
Efficient Sequenced Temporal Integrity Checking

Wei Li* Richard T. Snodgrasst Shiyan Dengt Vineel K. Gattut

Aravindan Kasthurirangant

*Oracle Corporation +Department of Computer Science *Microsoft Corporation
Redwood Shores, CA University of Arizona Redmond, WA

weili@us.oracle.com {rts,shiyand,arvindk}@cs.arizona.edu

Abstract

Primary key and referential integrity are the most widely
used integrity constraints in relational databases. Each has
a sequenced analogue in temporal databases, in which the
constraint must apply independently at every point in time.
In this paper; we assume a stratum approach, which ex-
presses the checking in conventional SQL, as triggers on
period-stamped relations. We evaluate several novel ap-
proaches that exploit B+-tree indexes to enable efJicient
checking of sequenced primary key (SPK) and referen-
tial integrity (SRI) constraints. We start out with a brute
force SPK algorithm, then adapt the Relational Interval-
tree overlap algorithm. After that, we propose a new
method, the Straight Traversal algorithm, which utilizes the
B+-tree more directly to identifV when multiple key values
are present. Our evaluation, on two platforms, shows that
Straight Traversal algorithm approaches the p e ~ o r m a n c e
of built-in nontemporal primary key and referential integrity
checking, with constant time per tuple.

1 Introduction

Primary key and referential integrity are the most widely
used integrity constraints in relational databases. SQL for
years has included syntax to easily specify the attributes that
serve as a primary key for the relation, as well as the at-
tributes that refer to other relations.

A temporal database captures time-varying information
[Jensen99]. For the purposes of this paper, we assume
that each relation is a period-stamped valid-time state re-
lation [Jensen98], recording when a fact held in the mod-
eled reality. The algorithms we consider apply equally well
to transaction-time relations, recording when a fact was
present in the database.

Each non-temporal integrity constraint has a sequenced
analogue over a temporal relation, in which the con-

straint must apply independently at every point in
time [Snodgrass99]. For a sequenced primary key, at each
point in time there are no two tuples that have the same
snapshot primary key. Note that there may be two tuples
having the same value-equivalent snapshot primary key, but
the two tuples cannot be associated with an overlapped va-
lidity period.

Sequenced referential integrity has a similar meaning:
for every point in the validity period of a tuple in the ref-
erencing relation, there is always a corresponding tuple in
the referenced relation with the required foreign key value.

There are two basic ways to implement a sequenced in-
tegrity constraint, or in general any temporal functional-
ity: either modify the underlying DBMS, or implement that
functionality on top of a conventional DBMS, in a stra-
tum that translates a temporal expression into conventional
SQL [Torp98]. In this paper, we focus on the stratum ap-
proach, though our method can also be embedded within
a DBMS. We define sequenced integrity checking as con-
ventional SQL triggers; these triggers will make the appro-
priate checks during any database modification (insertion,
deletion, or update).

Conventional primary key and referential constraint
checking rely on indexes to locate offending duplicates and
missing referents. As we will see, while adding indexes def-
initely improves the performance of a brute force sequenced
trigger, the performance is still woefully inadequate. The
underlying problem is that there is no total ordering on pe-
riods, so a point-based index such as a B+-tree is less effec-
tive here. That is the reason that so many temporal indexes
[Salzberg99] have been proposed. However, given that we
are using a stratum, we cannot blithely define a temporal
index, because we are viewing the underlying DBMS as a
black box that implements SQL. Rather, we have to emit
triggers expressed in standard SQL that indirectly utilize
the various services of the DBMS, including conventional
B+-tree indexes.

13 1
1063-6382/01$10.00 0 2001 IEEE

mailto:weili@us.oracle.com
mailto:rts,shiyand,arvindk}@cs.arizona.edu

The rest of this paper investigates several novel algo-
rithms that exploit Bf-tree indexes on auxiliary relations.
For sequenced primary key (S P K) , we adapt the Relational-
Interval Tree Overlap algorithm [KriegeIOO], which uses
a B+-tree to effectively encode an interval tree, which it
traverses level-by-level in SQL. We then propose a new
method, the Straight Traversal Algorithm, which utilizes the
B+-tree more directly to identify when multiple key values
are present.

For sequenced referential integrity (SRI), the Relational-
Interval Tree algorithm doesn’t apply, because the relevant
predicate is contains rather than overlap (the period times-
tamps of the referenced relation for the snapshot key must
contain the period of the referencing tuple). We introduce
the Meets Algorithm, which explicitly identifies gaps in the
referenced relation. We compare this algorithm again to a
brute force SRI algorithm and to the Straight Traversal al-
gorithm applied to SRI.

2 Previous Work

Previous work in temporal database integrity constraints
has focused on two basic problems: how to express complex
temporal integrity constraints [Ehrich84, Ga195, Sistla951,
and how to implement such constraints with a minimum
of stored state [Chomicki95, Lipeck87, Plexousakis93]. (A
nice summary of previous work may be found in Wes Cow-
ley’s MS thesis [Cowley99].) As such, this previous work
is peripheral to the problem we address. Stating SPK and
SRI constraints is a straightforward extension of conven-
tional primary key and referential integrity constraints in
SQL. And if we assume a temporal database to start with,
the history is already available as time-stamped tuples in
temporal relations.

