
An Architecture for Regulatory Compliant
Database Management

Soumyadeb Mitra #1, Marianne Winslett #2, Richard T. Snodgrass +3, Shashank Yaduvanshi ∗4, Sumedh Ambokar ∗4

#Department of Computer Science, University of Illinois at Urbana-Champaign
1mitra1@cs.uiuc.edu 2winslett@cs.uiuc.edu

+Department of Computer Science, University of Arizona
3rts@cs.arizona.edu

∗Department of Computer Science, Indian Institute of Technology
3hyaduvanshi@gmail.com, sumedh@cse.iitb.ac.in

Abstract— Spurred by financial scandals and privacy concerns,
governments worldwide have moved to ensure confidence in
digital records by regulating their retention and deletion. These
requirements have led to a huge market for compliance storage
servers, which ensure that data are not shredded or altered
before the end of their mandatory retention period. These servers
preserve unstructured and semi-structured data at a file-level
granularity: email, spreadsheets, reports, instant messages. In
this paper, we extend this level of protection to structured data
residing in relational databases. We propose a compliant DBMS
architecture and two refinements that illustrate the additional
security that one can gain with only a slight performance
penalty, with almost no modifications to the DBMS kernel. We
evaluate our proposed architecture through experiments with
TPC-C on a high-performance DBMS, and show that the runtime
overhead for transaction processing is approximately 10% in
typical configurations.

I. INTRODUCTION

Recent regulations require many corporations to ensure
trustworthy long-term retention of their routine business doc-
uments. The US alone has over 10,000 regulations that govern
how business data should be managed, many of which focus
on ensuring that business documents are trustworthy during
their mandated multi-year retention periods [9]. Compliance
is assessed by periodic external audits, with recent fines ex-
ceeding a million dollars for each non-complying Wall Street
firm [34]. For example, Securities and Exchange Commission
Rule 17a-4 [33] and the Sarbanes Oxley Act (SOX) [32]
specify integrity requirements for financial data and retention
periods of 3 years and 7 years, respectively. Other regula-
tions that impose lengthy data retention and trustworthiness
requirements include the Gramm-Leach-Bliley Act, Food and
Drug Administration regulations [31], the Health Insurance
Portability and Accountability Act (HIPAA) [30], and the
Department of Defense Records Management Program under
directive 5015.2.

In response to these laws and directives, a huge market
has developed for compliance storage servers sold by IBM,
EMC, Network Appliance, HP, Sony, and other vendors. For
example, all medium and large financial firms use compliance
storage servers to help them comply with SOX and Rule 17a-4.

These storage servers provide an approximation of write-once
read-many (WORM) storage to ensure that files committed to
the WORM server are read-only during their retention periods
(term-immutable), and cannot be deleted or altered during that
term even by a company system administrator or a hacker
with administrative privileges. All these products work at the
granularity of files, and their security guarantees focus on
providing term-immutability for files. But much corporate data
is stored and managed at a much finer granularity, that of
relational tuples. If we can ensure term-immutability for tuples
at reasonable cost, society can benefit from the resulting im-
provements in accountability and reduction in fraud—benefits
already claimed for SOX and Rule 17a-4 in the case of larger
documents [8].

The simplest way to make tuples term-immutable is to
leverage the file level interface of existing WORM storage
systems, but the obvious approaches are impractical. For
example, storing each tuple and all its subsequent versions
in a separate file would hobble performance, due to the high
cost of opening and closing files. Storing the entire database
in one file on WORM media would require committing a new
copy of the database file after every transaction, thus imposing
severe space and time overheads. Further, an adversary could
tamper with the database file during copying.

In this paper, we first review the accepted threat model
for WORM storage, emphasizing two parameters that are
central to term-immutable databases: a regret interval and a
query verification interval. We then propose a term-immutable
DBMS architecture along with two refinements that reflect
different tradeoffs between security and efficiency. Their se-
curity assurances extend from just ensuring the integrity of the
current DBMS snapshot to guaranteeing the correct execution
of all past transactions. Higher security assurances incur more
cost, both in terms of space requirements on WORM me-
dia and transaction runtime overheads. Database crashes and
aborted transactions present an opportunity for the adversary
to tamper with the database, and we show how to modify
crash recovery and auditing to identify these situations and
handle them correctly. We show that the initial architecture

and both refinements are competitive in terms of space and
runtime performance. We finish by presenting algorithms for
shredding expired tuples.

II. THREAT MODEL

An auditor must be able to differentiate data tampering from
legitimate modifications. In the retention scenarios targeted
by SOX and Rule 17a-4, tampering occurs after a tuple has
been initially correctly stored, so tampering takes the form of
changes to previously stored data. To clarify this threat, it is
helpful to think in terms of transaction-time databases, which
record the entire history of their data [13].

One realization of a transaction-time relation augments the
attributes declared in the CREATE TABLE statement with an
additional start time attribute maintained by the DBMS and
not normally seen by the application. (This approach has been
called a tracking log [23]; another prominent realization uses
another attribute, the stop time.) The start time attribute holds
the time at which a tuple was inserted, that is, the commit
time of the transaction that created the tuple [18], [26]. When
a tuple is updated, the old copy of the tuple (and its start time)
is left intact, and a new version of the tuple with a new start
time is inserted. Deletions are handled by inserting a special
end-of-life tuple whose start time is the time that deletion took
place. In this way, the entire version history of every tuple is
maintained in the database.

Transaction-time databases support temporal SQL queries,
where time can be specified as an additional argument. When
no time parameter is given, the query is evaluated on the latest
versions of all tuples that have not reached the end of their
lives; to make this more efficient, the different versions of a
tuple t can be threaded together on the page where they reside,
so that the slot pointer for t leads to the most recent version
of t [16]. In this paper we use a transaction-time DBMS.

We make several trust assumptions that are appropriate for
the fraud scenarios targeted by SOX and Rule 17a-4. We trust
that the WORM server operates properly. In particular, we
trust that it records the metadata and data of files correctly, and
never overwrites a file during its retention period. Regulators
also make this trust assumption. We assume the server allows
us to append to files, so that it can hold logs. We trust the
DBMS software and surrounding environment used to execute
transactions, and we trust that transactions commit properly;
standard techniques [6], [28] from the security community
can be employed to help ensure that this is so. We also
trust the querying process. For example, a prosecutor can
have a company’s disks removed and brought to her office
for querying and analysis using her own DBMS software. Or
an auditor can use signature-based techniques that are well-
understood in the security community to ensure that he is
running an authentic copy of the DBMS, OS, and supporting
software. Finally, we trust that the adversary cannot tamper
with data while it resides in the DBMS buffer cache. Buffer
cache attacks can be prevented by kernel patches that keep
processes, even those owned by root, from getting read-write
access to other processes’ memory [35]. The only way to

bypass such patches is to replace the kernel and reboot the
DBMS machine, which is hard to carry out without being
detected at the next compliance audit.

For compliance with SOX and Rule 17a-4, the key threat to
tuple term-immutability that we must address is undetectable
alteration or shredding of existing unexpired committed tuples
at the behest of company insiders who wish to retroactively
hide activities recorded in the organization’s DBMS. (Under
current regulatory interpretation, detectable tampering leads to
presumption of guilt, and is punishable by stiff fines and prison
sentences.) For example, a CEO may want to hide illegal asset
shuffling recorded in the company’s financial database.

A secondary threat that we wish to address is the insertion of
tuples with start times that have already passed, in an attempt
to make it appear that an activity took place though in fact it
did not. SOX and Rule 17a-4 do not consider this a key threat,
but we find it compelling for tampering scenarios involving
post-hoc insertion of government electronic records, such as
records of births, deaths, marriages, property transfers, drivers’
licenses, voter registrations, and so on.

