
1 

Weaving Temporal and Reliability Aspects into a 
Schema Tapestry 

Curtis Dyreson1, Richard T. Snodgrass2, Faiz Currim3, Sabah Currim4, and 
Shailesh Joshi5 

1 Washington State University, Pullman, WA, cdyreson@eecs.wsu.edu  
2 University of Arizona, Tucson, AZ, rts@cs.arizona.edu 
3 University of Iowa, Iowa City, IA, faiz-currim@uiowa.edu 

4 Florida State University, Tallahassee, FL, scurrim@ci.fsu.edu 
5 University of Arizona, Tucson, AZ, shaileshpjoshi@gmail.com 

Abstract. In aspect-oriented programming (AOP) a cross-cutting concern is 
implemented in an aspect. An aspect weaver blends code from the aspect into a 
program’s code at programmer-specified cut points, yielding an aspect-
enhanced program. In this paper we apply some of the concepts from the AOP 
paradigm to data. Like code, data also has cross-cutting concerns such as ver-
sioning, security, privacy, and reliability. We propose modeling a cross-cutting 
data concern as a schema aspect. A schema aspect describes the structure of the 
metadata in the cross-cutting concern, identifies the types of data elements that 
can be wrapped with metadata, i.e., the cut points, and provides some simple 
constraints on the use of the metadata. Several schema aspects can be applied to 
a single data collection, though in this paper we focus on just two aspects: a re-
liability aspect and a temporal aspect. We show how to weave the schema for 
these two aspects together with the schema for the data into a single, unified 
schema that we call a schema tapestry. The tapestry guides the construction, in-
terpretation, and validation of an aspect-enhanced data collection. 

1 Introduction 

Aspect-oriented programming (AOP) is a new programming paradigm [19]. 
AOP arose from the need to quickly and safely add cross-cutting concerns, 
such as the monitoring of memory use or event logging, to a program without 
manually modifying the program. In AOP, a cross-cutting concern is imple-
mented in an aspect. An aspect weaver blends code from the aspect into a 
program’s code at programmer-specified cut points, yielding an aspect-
enhanced program. A key benefit of AOP is that an aspect can be specified 
and implemented once, yet woven into many separate programs.   

The AOP paradigm is not directly applicable to data since the goal of AOP 
is to modify dynamic program behavior, while data is static. But data, like 
code, also has cross-cutting concerns. One example is versioning. Many tem-
poral and object-oriented data models have been developed to support the 
versioning of individual data items (c.f., [22]). Generally, these models anno-
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tate the data with timestamps that signify the lifetime of each item. Though 
the timestamps are embedded in the data, the timestamps are actually meta-
data, that is, they are “data about data”. Temporal data models have special 
behavior for handling timestamps embedded in data, for instance, to ensure 
that the timestamps are maintained during update and consulted during query 
processing. 

Though not directly applicable, the AOP paradigm can be adapted to ad-
dress cross-cutting concerns in schema design. Many cross-cutting concerns 
impinge on a schema. Data can be annotated with descriptions of where it 
came from, who inserted or changed it, and what its quality is [4][27]. The 
provenance of the data, what manipulations were performed on it to get it to 
this point, can also be recorded [6][7]. Similarly, the accuracy and lineage of 
the data can be captured [5][41]. Security and privacy introduce additional 
needs for metadata about particular data, such as who has access and to whom 
has information been released. Reliability and performance requirements are 
also cross-cutting concerns. 

Though many schemas already exist for data, few, if any, model cross-
cutting concerns. AOP can be adapted to schema design by implementing a 
cross-cutting data concern in an aspect, one aspect per kind of metadata, e.g., 
a temporal aspect for temporal metadata or a reliability aspect that captures 
metadata related to completeness and accuracy. The aspect is primarily a de-
scription of the static properties of the metadata, that is, the schema of the 
metadata and some simple constraints on its use. A schema weaver blends 
annotations from the aspect into the data’s schema at designer-specified cut 
points, yielding an aspect-enhanced schema, which we call a schema tapestry. 
The schema tapestry is used as a guide in validating, interpreting, editing and 
querying data with embedded metadata. A key benefit of our approach is that 
a schema aspect can be designed once, yet woven into many separate data 
schemas. 

The medium of our research is the Extensible Markup Language (XML). 
XML is fast becoming an important language for publishing and exchanging 
data on the web. XML is popular, in part, because data formatted in XML can 
be automatically processed to extract items of interest, e.g., using DOM or 
XQuery. An XML schema describes the structure of XML data. The schema 
is used by a publisher to format data for publication and by a reader to vali-
date acquired data and add it to a data collection. Validation ensures that the 
data conforms to the formatting rules for XML (is well-formed) and to the 
types, elements, and attributes defined in the schema (is valid). Several 
schema languages have been proposed for XML; among them XML Schema 
is the most widely used.  
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One example of a data provider is the National Center for Biotechnology 
Information (NCBI).1 Users can search the NCBI databases to locate data on 
genes and proteins. The data can then be downloaded in several formats, in-
cluding as XML. In fact NCBI publishes data in three XML schemas. From 
an archival or temporal perspective, NCBI like most XML publishers only 
provides the current snapshot of the data. A snapshot is the data that is avail-
able at a single point in time, stripped of its historical context. But a data col-
lection varies over time as new data is inserted and existing data is revised. 
NCBI users can download the current snapshot, but they are unable to track 
and download changes to data.  

In general, scientists want to know the provenance of their data: who, what, 
when, and where [8]; these concerns cut across all scientific data. The evolu-
tion of the data is an important part of this provenance. Scientific insights 
gained by analyzing data often have to be revised when the data changes. To 
help determine whether a reanalysis is needed, especially in a large data set 
where manual comparison is infeasible, it is crucial to be able to ascertain 
whether data has been added, modified, or deleted. One might want to look at 
coarse changes to an entire XML document or track the evolution over time of 
specific elements. Depending on the application, it may also be desirable to 
know the agents responsible for the changes to the data, and if these changes 
were checked for accuracy. 

Let’s consider the general process by which a user downloads data from a 
publisher like NCBI and how a cross-cutting concern (in this case, a temporal 
aspect) changes that process. Fig. 1 illustrates existing practice. A user re-
quests the current snapshot, Dnow. The data is then added to the reader’s data 
collection, DB, typically by overwriting a previously acquired version of D in 
DB. A better strategy is to transmit only the changes to the data, as shown in 
Fig. 2. A user requests a change summary of updates to D from time t, when 
the user last acquired D, to now. The summary, which is represented as “�D,” 
is used to update the local snapshot of D. The strategy is “better” because the 
change summary is usually smaller than the current snapshot. NCBI does not 
currently provide change summaries, but there are platforms that support 
change summaries such as IBM’s Service Data Object (SDO) technology 
[40]. Unfortunately, neither of these strategies works for scientists that need to 
track the data’s provenance because neither tracks the history of the data. In 
contrast, Fig. 3 shows the process of acquiring temporal data. Temporal data 
is data with embedded timestamps. The timestamps record the lifetimes of the 
data items. A user requests a slice of data from time t, when the user last ac-
quired D, to now. The slice as returned by the server is represented as 
“�D[t,now].” The temporal data is then added to DB, extending the history of D. 

