
Temporal Databases

Richard Snodgrass, University of North Carolina at Chapel Hill

llsoo Ahn, AT&T Bell Laboratories

Database
management systems
should provide
temporal support
directly. Four types of
databases are
differentiated by their
ability to represent
temporal information.

Time is an essential part of infor-
mation about the constantly evolv-
ing real world. Facts or data need to

be interpreted in the context of time.
Causal relationships among events or
entities are embedded in the temporal
information. Time is a universal attribute
in most information management applica-
tions and deserves special treatment as
such.

Databases supposedly model reality,
but conventional database management
systems (DBMSs) lack the capability to
record and process time-varying aspects of
the real world. With increasing sophistica-
tion of DBMS applications, the lack of
temporal support raises serious problems
in many cases. For example, conventional
DBMSs cannot support historical queries
about past status, let alone trend analysis
(essential for applications like decision
support systems). There is no way to repre-
sent retroactive or proactive changes,
while support for error correction or audit
trail necessitates costly maintenance of
backups, checkpoints, or transaction logs
to preserve past states. There is a growing
interest in applying database methods for
version control and design management in
computer-aided design, requiring capa-
bilities to store and process time-
dependent data. Without temporal sup-
port from the system, many applications
have been forced to manage temporal
information in an ad-hoc manner.

The need to provide temporal support
in DBMSs has been recognized for at least
a decade. A bibliographical survey in 1982
contained about 70 articles relating time
and information processing, I and at least
90 more articles have appeared since then.
Recently, the rapid decrease of storage

costs, coupled with the emergence of
promising new mass storage technologies
such as optical disks,2 has amplified in-
terest in database management systems
with version management or temporal
support. George Copeland maintained
that

... as the price of hardware continues
to plummet, thresholds are eventually
reached at which these compromises [to
achieve hardware efficiency] must be re-
balanced in order to minimize the total
cost of a system. . . . If the deletion
mechanism common to most database
systems today is replaced by a non-dele-
tion policy .. ., then these systems will
realize significant improvements in
functionality, integrity, availability, and
simplicity. 3

Gio Wiederhold also observed, in a review
ofthe present state ofdatabase technology
and its future, that

The availability of ever greater and less
expensive storage devices has removed
the impediment that prevented keeping
very detailed or extensive historical
information in on-line databases....
An immediate effect of these changes
will be the retention of past data ver-
sions over long periods. 4
In the past five years, numerous

schemes have been proposed to support
temporal information processing in
database management systems by incor-
porating one or more time attributes.
However, there has been some confusion
concerning terminology and the definition
of these time attributes. In this article we
describe a taxonomy of time consisting of
three distinct time concepts for use in data-
bases.5 Using the taxonomy, we defime
four types of databases, differentiated by
their ability to support these time concepts
and processing of temporal information.

001891602/86/0900e003590100 © 1986 IEEE 35Septembe3r 1986

I I l I
I

___7

Figure 1. A snapshot relation.

Figure 3. An historical relation.

transaction
time

Figure 2. A rollback relation.

v.£K ~~~vali& vff vi
time time tme tine

transaction
time

Figure 4. A temporal relation.

The taxonomy

Although the following discussion is
based on the relational model, analogous
arguments also apply to hierarchical or
network models.

Snapshot databases. Conventional
databases model an enterprise as it
changes dynamically by a snapshot at a
particular point in time. A state or an in-
stance of a database is its current content,
which does not necessarily reflect the cur-
rent status of the enterprise. The state of a
database is updated using data manipula-
tion operations such as insertion, deletion,
or replacement, taking effect as soon as
they are committed. In this process, past
states of the database, representing those
of the enterprise, are discarded and for-
gotten. We term this type of database a
snapshot database.

In the relational model, a database is a
collection of relations. Each relation con-
sists of a set of tuples with the same set of
attributes and is usually represented as a
two-dimensional table (see Figure 1). As
changes occur in the enterprise, this table
is updated appropriately. For example, at
a certain moment an instance of the rela-
tion Faculty with the two attributes Name
and Rank may be

Name Po*

Merie Associate Professor
Tom Assodate Professor

and a query in Quel (a tuple calculus-based
language for the Ingres database manage-
ment system 6) as to Merrie's rank,

range of f is Faculty
retrieve (f.Rank)

where f.Name = "Merrie"
yields the rank of associate professor.

