined mappings between
both the data and the operations of each of the models.

This proposal should aid in bringing about consen-
sus. By focusing on one task at a time, the problem
is simpler and more clearly defined. Unproductive sit-
uations are avoided where, e.g., a proponent of one
model criticizes a second model for not being first nor-
mal form (and thus not suited for implementation) and
the proponent of the second model criticizes the first
model for providing a fragmented view of data (i.e., it
is a 1NF model and may not be ideal for presentation).

We then propose that tuples of temporal relations
be stamped by bitemporal elements, arbitrary sets of
points in the space spanned by transaction time and
valid time. In combination with the application of ap-
propriate normalization, this may be seen as stamp-
ing of atomic, non-temporal facts with their complete
temporal aspect, yielding atomic, temporal facts. We
hope this simple proposal, which is in some sense a
compromise between 1NF and non-1NF approaches,
may be accepted as a solution for the isolated task
of data modeling. We admit at the onset that this
model is not especially appropriate for representation
or for presentation, but we have elsewhere proved the
correspondence between this simple model and other
representational models more suited to these other as-
pects [JSS92].

Finally, we propose that physical deletion is neces-
sary, and may be supported through cooperative query
modification. Despite the dramatic decrease in storage
costs, it is still not acceptable to always require that
all data be saved forever, and our proposal demon-
strates how selective deletion, termed vacuuming, may
be done in such a way that correctness is not compro-
mised.

In the remainder of this position paper, we visit
each of these proposals in turn. Lack of space pre-
vents a detailed discussion of these issues. Instead,
we provide pointers to recent papers that do examine
these approaches in a comprehensive fashion.

2 Separation of Concerns
As previously mentioned, there are now over two

dozen temporal data models, each with one or more
associated query languages. While such a diversity
of approaches is a reflection of the excitement and
ferment in the area of temporal databases, it also at
some point may become counter-productive. We have
become convinced that a single solution will not be
forthcoming and that a different approach is now nec-
essary.

It is our contention that focusing on data semantics

(what is the meaning of the data stored in the data
model), data presentation (how temporal data is dis-
played to the user), on data storage (what regular stor-
age structures can be employed with temporal data),
and on efficient query evaluation, has complicated the
primary task of capturing the time-varying semantics.
The result has been a plethora of incompatible data
models and query languages, and a corresponding sur-
feit of database design and implementation strategies
that may be employed across these models.

We advocate instead adopting a very simple con-
ceptual data model that captures the essential seman-
tics of time-varying relations, but has no illusions of
being suitable for presentation, storage, or query eval-
uation [JS92]. We rely instead on existing data models
for these tasks, and we have demonstrated equivalence
mappings between the conceptual model and several
representational models [JSS93]. This equivalence is
based on snapshot equivalence, which says that two
relation instances are equivalent if all their snapshots,
taken at all times (valid and transaction), are identi-
cal. Snapshot equivalence provides a natural means of
comparing rather disparate representations. Finally,
while not addressed here, we feel that the concep-
tual data model is the appropriate location for logical
database design and query optimization.

The previously proposed representations arose from
several considerations. They were all extensions of the
conventional relational model that attempted to cap-
ture the time-varying semantics of both the enterprise
being modeled and the state of the database. They
attempted to retain the simplicity of the relational
model; the tuple-timestamping models were perhaps
most successful in this regard. They attempted to
present all the information concerning an object in
one tuple; the attribute-value timestamped models
were perhaps best at that. And they attempted to
ensure ease of implementation and query evaluation
efficiency; the backlog representation may be advan-
tageous here.

Most proposed models aim at being suitable for
data presentation, for data storage, and for captur-
ing the temporal semantics of data. Seen solely as
means of capturing the temporal semantics, such mod-
els exhibit presentational and representational anoma-
lies because they encode the temporal semantics in
ways that are more complicated than necessary. Put
differently, the time-varying semantics is obscured in
the representation schemes by other considerations of
presentation and implementation.

