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Abstract 

Primary key and referential integrity are the most widely 
used integrity constraints in relational databases. Each has 
a sequenced analogue in temporal databases, in which the 
constraint must apply independently at  every point in time. 
In this paper; we assume a stratum approach, which ex- 
presses the checking in conventional SQL, as triggers on 
period-stamped relations. We evaluate several novel ap- 
proaches that exploit B+-tree indexes to enable efJicient 
checking of sequenced primary key (SPK) and referen- 
tial integrity (SRI) constraints. We start out with a brute 
force SPK algorithm, then adapt the Relational Interval- 
tree overlap algorithm. After that, we propose a new 
method, the Straight Traversal algorithm, which utilizes the 
B+-tree more directly to identifV when multiple key values 
are present. Our evaluation, on two platforms, shows that 
Straight Traversal algorithm approaches the p e ~ o r m a n c e  
of built-in nontemporal primary key and referential integrity 
checking, with constant time per tuple. 

1 Introduction 

Primary key and referential integrity are the most widely 
used integrity constraints in relational databases. SQL for 
years has included syntax to easily specify the attributes that 
serve as a primary key for the relation, as well as the at- 
tributes that refer to other relations. 

A temporal database captures time-varying information 
[Jensen99]. For the purposes of this paper, we assume 
that each relation is a period-stamped valid-time state re- 
lation [Jensen98], recording when a fact held in the mod- 
eled reality. The algorithms we consider apply equally well 
to transaction-time relations, recording when a fact was 
present in the database. 

Each non-temporal integrity constraint has a sequenced 
analogue over a temporal relation, in which the con- 

straint must apply independently at every point in 
time [Snodgrass99]. For a sequenced primary key, at each 
point in time there are no two tuples that have the same 
snapshot primary key. Note that there may be two tuples 
having the same value-equivalent snapshot primary key, but 
the two tuples cannot be associated with an overlapped va- 
lidity period. 

Sequenced referential integrity has a similar meaning: 
for every point in the validity period of a tuple in the ref- 
erencing relation, there is always a corresponding tuple in 
the referenced relation with the required foreign key value. 

There are two basic ways to implement a sequenced in- 
tegrity constraint, or in general any temporal functional- 
ity: either modify the underlying DBMS, or implement that 
functionality on top of a conventional DBMS, in a stra- 
tum that translates a temporal expression into conventional 
SQL [Torp98]. In this paper, we focus on the stratum ap- 
proach, though our method can also be embedded within 
a DBMS. We define sequenced integrity checking as con- 
ventional SQL triggers; these triggers will make the appro- 
priate checks during any database modification (insertion, 
deletion, or update). 

Conventional primary key and referential constraint 
checking rely on indexes to locate offending duplicates and 
missing referents. As we will see, while adding indexes def- 
initely improves the performance of a brute force sequenced 
trigger, the performance is still woefully inadequate. The 
underlying problem is that there is no total ordering on pe- 
riods, so a point-based index such as a B+-tree is less effec- 
tive here. That is the reason that so many temporal indexes 
[Salzberg99] have been proposed. However, given that we 
are using a stratum, we cannot blithely define a temporal 
index, because we are viewing the underlying DBMS as a 
black box that implements SQL. Rather, we have to emit 
triggers expressed in standard SQL that indirectly utilize 
the various services of the DBMS, including conventional 
B+-tree indexes. 
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The rest of this paper investigates several novel algo- 
rithms that exploit Bf-tree indexes on auxiliary relations. 
For sequenced primary key ( S P K ) ,  we adapt the Relational- 
Interval Tree Overlap algorithm [KriegeIOO], which uses 
a B+-tree to effectively encode an interval tree, which it 
traverses level-by-level in SQL. We then propose a new 
method, the Straight Traversal Algorithm, which utilizes the 
B+-tree more directly to identify when multiple key values 
are present. 

For sequenced referential integrity (SRI), the Relational- 
Interval Tree algorithm doesn’t apply, because the relevant 
predicate is contains rather than overlap (the period times- 
tamps of the referenced relation for the snapshot key must 
contain the period of the referencing tuple). We introduce 
the Meets Algorithm, which explicitly identifies gaps in the 
referenced relation. We compare this algorithm again to a 
brute force SRI algorithm and to the Straight Traversal al- 
gorithm applied to SRI. 

2 Previous Work 

Previous work in temporal database integrity constraints 
has focused on two basic problems: how to express complex 
temporal integrity constraints [Ehrich84, Ga195, Sistla951, 
and how to implement such constraints with a minimum 
of stored state [Chomicki95, Lipeck87, Plexousakis93]. (A 
nice summary of previous work may be found in Wes Cow- 
ley’s MS thesis [Cowley99].) As such, this previous work 
is peripheral to the problem we address. Stating SPK and 
SRI constraints is a straightforward extension of conven- 
tional primary key and referential integrity constraints in 
SQL. And if we assume a temporal database to start with, 
the history is already available as time-stamped tuples in 
temporal relations. 