Previous research in the area of query evaluation in
temporal databases has focused on novel algorithms, e.g.,
for temporal joins and temporal aggregates, and on novel
storage structures, e.g., temporal indexes for valid-time
databases or transaction-time databases ISalzberg991. Such
approaches are not relevant when a stratum architecture is
imposed.

Recently there has been interest in the stratum approach,
which requires no changes to the underlying DBMS.
Nascimento and Dunham have proposed a temporal in-
dex that uses B+-trees [Nascimento99]. More recently,
Kriegel, Potke and Seidl proposed a Relational-Interval
Tree [KriegelOO], which also exploits conventional B+-
trees. As the latter is specifically designed to support in-
terval intersection, which is the fundamental operation un-
derlying sequenced primary key checking, we will extend
that algorithm, in Section 4.

3 Sequenced Integrity Constraint Checking
in SQL

Let us start with a conventional relation INCUMBENTS
which records which employee holds which job position in
the company.

INCUMBENTS (SSN, PCN) PRIMARY KEY (SSN)
FOREIGN KEY(PCN) REFERENCES POSITIONS

The primary key constraint says that each employee can
have only one position. The foreign key constraint says that
the value of the PCN (position control number) will always
be found in the POSITIONS relation.

3.1 Sequenced Primary Keys

If we want to keep the history for this relation, then we
need to make INCUMBENTS a valid time relation by chang-
ing the schema to:

INCUMBENTS(SSN,PCN,START_DATE,END_DATE,END-DATE)

Alternatively, if we were using a temporal extension of
SQL, such as TSQL2 [Snodgrass95], this conversion could
be stated as something like

ALTER TABLE INCUMBENTS
ADD VALIDTIME(DAY)

When history is added, there may well be several tu-
ples with the same SSN, as illustrated below. (We assume a
closed-closed representation for period timestamps, in that
the STARTDATE and ENDDATE days are contained in the
period.)

SSN I PCN 1 STARTDATE I ENDDATE 3
I 111223333 I 900225 1 1999-01-01 1 1999-05-30 1

I

111223333 I 120033 I 1999-06-01 I 1999-09-30

The sequenced analog of the non-temporal primary key
constraint requires that no two tuples have the same value
for the SSN attribute at any point in time. Unfortunately,
none of the following approaches correctly specify a se-
quenced primary key of SSN.

ALTER TABLE INCUMBENTS ADD
PRIMARY KEY (SSN)

PRIMARY KEY (SSN, START-DATE)

PRIMARY KEY (SSN, END-DATE)

PRIMARY KEY (SSN,START-DATE,END-DATE)

ALTER TABLE INCUMBENTS ADD

ALTER TABLE INCUMBENTS ADD

ALTER TABLE INCUMBENTS ADD

132

None of these constraints prevent the following erroneous
tuple from being inserted into the INCUMBENTS relation
(the resulting relation would have two rows with the same
SSN in May and June).

r SSN 1 PCN I STARTDATE I ENDDATE I
I I I I I

[111223333 I 328922 I 1999-05-01 I 1999-06-30 I

The challenge before us is to express the sequenced
constraint efficiently in SQL, as an assertion or trigger
mentioning the timestamp attributes STARTDATE and
ENDDATE. We can use the following brute-force asser-
tion [Snodgrass99] to check the sequenced primary key con-
straint on the INCUMBENTS relation.

CREATE ASSERTION seq-primary-key
CHECK (NOT EXISTS
(SELECT * FROM INCUMBENTS AS I1 WHERE

l<(SELECT COUNT(SSN)
FROM INCUMBENTS AS I2
WHERE Il.SSN=I2.SSN

AND Il.START-DATE<=I2.END-DATE
AND 12.START_DATE<=Il.END-DATE))

Unlike the prior attempts, this assertion is correct; it will
catch any violations, where two tuples with the same SSN
overlap in time. However, this assertion is very slow, for
several reasons. It utilizes an aggregate which must be
evaluated for each tuple in INCUMBENTS. The assertion
will probably read all the tuples in INCUMBENTS (I2) to
check whether their snapshot primary keys are the same and
whether their validity periods intersect. Due to the inequal-
ity predicate, this will probably be evaluated as a nested-
loop self-join, which is of time complexity O (N 2) (where
N is the cardinality of the INCUMBENTS relation). Addi-
tionally, the assertion does not exploit the fact that that be-
fore each change, the temporal relation satisfied the asser-
tion. The only violation possible after the operation is the
conflict between the new tuple with the original tuples in the
relation. Taking this fact into consideration, we can convert
the assertion into a trigger that only checks the new tuple(s),
possibly yielding linear-time performance. In comparison,
conventional primary key checking can be done in constant
time by using B+-tree index (assuming a fixed number of
levels). Now the question becomes: can we use a B+-tree
in such a way to devise a sequenced primary key trigger that
always runs in constant time per tuple modification?