In many situations this snapshot data-
base is inadequate. For example, it cannot
answer queries such as

* What was Merrie's rank two years
ago? (historical query)

* How did the number of faculty
change over the last five years? (trend
analysis)

nor record facts like
* Merrie was promoted to a full pro-

fessor starting last month. (retro-
active change)

* Lee is joining the faculty next month.
(proactive change)

Without system support in this respect,
many applications have had to maintain
and handle temporal information in an ad-
hoc manner. For instance, many person-
nel databases attempt to record the entire
employment history of the company's
employees. That some of the attributes
record time and that only a subset of the
employees actually work for the company
at any particular point in time do not con-
cern theDBMS itself. TheDBMS provides
no facility for interpretation or manipula-
tion of this information; such operations
must be handled by specially-written
application programs. The fact that data
vary over time is not an application-

specific aspect. This aspect should be sup-
ported in a general fashion by the DBMS,
rather than by application programs.

Rollback databases. One approach to
resolving the above deficiencies is to store
all past states, indexed by time, of the
snapshot database as it evolves. Such an
approach requires a representation of
transaction time, the time the information
was stored in the database. Under this ap-
proach a relation can be illustrated con-
ceptually in three dimensions (see Figure
2), with transaction time serving as the
third axis. The relation can be regarded as
a sequence of snapshot relations (termed
snapshotstates) indexed by time. By mov-
ing along the time axis and selecting a par-
ticular snapshot state, it is possible to get a
snapshot ofthe relation at some time in the
past and make queries about it (a snapshot
relation). The operation of selecting a
snapshot state is termed rollback, and a
database supporting it is termed a rollback
database.
Changes to a rollback database may be

made only to the most recent snapshot
state. The relation illustrated in Figure 2
had three transactions applied to it, start-
ing from a null relation: (1) addition of
three tuples, (2) addition of one tuple, and
(3) deletion of one tuple (entered in the
first transaction) and addition of another
tuple. Each transaction results in a new
shapshot state being appended to the front
of the time axis. Once a transaction is com-
mitted, the snapshot states in the rollback
relation may not be altered.

36
COMPUTER

The distinction between snapshot data-
bases and rollback databases is that the lat-
ter have the ability to return to any previ-
ous state to execute a snapshot query. Any
query language can be converted to one
that can query a rollback database by
adding a clause effecting the rollback
operation. TQuel (for Temporal QUEry
Language),7 an extension of Quel for
temporal databases, augments the retrieve
statement with an as of clause to specify
the relevant transaction time. The TQuel
query

range of f is Faculty
retrieve (f.Rank)
where f.Name = "Merrie"
as of 'September 1978"

on a rollback Faculty relation will find
Merrie's rank as of September 1978. The
result ofa query on a rollback database is a
pure snapshot relation.
One limitation of supporting transac-

tion time is that the history of database
activities, rather than the history of the
real world, is recorded. A tuple becomes
effective as soon as it is entered into the
database, as in a snapshot database. There
is no way to record retroactive/proactive
changes, nor to correct errors in past
tuples. Errors can sometimes be over-
ridden (if they are in the current state), but
they cannot be forgotten. For instance, if
it were discovered that Merrie's promo-
tion had occurred earlier than previously
recorded, this error could not be corrected
in a rollback database; the query given
above would continue to respond with the
incorrect rank.

Historical databases. While rollback
databases record a sequence of snapshot
states, historical databases record a single
historical state per relation. As errors are
discovered, they are corrected by modify-
ing the database. Previous states of the
database itself are not retained, so it is not
possible to view the database as it was in
the past. No record is kept of the errors
corrected. Historical databases resemble
snapshot databases in this respect.
Historical databases support valid time,
the time when the relationship in the enter-
prise being modeled was valid.
The semantics of valid time are closely

related to reality, hence more complex
than the semantics of transaction time
concerned with database activities. There-
fore, historical databases need sophisti-
cated operations to manipulate the com-

plex semantics of valid time adequately.
TQuel supports such queries (termed his-
torical queries) by augmenting the retrieve

statement with a valid clause to specify
how the implicit time attribute is com-
puted and a when predicate to specify the
temporal relationship of tuples participa-
ting in a derivation. These added con-
structs handle complex temporal relation-
ships such as begin of, precede, and
overlap. For example, the TQuel query
requesting Merrie's rank when Tom ar-
rived is

range of fl is Faculty-
range of f2 is Faculty
retrieve (fl.Rank)
where fl.Name = 'Merrie' and

f2.Name = 'Tom'
when fl overlap begin of f2

The derived relation is also a historical re-
lation that can be used in further historical
queries.