The third threat that we must address is the possibility that
evidence of a tuple’s existence persists after its retention period
is over and it has been shredded. In some domains, regulations
require the shredding of expired records. For example, Section
42.1-82 of the Code of Virginia requires shredding of records
containing social security numbers. Evidence of shredded
tuples and the presence of expired but unshredded tuples
and their metadata are corporate liabilities: such evidence can
be subpoenaed and used against the company. Further, the
evidence cannot be destroyed once it has been subpoenaed.

As shown in Figure 1(a), the first tampering threat arises
during the interval between creation and querying, when an
adversary may reach a point of regret and wish to alter
or remove previously-stored data to cover up her misdeeds.
Cover-up attempts are often directed by high-level insiders
(e.g., the CEOs and CFOs of Enron, Global Crossing, Tyco,
and Adelphi). System administrators are vulnerable to pressure
and bribes from high-level insiders. Thus an attacker might
have or assume the identity of any legitimate user or superuser
in the system, and perform any action that person can perform.
More precisely, when an adversary Mala starts to regret the
existence of a tuple, she may take over root on the platform
where the DBMS runs and issue any possible command to the
WORM server in an attempt to modify one or more historical
versions of that tuple in the database. Mala can target any
database file, including data, indexes, logs, and metadata. The
security aspects of a term-immutable DB can be captured by
the following parameters.

• Regret Interval: the minimum time interval we can as-
sume between when a tuple is committed and when an
adversary tries to tamper with it. In current legal interpre-
tations of email SEC compliance [33], that interval is zero.
However, for financial records under SOX compliance, we
can assume an interval of, say, 5 minutes or more before
anyone is likely to regret the presence of a new tuple.

����

�����������	

	���� �
�������

	���� �

� ���������	

	���� �

����	��

������������	
�
� �����������
����

�����	
�

(a) Timeline of a tuple

��������	�

���
�

���
�
�

��������	���

���

��� ��	���
�

���

��������	�������

����

������ ��	�

 ����

� ��	��� ��

 ����

(b) Log-consistent DBMS architecture

Fig. 1. Threat model parameters and term-immutable DBMS architecture. (a) The regret interval is the minimum time between when a tuple is committed
and when it is tampered. The query validation interval is the time gap between querying and validation of the query results. (b) Log-compliant architecture:
the compliance log, the tail of the transaction log, and a snapshot of the database state at the previous audit are stored on WORM. The database itself and
the transaction log reside on ordinary read/write media.

• Query Verification Interval: the interval between the time
t1 when a user issues a transaction and the time t2 when
the user finds out that the database was compliant at t1,
i.e., had not been tampered.

III. RELATED WORK

Database security has received significant research attention
in the context of outsourced databases, specifically, ensuring
data privacy and query correctness when the database is stored
on an untrusted machine [11], [12], [20]. These techniques
typically rely on a trusted data owner who encrypts and signs
the data and index entries appropriately, much like proposals
for cryptographic file systems [2], [4], [10], [14], [19]. All
these techniques require the original owner of the data to be
trustworthy, while in our setting the data owner is a potential
adversary who may have strong incentives to alter and re-
sign data and indexes. More generally, a DBA or system
administrator can take on the data owner’s identity, allowing
her to decrypt and modify data, files, and indexes and re-
sign them. Also, unlike the outsourcing threat model, we trust
the WORM server not to shred committed tuples before they
expire.

Ahmed et al. address the problem of writing and enforcing
tuple retention and shredding policies, expressed as restrictions
on the operations that can be performed on views [1]. They
trust the DBMS to enforce the policies. We address the
complementary problems of ensuring correct query answers
and securing DB tuples against tampering, even by superusers
who edit the DB file directly. Our techniques can be used
to ensure that their policy enforcement queries have been
executed properly.

The other DB security work most relevant to this paper
is on tamper-proof audit logs [24]. In this work, the authors
have the DBMS hash transactional data with cryptographically
strong one-way hash functions. This hash is periodically
signed by a trusted external digital notary, then stored in the
DB. A separate validator checks the database state against

these signed hashes to detect any compromise. If tampering
is detected, a separate forensic analyzer uses other hashes
computed during previous validation runs, to pinpoint when
the tampering occurred and roughly where in the database
the data was tampered [17]. The use of a notary prevents an
adversary, even an auditor or a buggy DBMS, from silently
corrupting the database. The regret interval of this approach
is the interval between consecutive notarization events. Since
notarization is done by a third party, it is challenging to ensure
a small regret interval. Furthermore, the integrity of the state
of the database is only verified at validation time and so
does not guarantee the correctness of queries that ran between
validation points. If an adversary tampers with the database
immediately after notarization, undoes the tampering before
the next notarization, and repeats the process, the attack will
never be detected, even though all queries will see tampered
data.

Researchers have also proposed techniques for protecting
critical DBMS structures against errors [5], [29]. These tech-
niques mainly deal with abnormal corruption caused by soft-
ware errors, not deliberate attacks. An adversary can bypass
these checks by using a file editor on the database file.

IV. THE LOG-CONSISTENT DB ARCHITECTURE

Our log-consistent compliant database architecture and its
refinements store the database state (including tuples, indexes,
and transaction log) on conventional read-write media, and
store a special log of all data changes on WORM. As is
usual for a transaction-time database, all data modification
operations (INSERT, UPDATE, and even DELETE) create a
new physical version of the tuple(s) that they affect. The
compliance log L on WORM contains all such new tuples
added to the database since the last audit. The compliance log
is separate from the usual DBMS logs, and its NEW TUPLE
log records are sent to the WORM server after each transac-
tion commits. (In a later section, we discuss synchronization
requirements for the transaction log and the compliance log.)

In addition, the auditor places a complete snapshot of the
current database state on WORM after every audit, together
with the auditor’s digital signature testifying that the snapshot
is correct. This snapshot plus the log lets the next auditor verify
that the new database state is compliant, as described below.1

We also require the tail (the last two regret intervals) of the
DBMS’s transaction log to be kept on WORM. An untrusted
process can migrate the transaction log tail to ordinary storage
in the background. The tail of the transaction log at the time of
a crash must be preserved on WORM until the end of the next
audit; if no crash occurs, the WORM copy of the transaction
log can be deleted once two regret intervals have passed.

The log-consistent architecture is space-efficient because
each snapshot can expire and be deleted from WORM once the
next snapshot is in place, if desired. Similarly, the compliance
log file can be deleted after every audit. The current tail of
the transaction log must be kept on WORM, plus the tails that
were active at the time of any crashes; but all of these can be
deleted after the next audit.

The auditor must check the signature on the previous
snapshot, and then check that all the tuples in the snapshot,
plus all tuples in NEW TUPLE records in L, are present in
the current database state. (We defer consideration of shredded
tuples to Section VIII. Until a tuple is shredded, it is still
visible to temporal queries, even if it has been deleted.) Let Df

be the set of tuples in the database state, which we will refer
to as the final state. All the tuples in the previous snapshot
state Ds on WORM and in the compliance log L on WORM
must be included in the final state. Slightly abusing notation,
we can write this as:

Tuple Completeness Condition: Df = Ds ∪ L .
As shown in Section IV-C, tuple completeness is necessary

but not sufficient: the auditor must also verify all indexes
and the logical ordering of the versions of each tuple. Before
getting into these details, we first discuss the manner in which
the compliance log is written, and propose techniques for
verifying tuple completeness.

For good performance, we do not want to make transactions
wait to commit until their L records have reached the WORM
server. Fortunately, we expect that in almost all compliance
scenarios, the regret interval will be on the order of minutes.
As shown in Section VII, this gives us plenty of time to
prepare the transaction’s L entries and flush them to the
WORM server. If at any point we are unable to write to L,
transaction processing must halt until the problem is fixed.
For this reason, it is advisable to use standard availability and
fail-over techniques to ensure that L can always be written to
WORM; we do not consider this issue further in this paper.