It is clear from the number of proposed representa-
tions that meeting all goals simultaneously is a diffi-
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cult, if not impossible, task. We therefore advocate a
separation of concerns. Figure 1 shows the placement
of the conceptual temporal data model with respect
to the tasks of logical and physical database design,
storage representation, query optimization, and dis-
play. As the figure shows, logical database design pro-
duces the conceptual relation schemas, which are then
refined into relation schemas in some representational
data model(s). Query optimization may be performed
on the logical algebra, parameterized by the cost mod-
els of the representation(s) chosen for the stored data.
Finally, display presentation should be decoupled from
the storage representation.

Note that this arrangement hinges on the semantic
equivalence of the various data models. It must be
possible to map between the conceptual model and
the various representational models, as discussed in
the next section.

We have identified four central temporal data
model uses, namely that of data display, data storage,
query evaluation, and capturing the time-semantics
of data. It is our belief that separating concerns by
focusing on one task at a time will prove more pro-
ductive than trying to meet each of the highly diverse
requirements in a single model.

3 Bitemporal Element Stamping of
Tuples in the Conceptual Model

We now address the conceptual model at the cen-
ter of Figure 1. Such a model must be amenable to
logical design. Its focus should not be on suitable pre-
sentation of time-varying data, nor on the storage of
such data. Rather, it should capture the semantics of
the data in as simple and straight-forward a manner
as possible. We term our new model the bitemporal
conceptual data model.

The primary reason behind the success of the rela-
tional model is its simplicity. A bitemporal relation
is necessarily more complex. Not only must it asso-
ciate values with facts, as does the relational model, it
must also specify when the facts were valid in reality,
as well as when the facts were current in the database.
Because our emphasis is on semantic clarity, we will
extend the conventional relational model as small an
extent as necessary to capture this additional infor-
mation.

Tuples in a conceptual bitemporal relation instance
are associated with time values from two orthogonal
time domains, namely valid time and transaction time.
Valid time is used for capturing the time-varying na-
ture of the part of reality being modeled, and transac-
tion time models the update activity of the relation.
For both domains, we assume that the database sys-

tem has limited precision, and we term the smallest
time unit a chronon. For both transaction time and
valid time, we assume also that there is a smallest
and largest chronon. As we can number the chronons,
both domains are isomorphic to a finite subset of the
domain of natural numbers.

We propose that tuples be timestamped, rather
than attribute values, in this conceptual model, pri-
marily for simplicity. There are cogent arguments
for attribute-value timestamping, primarily address-
ing how data should be presented to the user or stored
on disk. Such concerns are not relevant in this con-
ceptual data model.

In the relational model, a tuple encodes some rela-
tionship between the values of its attributes. Assign-
ing a timestamp to that tuple delimits this relationship
to the specified times in the timestamp. This is the
simplest possible arrangement.

In general, the schema of a conceptual bitemporal
relation, R, consists of an arbitrary number of explicit
attributes, A1, A2, . . . , An, encoding some fact (pos-
sibly composite) and an implicit timestamp attribute,
T. Thus, a tuple, x = (a1, a2, . . . , an | t), in a con-
ceptual bitemporal relation instance, r(R), consists of
a number of attribute values associated with a times-
tamp value.

An arbitrary subset of the domain of valid times
is associated with each tuple, meaning that the fact
recorded by the tuple is true in the modeled reality
during each valid time chronon in the subset. Each
individual valid time chronon of a single tuple has as-
sociated an arbitrary subset of the domain of trans-
action times, meaning that the fact, valid during the
particular chronon, is current in the relation during
each of the transaction time chronons in the subset.

Associated with a tuple is a set of so-called bitempo-
ral chronons (tiny rectangles) in the two-dimensional
space spanned by valid time and transaction time.
Such a set is termed a bitemporal element1, denoted tb.
Because no two tuples with mutually identical explicit
attribute values (termed value-equivalent) are allowed
in a bitemporal relation instance, the full time history
of a fact is contained in a single tuple.

Example: Consider a relation recording employee/-
department information, such as “Jake works for the
Shipping department.” We assume that the granular-
ity of chronons is one day for both valid time and

1This term is a simple generalization of temporal element,
used to denotes a set of single dimensional chronons [Gad88].
Alternative, equally desirable terms include bitemporal time pe-
riod set [BZ82] and bitemporal lifespan [CC87]. We adopt the
terminology of the recently published glossary [JCG+92].