                                                      
1 NCBI: http://www.ncbi.nlm.nih.gov/ 
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Unlike the snapshot data in Fig. 1 and Fig. 2, temporal data has embedded 
metadata that records the entire version history of every data item. 
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Fig. 1 Download the current snapshot 
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Fig. 2 Download a change summary, e.g., in an SDO 
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Fig. 3 Download temporal data 

 
Systems that support the publication of and subscription to data with em-

bedded metadata such as timestamps need several novel features.  

• A data publisher has to add metadata markup to indicate the metadata 
perspective of versions of the data. The perspective is the metadata 
that describes an individual version; for temporal metadata it would 
consist of a timestamp that indicates the lifetime of a version. 

• To accommodate the embedded metadata, the schema of the data has 
to be augmented. Otherwise it would not be possible for the data pro-
duced by a publisher to be amenable to automatic processing on the 
reader’s side; for instance, the reader has to be able to validate the 
data with embedded metadata and update a data store. 
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• To conserve bandwidth the slice “�D[t-now]” should be compact. Ide-
ally it will be proportional in size to the changes to D since time t. 

• It should be possible to validate the changes to a data collection, i.e., 
the slice “�D[t-now]”, separately from the rest of the data collection. 
Unfortunately an SDO’s change summary cannot be validated using 
the data’s schema, rather the changes must first be applied to the data, 
and the data entirely re-validated. It would be more desirable and less 
costly if it were possible to validate a slice of data with embedded 
metadata in isolation from the rest of a data collection.    

All of the above features can be supported by weaving a schema aspect into a 
data schema to produce a schema tapestry that mediates the exchange of XML 
data. There are some tangential issues that we do not cover in this paper. For 
instance, a publisher may have changed its schema since time t, so each step 
in the process must account for changes to the schema as well [38][39]. 

This paper presents a system to help schema designers develop schemas for 
data annotated with metadata such as metadata that describes who has access 
to the data, how the data was measured, and when the data is current, among 
other aspects. More specifically, we present aspect-oriented XMLSchema 
(AOXSchema) which is an infrastructure and suite of tools for constructing 
and validating XML data with embedded metadata. AOXSchema extends 
�XSchema [14][17], adding support for more kinds of metadata than just time. 
AOXSchema adds aspect-enhanced element types to XML Schema. An as-
pect-enhanced element type denotes that an element can have metadata, de-
scribes how to construct and represent the metadata, and provides some sim-
ple constraints that broadly characterize how the metadata is used. Aspect-
enhanced element types are specified in schema aspects, one aspect per kind 
of metadata.  

An important goal in the development of AOXSchema was to maximally 
reuse existing XML standards and technology. Biologists are reticent to learn 
a new data model, or even a significant extension of a data model with which 
they have just gotten comfortable. Similarly, they do not want to have to ac-
quire and learn how to use a new suite of tools that comes with the new data 
model. In AOXSchema, any element type can be denoted as an aspect-
enhanced element type by annotating it with a single, simple annotation in a 
schema aspect. The tools operate in most cases identically to extant tools and 
in fact utilize those existing tools, such as conventional validating parsers. In 
most cases, the scientists don't even need to care whether their XML data has 
metadata. 

This paper is organized as follows. The next section motivates the differ-
ences between conventional XML data and aspect-enhanced XML data. We 
then discuss how snapshots of a data collection are glued to create items and 
versions. The extensions to XML Schema to support schema aspects are pre-



6 

sented in Section 4. Section 5 sketches the process of constructing a represen-
tational schema, which helps in validating an aspect-enhanced data collection 
with a schema tapestry. The paper concludes with a discussion of related work 
and a summary. 

2 Example  

Assume that data on the gene trypsin 4 (TRY4) is in an XML data collection 
called gene.xml. The collection has information about gene function, which 
is described using the Mouse Genome Institute ontology.2 On January 9, 2007 
(represented as 2007-01-09) the function of TRY4 was unknown as shown by 
the XML in Fig. 4. In subsequent months, new scientific data about TRY4 
became available. On 2007-02-14 it was learned that TRY4 is involved in 
synthesizing the trypsinogen protein. The value of the “function” attribute 
was updated creating a new version of the data, as shown in Fig. 5. On 2007-
03-06, the gene description became more specific, relating TRY4 to �-cell 
receptors so an additional “desc” element was updated as shown in Fig. 6. 

Researchers that prepared a paper on TRY4 in 2007-01-05 would like to 
learn of any updates to the TRY4 data since that time, and in particular how 
the data has changed. They would also like to track the reliability of the data 
and of subsequent updates. NCBI imports curated and uncurated data; curated 
data has been checked for accuracy by trusted experts (e.g., Swiss-Prot is 
perhaps the best known collection of curated proteomic data3). Certain 
changes will require a new analysis of their experiments. But the data in each 
figure is the data at a single point in time; the reliability is implicit. Instead of 
the current snapshot, the researchers need the (transaction time) version his-
tory, which consists of the information in each version of the data along with 
a timestamp indicating the version’s lifetime.4 Transaction time is the system 
time when the data was edited. The version history would describe how the 
knowledge about a particular gene has changed over time. This is of particular 
interest since new genomic and proteomic data is being constantly generated, 
and existing data is being revised and corrected. A version history would also 
aid in time-related analysis such as in tracking how a disease and its symp-
toms evolve over time (e.g., in an epidemic like the avian flu). The researchers 
also need to record the data’s reliability since they prefer to work only with 

                                                      
2 Mouse Genome Institute: http://www.informatics.jax.org 
3 Swiss-Prot: http://www.expasy.org/sprot/ 
4 Temporal data could also record the valid time versions (valid time is real world time) but for 

simplicity we consider only one kind of time in this paper, i.e., the transaction and valid 
times are the same (other relationships between valid and transaction time [25] can be easily 
modeled in our framework). 
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curated data (another set of researchers may have a preference—not a re-
quirement—for curated data, but may be content with knowing its origins and 
level of reliability, which would allow them to make decisions regarding us-
age).  

   <gene name="TRY4"> 
      <desc>trypsin 4</desc> 
      <ontology ref="MGI" function="unknown"/> 
  </gene> 
  

Fig. 4 gene.xml on 2007-01-09, curated data 

   <gene name="TRY4"> 
      <desc>trypsin 4</desc> 
      <ontology ref="MGI"  
                function="synthesizes trypsinogen"/> 
  </gene>  

Fig. 5 TRY4 codes for a protein, as of 2007-02-14, curated 

   <gene name="TRY4"> 
      <desc>trypsin 4, beta-cell receptor</desc> 
      <ontology ref="MGI"  
                function="synthesizes trypsinogen"/> 
  </gene> 
 