The discussion above assumes that the database is quiescent
during audit. The simplest version of a non-quiescent audit
begins by not admitting any new transactions, and waiting for
the current ones to finish and their dirty pages to reach disk.
For performance reasons, a transaction-time DBMS often uses

1We omit correctness arguments and algorithm pseudocode in this paper
due to space limitations.

the transaction ID as a temporary commit time value in a tuple,
and does a lazy update of the commit time later [16], [18]. The
audit must wait for these lazy updates to reach disk as well.
Once this is done, the current file for L is permanently closed,
a new one is opened, and new transactions are admitted as
usual. When the auditor examines the database state or writes
the next snapshot, the auditor will ignore all tuples whose
commit time is later than that of the last of these transactions
to finish. Since audits are rare events—perhaps once a year—
we expect that a brief pause to clear out active transactions
will be acceptable. If not, the pause can be further reduced,
using techniques not described here due to space limits.

The preceding discussion did not consider the effect of
schema changes. All metadata changes that do not have an
impact on existing tuple storage—such as adding or dropping
a relation or index, updating the statistics kept for a relation,
or changing a permission—are handled just like any ordinary
tuple insertion, deletion, or update. (Of course, dropping a
relation or index does not cause it to actually go away; its
tuples/nodes and the corresponding metadata will be kept until
they expire, just like any other data.) Metadata changes whose
implementation involves eager updates to stored tuples can
also be handled in this manner (e.g., eagerly adding a new
attribute with a computed value to each tuple of a relation, or
eagerly dropping an attribute). Lazy implementations of such
metadata changes are quite popular in commercial DBMSs; to
support them, either the next audit must wait until all of these
lazy updates have completed, or else we must use additional
care in constructing hash functions (to be discussed in the next
section) to ensure that the differences between the logical state
of the database and its actual physical state on disk do not
cause the audit to fail.

A. Verifying Tuple Completeness

The simplest technique for verifying that the final database
state Df contains exactly the right tuples is to examine each
tuple in Df and look up that tuple in the snapshot state
Ds and the log L. Assuming that both the snapshot and the
final state are sorted on the relation name and primary key
(as is the case when the tuples are maintained in B+-trees),
this check can be done by (i) sorting L on relation name
plus primary key, which takes O(|L| log(|L|)) operations;
(ii) merging the result with Ds, which takes O(|Ds| + |L|)
operations; and (iii) comparing the result with Df , which takes
O(|Ds| + |L| + |Df |) operations. Including the cost to write
out the new snapshot, we have a total completeness check time
of O(|L| log(|L|) + |Ds|+ |Df |). The merge and comparison
steps can be executed concurrently in a single pass over the
database states.

Since audits may be infrequent, L may be extremely long
and sorting it can be costly. We avoid sorting entirely by using
a cryptographically strong incremental hash function for sets
that has the following properties.

• Input: The hash function H operates on a set
{a1, . . . , an}.

• Incremental: Given an and H({a1, . . . , an−1}), one can
efficiently compute H({a1, . . . , an}).
• Commutative: The value of H is independent of the order

of the items in the set.
• Cryptographically Secure (Pre-image Resistant): Given a

set {a1, . . . , an}, one cannot efficiently find {b1, . . . , bm}
(6= {a1, . . . , an}) such that H({a1, . . . , an}) =
H({b1, . . . , bm}).

In our implementation, we used the ADD HASH function
proposed by Bellare and Micciancio [3]:

ADD HASH(a1, . . . , an) =
∑

1≤i≤n
h(a1),

where h is a big (512 bits or more) secure one-way hash
function and the sum is taken modulo a large number.

Using such a hash function, the auditor can incrementally
compute a hash over Ds ∪ L and Df . Pre-image resistance
ensures that H(Ds ∪ L) = H(Df) iff Ds ∪ L = Df .
Each hash operation takes O(1) time, and the completeness
check now requires just a single pass over Df , L, and Ds,
plus the creation of the new snapshot, which need not be
sorted. Thus the total cost of the tuple completeness check
is O(|Df |+ |L|+ |Ds|). The completeness check cost can be
further reduced by storing H(Df ∪ L) on WORM at the end
of each audit (together with the auditor’s digital signature over
the hashes), and using the stored value instead of computing
H(Ds) during the next audit. In this situation, we do not need
to store the snapshot on WORM, which reduces auditing costs
to O(|Df |+ |L|). However, we may wish to store the snapshot
anyway, as it enables fine-grained forensic analysis if the next
audit finds evidence of tampering.

Lazy timestamping may cause a NEW TUPLE entry in L
to contain a transaction ID rather than a commit time. After
a transaction commits, we require the compliance logger to
append a STAMP TRANS record to L, recording the transac-
tion’s ID and commit time. During its pass over L to check
tuple completeness, before hashing a NEW TUPLE record, the
auditor must replace any transaction ID by the commit time
from the appropriate STAMP TRANS record. To make this
process efficient, the compliance logger creates an auxiliary
WORM log file listing the transaction ID and location in L of
each STAMP TRANS record. The auditor scans this log and
creates an in-memory hash table mapping transaction IDs to
their commit times. During the scan, the auditor must check
the log’s integrity, e.g., only one STAMP TRANS record per
transaction ID. The auditor must also check that the commit
times in consecutive STAMP TRANS records are separated
by no more than one regret interval. This ensures that once
the regret interval has passed, an adversary cannot edit the
database state and append log entries to make it appear that
a transaction took place that actually did not. If a regret
interval is about to pass by without a transaction ending, the
compliance logger must append a dummy STAMP TRANS
record to show that the system is still live.

In implementing this approach, our primary design goals
were to maximize performance and minimize the changes
to the underlying DBMS (Berkeley DB in this case [22]).
To avoid changing DBMS internals, we wrote a compliance
logging plugin that taps into the pread/pwrite system calls of
Berkeley DB. When a page is written out with pwrite, this
plugin parses the page, finds the tuples that are present in the
buffer-cache page but not on the disk page, and logs them
to L on WORM. To find these new tuples, we must fetch the
disk page before overwriting it, incurring an additional storage
server I/O. We reduce this cost by caching a separate copy of
the page in available memory, or else on the local disk of the
DBMS server, on each pread.

Before any adversary has time to regret the existence of
a new tuple, its NEW TUPLE record must reach WORM
storage. Because NEW TUPLE records are not generated until
a pwrite call is made, this means that pwrite must be called
for a dirty database page within one regret interval (e.g., 5-30
minutes) from the time it commits. We enforce this by marking
all dirty pages once every regret interval, after calling pwrite
on all dirty pages that were marked during the previous cycle.
As part of the marking procedure, we create a new empty file
on WORM that will stand as a witness that the DBMS was
alive during this interval. These empty files can be deleted
after the next audit.

B. Handling UNDO and REDO

The preceding sections assume that all NEW TUPLE
records are for transactions that eventually commit. In practice,
however, most commercial DBMSs allow the buffer manager
to steal page frames from uncommitted transactions that
may subsequently abort. When this happens, the DBMS will
eventually read the page back in, undo the changes made by
the aborted transaction, and write the page back out.

There are several alternatives for how to handle aborted
transactions, and the choice also has serious implications for
the complexity of crash recovery and post-crash audits. We
chose an approach that minimizes changes to the original
DBMS. First, when a transaction fails, the compliance logger
will output an ABORT record containing the transaction’s ID.
If the aborted transaction performed tuple writes that are later
undone, the compliance logger will notice that a tuple version
has been removed from the page; beyond the ABORT record
for this transaction, the compliance logger does not need to
append additional log records pertaining to the UNDO action.

