
Unification of Temporal Data Models

Christian S. Jensen

Department of Mathematics and Computer Science
Aalborg University

F'redrik Bajers Vej 7E
DK-9220 Aalborg 0, DENMARK

csj@iesd.auc.dk

Abstract
To add time su port t o the relational model, both

first normal fo rm (f N F and non-INF appmches have

maining within 1NF when time support is added may
introduce data redundancy. The non-1NF models may
not be capable of directly using existing relational stor-
age structures or query evaluation stmtegies.

This paper describes a new, conceptual tempoml
data model that better captures the time-dependent se-
mantics of the data while permitting multiple data mod-
els at the representation level. This conceptual model
effectively moves the distinction between the various
existing data models from a semantic basis to a physi-
cal, performance-relevant basis.

We define a conceptual notion of a bitempoml re-
lation where tuples are stamped with sets of two-
dimensional chronons in transaction-time/valid-time
space. W e introduce a tuple-timestamped 1NF repre-
sentation to exemplify how the conceptual bitempoml
data model is related, by means of snapshot equiva-
lence, with representational models. W e then consider
querying within the two-level fmmework. W e first de-
fine an algebm at the conceptual level. We proceed to
map this algebm to the sample representational model
in such a way that new opemtors compute equivalent
results for different representations of the same concep-
tual bitempoml relation. This demonstmtes that the
representational model is faithful to the semantics of
the conceptual data model, with many choices available
that may be exploited to improve performance.

1 Introduction
Adding time to the relational model has been a

daunting task [BADW82, McK86, SS88, S00911. More
than a dozen extended data models have been pro-
posed over the last decade [Sno92, JS921. Most of
these models support valid time, that is, the time a
fact was valid in the modeled reality. A few, no-
tably [BZ82, BG89, Sno87, Sno931, have also supported
transaction time, the time a fact was recorded in the
database; such models are termed bitempoml, because
they support both kinds of time [JCG*92].

While these data models differ on many dimensions,
perhaps the basic distinction that has been oft stated
is between first normal form (1NF) and non-1NF. A
related distinction is between tuple timestamping and
attribute value timestamping. Each has associated dif-
ficulties. Remaining within lNF, an example being the

been proposed. Each x as associated dificulties. Re-

Michael D. So0 Richard T. Snodgrass

Department of Computer Science
University of Arizona

Tucson, AZ 85721

(800 , rts}@cs.arizona.edu

1063-638Y93 $03.00 0 1993 IEEE
262

timestamping of tuples with valid and transaction start
and end times [Sno87], may introduce redundancy be-
cause attribute values that change at different times
are repeated in multiple tuples. The non-1NF models,
one bein timestamping attribute values with sets of
intervalsjGad88B], may not be capable of directly us-
ing existing relational storage structures or query eval-
uation strategies that depend on atomic attribute val-
ues.

It is our contention that focusing on data presen-
tation (how temporal data is displayed to the user),
on data stomge, with its requisite demands of regular
structure, and on efficient query evaluation has compli-
cated the primary task of capturing the time-varying
semantics. The result has been a plethora of incom-
patible data models and query languages, and a cor-
responding surfeit of database design and implemen-
tation strategies that may be employed across these
models.

We advocate instead a very simple conceptual data
model that captures the essential semantics of time-
varying relations, but has no illusions of being suitable
for presentation, storage, or query evaluation. We in-
stead rely on existing data model(s) for these tasks,
by exploiting equivalence mappings between the con-
ceptual model and the representational models. This
equivalence is based on snapshot equivalence, which
says that two relation instances are equivalent if all
their snapshots, taken at all times (valid and trans-
action), are identical. Snapshot equivalence provides
a natural means of comparing rather disparate repre-
sentations. Finally, while not addressed here, we feel
that the conceptual data model is the appropriate lo-
cation for database design [JSS92A] and logical query
optimization.

In essence, we advocate moving the distinction be-
tween the various existing temporal data models from
a semantic basis to a physical, performance-relevant
basis, utilizing our proposed conceptual data model to
capture the time-varying semantics.