 
Fig. 6 TRY4 is related to �-cell receptors, as of 2007-03-06, uncurated 

To illustrate these changes from the perspective of the metadata, we adopt a 
technique pioneered by the Bitemporal Conceptual Data Model (BCDM) [26]. 
The idea is that the metadata creates a multidimensional space, one dimension 
for each kind of metadata. In this example, there are two dimensions: time and 
reliability. Within this space it is possible to identify regions where the data 
remains constant or unchanged. Fig. 7a) shows two such regions for the <on-
tology> element. The first region is curated data that begins its lifetime at 
2007-01-09 and ends just before 2007-02-14 when the ontology element was 
changed. In the figure, this region is diagonally striped. The next region is 
curated data from 2007-02-14 to just before 2007-03-06, and is shaded black 
in the figure. Interestingly the region switches to a reliability of uncurated 
from 2007-03-06 until now. Note that the shape of a region in the multidimen-
sional space need not be an orthotope (an orthotope is an n-dimensional gen-
eralization of a rectangle, but our regions can be any shape) [13]. Fig. 7b) 
shows the regions for the <gene> element. It also has two regions one diago-
nally striped and one shaded black in the figure. The first region extends in 
the transaction time dimension from 2007-01-09 until 2007-03-06 since 
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<gene> did not change during this time (excluding changes to its <ontol-
ogy> subelement). On 2007-03-06 the <desc> subelement was modified and 
the reliability changed. (We will explain in detail later in the paper why 
<desc> is considered part of <gene> but <ontology> is not when consider-
ing changes to <gene>. Basically the schema aspect designer specifies which 
elements to monitor; in this particular case, the schema aspect designer de-
cided not to track changes to <desc> separately, but rather to couple changes 
to <desc> with changes to <gene>, while treating changes to <ontol-
ogy> separately. This has implications, to be explored later in this paper, for 
how the changes are represented, as well as for schema validation: what 
changes are allowed.)   

  

b) Metadata regions for the two 
versions of <gene> 

a) Metadata regions for the two 
versions of <ontology> 
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Fig. 7 The metadata regions of each data version 

Fig. 8 shows the aspect-enhanced data that captures the history and reliabil-
ity of the TRY4 data. The data is largely a list of gene and ontology items. An 
item is an element that persists across individual snapshots, where a snapshot 
is a slice of the data from an instantaneous metadata perspective. For instance, 
Fig. 5 shows the snapshot of curated data as of 2007-02-20. Each item has an 
itemId attribute that uniquely numbers the item. There is one gene item in 
the data, and one ontology item. Each item is referenced by an item reference 
element that places it in the context in which it appears in a snapshot of the 
data. For example, in Fig. 8 the element <ontologyRef> references the ontol-
ogy item, which indicates that some version of that item appears within the 
context of a <gene> element. 
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 <dataRoot> 
  <data><geneRef itemRef="1"/></data> 
  <geneItem itemId="1"> 
    <geneVersion> 
      <perspective> 
        <time start="2007-01-09" end="2007-03-05"/> 
        <reliability curated="yes"/> 
      </perspective> 
      <gene name="TRY4"> 
        <desc>trypsin 4</desc> 
        <ontologyRef itemRef="2"/> 
      </gene> 
    </geneVersion> 
    <geneVersion> 
      <perspective> 
        <time start="2007-03-06" end="now"/> 
        <reliability curated="no"/> 
      </perspective > 
      <gene name="TRY4"> 
        <desc>trypsin 4, beta-cell receptor</desc> 
        <ontologyRef itemRef="2"/> 
      </gene> 
    </geneVersion> 
  </geneItem> 
  <ontologyItem itemId="2"> 
    <ontologyVersion> 
      <perspective> 
        <time start="2007-01-09" end="2007-02-13"/> 
        <reliability curated="yes"/> 
      </perspective> 
      <ontology ref="MGI" function="unknown"/> 
    </ontologyVersion> 
    <ontologyVersion> 
      <perspective> 
        <time start="2007-02-14" end="2007-03-05"/> 
        <reliability curated="yes"/> 
      </perspective> 
      <perspective> 
        <time start="2007-03-06" end="now"/> 
        <reliability curated="no"/> 
      </perspective> 
      <ontology ref="MGI"  
                function="synthesizes trypsinogen"/> 
    </ontologyVersion> 
  </ontologyItem> 
</dataRoot>  

Fig. 8 Aspect-enhanced XML data 
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Whenever the item changes, a new version of the item is created. A change 
is defined, roughly, as a difference in an element’s non-aspect content, exclu-
sive of changes to content within the items that appear as subelements. Hence, 
the gene item has two versions. The second version was created on 2007-03-
06 when new text content was added to the nontemporal <desc> element. 
The <time> element in each version’s perspective indicates the version’s 
lifetime, while the <reliability> element is its reliability. The end time of 
the second version is “now” indicating that the version is current. The ontol-
ogy item also has two versions, because an attribute value was changed on 
2007-02-14. Note that the second version of the ontology item has multiple 
metadata perspectives. 

In general an aspect-enhanced data collection encompasses data from many 
potential metadata perspectives. For instance, when a temporal aspect is 
woven into data not only is the current state of the data captured, but all pre-
vious versions as well. The aspect embeds timestamps in the data to indicate 
when each version was current. Hence, a temporal aspect woven into a data 
collection is unlike an SDO or related technology that records only a single 
snapshot and/or a summary of changes from a previous version. 

One contribution of this paper is a description of how to construct the as-
pect-enhanced data (Fig. 8) by gluing the data in individual snapshots (Fig. 4, 
Fig. 5, and Fig. 6), and adding metadata. The data collection in Fig. 8 captures 
the lifetime of each version [23] as well as its reliability.  

Another contribution of this paper is explaining how to compactly repre-
sent in XML the change across a number of versions. Though the aspect-
enhanced data shown in Fig. 8 appears verbose in this small example, in gen-
eral, it is actually compact in the sense that each edit results in only a local-
ized change to the data (basically, a new version is created within an item). 
Fig. 9 shows the difference between the first and second versions of the data. 
The difference is a new version of the ontology element. The ability to repre-
sent the difference between two versions in isolation from the rest of the data 
is useful in both data streaming and refreshing data from a remote source, 
since the change is usually much smaller in size than the entire collection or 
even a snapshot. Note that the value of the itemId attribute in Fig. 9 is local 
to the temporal data being exchanged (the value of the attribute could be 
“23”) and unrelated to the itemId of “1” in Fig. 8. A user requesting a 
change summary since their last access (presumably made between 2007-01-
09 and 2007-02-13) can be compactly provided with the subsequent versions 
(in this case a single version, as seen in Fig. 9). 
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 <dataRoot> 
  <ontologyItem itemId="1"> 
    <ontologyVersion> 
      <perspective> 
        <time start="2007-02-14" end="2007-03-05"/> 
        <reliability curated="yes"/> 
      </perspective> 
      <perspective> 
        <time start="2007-03-06" end="now"/> 
        <reliability curated="no"/> 
      </perspective> 
      <ontology ref="MGI"  
                function="synthesizes trypsinogen"/> 
    </ontologyVersion> 
  </ontologyItem> 
</dataRoot>  

Fig. 9 The difference between two versions 

 
 <element name="gene"> 
  <complexType> 
    <attribute name="name" type="text" use="required"/> 
    <sequence> 
      <element name="desc" type="string"/> 
      <element ref="ontology" minOccurs="0"  
                              maxOccurs="unbounded"/> 
    </sequence> 
  </complexType> 
</element> 
<element name="ontology"> 
  <complexType> 
    <attribute name="ref" type="text"/> 
    <attribute name="function" type="text"/> 
  </complexType> 
</element> 

 
Fig. 10 An extract from the gene data schema 
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   <element name="gene"> 
 