During its pass through L, the auditor includes in its hash
chain only those NEW TUPLE records having a correspond-
ing STAMP TRANS record. This extra task does not affect the
computational complexity of the audit. The auditor can ignore
duplicate ABORT or STAMP TRANS records, but an ABORT
and STAMP TRANS record for the same transaction or two
different STAMP TRANS records for the same transaction
indicate a tampering attempt; for example, Mala may append
spurious ABORT records to L to try to hide the existence
of tuples that she regrets. This is why the compliance logger
must wait to write ABORT and STAMP TRANS records until

the transaction has actually committed/aborted. Commit times
that are not in strictly increasing order, or that occur during
periods of supposed inactivity, also indicate tampering.

UNDO/REDO crash recovery also has an impact on com-
pliance logging. To prevent major complications in crash
recovery, the compliance logger must ensure that every tuple
version on disk has a corresponding NEW TUPLE record in
L. To do this, we require all data page writes to wait until their
corresponding NEW TUPLE and/or STAMP TRANS records
have reached the WORM server, both during crash recovery
and during normal processing. This requirement does not delay
transaction commits, though it does slightly delay the write-
behind of data pages.

When the DBMS comes up after a crash, the compliance
logger places a timestamped START RECOVERY record on
L, because a crash can introduce long gaps in commit times
that can cause the auditor’s regret-interval time checks to fail.
When checking these intervals for transactions affected by the
crash, the auditor must increase the interval by the amount
of time between the last entry on L before the crash and the
timestamp of the START RECOVERY record. This must be
done carefully, since crash recovery represents an opportunity
for the adversary; we omit the details here.

Next, the recovery process generates a list of all transactions
that should be aborted or committed. The compliance log-
ger appends the corresponding ABORT and STAMP TRANS
records to the compliance log, and flushes the compliance log
to WORM. The remainder of recovery proceeds as usual.

After an UNDO action is taken during recovery and the
corresponding data page is being written out, the compliance
logger may detect that a tuple version on the page has
been removed. In this case, the logger does not record any
information on L, because it already has logged an ABORT
record for this transaction. REDO actions will also lead to page
writes. If the page actually changes, the compliance logger
will add the appropriate NEW TUPLE record to L. Recovery
can cause L to contain duplicate NEW TUPLE records; to
prevent these duplicates from causing the audit to fail, the
auditor uses a temporary hash table to identify duplicates and
include them only once in its hash chain. A REDO that does
not actually change a data page could result in a situation
where L does not contain a NEW TUPLE record for a page
that was successfully changed on disk before the crash; as
mentioned above, to avoid this problem, we require data page
writes to wait until their corresponding NEW TUPLE records
have gone to WORM.

If the DBMS crashes within one regret interval after a
transaction T commits, then pwrite may not have been
called on some of T ’s dirty pages. Since the corresponding
NEW TUPLE records will not be on WORM, an adversary
could alter the transaction log to remove T ’s updates before
recovery. This is why we require the tail of the transaction
log (the last two regret intervals) to be on WORM, and that
it be retained until the next audit. The adversary could also
try to hide the fact that the DBMS had crashed, get rid of the
transaction log, and recover without T ’s updates. However,

recall that we create one empty file on WORM per regret
interval; the create time of this file shows that the DBMS
was alive then. If the DBMS crashes and does not recover
completely within one regret interval, then the empty file will
not be written. This allows the auditor to detect crashes and
look for the appropriate log tails. If an attacker crashes the
DBMS, she will not be motivated to hide the crash by creating
a new empty file at the right moment, because the tuples she
wants to tamper will have been committed at least one regret
interval ago, and therefore will have NEW TUPLE records on
WORM. She can, however, undetectably commit transactions
that were active at the time of the crash. This is consistent
with our threat model.

With these provisions, as long as recovery is completed
before the next audit takes place, the audit will work properly.
Since every recovered transaction T had committed, T ’s
updates must be in L or the transaction log tail on WORM.
The auditor must verify that the sequence of NEW TUPLE
and STAMP TRANS records appended to L during recovery
is consistent with the transaction log. We trust the WORM
server to correctly record the create times of files, because it
has special anti-tampering provisions in its clock functions
(e.g., SnapLock from NetApp uses “Compliance Clock, a
secure time mechanism”). Thus the auditor will notice if the
transaction log has been replaced with a tampered copy, or an
adversary tried to hide a crash.

C. Verifying Data and Index Integrity

Of course, it is not enough for a page to contain the right
tuples. The auditor must also check that the slot pointers on
the page are set up correctly, the tuples are in sorted order
across the pages (if that is required), the different versions of
a tuple are all threaded together in commit-time order (if the
DBMS uses version threading), and all other stored metadata
is correct (the magic number on the page, the count of tuples
on the page, etc.). We do not further consider these checks,
though we note that most commercial DBMSs, including the
one used for this project, have such an integrity checker.

In addition to checking tuple completeness and integrity, the
auditor must verify that all indexes are correct and complete. If
tuples are stored in a B+-tree as in Figure 2(a), the attacker can
logically hide a tuple by moving it from its correct position
in the leaf node or by tampering with the nodes above it.
Figure 2(b) shows the former attack, where leaf node elements
33 and 59 have been swapped. Figure 2(c) illustrates the
latter attack, where index element 31 pointing to the leaf node
containing (31, 33) has been changed to 35. A lookup of 33
after either attack will fail.

The auditor checks for these corruptions by scanning the
leaf nodes to verify that their keys are stored in increasing
order and that all tuples are represented in the tree, and
then verifying that the keys and pointers in internal nodes
are consistent with the leaf nodes. This can be done by
locating the minimal key in each node and comparing it to the
corresponding key in its parent node. The integrity checker
mentioned above can perform this check for every non-root

�� �� �� �� �� �� �� �� ��

�� �� ��

��

(a) Original B+-tree

�� �� �� �� �� �� �� �� ��

�� �� ��

��

(b) B+-tree with wrong element order

�� �� �� �� �� �� �� �� ��

�� �� ��

��

(c) B+-tree with tampered key value

Fig. 2. Tampered B+-trees.

node of the tree. Any inconsistency can be repaired and
reported as a tampering attempt. The auditor can use similar
techniques to check the integrity of other kinds of indexes,
such as hash tables.

If Mala appends spurious entries to L, then the audit will
fail, even when the database state is correct. The audit will
also fail if Mala adds spurious tuples to the database and does
not record them in L. Such acts of sabotage are outside the
scope of compliance regulations such as SOX and Rule 17a-4.
If Mala adds tuples and records them in L, then this attack
is indistinguishable from a legitimate transaction during audit.
While this is permitted by our model, it may be undesirable
for some applications. For example, perhaps no single user
would have been able to get all the permissions needed to
carry out that transaction, due to separation of duty constraints;
or perhaps the transaction would have violated an integrity
constraint. We leave the detection of this as future work.

V. REFINEMENT: HASH PAGE ON READ

With a file editor, an adversary can make arbitrary changes
to a log-consistent database, as long as she undoes them before
the next audit. Such changes cannot be detected by the audit,
and so the log-consistent architecture has a query verification
interval of infinity: users receive no guarantees that their query
results were correct. The effectiveness of this state reversion
attack can be greatly reduced by performing unannounced
audits at unpredictable intervals.

We can eliminate this vulnerability completely. First, we
augment the NEW TUPLE log records in L to include the
unique page number (PGNO) where the tuple is stored.
We also introduce a new type of log record, PAGE SPLIT,
which is appended to the log whenever a page splits. Each
PAGE SPLIT record contains the PGNO of the initial page,
the PGNOs of the two new pages created, and the content of
the two new pages immediately after the split.