Another distinction between historical
and rollback databases is that historical
DBMSs support arbitrary modification,
whereas rollback DBMSs only allow snap-
shot states to be appended. The same se-
quence of transactions that resulted in the
rollback relation in Figure 2 will result in
the historical relation in Figure 3, where
the label of the time axis indicates the valid
time. However, the historical relation can
show that a later transaction has changed
the time when a tuple takes effect in the
relation, which is not possible on a roll-
back relation. Rollback DBMSs can roll
back to an incorrect previous snapshot
relation; historical DBMSs can represent
current knowledge about the past.

Temporal databases. Benefits of both
approaches can be combined by support-
ing both transaction time and valid time in
the same relation. While a rollback
database views stored tuples, whether
valid or not, as of some moment in time,
and a historical database always views
tuples valid at some moment as of now, a
temporal database can view tuples valid at
some moment seen as of some other mo-
ment, thereby completely capturing the
history of retroactive/proactive changes.
The user of a temporal DBMS can exam-
ine historical information from the view-
point of a previous state of the database;
both kinds of time may be manipulated in
a query.
We use the term temporal database to

emphasize the need for both valid time and
transaction time in handling temporal in-
formation. Since there are two orthogonal
time axes involved now, temporal rela-
tions should be illustrated in four dimen-
sions (Figure 4 shows a single temporal
relation).

A temporal relation may be regarded as
a sequence of historical states, each a com-
plete historical relation. The rollback
operation on a temporal relation selects a
particular historical state, on which a his-
torical query can be executed. Each trans-
action causes a new historical state to be
created; hence, temporal relations are
append-only. The temporal relation in
Figure 4 is the result of four transactions,
starting from a null relation: (1) three
tuples were added, (2) one tuple was
added, (3) one tuple was added and an ex-
isting one deleted, and (4) one tuple was
modified so that it started at a later valid
time.

Since TQuel supports both historical
queries and rollback operations, it can be
used to query temporal databases. An ex-
ample is the TQuel query

range of fl is Faculty
range of f2 is Faculty
retrieve (fl.Rank)

where fl.Name = "Merrie' and
f2.Name = 'Tom'

when fl overlap begin of f2
as of 'January 1979"

that determines Merrie's rank when Tom
arrived, according to the state of the
database as of January 1979. This derived
relation is a temporal relation, so further
temporal relations can be derived from it.
The answer may differ if a similar query is
made as of October 1978 and if her pro-
motion was not yet recorded by that time.

User-defined time. User-defined time is
necessary when additional temporal infor-
mation, not handled by transaction or
valid time, is stored in the database. The
values of user-defined temporal attributes
are not interpreted by the DBMS and are
thus the easiest to support; only an inter-
nal representation and input/output func-
tions are needed. Such attributes will then
occur in the relation scheme. Multiple rep-
resentations are also possible, each associ-
ated with input and output functions. As
an example of user-defined time, consider
a Promotion relation with three attributes:
Name, Rank, and Approved-Date. The
Approved-Date (a user-defined time) is
the date when the promotion committee
approved the promotion; the valid time is
the date when the promotion will take ef-
fect; and the transaction time is the date
the information concerning the promo-
tion was stored in the database.

An analogy. A simple analogy will help
clarify the subtle differences among the
four types ofdatabases categorized above.

September 1986 37

No rollback Rollback

Current Snapshot Rollback

Historical Historical Temporal
queries

Figure 5. Types of databases.

| Transaction Valid
Snapshot

Rollback

Historical

Temporal

Figure 6. Attributes of the four types of
databases.

First, a snapshot relation can be com-
pared to the latest payroll stub showing the
current position of the recipient. If the
person gets a promotion, the next stub
shows the new rank, but there is no way to
find out about a past rank from the latest
stub.