Previous research in the area of query evaluation in 
temporal databases has focused on novel algorithms, e.g., 
for temporal joins and temporal aggregates, and on novel 
storage structures, e.g., temporal indexes for valid-time 
databases or transaction-time databases ISalzberg991. Such 
approaches are not relevant when a stratum architecture is 
imposed. 

Recently there has been interest in the stratum approach, 
which requires no changes to the underlying DBMS. 
Nascimento and Dunham have proposed a temporal in- 
dex that uses B+-trees [Nascimento99]. More recently, 
Kriegel, Potke and Seidl proposed a Relational-Interval 
Tree [KriegelOO], which also exploits conventional B+- 
trees. As the latter is specifically designed to support in- 
terval intersection, which is the fundamental operation un- 
derlying sequenced primary key checking, we will extend 
that algorithm, in Section 4. 

3 Sequenced Integrity Constraint Checking 
in SQL 

Let us start with a conventional relation INCUMBENTS 
which records which employee holds which job position in 
the company. 

INCUMBENTS (SSN, PCN) PRIMARY KEY (SSN) 
FOREIGN KEY(PCN) REFERENCES POSITIONS 

The primary key constraint says that each employee can 
have only one position. The foreign key constraint says that 
the value of the PCN (position control number) will always 
be found in the POSITIONS relation. 

3.1 Sequenced Primary Keys 

If we want to keep the history for this relation, then we 
need to make INCUMBENTS a valid time relation by chang- 
ing the schema to: 

INCUMBENTS(SSN,PCN,START_DATE,END_DATE,END-DATE) 

Alternatively, if we were using a temporal extension of 
SQL, such as TSQL2 [Snodgrass95], this conversion could 
be stated as something like 

ALTER TABLE INCUMBENTS 
ADD VALIDTIME(DAY) 

When history is added, there may well be several tu- 
ples with the same SSN, as illustrated below. (We assume a 
closed-closed representation for period timestamps, in that 
the STARTDATE and ENDDATE days are contained in the 
period.) 

SSN I PCN 1 STARTDATE I ENDDATE 3 
I 111223333 I 900225 1 1999-01-01 1 1999-05-30 1 

I 

111223333 I 120033 I 1999-06-01 I 1999-09-30 

The sequenced analog of the non-temporal primary key 
constraint requires that no two tuples have the same value 
for the SSN attribute at any point in time. Unfortunately, 
none of the following approaches correctly specify a se- 
quenced primary key of SSN. 

ALTER TABLE INCUMBENTS ADD 
PRIMARY KEY (SSN) 

PRIMARY KEY (SSN, START-DATE) 

PRIMARY KEY (SSN, END-DATE) 

PRIMARY KEY (SSN,START-DATE,END-DATE) 

ALTER TABLE INCUMBENTS ADD 

ALTER TABLE INCUMBENTS ADD 

ALTER TABLE INCUMBENTS ADD 
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None of these constraints prevent the following erroneous 
tuple from being inserted into the INCUMBENTS relation 
(the resulting relation would have two rows with the same 
SSN in May and June). 

r SSN 1 PCN I STARTDATE I ENDDATE I 
I I I I I 

[ 111223333 I 328922 I 1999-05-01 I 1999-06-30 I 

The challenge before us is to express the sequenced 
constraint efficiently in SQL, as an assertion or trigger 
mentioning the timestamp attributes STARTDATE and 
ENDDATE. We can use the following brute-force asser- 
tion [Snodgrass99] to check the sequenced primary key con- 
straint on the INCUMBENTS relation. 

CREATE ASSERTION seq-primary-key 
CHECK (NOT EXISTS 
(SELECT * FROM INCUMBENTS AS I1 WHERE 

l<(SELECT COUNT(SSN) 
FROM INCUMBENTS AS I2 
WHERE Il.SSN=I2.SSN 

AND Il.START-DATE<=I2.END-DATE 
AND 12.START_DATE<=Il.END-DATE)) 

Unlike the prior attempts, this assertion is correct; it will 
catch any violations, where two tuples with the same SSN 
overlap in time. However, this assertion is very slow, for 
several reasons. It utilizes an aggregate which must be 
evaluated for each tuple in INCUMBENTS. The assertion 
will probably read all the tuples in INCUMBENTS ( I2 ) to 
check whether their snapshot primary keys are the same and 
whether their validity periods intersect. Due to the inequal- 
ity predicate, this will probably be evaluated as a nested- 
loop self-join, which is of time complexity O ( N 2 )  (where 
N is the cardinality of the INCUMBENTS relation). Addi- 
tionally, the assertion does not exploit the fact that that be- 
fore each change, the temporal relation satisfied the asser- 
tion. The only violation possible after the operation is the 
conflict between the new tuple with the original tuples in the 
relation. Taking this fact into consideration, we can convert 
the assertion into a trigger that only checks the new tuple(s), 
possibly yielding linear-time performance. In comparison, 
conventional primary key checking can be done in constant 
time by using B+-tree index (assuming a fixed number of 
levels). Now the question becomes: can we use a B+-tree 
in such a way to devise a sequenced primary key trigger that 
always runs in constant time per tuple modification? 