3



Representational Data ModelsDisplay Formats

Physical

Database

Design

Attribute-value

Timestamping

Backlogs

Tuple-timestamping

Conceptual

Temporal

Data Model

�
�
���

����

Q
Q
Q
QQk?

6 aa
aa

aa
a

       

��
��
��
�

PPPPPPP

Parameterized

1

n

...

Database

Design

Logical

Format

Format

Query

Optimization

Figure 1: Interaction of Conceptual and Representational Data Models

transaction time, and the period of interest is the
month of June 1992.

Figure 2 shows how the bitemporal element in an
employee’s department tuple may change.
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Figure 2: Bitemporal Elements

The x-axis denotes transaction time, and the y-axis
denotes valid time. Employee Jake was hired by the
company as temporary help in the Shipping depart-
ment for the interval from June 10th to June 15th,
and this fact is recorded in the database predictively
on June 5th. This is shown in Figure 2(a). The ar-
rows pointing to the right signify that the tuple has
not been logically deleted; it continues through to the
transaction time NOW . On June 10th, the Personnel
department discovers an error. Jake had really been

hired for the valid time interval from June 5th to June
20th. The database is corrected on June 10th, and the
updated bitemporal element is shown in Figure 2(b).
On June 15th, the Personnel department is informed
that the correction was itself incorrect; Jake really was
hired for the original time interval, June 10th to June
15th, and the database is corrected the same day. This
is shown in Figure 2(c). Lastly, Figure 2(d) shows the
result of three updates to the relation, all of which take
place on June 20th. While the the period of validity
was correct, it was discovered that Jake was not in
the Shipping department, but in the Loading depart-
ment. Consequently, the fact (Jake, Ship) is removed
from the current state and the fact (Jake, Load) is
inserted. A new employee, Kate, is hired for the Ship-
ping department for the interval from June 25th to
June 30th.

We note that the bitemporal chronons in a given
bitemporal element, associated with a fact, are repre-
sented by the area enclosed by the bitemporal element.
The bitemporal element for (Jake, Ship) in Figure 2(d)
contains 140 bitemporal chronons.

The example illustrates how transaction time and
valid time are handled. As time passes, i.e., as the
computer’s internal clock advances, the bitemporal el-
ements associated with current facts are updated. For
example, when (Jake, Ship) was first inserted, the six
valid time chronons from 10 to 15 had associated the
transaction time chronon NOW . At time 5, the six
new bitemporal chronons, (5, 10), . . . , (5, 15), were ap-
pended. This continued until time 9, after which the
valid time was updated. Thus, starting at time 10, 16
bitemporal chronons are added at every clock tick.

The actual bitemporal relation corresponding to

4



the graphical representation in Figure 2(d) is shown
below. This relation contains three facts. The times-
tamp attribute T shows each transaction time chronon
associated with each valid time chronon as a set of or-
dered pairs.

Emp Dept T

Jake Ship {(5, 10), . . . , (5, 15), . . . , (9, 10), . . . ,
(9, 15), (10, 5), . . . , (10, 20), . . . ,
(14, 5), . . . , (14, 20), (15, 10), . . . ,
(15, 15) . . . , (19, 10), . . . , (19, 15)}

Jake Load {(NOW , 10), . . . , (NOW , 15)}
Kate Ship {(NOW , 25), . . . , (NOW , 30)}

ut

We consider the three forms of update, insertion,
deletion, and modification, in turn.

An insertion is issued when recording in bitempo-
ral relation instance r that a currently unrecorded fact
(a1, . . . , an) is true for some period(s) of time. These
periods of time are represented by a valid-time ele-
ment, i.e., a set of valid-time chronons, tv. When the
fact is stored, its valid-time element stamp is trans-
formed into a bitemporal-element stamp to capture
that, from now on, the fact is current in the relation.
We indicate this with a special value, NOW , in the
domain of transaction-time chronon identifiers.