If all the payroll stubs are carefully col-
lected without discarding any of them, as
some people do, it is possible to determine
the rank as of some time in the past from
the stub of that period. This collection of
payroll stubs can be compared to a roll-
back relation, a slice ofwhich is a snapshot
relation comparable to a payroll stub.
These stubs will be printed in indelible ink,
so that it will not be possible to make
changes to payroll stubs of the past, even
when there is a retroactive promotion or
an error in last year's salary.
A historical relation can be compared to

a resume, containing the history of job
positions a person held up through the
moment the resume was prepared. If an
error is found in the resume, or if the per-
son gets a promotion, a new resume re-
flecting the change is in order. The current
resume should always be up to date.
A temporal relation can be considered

as a collection of all such resumes marked
by the date when each of them was pre-
pared. It is possible and often interesting
to go back to an old resume and read
about the personal data as known at some
past moment.

An analogy for user-defined time would
be the date printed on each payroll stub in-
dicating when the pay period started. Note
that this date does not necessarily corre-
spond to the date the check (or the pre-
vious one) was issued.

Summary of taxonomy. Three kinds of
time-transaction time, valid time, and
user-defined time-were introduced, re-
sulting in a categorization of the types of
database management systems based on
their support for handling temporal infor-
mation. As shown in Figure 5, transaction
time and valid time define the two orthog-
onal capabilities of rollback operations
and historical queries, thereby differen-
tiating four types of databases: snapshot,
rollback, historical, and temporal.

Support of rollback operations requires
the incorporation of transaction time,
which concerns the representation. Sup-
port of historical queries requires the in-
corporation of valid time, which is associ-
ated with reality. Support of user-defined
time is orthogonal to support of historical
queries or rollback operations. Hence, the
three kinds of time actually define eight
different types of databases. The taxon-
omy presented here defines four types
based on their support of transaction and
valid time (see Figure 6). Each of these
types may or may not support user-
defined time. However, we note that user-
defined time is much closer to valid time
than to transaction time, in that both valid
time and user-defined time are concerned
with reality itself, whereas transaction
time involves only the model of reality (the
database). DBMSs (and their query lan-
guages) purporting to provide full tempor-
al support should handle all three kinds of
time.

An example
The following example highlights the

similarities and differences among the
four types of relations, snapshot, roll-
back, historical, and temporal. We first
create an empty relation for each of the
four types using TQuel create statements:

create Snapshot (Name = c20, Rank =
c20)

create persistent Rollback (Name = c20,
Rank = c20)

create interval Historical (Name = c20,
Rank = c20)

create persistent interval Temporal (Name
= c20, Rank = c20)

These are the relations alluded to earlier,
namely, the latest payroll check (snapshot),

the collection of all past payroll stubs
(rollback), the most current resume
(historical), and the collection of all past
resumes (temporal).

Starting with these empty relations, a
series of update operations are applied to
each of them. After each update opera-
tion, the states of four relations are dis-
played: the snapshot relation in a conven-
tional format as a single snapshot state,
the rollback relation as a sequence of snap-
shot states, the historical relation as a
single historical state, and the temporal
relation as a sequence of historical states.
Several queries on these relations focus on
what information is and, more important-
ly, is not represented in each relation.

Meme joins as an instructor. In Sep-
tember 1973, the following statement is
executed:

append to ? (Name = 'Merrie", Rank =
" Instructor if)

In these examples, the "?" symbol would
be replaced by the name of a relation:
snapshot, rollback, historical, or tem-
poral.
The four relations resulting from the

execution of this statement are almost
identical (see Figure 7). The snapshot rela-
tion shows that Merrie is currently an in-
structor. The rollback relation contains a
single snapshot state created on September
1973 (the transaction time that indexes the
snapshot states is shown following the
state), indicating that Merrie started
receiving payroll checks made out to "In-
structor Merrie" from September 1973.
The historical relation indicates that Mer-
rie has been hired as an instructor (the
valid time for each tuple in the historical
state is shown to the left ofthe tuple); there
is currently one line on Merrie's resume.
The temporal relation contains one
historical state, containing one tuple;
analogously, there is one resume with one
entry in Merrie's resume file.