3.2 Sequenced Referential Integrity 

Recall that the INCUMBENTS relation referenced the 
POSITIONS relation. We now render that latter relation 
temporal to investigate sequenced referential integrity. 

POSITIONS(PCN, JOB-TITLE, 
START-DATE, END-DATE) 

A referential integrity constraint specifies that the value 
of specified attribute in every tuple of the referencing rela- 
tion appears as the value of a specified attribute of a tuple 
of the referenced relation. Sequenced referential integrity 
requires that at each time point for referencing tuple, there 
should be corresponding tuple(s) in referenced relation at 
that time. Effectively, the validity period of the referencing 
tuple must be contained in the combined validity periods of 
the referenced tuples with the appropriate attribute values. 

The key is a sequenced foreign key if, for all tuples T in 
the referencing relation [ Snodgrass991, 

0 there is a tuple with that key value valid in the 
referenced relation when T started, 

0 there is a tuple with that key value valid in the 
referenced relation when T stopped, 

0 and there are no gaps when there are no tuples in the 
referenced relation, during T ’ S  period of validity, that 
have that key value. 

This brute-force approach (Figure 1) is quite complex. The 
performance of this assertion is also poor: it involves a self- 
join (in this case, several, for the nested sub-queries) as well 
as a whole relation search. 

CREATE ASSERTION INCUMBENTS-SRI CHECK( 
NOT EXISTS( 

SELECT * FROM INCUMBENTS AS I 
WHERE NOT EXISTS( 

SELECT * FROM POSITIONS AS P 
WHERE I.PCN = P.PCN 

AND P.START-DATE<=I.START-DATE 
AND I.START-DATE <= P.END-DATE) 

OR NOT EXISTS( 
SELECT * FROM POSITIONS AS P 
WHERE I.PCN = P.PCN 

AND P.START-DATE<=I.END-DATE 
AND I.END-DATE<=P.END-DATE) 

SELECT * FROM POSITIONS AS P 
WHERE I.PCN = P.PCN 

OR EXISTS( 

AND 1.START-DATE<=P.END-DATE 
AND P.END-DATE<I.END-DATE 
AND NOT EXISTS( 

SELECT * FROM POSITIONS AS P2 
WHERE P2.PCN = P.PCN 
AND P2.START-DATE+l<=P.END-DATE 
AND P.END-DATE < P2.END-DATE)))) 

Figure 1. Brute-force SRI assertion 
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w e  first propose more efficient approaches for SPK, then 5.1 Sequenced Primary Key Checking 
turn to SRI. 

4 The Relational-Interval Tree Approach 
Consider an auxiliary relation with the schema of the 

snapshot primary key and a single date value PD, containing 
two tuples for every tuple in the original relation, recording 

Case 3:  old during new 

In a recent paper, Kriegel, Potke and Seidl [KriegelOO] 
efficiently implement Edelsbrunner’s interval 
tree [Edelsbrunner80] on top of a relational database 
system, by utilizing an auxiliary relation with two as- 
sociated B+-tree indexes. This Relational-Interval Tree 
approach yields very fast intersection queries, expressed 
as single SQL statements on this auxiliary relation; these 
statements indirectly utilize the indexes. 

We extend the intersection query to check for SPK vio- 
lations: there should be no intersections between the new 
interval and existing intervals with the same key attribute 
values [LiOl]. 

The Relational-Interval Tree addresses a more general 
problem, interval intersection, which raises the possibility 
that an algorithm customized to SPK may be simpler and 
more efficient. The next section will present such an ap- 
proach. 

I 5 The Straight Traversal Approach 

The nice thing about the conventional primary key 
checking with B+-index is that the index search can be done 
in constant time, assuming a fixed tree height. When we use 
a B+-tree to effect a primary key check, we use only equal- 
ity predicates, which are well suited for point-based data. 
For a sequenced PK, the timestamps appear in inequality 
predicates, which is the source of inefficiency. 

The SPK constraint states the following property: for all 
the tuples with the same snapshot primary key, there are no 
valid time periods that intersect. In Figure 2,  we assume 
that all the tuples inserted have the same snapshot primary 
key A. When tuple A l ,  A’ and A3 are inserted, we see that 
all the valid time periods hold the SPK constraint. However, 
when tuple A4 is inserted, we can see there would be two in- 
tersections that violate the constraint. Therefore, A4 cannot 
be inserted into the relation. 

A3 

H 
AZ 

b 
Time Line 

Figure 2. The example of SPK constraint for 
valid time periods 

the validity period’s st&t date and end date. 
If we sorted the auxiliary relation on the composite key 

of snapshot primary key and date value, we would find that 
any two tuples originating from a valid time tuple will al- 
ways be consecutive, if the original temporal relation satis- 
fies the SPK constraint(cf., Figure 2) .  Instead of sorting the 
auxiliary relation, we declare a B+-tree index, with an index 
key of the snapshot key coupled with the date attribute. 