Suppose a transaction T wants to verify the content of a
page P121. T first finds the sequence of pages which were split
since the last audit to obtain P121. For example, suppose page
P1 was split to produce P12, which was later split to create
P121. T then applies all the non-aborted NEW TUPLE and
STAMP TRANS operations from L on the snapshot version
of P1, up to the point where it was split to create P12. This
gives the correct content of P1 at the time of the split. T then

verifies that the split is correct and complete—the union of
the tuples on the two new pages P11 and P12 should be the
tuples on P1. T must also do the usual page integrity checks
that an auditor does, e.g., that the tuples are properly sorted
and the other page metadata is correct. T repeats this process
for P11 and then for P121.

This verification process is still too costly to be executed
by each transaction, but we can greatly reduce its cost by
deferring it to audit time. When the DBMS reads a page
P from the disk, the compliance logger hashes P ’s content
(tuples) and records the hash and PGNO in L. The auditor
subsequently reconstructs P from L and compares the hash
of the reconstructed P to the hash that T stored in L. If the
two hashes match, then T read the “correct” copy of P .

The reconstruction of page P is slightly different from that
used to check the final state of the database, because the
auditor wants to reconstruct the page exactly as it was at
the moment when its hash was appended to L. In particular,
the hash includes any uncommitted tuples on P that are
aborted later in L. The auditor hashes each tuple on P with
its transaction ID T if the STAMP TRANS P record for T
appears later in L; otherwise she hashes the tuple with its
commit time. She excludes from the hash all tuples on P that
have already been aborted. The auditor can verify all the read
operations of all transactions in a single pass, by storing and
reconstructing the states of all pages as L is scanned.

This approach retains the linear time complexity of auditing
without hash-page-on-read, but is inefficient when the pages
do not fit in main memory. One can reduce the storage
requirement through more sophisticated replay techniques that
sort the log entries in L by PGNO and reconstruct one page
at a time, but this approach requires sorting the log. Sorting
is undesirable when the log is very large.

To avoid sorting, we could hash the tuples on each page
using a commutative incremental hash function Hc, rather than
the incremental hash function H discussed earlier. Unfortu-
nately, secure commutative incremental hash values are long
(200+ bytes). With a 32 KB page, the Hc values for a 1 TB
database will occupy over 10 GB, and recording the hashes in
L will be costly for transactions that read a lot of data.

To avoid the overhead of Hc while still supporting query
verification, we employ a sequential hash function Hs and
an additional attribute for each tuple, called its tuple order

number. When a transaction writes out a new tuple for page
P , the compliance logger finds the largest tuple order number
on that page, increments it, and stores it with the new tuple as
its tuple order number. The logger also logs a NEW TUPLE
record on L as usual, together with the tuple’s order number.
UNDO activity in pwrite requests may cause gaps in the stored
tuple order numbers, but this will not cause a problem with
auditing. When a transaction reads P , we sort the tuples on
P based on their order numbers. Once the tuples are in sorted
order r1, . . . , rn, the logger uses the following sequential
hashing function:

Hs(r1, . . . , rn) = H(h(r1), H(r2, . . . , rn)),
where h is any conventional secure hash function (e.g., the
256-bit SHA-1 function). With such a hash function, the page
hashes for a 1 TB database with 32 KB pages will occupy
only 1 GB.

The compliance logger records the hash of P on L. In our
implementation, the compliance logging plugin parses each
page that is read by pread and hashes its tuples with Hs. A
READ record is appended to L, containing the Hs value and
PGNO. We do not hash or log transaction reads that hit the
buffer cache, which is why we must trust the buffer cache.

The auditor reads the Hs value for each snapshot page from
WORM. It then scans L, incrementally updating the Hs value
for page P every time it reaches a non-aborted NEW TUPLE
record for P , being careful to use the correct commit time or
transaction ID for each tuple. Whenever the auditor encounters
an Hs value for P in L, it compares it to the Hs value it has
computed so far for P ; a mismatch signals tampering, because
P ’s tuples appear on L in the order that they were inserted
into P . Page split records are handled as usual.

The preceding discussion does not consider the effect of
aborted transactions. With fine-granularity locking, a transac-
tion T1 that eventually commits may read tuple t1 on a page
p where tuple t2 has been written by another transaction T2

that eventually aborts. (Note that tuple t2 could not have been
read by a transaction that eventually commits. The problem
we are addressing here is only that t2 is included in the hash
value for page p.) In this case, to verify that T1 read the right
content on p, the hashes of p computed by T1 and the auditor
must both include t2. As the auditor continues to scan the
log and finds the ABORT record for T2, it will recognize
that the NEW TUPLE record for t2 should not be included
in the hash used to check the final database state, as usual.
However, the auditor must also determine at which point t2
was removed from p and was no longer visible to transactions.
For this purpose, the compliance logger must record additional
information in L for UNDO activities, beyond the simple
ABORT records needed to check the final state. Whenever
the logger detects that a tuple version has been removed from
a page that is being written out, it must log this as an UNDO
t2 record on L, together with p’s PGNO; it must send this
UNDO to WORM before the corresponding data page goes
to disk. When the auditor encounters an UNDO record while
scanning L, it must “roll back” its hash computation for p to
a point in L just before the NEW TUPLE t2 record for p,

then roll forward the hash chain computation from that point,
including each subsequent NEW TUPLE t3 record for p in
the hash chain iff there is no subsequent UNDO t3 record for
p before the UNDO t2 record in L.

If a crash occurs after an UNDO record has gone to WORM
but before the tuple has been removed on disk, then a duplicate
UNDO record will be sent to WORM during the UNDO phase
of recovery. Duplicate UNDO records do not affect query
verification, assuming that new transactions are not admitted
until the UNDO phase of recovery is complete.

The compliance plugin also hashes and logs the contents of
index pages, so that the auditor can verify that all the index
pages read by the transaction were correct. As with the data
pages, the plugin computes and logs the hash of every index
page read from disk. The plugin also logs the changes in the
index pages to L. Specifically, when a data page splits, the
plugin logs the new entry that is inserted into the parent index
node. Similarly, when an index node splits, the logger records
the new element inserted in the parent index node.

These log entries enable the auditor to replay all the
operations applied to the index and construct the state of the
index at any given time. This replaying is efficient because
during audit, the index interior nodes typically fit in memory.
The auditor computes the hashes of the index pages as it
reconstructs them, and compares those hashes to the ones
recorded in the log.

VI. REFINEMENT: WORM MIGRATION

The log-consistent compliant database architecture and its
hash-page-on-read refinement require the auditor to check the
integrity of every page. Since a temporal DB records all the
different versions of a record, the database size and hence
the auditing effort grows with time. The WORM migration
refinement of the log-consistent architecture, introduced in
this section, addresses this problem by migrating historical
versions of tuples onto WORM, placing them in a separate
append-only file on WORM. This migration must be done
carefully, as the leaf pages of a conventional B+-tree in a
temporal DB contain a mixture of live and historical records;
such leaf pages cannot be moved wholesale to WORM storage.
We utilize time-split B+-trees [15] to obtain leaf pages that
only have historical records.

A second concern is that the auditor must verify that the
tuples have been migrated properly. To do so we reuse the
techniques used to verify that pages have been split correctly.
As a result, once a page of tuples is committed to WORM
storage, these tuples can be ignored during subsequent audits.

A tuple indexed in a time-split B+-tree is identified by
a (k, t) pair, where k is the tuple’s key value and t is the
timestamp or start time for that tuple in the DB. The tree
defines an ordering between two keys (k1, t1) and (k2, t2), as
(k1, t1) ≤ (k2, t2) iff (k1 ≤ k2) ∨ ((k1 = k2) ∧ (t1 ≤ t2)).