The arguments to the insert routine are the re-
lation into which a fact is to be inserted, the explicit
values of the fact, and the set of valid-time chronons,
tv, during which the fact was true in reality. Insert re-
turns the new, updated version of the relation. There
are three cases to consider. First, if (a1, . . . , an) was
never recorded in the relation, a completely new tuple
is appended. Second, if (a1, . . . , an) was part of some
previously current state, the tuple recording this is up-
dated with the new valid-time information. Third, if
(a1, . . . , an) is already current in the relation, a mod-
ification is required, and the insertion is rejected. (In
the following, we denote valid-time chronons with cv
and transaction-time chronons with ct.)

insert(r, (a1, . . . , an), tv) =

r ∪ {(a1, . . . , an| {NOW } × tv)}
if ¬∃ tb ((a1, . . . , an| tb) ∈ r)

r − {(a1, . . . , an, tb)}
∪{(a1, . . . , an|tb ∪ {NOW } × tv)}

if ∃ tb ((a1, . . . , an| tb) ∈ r ∧
¬∃ (NOW , cv) ∈ tb)

r otherwise

The insert routine adds bitemporal chronons with a
transaction time of NOW .

As time passes, new chronons must be added. We
assume that a special routine ts update is applied
to all bitemporal relations at each clock tick. We
also assume that the transaction-time granularity is
sufficiently small that only one transaction can exe-
cute within a transaction-time chronon. This func-
tion simply updates the timestamps to include the new
transaction-time value. The timestamp of each tuple
is examined in turn. When a bitemporal chronon of
the type (NOW , cv) is encountered in the timestamp,
a new bitemporal chronon (ct, cv), where time ct is
the new transaction-time value, is made part of the
timestamp.

ts update(r, ct) :
for each x ∈ r

for each (NOW , cv) ∈ x[T ]
x[T] ← x[T] ∪ {(ct, cv)}

Deletion concerns the (logical) removal of a com-
plete tuple from the current valid-time state of the
bitemporal relation. We distinguish between the case
where there is a tuple to delete and the case where no
tuple matching the one to be deleted is current.

delete(r, (a1, . . . , an)) =
r − {(a1, . . . , an| tb)}
∪{(a1, . . . , an| tb − now ts(tb))}

if ∃ t ((a1, . . . , an| tb) ∈ r)
r otherwise

where now ts(tb) = {(NOW , cv) | (NOW , cv) ∈ tb}.
Finally, a modification of an existing tuple may be

defined by a deletion followed by an insertion as fol-
lows.

modify(r, (a1, . . . , an), tv) =
insert(delete(r, (a1, . . . , an)), (a1, . . . , an), tv)

Example: The sequence of bitemporal elements
shown in Figure 2 is created by the following sequence
of commands, invoked at the indicated transaction
time (TT ).

Command TT

insert(dept,("Jake","Ship"),[6/10,6/15]) 6/5
modify(dept,("Jake","Ship"),[6/5,6/20]) 6/10
modify(dept,("Jake","Ship"),[6/10,6/15]) 6/15
delete(dept,("Jake","Ship")) 6/20
insert(dept,("Jake","Load"),[6/10,6/15]) 6/20
insert(dept,("Kate","Ship"),[6/25,6/30]) 6/20

ut
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Valid-time relations and transaction-time relations
are special cases of bitemporal relations that sup-
port only valid time and transaction time, respec-
tively. Thus an valid-time tuple has associated a set
of valid-time chronons (termed a valid-time element
and denoted tv), and a transaction-time tuple has as-
sociated a set of transaction-time chronons (termed a
transaction-time element and denoted tt). For clarity,
we use the term snapshot relation for a conventional
relation. Snapshot relations support neither valid time
nor transaction time.

For comparison, we illustrate next how the bitem-
poral relation from above may be represented in
sample data models that employ employ tuple-
timestamped relations, backlogs, and attribute-value
timestamped relations.

Example: The TQuel data model [Sno87] employs
tuple timestamping. A 1NF representation of bitem-
poral relations is achieved by first partitioning the
bitemporal elements of facts into rectangular regions.
Then one tuple is generated for each region associ-
ated with a fact. The relation corresponding to the
conceptual relation in Figure 2(d) is shown below.