There are four cases, shown in Figure 3 ,  that may cause 
SPK violations. In the figure, new denotes the tuple that 
is being inserted or updated, while old denotes the original 
tuple in the valid time relation. 

new Case 1:  old overlap new 
old ‘ 

new Case 4: new during old I old I 
I 

Figure 3. SPK Violation Cases 

As a new tuple is being inserted into the original valid- 
time state relation, we first consider the initial three cases in 
Figure 3.  The inserted new tuple must render the relation 
violate the SPK constraint. Because our 13+ has consecutive 
pairs of start and end times, it is not difficult to find the vio- 
lation point with the help of this index. We only need search 
the tree to find whether there exists index entries with the 
same snapshot primary key and whose time instant (either 
the start or end date) is between the new tuple’s start and 
end date. If such an index entry exists, it means that there 
exists a tuple in the valid time relation which would overlap 
the new tuple, thus violating the SPK constraint. 

Case 4 in Figure 3 is a little trickier to detect, especially 
given that we must evaluate the check in constant time. On 
first thought, we should find a pair of indexes that index to 
the same tuple. Then we need to check whether the start or 
end time of the new tuple is during the valid time period 
of the indexed tuple. We can take advantage of two facts to 
make this check simple: 

0 In the B+-tree index, all the two index entries corre- 
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sponding to a tuple in the original relation must be 
contiguous in the index: there is no overlap or during 
relationships between tuples. 
Before we execute the check of the fourth case, we 
have finished the check for cases 1 ,2  and 3. SO we def- 
initely know that cases 1,2,  and 3 have not occurred. 

5.2 Sequenced Referential Integrity 

Now let us extend this algorithm to perform sequenced 
referential integrity checking. When we do SRI checking, 
we need search all the matched tuples in the referenced rela- 
tion. Given that the referenced relation will satisfy the SPK 
constraint(we assume that the referenced attributes consti- 

The query can be executed by first searching the B+-tree to 
find an index entry that is less than the composite key value 
of (new’s key, new’s start date) and is the last one (in time) 
of all the qualifying index entries. Second, check whether 
the date value in the found entry is from the start date or the 
end date (this is indicated by an additional bit in the index 
entry). If the entry originates from the start date, then the 
corresponding index entry containing the end date must be 
greater than the composite key (new’s key, new’s end date). 
Consequently this is case 4, since the previous query en- 
sured that case 1 did not occur. Otherwise, if the found 
entry contains the end date, then we know that the old tuple 
which may cause the during predicate has finished before 
the new’s start date, indicating that the SPK constraint will 
not be violated. 

The query to check the sequenced primary key for in- 
sertion is given in Figure 4. It is not difficult to extend the 
query to deal with update (deletion is not an issue, because it 
cannot violate a primary key, or SPK, constraint). We term 
this the Straight Traversal Approach, in that it differs from 
the Relational-Interval Tree approach in that does not sim- 
ulate a level-by-level traversal of an interval tree, but rather 
traverses the B+-tree directly. 

Assertion : sequenced primary key checking for insertion 
Input new(the newly inserted tuples) 
Var e(index entry) 
set e t the index entry where e.pdate >= new.start-date 

and e.key. = newhey  and not exists f 
(f .pdate > newstart-date and 

f .key = n e w k e y  and e.pdate > f .pdate) 
if (e # I) and e.pdate <= new.end-date then 

endif 
set e t the index entry where e.pdate < new.start-date 

(f .pdate < new.start-date and 

assertion failed 

and e.key = new.key and not exists f 

f .key = new.key and e.pdate < f.pdate) 
if ( e  # I) and e.dtype = 0 then 

endif 
End Assertion 

assertion failed 

Figure 4. Straight Traversal for SPK Checking 

tute a sequenced primary key), we know that the several 
tuples combining into one long-period tuple will be con- 
tiguous in the B+-tree leaf index entries. Accordingly, for 
one referencing tuple, once the starting referenced index en- 
try is located, all future reading from the index entry will be 
mostly sequential reads, except for moving to the next in- 
dex block, which is infrequent. The assertion to check SRI 
on insertion is listed in Figure 5 .  This algorithm it works in 
two steps for one referencing tuple: 

1. Find the maximum index entry that is less than the ref- 
erencing tuple’s starting date; 

2. Iterate until an index entry matches the referencing tu- 
ple’s ending date and check for gaps between the two 
consecutive index entries. 

5.3 Implementation on OracleSi 

We elaborate the implementation of the Straight Traver- 
sal algorithms on top of the Oracle8i DBMS. No change the 
underlying DBMS code is needed. Instead, we use Oracle 
triggers to maintain the structure of auxiliary relation. We 
assume here the schema of the INCUMBENTS and POSI- 
TIONS relations given earlier. The particular triggers are 
given elsewhere [LiOl]. 

We create an auxiliary relation containing the snapshot 
primary key and the PD attribute. Every update performed 
on the original valid time relation invokes a trigger that 
makes the corresponding changes to the auxiliary relation 
(e.g., for an insertion, insert two tuples into the auxiliary 
relation). Then integrity constraints will be checked on the 
auxiliary relation. 

For the INCUMBENTS relation, an auxiliary relation 
INCUMBENTS-MI RROR is created. 