3.2 Sequenced Referential Integrity

Recall that the INCUMBENTS relation referenced the
POSITIONS relation. We now render that latter relation
temporal to investigate sequenced referential integrity.

POSITIONS(PCN, JOB-TITLE,
START-DATE, END-DATE)

A referential integrity constraint specifies that the value
of specified attribute in every tuple of the referencing rela-
tion appears as the value of a specified attribute of a tuple
of the referenced relation. Sequenced referential integrity
requires that at each time point for referencing tuple, there
should be corresponding tuple(s) in referenced relation at
that time. Effectively, the validity period of the referencing
tuple must be contained in the combined validity periods of
the referenced tuples with the appropriate attribute values.

The key is a sequenced foreign key if, for all tuples T in
the referencing relation [Snodgrass991,

0 there is a tuple with that key value valid in the
referenced relation when T started,

0 there is a tuple with that key value valid in the
referenced relation when T stopped,

0 and there are no gaps when there are no tuples in the
referenced relation, during T ’ S period of validity, that
have that key value.

This brute-force approach (Figure 1) is quite complex. The
performance of this assertion is also poor: it involves a self-
join (in this case, several, for the nested sub-queries) as well
as a whole relation search.

CREATE ASSERTION INCUMBENTS-SRI CHECK(
NOT EXISTS(

SELECT * FROM INCUMBENTS AS I
WHERE NOT EXISTS(

SELECT * FROM POSITIONS AS P
WHERE I.PCN = P.PCN

AND P.START-DATE<=I.START-DATE
AND I.START-DATE <= P.END-DATE)

OR NOT EXISTS(
SELECT * FROM POSITIONS AS P
WHERE I.PCN = P.PCN

AND P.START-DATE<=I.END-DATE
AND I.END-DATE<=P.END-DATE)

SELECT * FROM POSITIONS AS P
WHERE I.PCN = P.PCN

OR EXISTS(

AND 1.START-DATE<=P.END-DATE
AND P.END-DATE<I.END-DATE
AND NOT EXISTS(

SELECT * FROM POSITIONS AS P2
WHERE P2.PCN = P.PCN
AND P2.START-DATE+l<=P.END-DATE
AND P.END-DATE < P2.END-DATE))))

Figure 1. Brute-force SRI assertion

133

w e first propose more efficient approaches for SPK, then 5.1 Sequenced Primary Key Checking
turn to SRI.

4 The Relational-Interval Tree Approach
Consider an auxiliary relation with the schema of the

snapshot primary key and a single date value PD, containing
two tuples for every tuple in the original relation, recording

Case 3: old during new

In a recent paper, Kriegel, Potke and Seidl [KriegelOO]
efficiently implement Edelsbrunner’s interval
tree [Edelsbrunner80] on top of a relational database
system, by utilizing an auxiliary relation with two as-
sociated B+-tree indexes. This Relational-Interval Tree
approach yields very fast intersection queries, expressed
as single SQL statements on this auxiliary relation; these
statements indirectly utilize the indexes.

We extend the intersection query to check for SPK vio-
lations: there should be no intersections between the new
interval and existing intervals with the same key attribute
values [LiOl].

The Relational-Interval Tree addresses a more general
problem, interval intersection, which raises the possibility
that an algorithm customized to SPK may be simpler and
more efficient. The next section will present such an ap-
proach.

I 5 The Straight Traversal Approach

The nice thing about the conventional primary key
checking with B+-index is that the index search can be done
in constant time, assuming a fixed tree height. When we use
a B+-tree to effect a primary key check, we use only equal-
ity predicates, which are well suited for point-based data.
For a sequenced PK, the timestamps appear in inequality
predicates, which is the source of inefficiency.

The SPK constraint states the following property: for all
the tuples with the same snapshot primary key, there are no
valid time periods that intersect. In Figure 2, we assume
that all the tuples inserted have the same snapshot primary
key A. When tuple A l , A’ and A3 are inserted, we see that
all the valid time periods hold the SPK constraint. However,
when tuple A4 is inserted, we can see there would be two in-
tersections that violate the constraint. Therefore, A4 cannot
be inserted into the relation.

A3

H
AZ

b
Time Line

Figure 2. The example of SPK constraint for
valid time periods

the validity period’s st&t date and end date.
If we sorted the auxiliary relation on the composite key

of snapshot primary key and date value, we would find that
any two tuples originating from a valid time tuple will al-
ways be consecutive, if the original temporal relation satis-
fies the SPK constraint(cf., Figure 2) . Instead of sorting the
auxiliary relation, we declare a B+-tree index, with an index
key of the snapshot key coupled with the date attribute.