Emp Dept Ts Te Vs Ve

Jake Ship 6/5 6/9 6/10 6/15
Jake Ship 6/10 6/14 6/5 6/20
Jake Ship 6/15 6/19 6/10 6/15
Jake Load 6/20 NOW 6/10 6/15
Kate Ship 6/20 NOW 6/25 6/30

ut

Example: A backlog is simply a timestamped se-
quence of change requests where each change request
is an insertion (I) or a deletion request (D) [JMR91].
Requests for modifications are represented by a dele-
tion request followed by an insertion request. The
backlog relation corresponding to the conceptual rela-
tion in Figure 2(d) is shown below.

Emp Dep Vs Ve TT Op

Jake Ship 6/10 6/15 6/5 I
Jake Ship 6/10 6/15 6/10 D
Jake Ship 6/5 6/20 6/10 I
Jake Ship 6/5 6/20 6/15 D
Jake Ship 6/10 6/15 6/15 I
Jake Ship 6/10 6/15 6/20 D
Jake Load 6/10 6/15 6/20 I
Kate Ship 6/25 6/30 6/20 I

ut

Example: The data model of the TempSQL query
language uses attribute-value timestamping [Gad92].
In this model, information may be grouped within a
single tuple, based on the value of any attribute or
set of attributes. For example, we could represent the
conceptual relation in Figure 2(d) by grouping on the
employee attribute. Then all information for an em-
ployee is contained within a single tuple, as shown
below.

Emp Dept

[20,NOW ] × [25,30] Kate [20,NOW ] × [25,30] Ship
[5,9] × [10,15] Jake [5,9] × [10,15] Ship
[10,14] × [5,20] Jake [10,14] × [5,20] Ship
[15,19] × [10,15] Jake [15,19] × [10,15] Ship
[20,NOW ] × [10,15] Jake [20,NOW ] × [10,15] Load

A tuple in the above relation shows all departments
for which a single employee has worked. A different
way to view the same information is to perform the
grouping by department. A single tuple then contains
all information for a department, i.e., the full record
of employees who have worked for the department.

Emp Dept

[20,NOW ] × [10,15] Jake [20,NOW ] × [10,15] Load
[5,9] × [10,15] Jake [5,9] × [10,15] Ship
[10,14] × [5,20] Jake [10,14] × [5,20] Ship
[15,19] × [10,15] Jake [15,19] × [10,15] Ship
[20,NOW ] × [25,30] Kate [20,NOW ] × [25,30] Ship

Grouping by both attributes would yield three tuples,
(Jake, Load), (Jake, Ship), and (Kate, Ship). ut

The timestamping of tuples with bitemporal ele-
ments is a conceptually very simple extension of the
standard relational model, with several nice proper-
ties. First, traditional normalization techniques that
work with first generation data models may be gen-
eralized to apply to this model [JSS92]. Second, the
complete bitemporal history of a fact is recorded in a
single tuple. Third, time variables ranging over the
domain of bitemporal elements lead to a simple set
algebra-based query language (a point Shashi Gadia
made originally [Gad88], and which has been echoed
by several others in the field).

4 Vacuuming—Safe, Flexible, and Co-
operative Support for Physical Dele-
tion

Base relations in temporal database systems sup-
porting transaction time are ever-growing because all
logical updates, including deletion, transform into in-
sertions at the physical level. As physical deletion ca-
pabilities exist in conventional database systems, such
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capabilities should also exist in temporal database sys-
tems. However, when transaction time is supported,
straight-forward deletion has the unacceptable conse-
quence that history is forged.

Example: Consider an example where a publisher
decides to remove certain phrases from a new print-
ing of a thirty year old history book while maintain-
ing that this printing has the original contents. It is
clear that history has then been changed in a highly
problematic way. The book now gives incorrect infor-
mation about the authors view of history thirty years
ago.

This scenario is in principle similar to straight-
forward physical deletion in a bitemporal database.
By deleting from previously current states of the
database, we create incorrect information.