CREATE TABLE INCUMBENTS-MIRROR ( 
SSN INT NOT NULL, 
PD DATE NOT NULL, 
DTYPE NUMBER(1) ) ; 

INCUMBENTS-MIRROR ( SSN, PD ) ; 

In Oracle we can use a so-called index-organized ta- 
ble to merge the auxiliary relation and its index: the ta- 
ble will contain both the encoded key value and the asso- 
ciated attribute values for the corresponding table, instead 

CREATE INDEX MIRROR-IDX ON 
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Assertion : sequenced referential integrity 
Input new(the newly inserted tuples) 
Var e(index entry) 
Var e-first(index entry) 
Var e-second(index entry) 
set e t the index entry where e.pdate <= newdar t -da te  

(f .pdate <= newdar t -da te  and 
and e.key = new. f -key and not exists f 

f .key = new. f -key and e.pdate < f .pdate) 
if (e 

endif 
set e-first t e 
set e-second t the next index entry after e 
while ( checking is not finished ) 

I) or e.dtype = 1 then 
assertion failed 

if (e-second.pdate < new.end-date) then 
set e t e-second 
set e- f irst t the first next index entry 
set e-second t the second next index entry 
if (e.pdate not meet e-first.pdate) 

endif 

return successful 

assertion failed 

else 

endif 
end while 
End Assertion 

Figure 5. Straight Traversal Algorithm for SRI 
Checking 

of ROWID which would be used to retrieve the correspond- 
ing tuple in the regular B+-tree index. One problem is 
that the index-organized table requires a primary key for 
the creation of a unique B+-index. With our time period 
representation, it is possible that the start time is the same 
as the end time (if the period of validity is one day long). 
Consequently, we cannot create a unique index on the at- 
tributes ( SSN, PD) . For this reason, we include the DTYPE 
attribute. The schema definition for the index-organized ta- 
ble definition is as follows. 

CREATE TABLE INCUMBENTS-MIRROR ( 
SSN INT NOT NULL, 
PD DATE NOT NULL, 
DTYPE NUMBER(l), 
PRIMARY KEY ( SSN, PD, DTYPE ) 

) ORGANIZATION INDEX ; 

For each tuple in the valid time relation, there will be two 
tuples automatically inserted into in the auxiliary relation 
by the insertion trigger. 

Now, we need to express the two queries in Figure 4 us- 
ing SQL commands. The following query can detect the 
first three cases in Figure 3. The query looks simple for we 
only use SQL to express the condition. The optimizer will 
choose the access path similar to the one in the Figure 4. 
(This code is part of the insert trigger.) 

SELECT I.SSN FROM INCUMBENTS-MIRROR I 
WHERE :NEW.SSN=I.SSN 
AND I.PD>=:NEW.START-DATE 
AND I.PD<=:NEW.END-DATE ; 

If the above query succeeds, it means at least there exists 
such a tuple whose time instant is between the new's valid 
time period. If such a new tuple were inserted, it would 
signal an SPK violation. 

The following SQL query deals with the fourth case in 
Figure 3. The query tries to find whether the greatest tuple 
that is less than new's start date is of type 0 or type 1. Type 
0 means the tuple contains the start date. So if this query 
returns a tuple, there has been an SPK violation. 

SELECT I.SSN FROM INCUMBENTS-MIRROR I 
WHERE :NEW.SSN=I.SSN 
AND I.PD<:NEW.START-DATE AND I.DTYPE=O 
AND NOT EXISTS 
(SELECT * FROM INCUMBENTS-MIRROR J 
WHERE I.SSN=J.SSN 
AND J.PD<:NEW.START-DATE 
AND J.PD>I.PD) ; 

6 The Meets Approach 

The fundamental problem with SRI: checking is ensuring 
that the collected validity periods of the referenced relation 
associated with the snapshot primary key value contain the 
validity period of the inserted tuple of the referencing rela- 
tion. This involves examining potentially many tuples in the 
referenced relation looking for gaps. The Meets Approach 
explicitly indicates the gaps via an auxiliary relation that 
contains the sequenced primary key, the STARTDATE and 
ENDDATE attributes (if a ROWID attribute was present in 
the referenced relation, it could substitute for all these at- 
tributes), and a DOESMEET attribute, which is 0 if another 
tuple meets (i.e., starts immediately after the current tuple 
ends), and 1 if there exists a gap immediately following this 
tuple (we assume that the foreign key is the primary key of 
the referenced relation). 

This auxiliary relation simplifies the third clause, the 
EXISTS clause to the following. 

OR EXISTS 
(SELECT * FROM POSITIONS-MIRROR AS PM 
WHERE I.PCN = PM.PCN 

136 



AND 1-START-DATE<=PM.END-DATE 
AND PM-END-DATE<I.END-DATE 
AND PM.DOES-MEET=O) 
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A B+-tree index on SSN and ENDDATE works best. 
This simplification, which speeds up the assertion, also 
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7 Evaluation 

Our experiments examine sequenced primary key and 
sequenced referential integrity in turn. The experiments 
were conducted on Oracle 8i system on a Pentium I1 
266MHd512KB cache with 128MB of main memory and 
4GB hard disks. To demonstrate that this approach is also 
feasible in other systems, we also tested the performance on 
Microsoft SQL Server 7.0 on this machine. 