There are four cases, shown in Figure 3 , that may cause
SPK violations. In the figure, new denotes the tuple that
is being inserted or updated, while old denotes the original
tuple in the valid time relation.

new Case 1: old overlap new
old ‘

new Case 4: new during old I old I
I

Figure 3. SPK Violation Cases

As a new tuple is being inserted into the original valid-
time state relation, we first consider the initial three cases in
Figure 3. The inserted new tuple must render the relation
violate the SPK constraint. Because our 13+ has consecutive
pairs of start and end times, it is not difficult to find the vio-
lation point with the help of this index. We only need search
the tree to find whether there exists index entries with the
same snapshot primary key and whose time instant (either
the start or end date) is between the new tuple’s start and
end date. If such an index entry exists, it means that there
exists a tuple in the valid time relation which would overlap
the new tuple, thus violating the SPK constraint.

Case 4 in Figure 3 is a little trickier to detect, especially
given that we must evaluate the check in constant time. On
first thought, we should find a pair of indexes that index to
the same tuple. Then we need to check whether the start or
end time of the new tuple is during the valid time period
of the indexed tuple. We can take advantage of two facts to
make this check simple:

0 In the B+-tree index, all the two index entries corre-

134

sponding to a tuple in the original relation must be
contiguous in the index: there is no overlap or during
relationships between tuples.
Before we execute the check of the fourth case, we
have finished the check for cases 1 ,2 and 3. SO we def-
initely know that cases 1,2, and 3 have not occurred.

5.2 Sequenced Referential Integrity

Now let us extend this algorithm to perform sequenced
referential integrity checking. When we do SRI checking,
we need search all the matched tuples in the referenced rela-
tion. Given that the referenced relation will satisfy the SPK
constraint(we assume that the referenced attributes consti-

The query can be executed by first searching the B+-tree to
find an index entry that is less than the composite key value
of (new’s key, new’s start date) and is the last one (in time)
of all the qualifying index entries. Second, check whether
the date value in the found entry is from the start date or the
end date (this is indicated by an additional bit in the index
entry). If the entry originates from the start date, then the
corresponding index entry containing the end date must be
greater than the composite key (new’s key, new’s end date).
Consequently this is case 4, since the previous query en-
sured that case 1 did not occur. Otherwise, if the found
entry contains the end date, then we know that the old tuple
which may cause the during predicate has finished before
the new’s start date, indicating that the SPK constraint will
not be violated.

The query to check the sequenced primary key for in-
sertion is given in Figure 4. It is not difficult to extend the
query to deal with update (deletion is not an issue, because it
cannot violate a primary key, or SPK, constraint). We term
this the Straight Traversal Approach, in that it differs from
the Relational-Interval Tree approach in that does not sim-
ulate a level-by-level traversal of an interval tree, but rather
traverses the B+-tree directly.

Assertion : sequenced primary key checking for insertion
Input new(the newly inserted tuples)
Var e(index entry)
set e t the index entry where e.pdate >= new.start-date

and e.key. = newhey and not exists f
(f .pdate > newstart-date and

f .key = n e w k e y and e.pdate > f .pdate)
if (e # I) and e.pdate <= new.end-date then

endif
set e t the index entry where e.pdate < new.start-date

(f .pdate < new.start-date and

assertion failed

and e.key = new.key and not exists f

f .key = new.key and e.pdate < f.pdate)
if (e # I) and e.dtype = 0 then

endif
End Assertion

assertion failed

Figure 4. Straight Traversal for SPK Checking

tute a sequenced primary key), we know that the several
tuples combining into one long-period tuple will be con-
tiguous in the B+-tree leaf index entries. Accordingly, for
one referencing tuple, once the starting referenced index en-
try is located, all future reading from the index entry will be
mostly sequential reads, except for moving to the next in-
dex block, which is infrequent. The assertion to check SRI
on insertion is listed in Figure 5 . This algorithm it works in
two steps for one referencing tuple:

1. Find the maximum index entry that is less than the ref-
erencing tuple’s starting date;

2. Iterate until an index entry matches the referencing tu-
ple’s ending date and check for gaps between the two
consecutive index entries.

5.3 Implementation on OracleSi

We elaborate the implementation of the Straight Traver-
sal algorithms on top of the Oracle8i DBMS. No change the
underlying DBMS code is needed. Instead, we use Oracle
triggers to maintain the structure of auxiliary relation. We
assume here the schema of the INCUMBENTS and POSI-
TIONS relations given earlier. The particular triggers are
given elsewhere [LiOl].

We create an auxiliary relation containing the snapshot
primary key and the PD attribute. Every update performed
on the original valid time relation invokes a trigger that
makes the corresponding changes to the auxiliary relation
(e.g., for an insertion, insert two tuples into the auxiliary
relation). Then integrity constraints will be checked on the
auxiliary relation.

For the INCUMBENTS relation, an auxiliary relation
INCUMBENTS-MI RROR is created.