Note that if the publisher, on the other hand,
clearly states that the new printing constitutes a new,
abridged version of the original printing then the cor-
rectness problems are avoided. ut

In order to avoid the correctness problems, physi-
cal deletion in temporal databases needs special atten-
tion. Below, we first outline the reasons why physical
deletion is necessary and then illustrate in more de-
tail the problem with straight-forward deletion. Next,
we outline a possible solution, termed vacuuming, to
the problem and touch upon selected aspects of this
proposed solution [JM90].

Flexible deletion is necessary for several reasons.
First, in many installations ever-growing relations will
eventually outgrow the available mass storage devices
(e.g., magnetic disks). In order to ensure continued
operation, it will become necessary to physically delete
data. It must be possible to delete data that are no
longer needed, or when additional space needs to be
freed for more important data.

Second, the efficiency of query processing generally
degrades as relations grow. For this reason, flexible
means of controlling the relation sizes are highly de-
sirable.

Third, many countries have strict laws that require
the ability to delete certain records of previous history.
Customers may demand that no information about
them exists in some database. Other laws may re-
quire that certain records be kept for a fixed duration
of time. For example, information related to personal
income tax must in some countries be retained by the
citizens for five years. Business policies also pose re-
quirements and are in this respect similar to laws.

To see in more detail why straight-forward deletion
is problematic, consider the following example. We

first show a sample relation and its physical represen-
tation. Then we consider querying the relation while
allowing for physical deletion.

Example: Assume that a transaction-time relation
schema, EmpDep, is defined as follows.

EmpDep = (Emp, Dep | T)

As in the examples of the previous section, Emp
is the employee name and Dep is the department
where the employee works. Attribute T is the implicit
transaction-time attribute that takes transaction-time
elements as values. Let empDep, as illustrated next,
be an instance of this schema as of 6/25. The trans-
action timestamps refer to the month of June 1992.

Emp Dept T

Jake Ship {6/5, 6/6, 6/7, . . . , 6/19}
Jake Load {6/20, 6/21, 6/22, . . . , 6/25,NOW }
Kate Load {6/10, 6/11, 6/12, . . . , 6/25,NOW }
Kate Ship {6/23, 6/24, 6/25,NOW }

To discuss physical deletion, it is necessary to con-
sider a physical representation of the conceptual rela-
tion. It may be implemented as a backlog relation. A
backlog is simply a timestamped sequence of change
requests, and the following snapshot schema may be
used.

BEmpDep = (Emp, Dep, Op, TT)

Attribute Op indicates whether the request is an
insertion or a deletion request (modifications are com-
binations of deletions and insertions), and attribute
TT is a transaction timestamp indicating the time of
the request. The backlog, bempDep, corresponding to
the relation empDep is shown below.

Emp Dept T Op

Jake Ship 6/5 I
Kate Load 6/10 I
Jake Ship 6/20 D
Jake Load 6/20 I
Kate Ship 6/23 I

To compute a timeslice such as τ6/17(empDep), the
change requests are simply processed in time order,
starting with the first change request and ending with
the last timestamp not exceeding 6/17 (this may be
optimized by means of caching). The result is a snap-
shot relation consisting of the two tuples (Jake,Ship),
and (Kate,Load).

7



Relation bemp is ever-growing and is likely to even-
tually contain data irrelevant to its users.

On June 25, before any deletions are car-
ried out, assume that a user issues the query
πEmp(τ6/17(empDep)) which retrieves the names of all
employees in the empDep relation as of June 17. The
result is {Jake,Kate}.

Next, on June 27, 1993, it is decided that data re-
lated to the shipping department that has not been
current for the last five days is not to be retained any
longer. In response to this decision, old data is deleted
in the straight-forward manner. The result is shown
below.

Emp Dept T Op

Kate Load 6/10 I
Jake Load 6/20 I
Kate Ship 6/23 I

On June 29 the user from before issues the same
query as on June 25. The new result is different from
the previous result. Employees that left the shipping
department after June 17 will appear in the previous
result, but employees that left before June 22 will not
appear in the new result. Thus Jake, who left between
June 17 and June 22, will not appear in the new result.