If we asked back in October 1973
"What was Merrie's rank?",

range of f is ?
retrieve (f.Rank)

where f.Name = "Merrie"
the same information would be returned
from all four relations ("Instructor"), but
in rather different ways. For the rollback
relation, the current snapshot state is used;
for the historical relation, the tuples cur-
rently valid are searched; and for the tem-
poral relation, the tuples currently valid in
the current historical state are searched.
The defaults defined in TQuel ensure that
queries containing only where clauses will

COMPUTER38

return the same information regardless of
relation types.7

Merrie is promoted to fuil professor. In
December ofthat year, a replace statement
is executed:

replace f (Rank = 'Full Professor')
where f.Name = "Merrie"

Figure 8 illustrates the changes in the four
relations. Since the snapshot relation
records only the current information, the
existing tuple is modified, as is the next
payroll check made out to Merrie. A new
snapshot state is appended to the rollback
relation; Merrie's pay stubs for September
1973 through November 1973 still read
"Instructor Merrie," but the December
1973 paycheck is made out to "Full Pro-
fessor Merrie." Snapshot states within the
rollback relation are separated by dotted
lines. A tuple is added to the historical
relation with a valid time of December
1973; an entry is also added to Merrie's re-
sume. The historical relation always con-
tains only one historical state, so no dotted
lines will appear in its illustration.
The historical relation is an interval rela-

tion. In the representation shown in Figure
8, a tuple is valid until the next tuple with
the same key becomes effective. Hence,
the historical relation in this figure indi-
cates that Merrie was an instructor from
September 1973 until December 1973,
when she became a full professor. The
temporal relation contains two historical
states: one current from September
through November 1973 and the longer
one created in December 1973. Merrie's
resume file now contains two resumes, one
dated September 1973 containing one job
pdsition, and the more recent one dated
December 1973 containing two job posi-
tions. Only one transaction time is needed
for each historical state, even if it contains
multiple tuples.
When we ask the next month, January

1974, about Merrie's rank,
retrieve (f.Rank)

where f.Name = "Merrie"
we again get the same result from all four
relations ("Full Professor"), except that
we also get the past rank of Instructor
from the historical and the temporal rela-
tions. If we ask in January, "What was
Merrie's rank last October ?":

retrieve (f. Rank)
where f.Name = "Merrie"
when f overlap "October, 1973"

we run into some difficulties. This query
cannot be executed on a snapshot relation,
since information about the past is not

Snapshot: N
ee Instructor

Rollback:
Nwre F~k R(Transaction Time)
Meme Instructor (September 1973)

Hlstorical:
Valid Time) Nm Rwk
'(SeptemberF1973)Meme Instructor

Temporal:
(Valid Timea Fbk Trnction Time)
(September- 1973) rems Instructor (September 1973)-

Snapshot:
N~ Rwk
Meme Full Professor

Rollback:
Nam ark{Transaction Time)

Morrie Instructor (September 1973)-
................................

Merrie Full Professor (December 1973)

Historical:
VYalid time) Nff tc
(September 1973) Merrie Instructor
(Decemrber 1973) Merrie Full Professor

Temporal:
lid Time) Rrk (Transaction Time)
tSoptr r 1973) Meme Instructor (September 1973)

(September 1973) Morrie Instructor (Decembr ij
(December 1973) Meme Full Professor

Figure 8. Merrie is promoted to full professor.

stored (looking at Merrie's pay stub from
January won't tell us what the paycheck
read three months earlier). The rollback
relation can't give us an answer either. Of
course, we could flip through the payroll
stubs, but such a search won't tell us if
Merrie was given a retroactive promotion
(such a situation will be examined shortly).
Both the historical and temporal relations
can provide the answer "Instructor" by
examining the current resume (the histori-
cal relation records only the current one
anyway).

Still interacting with the DBMS in Jan-
uary 1974, we ask "What did we think
Merrie's current rank was three months
ago?":

retrieve (f.Rank)
where f.Name = "Merrie"
as of "October, 1973"

This query effectively turns back the clock
to October; all changes after October are
not considered. A result is not forthcom-
ing from either the snapshot or the histori-
cal relations, because they both record
only current knowledge (in the case of
historical relations, current knowledge
about the past). In this case, however, flip-
ping through the pay stubs or the stack of
resumes (the rollback and temporal rela-
tions, respectively) will allow us to deter-
mine what we knew in October 1973: that
Merrie was then an instructor.

39September 1986

Snapshot:
Nam Rank
Merrie Assistant Professor

Rollback:
Nam Rark (Transaction Time)
Merrie Instructor (September 1973)

..........................-*.*@.