CREATE TABLE INCUMBENTS-MIRROR (
SSN INT NOT NULL,
PD DATE NOT NULL,
DTYPE NUMBER(1)) ;

INCUMBENTS-MIRROR (SSN, PD) ;

In Oracle we can use a so-called index-organized ta-
ble to merge the auxiliary relation and its index: the ta-
ble will contain both the encoded key value and the asso-
ciated attribute values for the corresponding table, instead

CREATE INDEX MIRROR-IDX ON

135

Assertion : sequenced referential integrity
Input new(the newly inserted tuples)
Var e(index entry)
Var e-first(index entry)
Var e-second(index entry)
set e t the index entry where e.pdate <= newdar t -da te

(f .pdate <= newdar t -da te and
and e.key = new. f -key and not exists f

f .key = new. f -key and e.pdate < f .pdate)
if (e

endif
set e-first t e
set e-second t the next index entry after e
while (checking is not finished)

I) or e.dtype = 1 then
assertion failed

if (e-second.pdate < new.end-date) then
set e t e-second
set e- f irst t the first next index entry
set e-second t the second next index entry
if (e.pdate not meet e-first.pdate)

endif

return successful

assertion failed

else

endif
end while
End Assertion

Figure 5. Straight Traversal Algorithm for SRI
Checking

of ROWID which would be used to retrieve the correspond-
ing tuple in the regular B+-tree index. One problem is
that the index-organized table requires a primary key for
the creation of a unique B+-index. With our time period
representation, it is possible that the start time is the same
as the end time (if the period of validity is one day long).
Consequently, we cannot create a unique index on the at-
tributes (SSN, PD) . For this reason, we include the DTYPE
attribute. The schema definition for the index-organized ta-
ble definition is as follows.

CREATE TABLE INCUMBENTS-MIRROR (
SSN INT NOT NULL,
PD DATE NOT NULL,
DTYPE NUMBER(l),
PRIMARY KEY (SSN, PD, DTYPE)

) ORGANIZATION INDEX ;

For each tuple in the valid time relation, there will be two
tuples automatically inserted into in the auxiliary relation
by the insertion trigger.

Now, we need to express the two queries in Figure 4 us-
ing SQL commands. The following query can detect the
first three cases in Figure 3. The query looks simple for we
only use SQL to express the condition. The optimizer will
choose the access path similar to the one in the Figure 4.
(This code is part of the insert trigger.)

SELECT I.SSN FROM INCUMBENTS-MIRROR I
WHERE :NEW.SSN=I.SSN
AND I.PD>=:NEW.START-DATE
AND I.PD<=:NEW.END-DATE ;

If the above query succeeds, it means at least there exists
such a tuple whose time instant is between the new's valid
time period. If such a new tuple were inserted, it would
signal an SPK violation.

The following SQL query deals with the fourth case in
Figure 3. The query tries to find whether the greatest tuple
that is less than new's start date is of type 0 or type 1. Type
0 means the tuple contains the start date. So if this query
returns a tuple, there has been an SPK violation.

SELECT I.SSN FROM INCUMBENTS-MIRROR I
WHERE :NEW.SSN=I.SSN
AND I.PD<:NEW.START-DATE AND I.DTYPE=O
AND NOT EXISTS
(SELECT * FROM INCUMBENTS-MIRROR J
WHERE I.SSN=J.SSN
AND J.PD<:NEW.START-DATE
AND J.PD>I.PD) ;

6 The Meets Approach

The fundamental problem with SRI: checking is ensuring
that the collected validity periods of the referenced relation
associated with the snapshot primary key value contain the
validity period of the inserted tuple of the referencing rela-
tion. This involves examining potentially many tuples in the
referenced relation looking for gaps. The Meets Approach
explicitly indicates the gaps via an auxiliary relation that
contains the sequenced primary key, the STARTDATE and
ENDDATE attributes (if a ROWID attribute was present in
the referenced relation, it could substitute for all these at-
tributes), and a DOESMEET attribute, which is 0 if another
tuple meets (i.e., starts immediately after the current tuple
ends), and 1 if there exists a gap immediately following this
tuple (we assume that the foreign key is the primary key of
the referenced relation).

This auxiliary relation simplifies the third clause, the
EXISTS clause to the following.

OR EXISTS
(SELECT * FROM POSITIONS-MIRROR AS PM
WHERE I.PCN = PM.PCN

136

AND 1-START-DATE<=PM.END-DATE
AND PM-END-DATE<I.END-DATE
AND PM.DOES-MEET=O)

ZOOM)

18000
16ooo
14000
12MK)

lw00
8000
MMO

40%

m
0 " " ; " " % E g g

1000-tupks h the transaction

A B+-tree index on SSN and ENDDATE works best.
This simplification, which speeds up the assertion, also

has a significant cost, in that the auxiliary relation, in par-
ticular the DOESMEET attribute, has to be maintained for
the referenced relation.

1

i
w

- 0

;
C

5 U
-
w
e

F
:

7 Evaluation

Our experiments examine sequenced primary key and
sequenced referential integrity in turn. The experiments
were conducted on Oracle 8i system on a Pentium I1
266MHd512KB cache with 128MB of main memory and
4GB hard disks. To demonstrate that this approach is also
feasible in other systems, we also tested the performance on
Microsoft SQL Server 7.0 on this machine.