    <aop:item> 
      <aop:itemIdentifier> 
        <aop:field path="@name"/> 
      </aop:itemIdentifier> 
      <txs:transactionTime  
          kind="state" 
          contentVarying="true"  
          existenceVarying="no gaps"/> 
      <rel:curated/> 
    </aop:item> 
 

      definition of gene from the snapshot schema omitted for space 
  </element> 
  <element name="ontology"> 

     
    <aop:item> 
      <aop:ItemIdentifier> 
        <aop:field path="../@name"/> 
        <aop:field path="@function"/> 
      </aop:ItemIdentifier> 
      <txs:transactionTime  
          kind="state"  
          contentVarying="true" 
          existenceVarying="gaps allowed"/> 
      <rel:curated/> 
    </aop:item> 

      
    definition of ontology from the snapshot schema omitted for space 
  </element> 

 

Fig. 11 An extract from a schema tapestry 

A third contribution is a description of a process to construct a schema to 
validate and interpret the aspect-enhanced data. Typically, the structure of 
published data is described in an associated schema document. Assume that 
the file gene.xsd contains the snapshot schema for gene.xml. The snap-
shot schema is the schema for the data only with no embedded metadata. The 
snapshot schema is a valuable guide for editing and querying individual snap-
shots. The snapshot schema is given (in part) in Fig. 10. Note that the schema 
describes the structure of the fragment shown in Fig. 4, in Fig. 5, and in Fig. 
6. Though each snapshot conforms to the schema, the aspect-enhanced data 
does not. So a snapshot schema such as gene.xsd cannot be used (directly) 
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to validate or interpret the data in Fig. 8. Nor can the schema be used to vali-
date version differences, such as the fragment shown in Fig. 9. In our ap-
proach a snapshot schema is woven with schema aspects to create a schema 
tapestry. In this example there is a temporal aspect and a reliability aspect. 
These aspects describe, at a logical level, which elements can vary over time 
and reliability, and how those elements can change. Fig. 11 shows the tempo-
ral and reliability aspects as they are woven into the schema tapestry for the 
running example. There are aspect-oriented annotations for both the gene and 
ontology element type definitions. The annotations are shown within the grey-
lined rectangles in the figure. (Section 4 describes the annotations in detail.) 
We present the schema tapestry here to emphasize that AOXSchema is fully-
upwards compatible with XML Schema; that is, it extends but does not 
change XML Schema. A further advantage of our approach is that the schema 
tapestry can also be used to validate the differences between versions, such as 
the data in Fig. 9. 

3 Aspect-Enhanced Data 

This section briefly reviews concepts related to aspect-enhanced data and then 
discusses how to associate elements in different snapshots to create such data. 

3.1 A Simple Model for Aspect-Enhanced Data  

Let D be an XML data collection. D is typically modeled as an ordered for-
est, D = (E, V), where E is the set of edges and V is the set of nodes. Each 
edge in E is of the form (v, w, n) where v is the parent, w, is the child, and n is 
an ordinal representing the position of the child in the lexical ordering of the 
children. We will refer to XML data acquired from a document with no em-
bedded metadata as a snapshot. 

A snapshot is data from a single metadata perspective. A perspective is a 
list of values, v1, …, vn, where value vk is chosen from the kth metadata dimen-
sion. Each dimension is a set of values. We will assume an ordering of the 
values when it is conventional to do so. For instance, the transaction time 
dimension is a set of time points ordered from time 0 (or beginning) to the 
current time (now). The reliability dimension is the set {uncurated, cu-
rated}, with no ordering among the values. So an example metadata per-
spective is “3, curated” where “3” is chosen from the transaction time di-
mension and “curated” is chosen from the reliability dimension. 

Aspect-enhanced data is data with embedded metadata. The metadata de-
scribes or modifies the data. Conceptually, the metadata can be embedded in a 
data forest as follows. Let DA = (EA, VA) be an aspect-enhanced data collection 
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where EA is a set of edges and VA is a set of nodes. Each edge in EA is of the 
same form as an edge in a non-aspect-enhanced forest, while each node in VA 
is of the form (d, M) where d is the data (as in a non-aspect-enhanced forest) 
and M is a (possibly empty) aspect-enhanced forest which represents the 
metadata for d. Consider the modeling of the aspect-enhanced data in Fig. 9. 
In the forest there is a node corresponding to the ontology element. The node 
has a data portion, the ontology element itself, and a metadata forest. The 
forest contains two trees, one for each perspective. As an aside, note that this 
model supports increasing levels of metadata, i.e., meta-metadata, since a 
metadata forest could have metadata. But in this paper we consider only a 
single level. 

An aspect-enhanced data collection represents a set of snapshots. Let DA be 
an aspect-enhanced data collection. The snapshot operation extracts a snap-
shot of DA from a specific metadata perspective. Metadata is not represented 
in the snapshot. The snapshot operation is denoted as snap(p, DA) = D where 
D is the snapshot from perspective p of DA. Note that we haven’t yet de-
scribed the structure of aspect-enhanced data; however, it should faithfully 
capture entire snapshots as stated in the following definition. 

Definition [Snapshot reducibility] An aspect-enhanced data collection, DA, is said to 
be snapshot reducible to snapshots D1, …, Dm iff ∀i (1 ≤ i ≤ m) ∃p ∈ { (v1, …, vn) | 
value vk is  chosen from the kth metadata dimension} such that Di = snap(p, DA). 

3.2 Compact Aspect-Enhanced Data 

To create compact aspect-enhanced data it is important to identify which ele-
ments persist through changes to a data collection. We will sometimes refer to 
the process of associating elements that persist across various snapshots as 
gluing the elements. When a pair of elements is glued, an item is created. An 
item is an element that evolves through various versions. Only aspect-
enhanced elements (that is, elements of a type that has an aspect annotation as 
described further in Section 4) are candidates for gluing. 

3.2.1 Item Identifiers 
Determining which elements should be glued depends on two factors: the type 
of the element, and the item identifier for the element’s type. The type of an 
element is the element’s definition in the schema. We will denote the type of 
an element as T. An element can be glued only to an element or item of the 
same type. An item identifier is used to identify an item in a snapshot. The 
identifier is a list of XPath expressions (much like a key in XML Schema) so 
we first define what it means to evaluate an XPath expression. 
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Definition [XPath evaluation] Let eval(x, E) denote the result of evaluating an 
XPath expression E from a context node x. Given a list of XPath expressions, L = 
[E1, …, Ek], then eval(x, L) = [eval(x, E1), …, eval(x, Ek)]. 

Since an XPath expression evaluates to a list of values, eval(x, L) evaluates 
to a list of lists. An item identifier is a list of XPath expressions. 

Definition [Item identifier] An item identifier for an aspect-enhanced type, T, is a 
list of XPath expressions, LT, such that for each element x of type T , eval(x, LT) 
names the item to which x belongs.  

Each item identifier is specified by a schema designer. (Elsewhere we sketch a 
method for automatically constructing item identifiers utilizing historical in-
formation from a varying instance [44]. In the present paper, we encourage 
the schema designer to specify the item identifiers, as that is a component of 
the semantics of the underlying data.) Usually each item identifier will be the 
(snapshot) key for the element type given in the schema [9]. But an item iden-
tifier may differ from a snapshot key since the identifier should be a tempo-
rally-invariant key [33].  