Time-split B+-trees are like normal B+-trees, except that
leaf nodes can split on key or time values [15]. Key splits are
handled in the same way as for B+-tree node splits: using the
ordering defined above, all index entry tuples where k is less

than the splitting value are copied to one node, while entries
with larger keys are copied to the other node. An entry with
the splitting key is inserted into the parent index node.

Time splits are governed by the splitting time t. All versions
of the data tuples that are only valid before time t (that is,
for which there exists a subsequent version with a timestamp
before t) have their entries moved to the historical page,
while the entries for tuples that were valid after time t are
copied to the live page. Entries for tuples whose period of
validity overlaps t are copied onto both the pages, by creating
an intermediate version at time t. The historical page is
then stored on WORM. For example, the index entry (31, 4)
overlaps the splitting time 5. Hence, a new tuple (31, 5) is
created and included on the live page. Time splits help merge
recent versions of records into a smaller number of live pages.
The historical pages will never be split again, and hence can
be put on WORM. At the next audit, the auditor uses the
PAGE SPLIT records in L as usual to verify that the split was
carried out properly. Then the historical pages on WORM can
be exempted from future audits.

The decision whether to split a node on key or time is based
on the split-threshold parameter. If the number of distinct keys
in a leaf page is less than the split-threshold fraction of the
total number of tuples, the page is split on keys; otherwise it
is split on time. The intuition here is that pages with a small
number of unique keys (and hence a large number of updates
to those keys) should be time-split to move the old records
to WORM. If a page has many distinct keys (and hence few
updates), splits on time are ineffective.

VII. EMPIRICAL EVALUATION

We evaluated the log-consistent architecture using the TPC-
C benchmark implemented atop Berkeley DB. Berkeley DB
is a highly optimized, open source implementation of the
lower levels of a DBMS stack—a transaction engine, a logging
and locking infrastructure, and a B+-tree implementation. The
remaining layers of the stack, such as a query optimizer and
processor, are not part of the system. We chose TPC-C because
it is a standard benchmark for OLTP, which will be the most
common workload for compliance databases. We ported the
Shore TPC-C implementation to work with Berkeley DB and
implemented the compliance logging features, including time-
split B+-trees. Except where otherwise mentioned, we set the
number of warehouses in the benchmark to 10, which results
in a 2.5 GB database. The hash-page-on-read and migrate-to-
WORM refinements require storing the tuple order number
with each tuple in the database. We modified the TPC-C
schema to include this additional attribute for each relation.

Our hardware platform was a 32 bit, 3 GHz Intel Pentium
machine with 512 KB L2 cache and 1 GB memory. The
database was created on an NFS mounted Network Appliance
NFS file server. All the logs, including the database transaction
log and the compliance log, were created on this remote server.
This models the hardware configuration in most enterprises,
where the database server and the storage server are hosted on

separate machines. Unless otherwise stated, the buffer cache
size was set to 256 MB in our experiments.

a) Space Overhead: Log L on WORM contains all
inserted tuples, hence grows with the number of transactions.
After 100K TPC-C transactions, L was approximately 100
MB. The hash-page-on-read refinement appends page hashes
to L. After 100K TPC-C transactions with a 256 MB (resp.
32 MB) buffer cache of 4 KB pages, these logged hashes
occupied 3 MB (resp. 44 MB). The number of read operations
and hence the number of logged hashes increases as the DBMS
buffer cache size decreases. The hash-page-on-read approach
also stores a PGNO field (4 bytes) with each log entry and a
tuple sequence number (2 bytes) with each tuple. The space
overhead of these was under 10%.

The WORM migration refinement slightly increases the
total space occupied by the database. For example, the STOCK
relation occupies 70,000 pages when the tuples are stored in a
normal B+-tree. A time-split B+-tree with a splitting threshold
of 0.5 occupies 18,000 live pages and 55,000 historical pages.
This additional space is acceptable, given that the WORM
pages need not be scanned during audits.

b) Run Time Overhead: Figure 3(a) compares the TPC-
C run time with native Berkeley DB, the log-consistent ar-
chitecture, and its hash-page-on-read refinement as a function
of the number of transactions. The log-consistent architecture
incurs the overhead of computing the difference between the
in-memory page and on-disk page, while the hash-page-on-
read refinement also hashes each page read from disk. These
schemes also incur the overhead of sending dirty pages to disk
once every regret interval (set to 5 minutes). Instead of using
the more sophisticated scheme described earlier in this paper,
we implemented this feature by calling db checkpoint once
every regret interval, which is slower but less intrusive. As
evident from the figure, the log-consistent architecture slows
down transaction processing by approximately 10%. If we
also support verification of the contents of each page read
by a transaction, processing is slowed by approximately 20%,
compared to native Berkeley DB.

We studied the effect on performance of varying the cache
and DB size. Figure 3(b) shows the overhead with a 512
MB DBMS buffer cache. Figure 3(c) shows the overhead for
the extreme case of an almost memory resident database of
320 MB (1 warehouse) and 256 MB buffer cache size. The
impact of the log-consistent architecture is more profound here
because the DBMS accumulates many dirty pages that must
be written to disk. Still, the slowdown was under 30% on
average, even after the knee of the curve where the data no
longer fits in memory.

c) Audit Time: Another important parameter is the time
the auditor takes to verify the integrity of the DBMS. For
the log-consistent architecture, the total time to compute the
incremental hash Hs over the previous snapshot, log entries
corresponding to 100K TPC-C transactions, and the final state
were 121, 85, and 145 sec., respectively, for a total of 351 sec.
For the hash-page-on-read refinement, the additional audit time
was 104 sec., which includes incrementally computing the

6,000

8,000

10,000

12,000

14,000

To
ta

l r
un

 ti
m

e
(s

ec
s)

Regular TPCC

Log-Consistent+Hash-on-
Read

Log-Consistent

0

2,000

4,000

5 15 25 35 45 55 65 75 85 95

To
ta

l r
un

 ti
m

e
(s

ec
s)

No. of transactions (thousands)

(a) 10 Warehouses, 256 MB DBMS
Cache

6,000

8,000

10,000

12,000

14,000

To
ta

l r
un

 ti
m

e
(s

ec
s)

Regular TPCC

Log-Consistent+Hash-
on-Read
Log-Consistent

0

2,000

4,000

5 101520253035404550556065707580859095

To
ta

l r
un

 ti
m

e
(s

ec
s)

No. of transactions (thousands)

(b) 10 Warehouses, 512 MB DBMS
Cache

150

200

250

300

350

400

To
ta

l r
un

 ti
m

e
(s

ec
s)

Regular TPCC

Log-Consistent+Hash-
on-Read
Log-Consistent

0

50

100

150

5 15 25 35 45 55 65 75 85 95

To
ta

l r
un

 ti
m

e
(s

ec
s)

No. of transactions (thousands)

(c) 1 Warehouse, 256 MB DBMS Cache

Fig. 3. Effect of the log-consistent architecture on TPC-C total run time

hash of all the pages and comparing the computed hashes to
the page read hashes logged by all transactions. The audit time
is tiny compared to the 2-3 hours to execute the transactions.

d) Evaluation of Time-split B+-trees: We evaluated the
performance impact of the threshold that determines whether
to execute a time or key split in a B+-tree. Figures 4(a)
and 4(b) plot the number of live pages and the number of
WORM pages at the end of 100K transactions for two of
the largest relations of the TPC-C benchmark, STOCK and
ORDER LINE. STOCK had 400K updates for 100K tuples,
and ORDER LINE had 118K updates for 100K tuples.