7.1 Sequenced Primary Key Checking

We compared the brute-force approach, the Relational-
Interval Tree approach (the specific version used in the per-
formance study reported in [KriegelOO]), and the Straight
Traversal approach to SPK (both with a separate index and
using an index-organized table). The tests consist of trans-
actions that, starting with an empty relation, insert from 2K
to 1M correct tuples into the valid time relation, with each
tuple containing 116 bytes. We configured the inserted tu-
ples so that both checks are required for the Straight Traver-
sal approach.

We also measured the performance of maintaining one
conventional primary key on the snapshot primary key and
the start date. As emphasized in Section 3.1, this constraint
is inadequate; we include this only to compare the perfor-
mance of the (easier) snapshot primary key implemented
within the DBMS with the (more difficult) sequenced pri-
mary key implemented outside the DBMS in the stratum
via a trigger.

We started by inserting data in order by snapshot primary
key, which will always add entries to the end of the index.
In Figure 6(a), the three SPK and internal conventional pri-
mary key algorithms are compared. Note that the x-axis is
exponential, while the y-axis is linear. The brute force al-
gorithm is not competitive, and so is not considered further.
Although it took a long time for the transaction to finish, the
speed is only around three times slower than the transaction
with built-in primary keys.

As Figure 6(b) shows, the time for each insertion is con-
stant for all methods, with the Straight Traversal SPK al-
gorithm being 2.7-3.3 times slower than the conventional
primary key internal algorithm, and the Relational-Interval

Tree algorithm being about 14.6 times slower. We also tried
these same tests on Microsoft SQL Server 7, and found that
the Straight Traversal SPK algorithm was 16.7 times slower
than the conventional primary key. The results were quite
similar to that for Oracle 8i. However, we can not report
those measurements because the vendors do not allow direct
comparisons to be published.(the Relational-Interval Tree
algorithm requires object-relational support, and thus is not
applicable to SQL Server 7).

; i ; ! 2 ; L t e ~m
0 0 0 0

1wMuples k the transactm

a. b.

Figure 6. The performance of SPK checking
on Oracle 8i

The next two tests use more realistic data distributions,
specifically, randomized data sets and data sets with gaps.
In this way, the index entry's insertion into the B+-tree will
be unordered and the expansion of B+-tree will be more re-
alistic. The gaps were located after every sequence of five
consecutive periods. Figure 7 compares the performance
with a randomized data set; Figure 8 compares the perfor-
mance with gaps (again, on a randomized data set). The
left side of each figure includes the Relational-Interval Tree
algorithm; the right side focuses on the Straight Traversal
algorithm; note the smaller range of times on the y-axis.
In both tests, the Straight Traversal SPK approach remains
constant time across a wide range of relation sizes, while
the RI-tree algorithm does not scale well.

The tests to this point all involve insertions. We now con-
sider updates, which are each logically a deletion followed
by an insertion. We first insert a number of tuples in the
base relation (from 50K tuples to 600K tuples). After that,
we randomly choose 10K tuples for update. Figure 9 gives
the time for each update of this experiment. From the com-
parison to the update with traditional primary key, we can
see the Straight Traversal SPK algorithm scales very well.
In fact, for large relations, using an index-organized auxil-
iary table is only 18% slower than the internal conventional
primary key checking.

137

120 ,

+-Sta@l Traversalwh ndexsrgan~ed bbb

N b m A - N W C m m W
o o o ~ m b ~ m b ~ m

0 0 0 0 0 0 0 0

1000-luples in the transaction

a b.

Figure 7. SPK checking randomized data sets
on Oracle 8i

a. b.

Figure 8. SPK checking randomized data sets
with gaps on Oracle 8i

7.2 Sequenced Referential Integrity Checking

For sequenced referential integrity, three algorithms are
relevant: the Brute Force SRI algorithm, the Meets algo-
rithm, and the Straight Traversal SRI algorithm. (Recall that
since the Relational-Interval Tree approach is built upon an
interval intersection algorithm, it is not appropriate for the
contains test in SRI.)

In referential integrity checking, we have two relations:
the referencing relation and the referenced relation. Be-
cause referential integrity checking is done on the refer-
enced relation to see whether there exists corresponding tu-
ple(s) over the entire validity period of the tuple inserted
into the referencing relation, the performance of that in-
sertion will depend on how many tuples in the referenced
relation need to be checked. The time spent in referential
integrity check for a long-lived tuple would be much more

90 I -e- Straight , I ' Traversalwith 1 1

I +Straight

separate index
I

F 50 00 LTO 200 250 300 350 400 450 500 550 600 '
1000tuples in the transaction

Figure 9. Updates with SPK checking on Ora-
cle 8i

than that of a short-lived tuple.
The experiment begins by inserting a number of tuples

into the referenced relation (from 2K tuples to 640K tu-
ples). For each snapshot primary key there are eight tu-
ples with consecutive periods, thus the number of snapshot
primary key values in the referenced relation ranges from
250 to 80K. Then, we insert 10K tuples (fewer for less than
80K tuples in the referenced relation) into the referencing
relation. For each test, we control how many tuples in the
referenced relation overlap with the inserted tuple, from one
overlapping tuple (for a short-lived inserted tuple) to eight
overlapping tuples (for a relatively long-lived inserted tu-
ple).