Example [Item identifiers] As an example, a designer might specify the following 
item identifiers for the aspect-enhanced elements in Fig. 8.  

• <gene> �  [@name] 
• <ontology> �  [../@name, @function] 

The item identifier for a <gene> is the name of the gene while the item identifier 
for an <ontology> is the gene’s name (its parent’s item identifier) combined with 
the gene’s function attribute value. 

Items represent semantic clusters: information that is lumped together and 
logically changes as a unit. We saw in Fig. 9 an example of a difference be-
tween two versions; this difference is expressed in terms of the item(s) that 
changed. So a schema designer will designate how they wish to gather the 
information about changes, or equivalently, how they think the changes will 
be clustered. If an <ontology> was considered part of the <gene>, then any 
change to the <ontology> would be considered a change to the <gene>. In 
the example above a schema designer is saying that conceptually an <ontol-
ogy> is a component or feature of a <gene> that changes (in terms of con-
tent, reliability, or whatever aspect) separately from the <gene> itself (which 
can also change, e.g., its description). Clearly this determination is subjective. 
The schema designer will want to define a small number of items, and will 
probably not want to make every element type a separate item. Also, it should 
be emphasized that an item’s aspect(s) are orthogonal: an item can be associ-
ated independently with each aspect. 

We will further restrict item identifiers to be unique within a snapshot, that 
is, at most one element in each snapshot can belong to an item. 
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3.2.2 Building Items 
Once an item has been identified, the next step is to determine whether an 

item’s content changes or remains the same across different snapshots. Poten-
tially if an item’s content remains the same over two snapshots then the con-
tent can be combined to create a compact representation (more compact than 
representing the same content again and again). Snapshot elements that are 
“adjacent” and “the same” can be compacted and associated with a region of 
metadata, as we did in Fig. 7. These compacted elements form versions. So an 
item is a set of versions, as defined below. 

Definition [Item] Let item(x) be the item named by eval(x, LT) where x is of type T. 
Then item(x) = {(v1, p1), …, (vn, pn)} where each vi is a version of x with perspec-
tive pi (1 ≤ i ≤ n). 

3.2.3 Creating Versions 
A version is a copy of the subtree rooted at the item, where each branch in the 
copy terminates at a leaf (attribute node, text node, etc.) or at the first element 
on the branch that is associated with some other item, which is replaced with 
an item reference. 

Definition [Version] Let item(x) be an item of type T  in snapshot D = (E, V). Let 
(Ex, Vx) be the subtree rooted at x in D. Then version v of x is (Ev, Vv) where  
   Ev = {(av, bv, n) | (ax, bx, n) ∈ Ex ∧ (bx is an item � bv is an item reference)  
             ∧ (ax is an item � av = x) ∧ (ax and bx are not items � av = ax ∧ bv = bx)} 
and Vv = {v | (v, _, _) ∈ Ex ∨ (_, v, _) ∈ Ex} ∪ {x}. 

 

Example [Items] Items appear throughout the example of aspect-enhanced data 
shown in Fig. 8. The first version of the <gene> item is a copy of the <gene> ele-
ment in Fig. 4, which is the first snapshot of the data. Note that the <ontology> 
element is an item, so it has been replaced in Fig. 8 by an item reference whereas the 
<desc> element is unchanged since it is not an item. 

Versions that are adjacent and the same can be compacted in an item to re-
duce the size of the representation. The kind of metadata plays an important 
role in determining adjacency. Below we define adjacency for an ordered 
dimension (e.g., transaction time) and then an unordered dimension (e.g., 
reliability). Partially ordered dimensions can also be handled.  

Definition [Adjacent in an ordered metadata dimension] Without loss of generality, 
let there be a single ordered metadata dimension (so the perspective is a single 
value). Let x be an element of type T  in snap(i, DA). Let y be an element of type T  
in snap(j, DA). Finally let LT be the item identifier for elements of type T. Then x is 
metadata adjacent to y if and only if eval(x, LT) = eval(y, LT) and it is not the case 
that there exists an element z of type T  in a snapshot between (exclusive) the ith and 
jth snapshots such that eval(z, LT) = eval(x, LT). 
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Adjacency in an unordered dimension is very straightforward, basically eve-
rything is adjacent.  

Definition [Adjacent in an unordered metadata dimension] Without loss of general-
ity, let there be a single ordered metadata dimension (so the perspective is a single 
value). Let x be an element of type T  in snap(i, DA). Let y be an element of type T  
in snap(j, DA). Finally let LT be the item identifier for elements of type T. Then x is 
metadata adjacent to y if and only if eval(x, LT) = eval(y, LT). 

When multiple metadata dimensions are present, two elements are considered 
adjacent only if they are adjacent in every dimension.  

Recall that a version is a compacted element, where adjacent elements that 
are the same are represented only once. “Sameness” is observed within the 
context of the Document Object Model (DOM). 

Definition [DOM equivalence] A pair of item versions is DOM equivalent if the 
pair meets all of the following conditions: they have the same number of children, 
same element tag, same set of attributes (an attribute is a name, value pair), and 
same text content, and for each child, the child is DOM equivalent to the corre-
sponding child of the other (in a lexical ordering of the children). 

As an aside, we observe that DOM equivalence in an AOP XML context is 
akin to value equivalence in a temporal relational database context [23]. 

A version is associated with a metadata perspective coalesced from the 
various snapshots. The perspective of a version captures the set of metadata 
conditions for which the version’s content is valid. A version’s perspective is 
extended when adjacent versions are DOM equivalent (the perspective can 
have gaps or holes, although having a gap may violate a schema constraint as 
described in Section 4). A new version is created when adjacent versions in 
the same item are not DOM equivalent. 

Definition [Version creation/extension] Let item(x) = {(v1, p1), …, (vn, pn)}. Let y 
be a new version, (w, q), of item(x), that is y has the same type and item identifica-
tion as item(x). If there exists version (vi, pi) ∈ item(x) that is DOM equivalent and 
adjacent in every metadata dimension to y then replace (vi, pi) with (vi, coalesce(q, 
pi)). Otherwise add (w, q) to item(x). 

The coalesce operation merges two metadata perspectives. The specific op-
eration to use for coalescing metadata depends on the kind of metadata. For an 
unordered metadata domain, coalesce is set union, for an ordered domain it is 
interval union (e.g., timestamps are coalesced to create temporal elements 
[20]). 

Example [Versions] Fig. 12 depicts the items and versions in the example in Sec-
tion 2. An abstract representation of the DOM for each snapshot of the data is 
shown. The items in the sequence of snapshots are connected within each grey 
shaded region. There is one gene item and one ontology item. Each item has two 
versions. The transition between versions is shown as a black rectangle on the grey 
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connection arcs. The gene item has a new version when the content of the <desc> 
element changes and the ontology item has a new version when its content is modi-
fied on 2007-02-14. 
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Fig. 12 Items and versions in the example 

4 XML Schema Extensions 

In this section we present the few extensions to XML Schema to support as-
pect-oriented schema design. The presentation has three parts. First we de-
velop an architecture for supporting AOP concepts. Next we sketch the design 
of an aspect, focusing on a temporal aspect. Finally, we show how to specify 
schema cut points to weave the schema aspects into a tapestry. The overarch-
ing design goal in all of these steps is to use XML Schema rather than replace 
or modify it so we chose to keep AOXSchema consistent with the XML 
Schema standard. 