7.1 Sequenced Primary Key Checking 

We compared the brute-force approach, the Relational- 
Interval Tree approach (the specific version used in the per- 
formance study reported in [KriegelOO]), and the Straight 
Traversal approach to SPK (both with a separate index and 
using an index-organized table). The tests consist of trans- 
actions that, starting with an empty relation, insert from 2K 
to 1M correct tuples into the valid time relation, with each 
tuple containing 116 bytes. We configured the inserted tu- 
ples so that both checks are required for the Straight Traver- 
sal approach. 

We also measured the performance of maintaining one 
conventional primary key on the snapshot primary key and 
the start date. As emphasized in Section 3.1, this constraint 
is inadequate; we include this only to compare the perfor- 
mance of the (easier) snapshot primary key implemented 
within the DBMS with the (more difficult) sequenced pri- 
mary key implemented outside the DBMS in the stratum 
via a trigger. 

We started by inserting data in order by snapshot primary 
key, which will always add entries to the end of the index. 
In Figure 6(a), the three SPK and internal conventional pri- 
mary key algorithms are compared. Note that the x-axis is 
exponential, while the y-axis is linear. The brute force al- 
gorithm is not competitive, and so is not considered further. 
Although it took a long time for the transaction to finish, the 
speed is only around three times slower than the transaction 
with built-in primary keys. 

As Figure 6(b) shows, the time for each insertion is con- 
stant for all methods, with the Straight Traversal SPK al- 
gorithm being 2.7-3.3 times slower than the conventional 
primary key internal algorithm, and the Relational-Interval 

Tree algorithm being about 14.6 times slower. We also tried 
these same tests on Microsoft SQL Server 7, and found that 
the Straight Traversal SPK algorithm was 16.7 times slower 
than the conventional primary key. The results were quite 
similar to that for Oracle 8i. However, we can not report 
those measurements because the vendors do not allow direct 
comparisons to be published.(the Relational-Interval Tree 
algorithm requires object-relational support, and thus is not 
applicable to SQL Server 7). 

; i ; ! 2 ; L t e  ~m 
0 0 0 0  

1wMuples k the transactm 

a. b. 

Figure 6. The performance of SPK checking 
on Oracle 8i 

The next two tests use more realistic data distributions, 
specifically, randomized data sets and data sets with gaps. 
In this way, the index entry's insertion into the B+-tree will 
be unordered and the expansion of B+-tree will be more re- 
alistic. The gaps were located after every sequence of five 
consecutive periods. Figure 7 compares the performance 
with a randomized data set; Figure 8 compares the perfor- 
mance with gaps (again, on a randomized data set). The 
left side of each figure includes the Relational-Interval Tree 
algorithm; the right side focuses on the Straight Traversal 
algorithm; note the smaller range of times on the y-axis. 
In both tests, the Straight Traversal SPK approach remains 
constant time across a wide range of relation sizes, while 
the RI-tree algorithm does not scale well. 

The tests to this point all involve insertions. We now con- 
sider updates, which are each logically a deletion followed 
by an insertion. We first insert a number of tuples in the 
base relation (from 50K tuples to 600K tuples). After that, 
we randomly choose 10K tuples for update. Figure 9 gives 
the time for each update of this experiment. From the com- 
parison to the update with traditional primary key, we can 
see the Straight Traversal SPK algorithm scales very well. 
In fact, for large relations, using an index-organized auxil- 
iary table is only 18% slower than the internal conventional 
primary key checking. 
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Figure 7. SPK checking randomized data sets 
on Oracle 8i 
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Figure 8. SPK checking randomized data sets 
with gaps on Oracle 8i 

7.2 Sequenced Referential Integrity Checking 

For sequenced referential integrity, three algorithms are 
relevant: the Brute Force SRI algorithm, the Meets algo- 
rithm, and the Straight Traversal SRI algorithm. (Recall that 
since the Relational-Interval Tree approach is built upon an 
interval intersection algorithm, it is not appropriate for the 
contains test in SRI.) 

In referential integrity checking, we have two relations: 
the referencing relation and the referenced relation. Be- 
cause referential integrity checking is done on the refer- 
enced relation to see whether there exists corresponding tu- 
ple(s) over the entire validity period of the tuple inserted 
into the referencing relation, the performance of that in- 
sertion will depend on how many tuples in the referenced 
relation need to be checked. The time spent in referential 
integrity check for a long-lived tuple would be much more 
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Figure 9. Updates with SPK checking on Ora- 
cle 8i 

than that of a short-lived tuple. 
The experiment begins by inserting a number of tuples 

into the referenced relation (from 2K tuples to 640K tu- 
ples). For each snapshot primary key there are eight tu- 
ples with consecutive periods, thus the number of snapshot 
primary key values in the referenced relation ranges from 
250 to 80K. Then, we insert 10K tuples (fewer for less than 
80K tuples in the referenced relation) into the referencing 
relation. For each test, we control how many tuples in the 
referenced relation overlap with the inserted tuple, from one 
overlapping tuple (for a short-lived inserted tuple) to eight 
overlapping tuples (for a relatively long-lived inserted tu- 
ple). 