Correctness has been compromised because a situ-
ation has occurred where the same query on the same
old state has given two different results, both of which
cannot be correct. ut

We now present a possible solution, termed vacu-
uming, to the problem of providing safe physical dele-
tion. In addition to being safe, vacuuming is flexible
and cooperative.

The data to be physically deleted from base rela-
tions is expressed by deletion specifications. With vac-
uuming, a wide class of query expression are legal dele-
tion specifications. Also, vacuuming may be specified
at any time during the life of a base relation [JM90],
not only at the time the relation is created [RS87].
This provides flexibility.

There are two steps in allowing physical deletion
without compromising the correctness of query pro-
cessing.

1. Detect all queries that may compromise correct-
ness.

2. Do not evaluate the unsafe query, but instead of-
fer, in a cooperative fashion, to evaluate a similar
query that is guaranteed to produce a correct re-
sult.

The first step of vacuuming may be accomplished
as follows. A deletion specification is a query expres-
sion that retrieves data from a base relation. For each
base relation, all its deletion specifications are com-
bined into a single query expression. The relation
name minus the combined query expression specifies
which data remain after deletion. Then, when a query
expression is issued for evaluation, all references to
base relations are replaced with the expression just
constructed. This is similar to the implementation of
views by query modification [Sto75]. This modified
query is then tested for equivalence with the original
query [ASU79]. If the expressions cannot be proved
equivalent then the original query may compromise
correctness.

The second step is accomplished by interactively
considering the modified query expression (which by
construction is guaranteed to not violate correctness).
The system may offer to evaluate this expression. In
addition, it is possible to offer to evaluate variations
of the modified expression. specifically, the modified
expression may be simplified by means of query spe-
cialization and generalization [Cha90, Mot84].

Several interesting issues have not been addressed
above. For example, not all deletion specifications
are appropriate. A specification telling to delete data
that is between one and two years old is an exam-
ple. Data more than two years old cannot be deleted,
and data not yet two years old will eventually become
two years old and can therefore not be deleted. In
consequence, nothing can be deleted and the specifi-
cation is at best useless. As other examples, deletion
specifications should not delete data needed by other
specifications, integrity constraints, and views.

The actual physical deletion is performed by an
asynchronous vacuuming demon according to the
specifications. While vacuuming logically has eager
semantics, any degree of eagerness or laziness can be
adopted for the actual physical removal of base data,
and a variety of conditions triggering the demon can
be employed.

5 Summary
In this paper, we have argue that a third genera-

tion of temporal data models is desirable. In contrast
to the first two generations, this new generation of
models should be consensual and comprehensive.

Because of the current plethora of diverse and mu-
tually exclusive temporal data models, we propose
that an approach based on separation of concerns is
more productive and should be adopted for the devel-
opment of the next generation of temporal data mod-
els. We observed that data presentation, data storage

8



and data modeling pose very diverse and seemingly
incompatible requirements. Based on this, we recom-
mend that different data models be adopted for each
of the three purposes.

In continuation of the separation-of-concerns ap-
proach, we propose a very simple data model for the
task of temporal data modeling. This data model
stamps tuples with bitemporal elements. Bitempo-
ral elements are sets of pairs of transaction and valid
time chronons. Being in some sense a compromise be-
tween first and non-first normal form models, the ex-
plicit schema of a relation is in first normal form, but
the implicit timestamp attribute is set valued. Re-
lations in this model store exactly one fact (possibly
composite) per tuple, and conventional normalization
techniques are easily extended to these [JSS92].

Some temporal data models support grouping the
tuples of a relation that agree on some arbitrarily
chosen subset of attributes of the relation schema.
This makes it possible to specify and manipulate, e.g.,
the employment histories of individual employees in
a company, or the employee records of individual de-
partments. We believe that this grouping, like the
grouping in conventional data models, should be con-
fined to the query language. For that reason grouping
is not addressed here.

Finally, we have argued that new temporal models
supporting transaction time should allow for the phys-
ical deletion of data. We have discussed the problems
involved in providing such support, and we have out-
lined a solution to the problems.
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