4.1 Architecture 

The architecture of AOXSchema is illustrated in Fig. 13. This figure is central 
to our approach, so we describe it in detail and illustrate it with the example. 
We note that although the architecture has many components, only those com-
ponents shaded grey in the figure, that is the snapshot schema, schema as-
pects, and snapshot data, need to be supplied by a designer. Often a designer 
can reuse part of a schema aspect (only the cut points need to be specified 
anew as described in detail in Section 4.2.2). 

There is one schema aspect for each kind of metadata. In our running ex-
ample there would be a schema aspect for transaction time and one for reli-
ability. The schema aspects together with the snapshot schema are fed into the 
schema weaver to create a schema tapestry. A second tool, the snapshot gluer, 
takes a collection of snapshots and a schema tapestry to produce an aspect-



19 

enhanced data document. Each of the snapshots imports the snapshot schema, 
and we implicitly assume that there is metadata associated with each snapshot; 
this metadata is not shown in the figure. In the running example, the metadata 
would consist of a transaction time and a reliability for each piece of snapshot 
data. The aspect-enhanced document can be validated using a special validat-
ing parser. The parser is a conventional validating parser augmented with a 
second phase that validates the constraints uniquely specified for each aspect. 

That’s an overview of the architecture. We explore each of the pieces in 
more detail in the remainder of this section. 
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Fig. 13 Design and tool architecture 

4.2 Designing a Schema Aspect 

AOXSchema extends XML Schema with annotations to denote aspect-
enhanced element types, but otherwise leaves XML Schema unchanged. The 
annotations are made in the relevant schema aspect (such as the temporal 
schema aspect or the reliability schema aspect seen in Fig. 13). Each of the 
annotations is described in more detail below. 

4.2.1 Items 
The annotation is an <aop:item> element. The annotation denotes that ele-
ments of that type can be items. The aop namespace indicates that the annota-
tion is part of AOXSchema. As mentioned previously, items are XML ele-
ments that persist across snapshots. An identifier needs to be defined for each 
item to enable gluing or connecting the elements from different snapshots 
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(particularly given that much new data might be introduced between snap-
shots, and the same <gene> element could look quite different across snap-
shots). Therefore, within an <aop:item> element there must appear an item 
identifier. Such an identifier has the following general form. 
  <aop:item> 
    <aop:itemIdentifier> 
       <aop:field path="XPath expression"/> 
       … 
       <aop:field path="XPath expression"/> 
    </aop:itemIdentifier> 

    … 

  </aop:item> 

An item identifier is list of fields, each of which is a (relative) XPath path 
expression. Once an item is defined, it is further annotated with aspect spe-
cific constraints. 

4.2.2 Cut points and SchemaPath 
An item annotation can appear in a schema aspect. It is linked to an element 
type definition in a snapshot schema with an <aop:cutPoint> element. A 
cut point has the following general form. 

  <aop:cutPoint target="SchemaPath expression"> 
     <aop:item …/> 
      … 
  </aop:cutPoint> 

Each cut point has a “target” attribute that designates the location of an ele-
ment type definition in a snapshot schema. The effect of introducing a cut 
point is that it determines which aspect (temporal, reliability, etc.) is relevant 
to an item. More than one aspect could be relevant to an item. In that case, the 
cut point should be the same in each relevant aspect since there must be 
agreement on how an item is identified. 

The value of the target attribute is a SchemaPath expression. SchemaPath is 
a language for locating an element type definition in a snapshot schema; it is a 
reduced form of XPath (essentially XPath--). SchemaPath supports only four 
axes: parent, child, self and attribute, does not have any predicates, 
and has only a restricted set of node tests. SchemaPath’s data model is a graph 
(rather than a tree) that is created by parsing an instance of a schema. The data 
model is created as follows. Each element and attribute definition is a node, 
and a “child” edge is added from a node to each node that represents a possi-
ble sub-element of the node. A recursive sub-element (which is possible in 
XML Schema) will introduce a cycle in the graph. There is also a special “at-
tribute” edge from a node to each attribute for that node. As an example, Fig. 
14 shows the graph for the schema in Fig. 10. The dashed lines in the figure 
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are attribute edges. Though the evaluation of an XPath expression on a graph 
with cycles might not terminate, a SchemaPath expression will always termi-
nate since SchemaPath axes contain nodes that are at most one edge away 
from a context node and any SchemaPath expression has only a finite number 
of axes. 
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Fig. 14 A SchemaPath instance for the example snapshot schema 

Example [Cut points] The biologists would like to capture the transaction time his-
tory of <gene> and <ontology> elements. So they create a temporal aspect. 
Within the temporal aspect they specify the following cut points. 

  <aop:cutPoint target="/gene"> 
     <aop:item …/> 
      … 
  </aop:cutPoint> 

  <aop:cutPoint target="/gene/ontology"> 
     <aop:item …/> 
      … 
  </aop:cutPoint> 

While schema aspects are developed in isolation, they are woven together 
to create a schema tapestry. If an element type definition is annotated by mul-
tiple aspects, the item identifier in each aspect for that definition must be the 
same, or the schema weaver will report an error. 

4.2.3 Aspect-Specific Constraints 
Additional constraints in a schema are optional. The constraints are evaluated 
after an item is glued. The constraints are separately specified for each aspect. 
In this paper we focus only on transaction time. Let’s consider a temporal 
aspect. The constraint specification for a temporal element has the following 
general form, though constraints on other aspects including reliability may 
also be specified (e.g., restrictions on the source or curator agents and their 
roles as described in provenance literature [37]). 
  <txs:transactionTime 
     txs:kind="state (default) | event" 
     txs:contentVarying="false (default) | true" 
     txs:existenceVarying="false |  gaps allowed (default) |  no gaps"/> 
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The kind attribute specifies whether the lifetime of an item has duration; a 
state kind of annotation implies continuity, while an event signifies that the 
lifetime is a single instant. The terminology is borrowed from temporal data-
bases where events occur at a single instant in time (e.g., a wedding on July 
14, 2007), whereas a state occurs over a period of time (e.g., married from 
July 14, 2007 until now) [23]. The contentVarying attribute is used to 
specify whether an item’s content must be constant over time, or can vary. 
The existenceVarying attribute governs whether the element correspond-
ing to a particular item can come and go in various snapshots. If the value of 
the attribute is false, then the underlying element must be in every snapshot 
(or never appear). If the existence is no gaps, then once the element has been 
deleted from a snapshot, it cannot reappear in a later snapshot. Otherwise, an 
item’s existence is unrestricted. Each attribute is optional, as is the transaction 
time element. If the attribute is not specified, the indicated default value ap-
plies. 