The number of WORM pages for the STOCK relation is
high even at a low threshold value (even 0). This is because
the tuple updates in the STOCK relation are highly skewed;
only a few tuples (the popular items) are updated, and these
many times. The leaf pages containing these heavily updated
records are time-split even for low threshold values. The dip
in the number of live pages and the increase in the number of
historic pages at the threshold value of 0.5 is because most of
the B+-tree pages for STOCK are half filled at the end of DB
setup. The fraction of distinct keys in the B+-tree leaf nodes
is close to 0.5. If the split-threshold is more than 0.5, these
pages are time-split, otherwise key-split. The number of leaf
pages in a regular B+-tree for STOCK was close to 77K. The
corresponding time-split B+-tree had only 15K live leaf pages.
This drop in the number of live pages reduces the auditor’s
effort by the same fraction, since only live pages are audited.

TPC-C updates the tuples in the ORDER LINE relation
uniformly, with each tuple being updated at most once. Thus
the number of distinct keys in any leaf node is always more
than half of the total. Hence, no nodes move to WORM if the
splitting threshold is under 0.5. Higher thresholds gradually
decrease the number of live pages but rapidly increase the
number of historic pages. For example, suppose the threshold
increases from 0.8 to 0.9. Then all the leaf pages with 80-
90% unique keys are time-split. After a leaf is time-split, it
has the same number of distinct keys after the split as before
the split. Hence, it can be time-split again when those keys
are updated: if the node had 90% distinct keys and each key is
updated once, the page can be time-split 9 times. On the other

hand, a page can be key-split only once because the resulting
half-filled pages have enough space to accommodate all future
updates. Thus increasing the threshold from 0.8 to 0.9 replaces
one key-split by 9 time-splits per page.

For both relations, it is optimal to choose a threshold close
to the fill factor of the initial relation.

VIII. SHREDDING

Our approach to shredding expired tuples assumes that
auditing is done sufficiently frequently (e.g., once a year) that
every tuple committed to the database will be retained through
at least one audit. We run a periodic vacuuming process [21],
[27] to physically erase expired database tuples. So that an
adversary cannot simply vacuum up tuples that she regrets, the
auditor must verify that vacuumed tuples really had expired.
For this purpose, we store an Expiry relation that records the
expiration time of each data tuple. The best way to implement
the Expiry relation depends on the application domain. In the
simplest case, the Expiry relation contains a single tuple giving
the amount of time that all database records must be retained.
At the other extreme, the Expiry relation may list an exact
expiration time for every tuple in every relation. For current
regulations, it usually suffices to remember a single retention
period per relation, and we take that approach in the remainder
of this section. In addition to verifying the contents of Expiry
as for any other transaction-time relation, the auditor will need
to ensure that any changes to the retention periods in Expiry
are consistent with current regulations.

When the vacuum process runs, it must append to L a
timestamped SHREDDED record, listing the tuple ID (e.g.,
relation name, key, and START time), its PGNO, and a hash
of the tuple contents, for every tuple it wishes to vacuum.
The SHREDDED record must be sent to WORM before
the tuple(s) listed on it can be vacuumed. When a page is
vacuumed, the alterations are captured and logged on L when
the page is written out, just as for ordinary page writes; the
logger will record the vacuuming activity in ordinary READ
and UNDO records. After a crash, the compliance routines
need to finish vacuuming any tuples that are listed in a
SHREDDED record on L, but are still in the DB; the simplest

��

��

��

��

��

N
o.

 o
f p

ag
es

 (
th

ou
sa

nd
s

) ��	
���
�

�����������
�

�

��

��

��

� ��� ��� ��� ��� ��� ��� ��� ��� ���

N
o.

 o
f p

ag
es

 (
th

ou
sa

nd
s

)

Splitting threshold

(a) STOCK Relation

�

��

��

��

��

��

��

N
o.

 o
f p

ag
es

 (
th

ou
sa

nd
s

)

��	
���
�

�����������
�

�

�

�

�

�

� ��� ��� ��� ��� ��� ��� ��� ��� ���

N
o.

 o
f p

ag
es

 (
th

ou
sa

nd
s

)

Splitting threshold

(b) ORDER LINE Relation

Fig. 4. Effect of the splitting threshold on the number of live and historic pages

implementation is just to re-vacuum after recovery. All tuples
listed in SHREDDED records must be vacuumed before the
next audit, or the audit will fail. The SHREDDED record and
the previous snapshot still contain evidence that a shredded
tuple did exist in the past, and that evidence is a liability.
However, the SHREDDED records and the old snapshot will
be destroyed after the next audit, and then the tuple will truly
cease to exist. Other evidence of the tuple’s past existence may
be visible if one carefully examines the internals of the DB
and DBMS, and this evidence should also be scrubbed away
using techniques developed by others [25].

Shredding changes the auditor’s algorithms. When the audi-
tor computes the page hashes on the final database state, vacu-
umed tuples will not be included; but the vacuumed tuples are
present in the previous snapshot. For this reason, the auditor
cannot simply reuse the snapshot hashes computed at the last
audit. Instead, the auditor must find the SHREDDED records
in L (the techniques described earlier for quick processing of
ABORT records can be used to make this fast), and recompute
the hash for every snapshot page that has been vacuumed.

The auditor can use its usual algorithm for checking the
READ records in L under the hash-page-on-read refinement.
The vacuumed tuples appear in UNDO records, which will
trigger the auditor to include or exclude them in its hashes as
the auditor scans L. However, during its scan of L, the auditor
does need to verify that every UNDO record it scans is listed in
a previous ABORT record or a previous SHREDDED record.
The auditor also verifies that every shredded tuple indeed
had expired, by checking its commit time in the previous
snapshot and verifying that the retention period in Expiry
had ended before the time recorded in the timestamp on the
tuple’s SHREDDED record. Evidence of the shredded tuples
will remain visible until the next audit is complete, at which
point the compliance log and previous snapshot are removed
and the shredded tuples really are gone.

When WORM migration is used, many expired tuples may

reside on WORM and their pages must be migrated back
to regular media for shredding. This re-migration must be
documented on the compliance log in the same manner as for
the initial migration to WORM, and verified by the auditor.
After vacuuming, the page can then be migrated back to
WORM if desired. Note, however, that the unit of deletion
on WORM is an entire file. Thus one cannot truly delete a
page on WORM until the file in which it resides has expired.
For this reason, the migration of time-split tuples and index
entries to WORM will be most effective if all the migrated
data in the file will expire at approximately the same time.
Then all the pages in the file can be vacuumed at the same
time, so the entire file can be deleted at once.

IX. CONCLUSION AND FUTURE WORK

Current technology does not allow any strong compliance
guarantees for database data. Extending the level of protection
afforded by existing record management systems to the vast
amounts of structured data residing in databases is a chal-
lenging research problem. The write-once nature of WORM
storage devices makes them very resistant to the insider attacks
at the heart of compliance regulations, but also makes it
very hard to lay out, update, index, query, update, delete,
and shred tuples efficiently. Thus it is especially challenging
to provide trustworthiness while also retaining the classical
scalable performance guarantees of a DBMS.

In this paper we presented the log-consistent architecture
for term-immutable databases, which keeps a transaction-time
database and transaction log on conventional storage, along
with an auxiliary compliance log, the tail of the transaction log,
and a snapshot from the previous audit on inexpensive WORM
storage. The compliance log tracks the history of modifications
to the database contents in such a manner that in a single-
pass algorithm, an auditor can determine whether the current
state of the database is consistent with all past modifications.
Database crashes provide an excellent opportunity for the

adversary to tamper with the database or log contents, but the
details of how the compliance log is written ensure that these
attacks will be discovered and thwarted during crash recovery.