We first consider the Meets algorithm, which turns out to
perform poorly with regard to the Straight Traversal SRI al-
gorithm. The culprit is not the SRI check; rather, it is main-
taining the DOESMEET attribute in the referenced relation.
We tried this portion of the Meets algorithm two ways, one
without and one with an index (on PCN and STARTDATE)
on the referenced relation. In Figure 10(a), we see the total
time, in minutes; in Figure 10(b), we see the per-tuple time
in milliseconds (the comparison is to conventional primary
key checking). Clearly maintaining that attribute simply re-
quires too much time.

The Brute Force algorithm can also be eliminated. For
inserting only 1000 tuples into a relation referencing a rela-
tion with 80K tuples, this algorithm required 270 minutes,
which as we'll see shortly, is not even in the ballpark with
the other approaches.

Since the Brute Force and Meets algorithms are so slow,
we will now focus just on the Straight Traversal SRI algo-
rithm. The different curves in Figure 11 compare the per-
formance of the stratum-based Straight Traversal SRI al-
gorithm with short-lived (overlaps one tuple) to long-lived
(overlaps with eight tuples) with that of the traditional inter-
nal referential integrity checking algorithm. It is clear that

138

C -
E
C 0

U

C m

-

m
f

e
E

0 -
-
L 2 4 6 8 10 12 14 16 18 20 40 80 I

*MEETS

1 +MEETS with index

+-Primary key

2 4 6 8 10 1 2 14 16 18 20 40 80 I
I ' 1000-tuples in the transaction 1000-tuples in the transaction

a. b.

Figure 10. The performance of the Meets al-
gorithm on Oracle 8i

the performance of Straight Traversal SRI checking is in-
dependent to the size of referenced relation, and is only of
a factor of 2 or 3 slower than the conventional foreign key
checking. (As the SRI check does not consult the referenc-
ing relation, the performance would not be affected by the
size of referencing relation.)

2 10 40 LYIlM3M480640 2 10 40 80 160 320 @I €49 1 - '-'-' A'
1ooO4uples in the lransaclion 10CUluples in the transaction

a. b.

Figure 11. The performance of SRI checking
on Oracle 8i

8 Conclusions and Future Work

Sequenced primary key and sequenced referential in-
tegrity are important in temporal databases since such con-
straints will be prevalent, and are expensive when imple-
mented in a brute-force manner.

This paper presents several new approaches that apply
B+-tree indexes to auxiliary relations to check sequenced
constraints in a stratum architecture, thereby not requiring
any changes to the underlying (conventional) DBMS. Trig-

gers expressed in conventional SQL were used to imple-
ment sequenced constraint checking, so that no modifica-
tions to legacy code is needed to perform the sequenced
checking.

We adapted the Relational-Interval Tree overlap algo-
rithm, and also proposed a new method, the Straight Traver-
sal SPK algorithm. For SRI, we proposed the Meets algo-
rithm, and compared this algorithm again to the Brute Force
SRI algorithm and to the Straight Traversal algorithm ap-
plied to SRI.

Our performance evaluation, using Oracle 8i and SQL
Server 7, shows that both brute force approaches exhibit
unacceptable performance. The Straight Traversal algo-
rithm dominates both the Relational-Interval Tree approach
(for SPK) and the Meets approach (for SRI). Further, the
Straight Traversal algorithm scales nicely, with constant
time per tuple, and is a factor of only three to six times
slower than built-in nontemporal primary key and referen-
tial integrity checking.

In future work we would like to investigate how the
Straight Traversal Approach could be applied to sequenced
versions of arbitrary nontemporal constraints (e.g., a man-
ager is always paid more than her subordinates), while re-
taining the excellent performance reported here. In addi-
tion, we need to consider how to handle N O W [Clifford971
in this approach. Because NOW is not constant, but
rather always moves forward, the index entries in the B+-
tree may migrate from one place to another, even there
is no change in the database. There is a modification
of the Relational Interval Tree that accommodates N O W
nicely [KriegelOO]; we would like to find an analogous ex-
tension for the Straight Traversal Approach.

Currently, we only used stratum approach with SQL and
trigger to check the constraints. In reality, this approach
can be implemented inside the DBMS very easily. The only
modification is to insert two B+-tree index entries for each
period. Furthermore, we can use some compressing tech-
niques to make the index smaller. In this way, we can make
the SPK checking as fast as the built-in primary key check-
ing.

We also would also like to generalize the approaches to
bitemporal relations, which support both valid and trans-
action time, and apply these stratum insights to embedded
approaches to sequenced integrity constraint checking.

Acknowledgments

This research was supported in part by NSF grant IIS-
9817798. We thank Marco Potke and Hans-Peter Kriegel
for providing us with their Oracle implementation of the
Relational-Interval Tree.

139

References

[Chomicki95 J J. Chomicki, “Efficient Checking of Tempo-
ral Integrity Constraints Using Bounded History
Encoding,” ACM TODS, 20(2): 149-1 86, June,
1995.