Merrie Full Professor (December 1973)
Merrie Assistant Professor (February 1974)

Historical:
(Valid Time) Namn Fbk
September 1973) Merrie Instructor
December 1973) Merrie Assistant Professor

Temporal:
Valid Time) Name Ra ransaction Time)
September 1973) Merrie Instructor (Setember 1973)
...............................
September 1973) Merrie Instructor (December 1973)
December 1973) Merrie Full Professor

September 1973) Merrie Instructor (February 1974)
(December 1973) Merrie Assistant Professor

Figure 9. A correction.

A correction. In the next month,
however, we realize that we made a mis-
take. Last December, Merrie wasn't pro-
moted from instructor to full professor;
she was only promoted to assistant pro-
fessor. We modify the historical and the
temporal relations in February 1984 by

replace f (Rank = "Assistant Professor")
valid from begin of "December 1973"
where f.Name = "Merrie"

but we can correct only the current state of
the snapshot and rollback relations by

replace f (Rank = "Assistant Professor")
where f.Name = "Merrie"

Figure 9 shows that the next paycheck will
indicate a new rank, paychecks issued
from February 1974 on will bear the cor-
rect title, and the current resume is cor-
rected.
Note that the pay stubs for December

1973 and January 1974 still mention "Full
Professor Merrie" and that the resume file
still contains an old resume with the incor-
rect promotion rank; both of these rela-
tions are by definition append-only.
We perform three queries in August.

We first ask about Merrie's current rank:
retrieve (f.Rank)

where f.Name = "Merrie"
All four relations respond with "Assistant
Professor," except that we also get the
past rank of "Instructor" from the

historical and temporal relations. When
asked what Merrie's rank was in January,

retrieve (f.Rank)
where f.Name = "Merrie"
when f overlap "January 1974"

the snapshot and rollback relations cannot
provide an answer. However, the histori-
cal and temporal relations both respond
with the corrected rank, "Assistant Pro-
fessor. "

If we ask a different question, "What
was Merrie's current rank as best known
last January?",

retrieve (f.Rank)
where f.Name = "Merrie"
as of "January 1974"

then the snapshot and historical relations
cannot reply, since they only record infor-
mation as currently known. Both the roll-
back and temporal relations can provide
the information we request ("Full Profes-
sor"), while the temporal relation also
provides the past rank of "Instructor."

Merne is promoted retroactively. In
December 1978, Merrie is promoted to
associate professor, retroactive from June
1978. We record the fact in the historical
and temporal relations by

replace f (Rank = "Associate Professor")
valid from begin of "June 1978"
where f.Name = " Merrie"

but we can modify only the current state of
the snapshot and rollback relations by

replace f (Rank = "Associate Professor")
where f.Name = "Merrie"

As shown in Figure 10, the fact that the
promotion was retroactive is irrelevant in
the snapshot and rollback relations. In
particular, the pay stubs (the rollback rela-
tion) from February 1974 to November
1978 still specify "Assistant Professor
Merrie." However, the current resume
(the historical relation) and the most re-
cent resume in the resume file (the tem-
poral relation) will both record the promo-
tion date as June 1978.
When we query the relations in the fol-

lowing March, all four will list Merrie's
current rank as "Associate Professor."
The historical and temporal relations will
list her rank in October 1978 as "Associate
Professor. " The rollback and temporal re-
lations will list her current rank, as best
known in October 1978, as "Assistant Pro-
fessor," indicating that the promotion had
not been made. However, the temporal
relation can answer even more involved
queries, such as "What was Merrie's rank
in October 1978, as best known in
November 1978?":

retrieve (f.Rank)
when f overlap "October, 1978"
where f.Name = "Merrie"
as of "November 1978 "

This query can only be answered by the
temporal relation, which returns a rank of
"Assistant Professor." If the as of clause
were omitted, the result would be "Asso-
ciate Professor."
We have examined the information rep-

resented by each of the four types of rela-
tions and have shown how each relation
responds to various update and retrieval
operations. A few tautologies should now
be defensible:

* The most recent snapshot state in the
rollback relation is always identical to
the entire contents of the snapshot
relation.

* Similarly, the most recent historical
state in the temporal relation is
always identical to the entire contents
of the historical relation.