The paper has the following outline. In the next sec-
tion we define the conceptual model. We then exam-
ine a previously proposed representational data model,
namely tuple timestamping e.g., [NA89, Sad87, Sar90,

conceptual model and this model, then briefly discuss
additional representational models.

Having presented both the conceptual data model
and exemplified representational data models, Sec-

Sno87, Sno931). We provi 6 e a mapping between the

mailto:rts}@cs.arizona.edu

tion 4 presents an overview of the interaction among
the data models. Snapshot equivalence is the subject
of Section 5. Ironically, while definitions of snapshot
equivalence are particular to individual data models
(as the definitions rely on model-specific operations),
the notion of snapshot equivalence allows us to re-
late relation instances, as well as operators, of differ-
ent representations, and also allows us to relate repre-
sentations to the semantics ascribed to the conceptual
model. Section 6 is devoted to generalizing algebraic
operators of the relational model to apply to objects
in the bitemporal conceptual model as well as the tu-
ple timestamped representational model. As with data
instances, we demonstrate correspondence of these o p
erators.

2 Conceptual Bitemporal Relations
The primary reason behind the success of the rela-

tional model is its simplicity. A bitemporal relation is
necessarily more complex. Not only must it associate
values with facts, as does the relational model, it must
also specify when the facts were valid in reality, as well
as when the facts were current in the database. Since
our emphasis is on semantic clarity, we will extend the
conventional relational model as small an extent as nec-
essary to capture this additional information.
2.1 Definition

Tuples in a conceptual bitemporal relation instance
are associated with time values from two orthogonal
time domains, namely valid time and transaction time.
Valid time is used for capturing the timevarying na-
ture of the part of reality being modeled, and trans-
action time models the update activity of the relation.
For both domains, we assume that the database sys-
tem has limited precision, and we term the smallest
time unit a chronon. As we can number the chronons,
the domains are isomorphic to the domain of natural
numbers.

In general, the schema of a conceptual bitemporal
relation, R, consists of an arbitrary number of explicit
attributes, A', A2, . . . , A,,, encoding some fact (possi-
bly composite) and an implicit timestamp attribute, T.
Thus, a tuple, t = (al, a 2 , . . . ,a, tb), in a conceptual
bitemporal relation instance, r(R\, consists of a num-
ber of attribute values associated with a timestamp
value.

An arbitrary subset of the domain of valid times
is associated with each tuple, meaning that the fact
recorded by the tuple is true in the modeled reality
during each valid-time chronon in the subset. Each in-
dividual valid-time chronon of a single tuple has asso-
ciated an arbitrary subset of the domain of transaction
times, meaning that the fact, valid during the partic-
ular chronon, is current in the relation during each of
the transaction time chronons in the subset.

Associated with a tuple is a set of so-called bitempo-
ral chmnons in the twedimensional space spanned by
valid time and transaction time. Such a set is termed
a bitempoml element', denoted tb, and is represented
graphically as a set of rectangles. Because no two tu-
ples with mutually identical explicit attribute values

'Alternative, equally desirable terms include time period ret
[BZSZ] and bitemporal liferpan [CC87].

(termed value-equivalent are allowed in a bitemporal

tained in a single tuple.

EXAMPLE: Consider a relation recording employee/
department information, such as "Jake works for the
shipping department." We assume that the granularity
of chronons is one day for both valid time and trans-
action time, and the period of interest is the month of
June 1992.

Figure 1 shows how the bitemporal element in an
employee's department tuple changes. The x-axis de-
notes transaction time, and the y-axis denotes valid
time. Employee Jake was hired by the company as
temporary help in the shipping department for the
interval from June 10th to June 15th, and this fact
is recorded in the database predictively on June 5th.
This is shown in Figure l(a). The arrows pointing to
the right signify that the tuple has not been logically
deleted; it continues through to the transaction time
NOW. On June loth, the personnel department dis-
covers an error. Jake had real1 been hired for the
valid-time interval from June 5tE to June 20th. The
database is corrected on June loth, and the updated
bitemporal element is shown in Figure l(b). On June
15th, the personnel department is informed that the
correction wa8 itself incorrect; Jake really was hired
for the original time interval, June 10th to June 15th,
and the database is corrected the same day. This is
shown in Figure l(c). Lastly, Figure l(d) shows the
result of three updates to the relation, all of which take
place on June 20th. While the the period of validity
was correct, it was discovered that Jake was not in the
shipping department, but in the loading department.
Consequently, the fact (Jake, Ship) is removed from
the current state and the fact (Jake, Load) is inserted.
A new employee, Kate, is hired for the shipping depart-
ment for the interval from June 25th to June 30th.