We first consider the Meets algorithm, which turns out to 
perform poorly with regard to the Straight Traversal SRI al- 
gorithm. The culprit is not the SRI check; rather, it is main- 
taining the DOESMEET attribute in the referenced relation. 
We tried this portion of the Meets algorithm two ways, one 
without and one with an index (on PCN and STARTDATE) 
on the referenced relation. In Figure 10(a), we see the total 
time, in minutes; in Figure 10(b), we see the per-tuple time 
in milliseconds (the comparison is to conventional primary 
key checking). Clearly maintaining that attribute simply re- 
quires too much time. 

The Brute Force algorithm can also be eliminated. For 
inserting only 1000 tuples into a relation referencing a rela- 
tion with 80K tuples, this algorithm required 270 minutes, 
which as we'll see shortly, is not even in the ballpark with 
the other approaches. 

Since the Brute Force and Meets algorithms are so slow, 
we will now focus just on the Straight Traversal SRI algo- 
rithm. The different curves in Figure 11 compare the per- 
formance of the stratum-based Straight Traversal SRI al- 
gorithm with short-lived (overlaps one tuple) to long-lived 
(overlaps with eight tuples) with that of the traditional inter- 
nal referential integrity checking algorithm. It is clear that 
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Figure 10. The performance of the Meets al- 
gorithm on Oracle 8i 

the performance of Straight Traversal SRI checking is in- 
dependent to the size of referenced relation, and is only of 
a factor of 2 or 3 slower than the conventional foreign key 
checking. (As the SRI check does not consult the referenc- 
ing relation, the performance would not be affected by the 
size of referencing relation.) 
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Figure 11. The performance of SRI checking 
on Oracle 8i 

8 Conclusions and Future Work 

Sequenced primary key and sequenced referential in- 
tegrity are important in temporal databases since such con- 
straints will be prevalent, and are expensive when imple- 
mented in a brute-force manner. 

This paper presents several new approaches that apply 
B+-tree indexes to auxiliary relations to check sequenced 
constraints in a stratum architecture, thereby not requiring 
any changes to the underlying (conventional) DBMS. Trig- 

gers expressed in conventional SQL were used to imple- 
ment sequenced constraint checking, so that no modifica- 
tions to legacy code is needed to perform the sequenced 
checking. 

We adapted the Relational-Interval Tree overlap algo- 
rithm, and also proposed a new method, the Straight Traver- 
sal SPK algorithm. For SRI, we proposed the Meets algo- 
rithm, and compared this algorithm again to the Brute Force 
SRI algorithm and to the Straight Traversal algorithm ap- 
plied to SRI. 

Our performance evaluation, using Oracle 8i and SQL 
Server 7, shows that both brute force approaches exhibit 
unacceptable performance. The Straight Traversal algo- 
rithm dominates both the Relational-Interval Tree approach 
(for SPK) and the Meets approach (for SRI). Further, the 
Straight Traversal algorithm scales nicely, with constant 
time per tuple, and is a factor of only three to six times 
slower than built-in nontemporal primary key and referen- 
tial integrity checking. 

In future work we would like to investigate how the 
Straight Traversal Approach could be applied to sequenced 
versions of arbitrary nontemporal constraints (e.g., a man- 
ager is always paid more than her subordinates), while re- 
taining the excellent performance reported here. In addi- 
tion, we need to consider how to handle N O W  [Clifford971 
in this approach. Because NOW is not constant, but 
rather always moves forward, the index entries in the B+- 
tree may migrate from one place to another, even there 
is no change in the database. There is a modification 
of the Relational Interval Tree that accommodates N O W  
nicely [KriegelOO]; we would like to find an analogous ex- 
tension for the Straight Traversal Approach. 

Currently, we only used stratum approach with SQL and 
trigger to check the constraints. In reality, this approach 
can be implemented inside the DBMS very easily. The only 
modification is to insert two B+-tree index entries for each 
period. Furthermore, we can use some compressing tech- 
niques to make the index smaller. In this way, we can make 
the SPK checking as fast as the built-in primary key check- 
ing. 

We also would also like to generalize the approaches to 
bitemporal relations, which support both valid and trans- 
action time, and apply these stratum insights to embedded 
approaches to sequenced integrity constraint checking. 

Acknowledgments 

This research was supported in part by NSF grant IIS- 
9817798. We thank Marco Potke and Hans-Peter Kriegel 
for providing us with their Oracle implementation of the 
Relational-Interval Tree. 

139 



References 

[Chomicki95 J J. Chomicki, “Efficient Checking of Tempo- 
ral Integrity Constraints Using Bounded History 
Encoding,” ACM TODS, 20(2): 149-1 86, June, 
1995. 

[Chomicki95b] J. Chomicki and D. Toman, “Implementing 
Temporal Integrity Constraints Using an Active 
DBMS,” IEEE Transactions on Knowledge and 
Data Engineering, 7(4):566-582, August, 1995. 