For applications where it is important to be able to verify
that queries did not access tampered data, we presented a
hash-page-on-read refinement that logs a hash of each page
read from disk; the auditor can verify that all pages had the
correct contents, using a single-pass algorithm. Because the
cost of an audit increases as the database size grows, we
provided a WORM-migration refinement that moves tuples of
historical interest and their index entries to WORM storage,
which exempts them from future audits. We also provided a
way to shred expired tuples, using an auditable vacuuming
process that documents its activities on the compliance log.

We implemented the log-consistent architecture and its
refinements atop Berkeley DB, in a manner that involved
very few changes to the DBMS core; most of the compli-
ance functionality is isolated in a plugin that is invoked on
each pread/pwrite request, with additional functionality inside
the crash recovery component. Our experiments with a 10-
warehouse configuration of TPC-C atop Berkeley DB showed
that the log-consistent architecture imposes an approximately
10% runtime overhead in typical configurations, with rea-
sonable space requirements on WORM. If we also wish to
support verification of the contents of the database pages read
by each query, that adds an additional 10% to the overhead.
These results suggest that the log-compliant architecture has
the potential to allow more effective application of existing
laws and regulations mandating how business data should
managed, thereby increasing societal confidence in business,
government, and personal data. Currently, we are working on
support for “litigation holds”, which ensure that subpoenaed
but expired tuples are not shredded.

X. ACKNOWLEDGEMENTS

This work was supported by an IBM PhD Fellowship and by
NSF under CNS-0803280, CNS-0716532, and CNS-0524695.
We thank Nikita Borisov for helpful discussions regarding
hash functions.

REFERENCES

[1] Ahmed Ataullah, Ashraf Aboulnaga, and Frank W. Tompa, “Records
Retention in Relational Database Systems,” in CIKM, 2008.

[2] Christopher Batten, Kenneth Barr, Arvind Saraf, and Stanley Treptin,
“pStore: A Secure Peer-to-Peer Backup System.” Online at http:
//citeseer.ist.psu.edu/batten01pstore.html.

[3] Mihir Bellare and Daniele Micciancio, “A New Paradigm for Collision-
free Hashing,” in Eurocrypt, 1997.

[4] Matt Blaze, “A Cryptographic File System for UNIX,” in CCS, 1993.
[5] Philip Bohannon, Rajeev Rastogi, S. Seshadri, Avi Silberschatz, and

S. Sudarshan, “Using Codewords to Protect Database Data from a
Class of Software Errors,” in ICDE, 1999.

[6] B. Chen and R. Morris. “Certifying Program Execution with Secure
Processors,” in USENIX HotOS Workshop, 2003.

[7] Andrew Conry-Murray, “Appetite for Destruction,” Information Week,
pp. 27–33, June 9, 2008.

[8] Financial Executives International’s Survey on Costs and Benefits of
SOX, 2007. Online at http://fei.mediaroom.com/index.
php?s=43&item=204.

[9] P. A. Gerr, B. Babineau, and P. C. Gordon, “Compliance:
The Effect on Information Management and the Storage
Industry,” Enterprise Storage Group Technical Report, May
2003, http://www.enterprisestrategygroup.com/
ESGPublications/ReportDetail.asp?ReportID=201.

[10] Eu-Jen Goh, Hovav Shacham, Nagendra Modadugu, and Dan Boneh,
“SiRiUS: Securing Remote Untrusted Storage,” in NDSS, 2003.

[11] Hakan Hacigumus, Balakrishna R. Iyer, and Sharad Mehrotra, “Pro-
viding Database as a Service,” in ICDE, 2002.

[12] Hakan Hacigumus, Balakrishna R. Iyer, Chen Li, and Sharad Mehrotra,
“Executing SQL over Encrypted Data in the Database Service Provider
Model,” in SIGMOD, 2002.

[13] Christian S. Jensen and Curtis E. Dyreson (eds), A Consensus Glossary
of Temporal Database Concepts—February 1998 Version,” in Temporal
Databases: Research and Practice, Ophir Etzion, Sushil Jajodia, and
Suri Sripada (eds.), Springer-Verlag, pp. 367–405, 1998.

[14] Mahesh Kallahalla, Erik Riedel, RamSwaminathan, Qian Wang, and
Kevin Fu, “Plutus—Scalable Secure File Sharing on Untrusted Stor-
age,” in USENIX Conference on File and Storage Technologies, 2003.

[15] David B. Lomet and Betty Salzberg, “The Performance of a Multiver-
sion Access Method,” in SIGMOD, 1990.

[16] David B. Lomet, Roger S. Barga, Mohamed F. Mokbel, German
Shegalov, Rui Wang, Yunyue Zhu, ”Transaction Time Support Inside
a Database Engine,” in ICDE 2006.

[17] Kyriacos Pavlou and Richard T. Snodgrass, “Forensic Analysis of
Database Tampering,” in SIGMOD 2006.

[18] Betty Salzberg, “Timestamping After Commit,” in Proceedings of the
Conference on Parallel and Distributed Information Systems, pp. 160–
167, 1994.

[19] Bruce Schneier and John Kelsey, “Secure Audit Logs to Support Com-
puter Forensics,” ACM Transactions on Information System Security
2(2):159–176, 1999.

[20] Radu Sion, “Query Execution Assurance for Outsourced Databases,”
in VLDB, 2005.

[21] Janne Skyt, Christian S. Jensen, and Leo Mark, “A Foundation for
Vacuuming Temporal Databases,” Data and Knowledge Engineering
44(1):1–29, 2003.

[22] Sleepycat Software Inc., Berkeley DB, 2001.
[23] Richard T. Snodgrass, Developing Time-Oriented Database Applica-

tions in SQL, Morgan Kaufmann, 1999.
[24] Richard T. Snodgrass, Stanley Shilong Yao and Christian Collberg,

“Tamper Detection in Audit Logs,” in VLDB, 2004.
[25] P. Stahlberg, G. Miklau, and B. N. Levine, “Threats to Privacy in the

Forensic Analysis of Database Systems,” in SIGMOD, 2007.
[26] Michael Stonebraker, “The Design of the POSTGRES Storage Sys-

tem,” in VLDB, 1987.
[27] Michael Stonebraker and Lawrence Rowe, “The Design of Postgres,”

in SIGMOD, 1986.
[28] G. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas. “Aegis:

Architecture for Tamper-evident and Tamper-resistant Processing,” in
ICS, 2003.

[29] Mark Sullivan and Michael Stonebraker, “Using Write Protected Data
Structures to Improve Software Fault Tolerance in Highly Available
Database Management Systems,” in VLDB, 1991.

[30] U.S. Dept. of Health and Human Services, The Health Insurance
Portability and Accountability Act (HIPAA), 1996. Online at http:
//www.cms.hhs.gov/HIPAAGenInfo/.

[31] U.S. Food and Drug Administration, “Guidance for Industry Part 11,
Electronic Records; Electronic Signatures and Application,” August
2003. Online at http://www.fda.gov/cder/gmp/index.
htm.

[32] U.S. Public Law No. 107-204, 116 Stat. 745. The Public Company
Accounting Reform and Investor Protection Act, 2002.

[33] The U.S. Securities and Exchange Commission, Rule 17a-4, 17
CFR Part 240: Electronic Storage of Broker-Dealer Records, 2003.
Online at edocket.access.gpo.gov/cfr_2002/aprqtr/
17cfr240.17a.htm.

[34] Ari Weinberg, “Wall Street Fine Tracker,” Forbes, July 15, 2004.
Online at http://www.forbes.com/2002/10/24/cx_aw_
1024fine.html.

[35] Windows Kernel Patch Protection. Online at http://www.
microsoft.com/whdc/driver/kernel/64bitpatch_
FAQ.mspx.