relation instance, the ful 1 time history of a fact is con-

29vt 29vt P

t t tt b 5 10 15 20 25% O b 5 10 15 20 2550
0

(4 (b)

p , S h i p)

(J&e,Ship) (Jake,Load)

t t tt b 5 10 15 20 25% O b 5 10 15 20 25.30
0

(4 (4
Figure 1: Bitemporal Elements

We note that the number of bitemporal chronons
in a given bitemporal element is the area enclosed by

263

the bitemporal element. The bitemporal element for
(Jake, Ship) contains 140 bitemporal chronons.

The example illustrates how transaction time and
valid time are handled. As time passes, i.e., as the
computer's internal clock advances, the bitemporal el-
ements associated with current facts are updated. For
example, when (Jake, Ship) was first inserted, the six
valid-time chronons from 10 to 15 had associated the
transaction time chronon NOW. At time 5, the six
new bitemporal chronons, (5? lo), . . . , (5,15), were ap-
pended. This continued until time 9, after which the
valid time was updated. Thus, starting at time 10, 16
bitemporal chronons are added at every clock tick.

The actual bitemporal relation corresponding to the
graphical representation in Figure l(d) is shown below.
This relation contains three facts. The timestamp at-
tribute T shows each transaction time chronon associ-
ated with each valid-time chronon as a set of ordered
pairs.

Emp Dept "=
Jake Load I Kate Ship

T
((5 , lo), . . . , (5,15), . . . , (9, lo), . . .
(9, 15),(10,5), . . . ,(10,20), ...,
(14,5), . . . (14,20), (15, lo), ...,
(15,15) . . . , (19, lo), . . . , (19,15)}
{ (N O W , 10) , . . . , (N O W , 15))
{(NOW,25), ...,(N O W , 3 0))

0

2.2 Update
We consider the three forms of update, insertion,

deletion, and modification, in turn.
An insertion is issued when we want to record in

bitemporal relation instance r that a currently un-
recorded fact (01,. . . , a,) is true for some period(s)
of time. These periods of time are represented by a
valid-time element, i.e., a set of valid-time chronons,
t u . When the fact is stored, its valid-time element
stamp is transformed into a bitemporal-element stamp
to capture that, from now on, the fact is current in the
relation. We indicate this with a special value in the
domain of transaction chronon identifiers, NO W.

The arguments to the i n s e r t routine are the rela-
tion into which a fact is to be inserted, the explicit
values of the fact, and the set of valid-time chronons,
t,, during which the fact was true in reality. i n s e r t
returns the new, updated version of the relation. There
are three cases to consider. First, if 0 1 , . . . , a,) was

is appended. Second, if (~ 1 , . . . ,a,) was part of some
previously current state, the tuple recording this is u p
dated with the new valid-time information. Third, if
(a l , . . . , a,) is already current in the relation, a mod-
ification is required, and the insertion is rejected. (In
the following, we denote valid-time chronons with c,,
and transaction-time chronons with ct .)

insert (r , (al,. . .,an),tv) =

never recorded in the relation, a comp I etely new tuple

r U { (a l , . . . , a n l {NOW} xtu)}
if 1 3 tb ((a i , . . . , an I t b) E r)

if 3tb (a1, . . .,ani t b) E r A

f - { (0 1 , , an, t b) }
U{(al , . . . ,anItbU{NOW} x h)}

7 3 [NOW, c v) E t b)
r otherwise

The i n s e r t routine adds bitemporal chronons with a
transaction time of NO W.