* Queries containing only a target list
and a where clause will return the
same information when applied to
any of the four types of relations.

An implementation
There are several approaches to imple-

menting a DBMS supporting the opera-

40 COMPUTER

tions described above. When confronted
with the task of adding temporal support
to a DBMS, one reasonable initial strategy
would be to interpose a layer of code be-
tween the user and the database system.
This layered approach has the significant
advantage of not requiring any change to
the complex data structures and algo-
rithms within the DBMS proper. How-
ever, the petformance of such a system
may be inadequate. An immediate con-

cern is the monotonically increasing and
potentially enormous storage require-
ments. In addition, there are multiple ver-

sions for some tuples, rendering conven-

tional storage schemes such as indexing or

hashing less effective. Performance will
deteriorate rapidly not only for temporal
queries but also for nontemporal queries.
An alternative is to integrate temporal

support into the DBMS itself, developing
new query evaluation algorithms and ac-

cess methods to achieve reasonable perfor-
mance for a variety of temporal queries
without penalizing more frequent non-

temporal queries. This approach clearly
involves substantial research and imple-
mentation effort, yet promises to address
deficiencies in performance.
We have adopted an intermediate strat-

egy in implementing our prototype tem-
poral lMBS. We modified portions of the
snapshot DBMS Ingres, 6 but still used the
conventional access methods and query

evaluation algorithms available in it. Such
a strategy may also be useful when adding
temporal support to a conventional hierar-
chical or network DBMS. This prototype
helps identify problems with conventional
access methods and query evaluation al-
gorithms in providing temporal support,
and serves as a comparison point for fully
integrated DBMSs developed in the
future. We also used it to run the example
queries above, where it flagged a few sub-
tle errors that had escaped our scrutiny.
One of the most important decisions

was determining how to embed a four-
dimensional temporal relation into a two-
dimensional snapshot relation as sup-
ported by Ingres. There are at least five
ways to embed a temporal relation in a

snapshot relation.7 Our prototype adopted
the scheme of augmenting each tuple with
two transaction time attributes for a roll-
back and a temporal relation, and one or

two valid time attributes for a historical
and a temporal relation, depending on

whether the relation modeled events or in-

tervals. Each update operation on an exist-

ing tuple generates a new version of the

tuple, marked with appropriate values of

Figure 10. Merrie is promoted retroactively.

time attributes indicating the period the
version is active. Although this tuple ver-

sioning scheme appears to have a high
degree of redundancy, in that the entire
tuple is duplicated whenever the value of
any attribute changes, analysis reveals that
this scheme consumes less space than at-
tribute versioning when the database is not
volatile.8

For the prototype, the parser of Ingres
was modified to accept TQuel statements
and generate an extended syntax tree with
subtrees for valid, when, and as of clauses.
Some of the query evaluation modules
were changed to handle the newly defined
node types and the implicit temporal at-
tributes. Functions to handle the temporal
operators begin of, end of, precede, over-

lap, extend, and as ofwere added in the in-
terpreter. The system relation was modi-
fied to support the various combinations
of implicit temporal attributes according
to the type of relation as specified by its
create statement, an example of which ap-
peared earlier. The temporal attribute has
a distinct type, so that input and output of

time values can be done in human readable
form by automatically converting to and
from the internal representation. Various
formats of date or time are accepted for in-
put, and resolutions ranging from second
to year are selectable for output. The copy
statement was also modified to support
batch input and output of relations having
temporal attributes.
The resulting prototype supports all the

TQuel statements, including the aug-
mented create, append, delete, replace,
and retrieve statements. The valid, when,
and as of clauses are fully supported. All
three kinds oftime are supported, as are all

four types of relations. Proposed exten-
sions to the language, including indeter-
minacy and aggregate functions, are not
yet supported.
To evaluate the performance of the

prototype, we ran a benchmark with a set
of queries on the four types of databases
using various access methods. We deter-
mined the fixed portion, the variable por-
tion, and the growth rate of the disk access

cost for various types of queries, as the

Septemnber 1986

Snapshot:
Nam Rank
Merrie Associate Professor

Rollback:
Nam Rark (Transaction Time)
Merrie Instructor (September 1973)

.............................