[Clifford971 J. Clifford, C. E. Dyreson, T. Jsakowitz, 
C. S. Jensen and R. T. Snodgrass, “On the Seman- 
tics of ‘Now’ in Databases,” ACM Transactions on 
Database Systems, 22(2):171-214, June, 1997. 

[Cowley991 W. Cowley, Temporal Integrity Constriants 
with Temporal Indeterminacy, M.S. Thesis, Uni- 
versity of South Florida, November, 1999. 

[Edelsbrunner80] H. Edelsbrunner, “Dynamic Rectangle 
Intersection Searching,” Institute for Information 
Processing Report 47, Technical University of 
Graz, Austria, 1980. 

[Ehrich84] H. Ehrich, U. W. Lipeck, and M. Gogolla, 
“Specification, Semantics and Enforcement of 
Dynamic Database Constraints,” in Proceedings 
of the International Conference on Very Large 
Databases, pp. 301-308, 1984. 

[Gal951 A. Gal, 0. Etzion, and A. Segev, “A Language 
for the Support of Constraints in Temporal Active 
Databases,” in Proceedings of the ILPS’95 Work- 
shop on Constraints, Databases and Logic Pro- 
gramming, Portland, Oregon, pp. 42-58, Decem- 
ber, 1995. 

[Jensen98] C. S. Jensen and C. E. Dyreson (eds), 
M. Bohlen, J. Clifford, R. Elmasri, S. K. Gadia, 
E Grandi, P. Hayes, S. Jajodia, W. Kafer, N. Kline, 
N. Lorentzos, Y. Mitsopoulos, A. Montanari, 
D. Nonen, E. Peressi, B. Pernici, J.F. Roddick, 
N. L. Sarda, M. R. Scalas, A. Segev, R. T. Snod- 
grass, M. D. Soo, A. Tansel, R. Tiberio and 
G. Wiederhold, “A Consensus Glossary of Tempo- 
ral Database Concepts-February 1998 Version,” 
in Temporal Databases: Research and Prac- 
tice, 0. Etzion, S. Jajodia, and S. Sripada (eds.), 
Springer-Verlag, pp. 367405,1998. 

[Jensen99] C. S. Jensen and R. T. Snodgrass, “Temporal 
Data Management,” IEEE Transactions on Knowl- 
edge and Data Engineering, 11(1):36-44, Jan- 
uarymebruary 1999. 

[KriegelOO] H.-P. Kriegel, M. Potke, and T. Seidl, “Man- 
aging Intervals Efficiently in Object-Relational 
Databases,” in Proceedings of the International 
Conference on Very Large Databases, Cairo, 
Egypt, September, 2000. 

W. Li, R. T. Snodgrass, S .  Deng, V.K. Gattu and 
A. Kasthurirangan, “Efficient Implementation of 
Sequenced Operations in a Stratum,” TIMECEN- 
TER Technical Report, 2001. 

[LiOl] 

[Lipeck87] U. W. Lipeck and G. Saake, “Monitoring Dy- 
namic Integrity Constraints Based on Tempo- 
ral Logic,” Information Systems, 12(3):255-269, 
1987. 

Nascimento991 M. A. Nascimento and M. H. Dunham, 
“Indexing Valid Time Databases via B+-Trees,” 
IEEE Transactions on Knowledge and Data En- 
gineering, 11(6):929-947,1999. 

Plexousakis93] D. Plexousakis, “Integrity Constraint and 
Rule Maintenance in Temporal Deductive Knowl- 
edge Bases,” in Proceedings of the International 
Conference on Very Large Databases, Dublin, Ire- 
land, 1993. 

[Salzberg99] B. Salzberg and V. J. Tsotras, “Comparison 
of Access Methods for Time Evolving Data,” in 
ACM Computing Surveys, 31,2(Jun. 1999), Pages 
158 - 221 

[Sistla951 A. P. Sistla and 0. Wolfson, “Temporal Condi- 
tions and Integrity Constraints in Active Database 
Systems,” in Proceedings of the ACM SIG- 
MOD International Conference on Management 
of Data, San Jose, CA, pp. 269-280,1995. 

[Snodgrass95] R. T. Snodgrass (ed.), 1. Ahn, G. Ariav, 
D. Batory, J. Clifford, C. E. Dyreson, R. El- 
masri, E Grandi, C. S. Jensen, W. Kafer, N. Kline, 
K. Kulkarni, T. Y. C. Leung, N. Lorentzos, 
J. E Roddick, A. Segev, M. I). So0 and S. M. Sri- 
pada, The TSQL2 Temporal Query Language, 
Kluwer Academic Publishers. 1995. 

[Snodgrass99] R. T. Snodgrass, Developing Time- 
Oriented Database Application in SQL, 
Morgan Kaufmann Publishers, 1999. 

[Torp98] K. Torp, C. S. Jensen, and R. T. Snodgrass, “Sup- 
porting Temporal Data Management Applications 
via Stratum Approaches,” in Proceedings of the 
1998 International Database Engineering and Ap- 
plications Symposium, Cardiff, Wales, U.K., July 
8-10,1998. 

140 