As time passes, new chronons must be added. We
assume that a special routine tsspdate is applied
to all bitemporal relations at each clock tick. (Note
that representational data models, to be discussed
shortly, which actually store the data on disk will not
require such a special routine; it is present only in
the conceptual data model.) We also assume that the
transaction-time granularity is sufficiently small that
only one transaction can execute within a transaction-
time chronon. This function simply updates the times-
tamps to include the new transaction-time value. The
timestamp of each tuple is examined in turn. When
a bitemporal chronon of the type (NOW, c,) is en-
countered in the timestamp, a new bitemporal chronon
(ct,cv), where time ct is the new transaction-time
value, is made part of the timestamp.

ts-update(r,ct) :
for each x E r

for each (NOW,c,) E x[q
x[T] + %[TI U { (c t , ~))

Deletions concern the (logical) removal of a com-
plete tuple from the current valid-time state of the
bitemporal relation. We distinguish between the case
where there is a tuple to delete and the case where no
tuple matching the one to be deleted is current.
delete(r , (a l l . . .,a,)) =

r - {(ai , - - -,an1 tb))
U{(01 , . . . ,anl tb-nov-ts(tb }

if 3 t /(al.. . . , an1 t b) E r) L otherwise

where nOW-tS(tb) = {(NOW,c,,) I (NOW,c,] E t b } .
Finally, a modification of an existing tup e may be

defined as a deletion followed by an insertion as follows.

modify(r, (al,. . .,a,),t,) =
insert (de lete(r , (01,. . .,an)), (a1, . . ., an),fv)

EXAMPLE: The sequence of bitemporal elements
shown in Figure 1 is created by the following sequence
of commands, invoked at the indicated transaction
time (7'2').

Command
insert (dept. ("Jake" ,"Ship") , [6/10 .6/151)
modify (dept. ("Jake", "Ship") , [6/5,6/201)

delete (dept. ('I Jake", "Ship")

264

Valid-time relations and transaction-time relations
are special cases of bitemporal relations that support
only valid time and transaction time, respectively.
Thus an valid-time tuple has an associated set of valid-
time chronons (termed a valid-time element and de-
noted t ") , and a transaction-time tuple has an as-
sociated set of transaction-time chronons (termed a
tmnsaction-time element and denoted t t) . For clarity,
we use the term snapshot relation for a conventional
relation. Snapshot relations support neither valid time
nor transaction time.

3 Representation Schemes
A conceptual bitemporal relation is structurally

simple-it is a set of facts, each timestamped with
a bitemporal element which is a set of bitemporal
chronons. In this section we examine a previously pro-
posed representation scheme for bitemporal relations.
We specify the objects defined in the representation,
provide the mapping to and from conceptual bitempo-
ral relations to demonstrate that the same information
is being stored, and show how updates of conceptual
bitemporal relations may be mapped into updates on
relations in the representation. We end by briefly con-
sidering four additional representations.
3.1 A Sample Representation Scheme

In the conceptual model, the timestamp associated
with a tuple is an arbitrary set of bitemporal chronons.
As such, a relation schema in the conceptual model is
non-lNF, which may be difficult to implement directly.
We describe here how to represent conceptual relations
by 1NF snapshot relations, allowing the use of existing,
well-understood implementation techniques.

Let a bitemporal relation schema 'R contain the at-
tributes AI,. . . , An, T where T is the timestamp at-
tribute defined on the domain of bitemporal elements.
This schema is represented by a snapshot relation
schema R as follows.

The additional attributes T,, T,, V, , Ve are atomic-
valued timestamp attributes containing a starting and
ending transaction-time chronon and a starting and
ending valid-time chronon, respectively. These four
values represent the bitemporal chronons in a rectan-
gular region, the idea being to divide the complete re-
gion, covered by the bitemporal element of a single tu-
ple in a conceptual relation instance, into a number of
rectangles and then represent the conceptual tuple by
a set of value-equivalent tuples, one for each rectangle.

There is a multitude of possible ways of covering a
bitemporal element. We require that any function that
covers a bitemporal element z[T] of a bitemporal tuple
t satisfy two properties.