[Chomicki95b] J. Chomicki and D. Toman, “Implementing
Temporal Integrity Constraints Using an Active
DBMS,” IEEE Transactions on Knowledge and
Data Engineering, 7(4):566-582, August, 1995.

[Clifford971 J. Clifford, C. E. Dyreson, T. Jsakowitz,
C. S. Jensen and R. T. Snodgrass, “On the Seman-
tics of ‘Now’ in Databases,” ACM Transactions on
Database Systems, 22(2):171-214, June, 1997.

[Cowley991 W. Cowley, Temporal Integrity Constriants
with Temporal Indeterminacy, M.S. Thesis, Uni-
versity of South Florida, November, 1999.

[Edelsbrunner80] H. Edelsbrunner, “Dynamic Rectangle
Intersection Searching,” Institute for Information
Processing Report 47, Technical University of
Graz, Austria, 1980.

[Ehrich84] H. Ehrich, U. W. Lipeck, and M. Gogolla,
“Specification, Semantics and Enforcement of
Dynamic Database Constraints,” in Proceedings
of the International Conference on Very Large
Databases, pp. 301-308, 1984.

[Gal951 A. Gal, 0. Etzion, and A. Segev, “A Language
for the Support of Constraints in Temporal Active
Databases,” in Proceedings of the ILPS’95 Work-
shop on Constraints, Databases and Logic Pro-
gramming, Portland, Oregon, pp. 42-58, Decem-
ber, 1995.

[Jensen98] C. S. Jensen and C. E. Dyreson (eds),
M. Bohlen, J. Clifford, R. Elmasri, S. K. Gadia,
E Grandi, P. Hayes, S. Jajodia, W. Kafer, N. Kline,
N. Lorentzos, Y. Mitsopoulos, A. Montanari,
D. Nonen, E. Peressi, B. Pernici, J.F. Roddick,
N. L. Sarda, M. R. Scalas, A. Segev, R. T. Snod-
grass, M. D. Soo, A. Tansel, R. Tiberio and
G. Wiederhold, “A Consensus Glossary of Tempo-
ral Database Concepts-February 1998 Version,”
in Temporal Databases: Research and Prac-
tice, 0. Etzion, S. Jajodia, and S. Sripada (eds.),
Springer-Verlag, pp. 367405,1998.

[Jensen99] C. S. Jensen and R. T. Snodgrass, “Temporal
Data Management,” IEEE Transactions on Knowl-
edge and Data Engineering, 11(1):36-44, Jan-
uarymebruary 1999.

[KriegelOO] H.-P. Kriegel, M. Potke, and T. Seidl, “Man-
aging Intervals Efficiently in Object-Relational
Databases,” in Proceedings of the International
Conference on Very Large Databases, Cairo,
Egypt, September, 2000.

W. Li, R. T. Snodgrass, S . Deng, V.K. Gattu and
A. Kasthurirangan, “Efficient Implementation of
Sequenced Operations in a Stratum,” TIMECEN-
TER Technical Report, 2001.

[LiOl]

[Lipeck87] U. W. Lipeck and G. Saake, “Monitoring Dy-
namic Integrity Constraints Based on Tempo-
ral Logic,” Information Systems, 12(3):255-269,
1987.

Nascimento991 M. A. Nascimento and M. H. Dunham,
“Indexing Valid Time Databases via B+-Trees,”
IEEE Transactions on Knowledge and Data En-
gineering, 11(6):929-947,1999.

Plexousakis93] D. Plexousakis, “Integrity Constraint and
Rule Maintenance in Temporal Deductive Knowl-
edge Bases,” in Proceedings of the International
Conference on Very Large Databases, Dublin, Ire-
land, 1993.

[Salzberg99] B. Salzberg and V. J. Tsotras, “Comparison
of Access Methods for Time Evolving Data,” in
ACM Computing Surveys, 31,2(Jun. 1999), Pages
158 - 221

[Sistla951 A. P. Sistla and 0. Wolfson, “Temporal Condi-
tions and Integrity Constraints in Active Database
Systems,” in Proceedings of the ACM SIG-
MOD International Conference on Management
of Data, San Jose, CA, pp. 269-280,1995.

[Snodgrass95] R. T. Snodgrass (ed.), 1. Ahn, G. Ariav,
D. Batory, J. Clifford, C. E. Dyreson, R. El-
masri, E Grandi, C. S. Jensen, W. Kafer, N. Kline,
K. Kulkarni, T. Y. C. Leung, N. Lorentzos,
J. E Roddick, A. Segev, M. I). So0 and S. M. Sri-
pada, The TSQL2 Temporal Query Language,
Kluwer Academic Publishers. 1995.

[Snodgrass99] R. T. Snodgrass, Developing Time-
Oriented Database Application in SQL,
Morgan Kaufmann Publishers, 1999.

[Torp98] K. Torp, C. S. Jensen, and R. T. Snodgrass, “Sup-
porting Temporal Data Management Applications
via Stratum Approaches,” in Proceedings of the
1998 International Database Engineering and Ap-
plications Symposium, Cardiff, Wales, U.K., July
8-10,1998.

140