Example [AOXSchema] The biologists in our running example are interested pri-
marily in tracking two kinds of changes to the NCBI data: revisions of the gene it-
self and revisions of the ontology elements. Since NCBI does not publish a temporal 
schema, biologists must download individual snapshots and maintain a temporal 
data collection locally.  Towards this end they create the annotations given in Fig. 
11. The gene and ontology element type definitions given in the snapshot NCBI 
schema are annotated to indicate that they are items, and so a version history will be 
kept for each element of those types. While genes can be both content and existence 
varying, a gene’s existence is slightly constrained to disallow gaps since once a gene 
is discovered, it is not deleted and later “re-discovered”. Therefore this constraint 
specifies that in order for the data to be valid a gene cannot be deleted and then 
(later) reinserted.  

Currently, the temporal aspect in AOXSchema has a restricted set of tem-
poral constraints. Richer classes of temporal constraints have been proposed 
[3][12][15], but for simplicity and brevity we limit the variety of constraints 
in the current system. 

4.2.4 The Snapshot Gluer Tool 
The snapshot gluer produces an aspect-enhanced data collection from a set of 
snapshots using a schema tapestry. The algorithm for the snapshot gluer for 
one dimension is outlined in Fig. 15. Recall that aspect-enhanced data is a set 
of items, where each item is a sequence of versions and each version is a data 
element paired with a metadata perspective. So the first task for the gluer is to 
identify items. Towards this end, the gluer evaluates the item identifiers in the 
tapestry for every snapshot to find the elements that belong to each item. 
Next, the gluer forms versions by partitioning the set of elements for an item 
into DOM equivalent subsets. Finally the metadata for each partition is coa-
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lesced as discussed in Section 3.2 to reduce the size of the representation. The 
gluing and coalescing can be done in separate passes for each aspect or for 
every aspect simultaneously; the final result will be the same in either case. 

 Input – Schema tapestry and a set of snapshots. 
Output – An aspect-enhanced data collection. 
Data structures used – Hash table. An item identifier of an item is used 
as a hash key. The item is the hash value. 
Algorithm:  

for every snapshot in the set of snapshots do 
  for every element in the snapshot do 
    if the element type definition is present in a schema aspect 
       evaluate the item identifier 
       if the identifier is in the hash table 
          if the element is DOM equivalent to some version in the item 
             coalesce the metadata with the version 
          else create a new version  

            else create a new item in the hash table, with one version 
 

Fig. 15 The snapshot gluer algorithm 

The time cost of the algorithm is modest. Let S be the number of snapshots, 
E be the number of elements in a snapshot (that is the size of the snapshot), A 
be the number of aspects, V be the number of versions in an item, and M be 
the size of the metadata associated with a version. The algorithm iterates 
through the snapshots and elements within each snapshot; these nested loops 
cost O(S*E). Each time through the inner loop up to O(A) item identifiers are 
evaluated, and at most O(V) versions created. For each version the metadata 
must be coalesced, which costs O(M2) since the metadata in the element must 
be associated with the metadata in the version. Hence the total cost of the 
algorithm is O(S*E*(A+V+M2)). We anticipate that in practice A and M will 
be small, so the cost devolves to O(S*E*V). 

5 The Representational Schema 

The representational schema is a conventional XML Schema document that is 
automatically generated from an AOXSchema document. It is used to validate 
aspect-enhanced data using a conventional validating parser. This section 
describes how to convert the schema tapestry to a representational schema. A 
representational schema is used to validate the representation of the aspect-
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enhanced data. The representational schema is transitory; it is needed only for 
validation, and in fact need never be seen by the user. 

An XML Schema specification can be viewed as a grammar. The grammar 
consists of productions of the following form for each element type. 

  S � <s> � </s> 

In the above production, � describes the content of elements of type S.  
A schema aspect specifies that some of the element types are aspect-

enhanced. To construct a representational schema, several new productions 
are added to the snapshot schema for each aspect-enhanced element type; no 
productions are removed from the snapshot schema though some are modi-
fied. Since only elements can be aspect-enhanced, this section focuses on the 
element-related components of a schema. The construction process consists of 
several steps. We’ll illustrate the process by describing what is done for a 
single, representative aspect-enhanced element type, S.  

The first step is to add a production to indicate that the element type S is 
aspect-enhanced, that is, it could be an item. In situ representations of items 
are replaced by references to that item. The aspect-enhanced production has 
following form: 

  SRef � <sRef itemRef="m"/> 

where <sRef> denotes an aspect-enhanced element of type S and itemRef is 
a reference to an item of type S.  

Next a production is added to define the S item type. 

  SItem � <sItem itemId="n"> SVersion+ </sItem> 

An item has a unique itemId value, and consists of a list of versions.  
The third step is to add a production to specify each version of type S. The 

production for a version of an element of type S has the following form:  

  SVersion � <sVersion> 
           <perspective> � </perspective>  
                         S  
          </sVersion> 

where � is the schema of each aspect’s perspective and S is the snapshot defi-
nition of the element’s type. The perspective in a version records the metadata 
conditions for which the version is valid. We do not impose a particular 
schema for an aspect’s perspective, rather we assume that the schema is given 
separately in an aspect and woven into the schema tapestry. Without loss of 
generality we will assume for the aspects in this paper that each perspective 
has the following form. 

  � � <time start="…" end="…"/>  
      <reliability curated="…"/> 
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The next step is to modify the context in which an aspect-enhanced element 
appears. For each aspect-enhanced element type, S, that appears in the right 
side of a production, replace S with SRef. For example, assume that the 
schema has a production of the following form: 

  X � <x> � S � </x> 

where � and � describe arbitrary content before and after S, respectively. The 
production is replaced by the following production. 

  X � <x> � SRef � </x> 

Only the element type is replaced, any other constraints on the element are 
kept (e.g., minoccurs and maxoccurs are unaffected). This process is repeated 
for every aspect-enhanced element type.  

The final step is to augment the root element type with an additional pro-
duction that appends a list of items. Let the root be an element of type R. Then 
the new root becomes the following. 

  RRoot � <dataRoot> R? XItem* </dataRoot> 

where XItem is a list of item types. The production for XItem is given below, 
where each Si

Item is one of k item types. 

  XItem � S1
Item | … | Sk

Item 

An additional step is needed to recast constraints that appear in the original 
schema. One such constraint is the uniqueness constraint imposed by a DTD 
identifier or XML Schema key definition. Since the same identifiers and key 
values can appear in multiple versions of an element, such values are no 
longer unique in an aspect-enhanced data collection, even though they are 
unique within each snapshot. In temporal relational databases, the concept of 
a temporal key, which combines a snapshot key with a timestamp, has been 
introduced. Temporal keys can be enforced by a temporal validating parser, 
but not by a conventional parser. So constraints that impose uniqueness within 
a snapshot must be relaxed or redefined as follows. The value of each id type 
attribute in an aspect-enhanced element is rewritten to be a unique value; 
idRefs are similarly rewritten. Finally, schema keys are rewritten to include 
itemIds and perspectives, creating a key more like a temporal key.  

It is important to note that the production for the root of the aspect-
enhanced data specifies that it is just a list of items. This enables aspect-
enhanced data to be incrementally validated, which is critical in data stream-
ing applications. 
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Example [Representational schema construction] Let’s go through the construction 
process with an example. Assume that the productions in the schema for the exam-
ple fragment in Fig. 6 are given below. 