1. Any bitemporal chronon in z[T] must be con-

2. Each bitemporal chronon in a rectangle must be

Apart from these requirements, the covering function
is purposefully left unspecified-an implementation is

tained in at least one rectangle.

contained in z[T].

free to choose a covering with properties it finds de-
sirable. For example, a set of covering rectangles need
not be disjoint. Overlapping rectangles may reduce
the number of tuples needed in the representation, at
the possible expense of additional processing during
update.

EXAMPLE: The 1NF relation corresponding to the
conceptual relation in Figure l(d) is shown below.

Emp Dept]I T, T, I V, V, I
Jake 6/10 6/14 6/20

Here we use a non-overlapping covering function that
partitions the bitemporal elements by transaction
time. 0

Throughout the paper, we will use R and S to de-
note relation schemas. Relation instances are denoted
r, s , and t , and r R) means that r is an instance of

we let A denote the set of all attributes Ai. For tu-
ples we use z, y, and z (possibly indexed), and the
notation z Ai] is defined to be the value of attribute

be the closed interval from z[V,] to 2 V] i.e., a set
of one-dimensional valid-time chronons 1 , k6 similarly
for z[T], a set of transaction-time chronons.

The following functions convert between a concep-
tual bitemporal relation instance and a corresponding
instance in the representation scheme. The second ar-
gument, cover, of the routine concep-tolrnap is a cov-
ering function. It returns a set of rectangles, each de-
noted by a set of bitemporal chronons.

R. Attributes are 6 enoted Ai, Bi, and Ci. For brevity,

Ai for t u p e f z. As a shorthand, we define .[VI to

con c e p-t o -8 nap (rl , cover 1 :
s t 0;
for each z E rl

z[A] t z[A];
for each 1 E cover(z[T])

t m i n - l (t) ; z[Te] t m a x - l (t) ;
z V, t m i n - d (t) ; z[v,] t maz-2(t) ; *PI 8 6 s u { z } ;

return s

The functions man-1 and man2 select a minimuin first
and second component, respectively, in a set of binary
tuples. The function m a - 1 returns the value NOW if
encountered as a first component; otherwise, it returns
a maximum first component. The function max-2 se-
lects a maximum second component.

265

snap-to-concep(r) :
s t 0;

r t r - z } ; fo r z A each t 'i' z A];
ZIT] t bi-chr(z[T], .[VI) ;
f o r each y E r

r t r - y};
z[T] t x\T] U bi-chr(y[T], y[V]> ;

i f '[A] = y[A]

s t s U { z } ;
r e t u r n s

The function bi-chr computes the bitemporal chronons
covered by the argument rectangular region.

The concep-to-snap routine generates possibly
many representational tuples from each concep
tual tuple, each corresponding to a rectangle in
valid/transaction-time space. The snap-to-concep
routine merges the rectangles associated with a single
fact into a single bitemporal element.

Note that the functions are the inverse of each other,
i.e., for any conceptual relation instance r',

snap-to-concep(concep-tosnap(r', cover)) = r'.
For the update routines, the most convenient cov-

ering functions partition on either valid or transaction
time and do not permit overlaps. The current trans-
action time is ct.

i n se r t (r , (u l , ..., u,),t,,,cover,,):
cur t cover, (t u) ;
f o r each x E r

i f x[Te] = NOW and z[A] = (u t , . . . ,an)
f o r each t E cur

i f x[V] nt # 0
cur t (cur - t) U (t - z[V]) ;

f o r each t E cur

r e t u r n r

delete(r, (01,. . . , a n)) :
f o r each x E r

if 2 A] = (~ 1 , . . . , an) and z[Te] = NOW
2 t T e] + ct ;

r e tu rn r

The function cover,, in the i n s e r t routine returns a set
of valid-time intervals (each a set of contiguous valid-
time chronons). The routine first reduces the valid
time elements, produced by the covering function, to
avoid overlap with the valid times of existin tuples
that have a transaction time extending to N%W and
that are value equivalent to the one to be inserted.
Then, one tuple is inserted for each of the remaining
valid time elements. The delete routine simply re-
places the transaction end time with the current time,
Ct .