Merrie Full Professor (December 1973)

Merrie Assistant Professor (February 1974)

Merrie Associate Professor (December 1978)

Historical:
Valid Time) Nare Frk

epem r 1973) errie Instructor
December 1973) Merrie Assistant Professor
June 1978) Merrie Associate Professor

Temporal:

Valid Time) Name Rrt (Transaction Time)
September 1 973) -Merrie Instructor (September 1973)

...............................

(September 1973) Merrie Instructor (December 1973)
(December 1973) Merrie Full Professor

(September 1973) Merrie Instructor (February 1974)
(December 1973) Merrie Assistant Professor

(September 1973) Merrie Instructor (December 1978)
December 1973 Merrie Assistant Professor
uJne 1978) Merrie Associate Professor

41

number of versions in each database in-
creased using a series of replace opera-
tions.9 Performance degraded rapidly for
both temporal and nontemporal queries,
as expected for conventional access
methods such as hashing and indexed se-
quential access. We are investigating new
access methods addressing this problem to
enhance the performance.

WA I hile fifteen years of research
have focused on formalizing
and implementing snapshot

databases, only a few researchers have
recently studied the formalization of
historical databases and the implementa-
tion of rollback databases. Little has been
published on formalizing rollback or tem-
poral databases, or on implementing his-
torical or temporal databases. The special
opportunities promised by temporal
databases are, at this time, matched by the
challenges in supporting them.

Acknowledgments
This work was supported by NSF grant

DCR-8402339. Richard Snodgrass' work
was also supported by an IBM Faculty
Development Award.

References
I. A. Bolour et al., "The Role of Time in In-

formation Processing: A Survey," SigArt
Newsletter, Vol. 80, Apr. 1982, pp. 28-48.

2. A. Hoagland, "Information Storage
Technology: A Look at the Future,"
Computer, Vol. 18, No. 7, July 1985, pp.
60-67.

3. G. Copeland, "What If Mass Storage
Were Free?," Computer, Vol. 15, No. 7,
July 1982, pp. 27-35.

4. G. Weiderhold, "Databases," Comput-
er, Vol. 17, No. 10, Oct. 1984, pp.
211-223.

5. R. Snodgrass and 1. Ahn, "A Taxonomy
of Time in Databases," Proc. Int'l Conf.
Management of Data, ACM SIGMOD,
Austin, TX, May 1985, pp. 236-246.

6. G. D. Held, M. Stonebraker, and E.
Wong, "Ingres-A Relational Data Base
Management System," Proc. 1975 Nat'l
Computer Conf., Vol. 44, 1975, pp.
409-416.

7. R. Snodgrass, "The Temporal Query
Language TQuel," ACM Trans. Data-
base Systems, to appear 1986.

8. 1. Ahn, "Towards an Implementation of
Database Management Systems with
Temporal Support," Second Int'l Conf.

Data Engineering, Los Angeles, CA, Feb.
1986, pp. 374-381.

9. 1. Ahn and R. Snodgrass, "Performance
Evaluation of a Temporal Database Man-
agement System," Proc. Int'l Conf.
Management of Data, ACM SIGMOD,
Washington DC, May 1986, pp. 96-107.

Richard Snodgrass is currently an assistant pro-
fessor at the Department of Computer Science,
University of North Carolina, Chapel Hill. His
research interests include temporal databases,
programming environments, and software
monitoring. He is the director of the SoftLab
project, which is concerned with pragmatic
issues in the implementation of programming
environments, database management systems,
and operating systems.

Snodgrass received the BA degree in physics
from Carleton College, Northfield, MN, in
1977 and the PhD degree in computer science
from Carnegie-Mellon University, Pittsburgh,
PA, in 1982.

llsoo Ahn is a member of the technical staff at
Bell Laboratories, Columbus, Ohio. His re-
search interests include temporal databases,
physical database design, performance anal-
ysis, distributed systems and computer net-
works.
Ahn worked as an engineer for telephone

switching systems and as an MVS system pro-
grammer in the Korea Telecommunications
Co. after receiving an MSEE from the Korea
Advanced Institute of Science in 1977. He
received a PhD in computer science from the
University of North Carolina at Chapel Hill in
1986.

Readers may write to Snodgrass at the Uni-
versity of North Carolina at Chapel Hill, Dept.
of Computer Science, Chapel Hill, NC 27514.

COMPUTER
Reader Service Number 4