    R � <data> G+ </data> 
    G � <gene> D [N | text]* </gene> 
    D � <desc> text </desc> 
    N � <ontology ref="text"> text </ontology> 

Next, assume that the <gene> and <ontology> element types are aspect-
enhanced, as shown in Fig. 11. The schema would be transformed as follows. First, 
productions are added for the aspect-enhanced elements. 

    GRef � <geneRef itemRef="n"/> 
    NRef � <ontologyRef itemRef="m"/> 

Next, productions are added for the items. 

    GItem � <geneItem itemId="n"> GVersion+ </geneItem> 
    NItem � <ontologyItem itemId="m"> NVersion+ </ontologyItem> 

Productions are then added for each version type, and for the perspective in each 
version. 

    GVersion � <geneVersion>  
             <perspective> � </perspective> 
             G 
           </geneVersion> 
    NVersion � <ontologyVersion>  
             <perspective> � </perspective> 
             N 
           </ontologyVersion> 
    � � <time start="…" end="…"/> 
      <reliability curated="…"/> 

The next step is to modify the context (i.e, the right side of productions) in which an 
item could potentially appear. 

    R � <data> GRef+ </data> 
    G � <gene> D [NRef | text]* </gene> 

Finally, the root is modified to include the items. 

     RRoot � <dataRoot> R? [GItem | NItem]* </dataRoot> 

6 Related Work 

Various XML schema specification languages have been proposed in the lit-
erature and in the commercial arena. We chose to extend XML Schema be-



27 

cause it is backed by the W3C and supports most major features available in 
other XML schemas [30]. It would be relatively straightforward to apply the 
concepts in this paper to develop time support for other XML schema lan-
guages; less straightforward but possible would be to apply our approach to 
other data models, such as UML [35]. As an example, we have extended the 
Unifying Semantic Model, a conceptual model similar to the ER Model, to 
utilize annotations [28] very similar to what we propose here. 

The introduction pointed to related work in possible aspects, such as anno-
tations, provenance, lineage, and accuracy of data. Research related to a tem-
poral aspect, that is, the representation of temporal data and documents on the 
web is the most extensive. Grandi has created a bibliography of previous work 
in this area [22]. Marian et al. [31] discuss versioning to track the history of 
downloaded documents. Chien, Tsotras and Zaniolo [10] have researched 
techniques for compactly storing multiple versions of an evolving XML 
document. Buneman et al. [9] provide another means to store a single copy of 
an element that occurs in many snapshots. This paper differs from all of the 
above papers since our focus is on schemas and validation. 

It is possible to capture transaction time information for documents through 
change analysis, as discussed below. Cho and Garcia-Molina [11] provide 
evidence that some web resources change frequently (though not specifically 
XML resources). Nguyen et al. [34] describe how to detect changes in XML 
documents that are accessible via the web [42]. Dyreson et al. [16] describe 
how a web server can capture some of the versions of a time-varying docu-
ment. Yu and Popa provide an algorithm to convert either a list of changes or 
just the original and altered schema to a (more semantic) evolution mapping 
[43]. 

Recently there has been interest in incremental validation of XML docu-
ments [2][36]. AOXSchema takes an orthogonal approach to incremental vali-
dation in so far as the changes to documents can be validated in isolation. 

Two papers have previously addressed the issue of validating even tempo-
ral data [14][17]. In previous work we developed the �XSchema data model 
and architecture. In this paper we generalize the architecture to consider all 
kinds of metadata, not just temporal metadata, and introduce aspects. 

AOXSchema focuses on instance versioning rather than schema versioning 
[21][38]. The schema describes which aspects of an instance document 
change over time. But we assume that the schema itself is fixed, with no ele-
ment types, data types, or attributes being added to or removed from the 
schema over time. In other work we consider schema versioning [18]. 

One final area of related work is intensional XML data (also termed dy-
namic XML documents [1]), that is, parts of XML documents that consist of 
programs that generate data [32]. Incorporating intensional XML data is be-
yond the scope of this paper. 
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7 Conclusion 

This paper presents AOXSchema, an upward-compatible extension of 
XMLSchema that refines and extends the support for valid and transaction 
time in �XSchema with the notion of orthogonal aspects. The impetus for this 
paper arose from an observation by a colleague, Christian S. Jensen, about the 
nature of temporal data. Christian observed that temporal data is metadata 
since it modifies a property of the data, such as its validity. To provide more 
general support for metadata, we adapted techniques from aspect-oriented 
programming to improve the design of schemas for data with embedded 
metadata. AOP was developed to quickly and safely add cross-cutting con-
cerns to any program. Data, like programs, also has cross-cutting concerns 
such as versioning and security. And, like in programs, these concerns are 
poorly supported in schema design. To add a cross-cutting concern like ver-
sioning to a schema, a designer currently has to resort to an ad hoc design. 
Our goal is to help schema designers easily convert existing snapshot schemas 
to aspect-enhanced schemas for the construction, management, and validation 
of data and documents with embedded metadata. 

In our approach a cross-cutting schema concern is implemented in a 
schema aspect. Several such aspects can be woven together with a snapshot 
schema into a schema tapestry. The tapestry has annotations to denote that 
some element types will have metadata. Each annotation includes an item 
identifier, which is used to glue elements, yielding an item. Each change in an 
item over time creates a new version of the item. AOXSchema provides a 
gluer tool to construct an aspect-enhanced data collection. The system also 
has a special validating parser. The parser combines a conventional validating 
parser with aspect-specific constraint checkers. To validate an aspect-
enhanced document, a schema tapestry is first converted to a representational 
schema, which is a conventional XML Schema document that describes how 
the data and embedded metadata is represented. The representational schema 
is carefully constructed to ensure that every snapshot conforms to the snap-
shot schema. 

The architectural design of the infrastructure and even of the schema lan-
guage itself is driven by the critical requirement from biologists, and indeed, 
from data users generally, of upward compatibility, of data, of schemas, and 
even of tools and infrastructure, in the support of data with embedded meta-
data. This paper has demonstrated how a schema for data can be extended 
very simply from a snapshot schema, and then how the data manipulation, 
principally gluing and validation of such data and schema, can be done, utiliz-
ing conventional, well-understood tools. 

We have designed and implemented tools (including the schema weaver, 
snapshot gluer, and validating parser illustrated in Figure 13) for transaction 
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time. These tools show that our approach works and has the advantages listed 
above. We are now extending these tools to support a second aspect, valid 
time, which involves considering interaction between multiple aspects, as a 
schema may just contain transaction time, just contain valid time, or be bitem-
poral, that is, contain both transaction and valid time. Our next task is to gen-
eralize these tools to permit additional aspects to be incorporated in an or-
thogonal, plug-compatible manner. We plan to then evaluate our approach via 
the reliability aspect. 

Subsequently, we plan to integrate AOXSchema with an XML-based edi-
tor. By incorporating AOXSchema, an editor should be able to provide im-
proved revision control and a change tracking feature. We have done this for 
an editor for the afore-mentioned temporal USM conceptual model [29]; it 
turns out that the upward-compatibility of the language design extends even to 
design support environment. Another broad area of work is optimization and 
efficiency. Currently there is no separation of elements or attributes based on 
the relative frequency of update. In the situation that some elements (for ex-
ample) vary at a significantly different rate than other elements, it may prove 
more efficient to split the schema into pieces such that elements with similar 
“rates of change” are together [24]. 
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