As for the conceptual data model, modify is simply
a combination of delete and i n s e r t .

3.2 Other Representations
The representation just discussed is a representa-

tive of the five representations that have been pro-
posed so far to support both valid and transaction
time. We briefly review each of the four remaining
representations-an analysis similar to the one in Sec-
tion 3.1 may be performed for each [JSS92B].

BenZvi introduced the first bitemporal representa-
tion, similar to the tuple timestamping scheme in Sec-
tion 3.1, but with five timestamps: (1) valid begin, (2)
valid end, (3) the transaction time when valid begin
was recorded, (4) the transaction time when valid end
was recorded, and 5 the transaction time when the

In representations based on attribute-value times-
tamping (e.g., [CC87, Tan86, Gad88B, LJ88, MS91]),
all information about an object is rouped within a
single tuple. This capability has ma!e attribute value
timestamped representations popular for data model-
ing. In Gadia's TempSQL model [Gad92], which is
the only model based on attribute-value timestamp
ing that supports bitemporal relations, each attribute
value has associated a transaction-time interval and a
valid-time interval. Like in the representation in Sec-
tion 3.1, these intervals together encode a bitemporal
rectangle.

Another representation often mentioned is a se-
quence of valid-time states indexed by transaction time
[SA85]. This representation is derived by first par-
titioning the transaction-time dimension according to
the beginning and ending points of the transaction-
time intervals of all the tuples in the bitemporal rela-
tion. Second, for each partition, all tuples current in
the partition are collected along with their valid-time
intervals. These sets are valid-time relations indexed
by transaction time. The transaction-time interval of
a partition is the existence interval of the valid-time
relation, i.e., the time when the entire valid-time rela-
tion was the current state of the bitemporal relation.
Alternatively, we can envision a bitemporal relation as
a sequence of transaction-time states indexed by valid
time.

In the backlog-based representation scheme, bitem-
poral relations are represented by backlogs, which are
also 1NF relations [Kim78, JMRS921. The most impor-
tant difference between this and the previous schemes
is that tuples (termed update requests) in bitemporal
backlogs are never updated, i.e., backlo s are append-
only. In addition to the explicit attri%ute values, a
update request has four attribute values: (1) valid be-
gin, (2) valid end, (3) the transaction time when the
update request is inserted, and (4) a value indicating
whether the lipdate is an insertion or a deletion.

As for the sample representation scheme, it is pos-
sible for each of these representation schemes to devise
mappin functions to and from the conceptual bitem-
poral re!ations. Thus, the results of the rest of the
paper apply also to these other representations.

4 Data Model Interaction
The previously proposed representations arose from

several considerations. They were all extensions of the
conventional relational model that attempted to c a p
ture the time-varying nature of both the enterprise be-

tuple was logically 6 1 e eted [BZ82].

266

ing modeled and the database, and hence incorporated
support for both valid and transaction time. They
attempted to retain the simplicity of the relational
model; the two tuple timestamping models were per-
haps most successful in this regard. They attempted
to present all the information concerning an object in
one tuple; the attribute-value timestamped model was
perhaps best at that. And they attempted to ensure
ease of implementation and query evaluation efficiency;
the backlog representation may be advantageous here.

Display Formats Representational Data Models

Logical
Database

Design Four tuple timestamps

1
Five tuple timestamps

Conceptual Attribute timestamps

\ b
I

\c7 Backlogs

Figure 2: Interaction of Conceptual and Representa-
tional Data Models

It is clear from the number of proposed representa-
tions that meeting all of these goals simultaneously is a
difficult, if not impossible task. We therefore advocate
a separation of concerns. The time-varying semantics
is obscured in the representation schemes by presenta-
tion and implementation considerations. We feel that
the bitemporal conceptual data model proposed in this
paper is the most appropriate basis for expressing this
semantics. This data model is notable in its use of
bitemporal chronons to stamp facts. Clearly, in most
situations, this is not the most appropriate way to
present the stored data to users, nor is it the best way
to physically store the data. However, since there are
mappings to other representations that, in many situa-
tions, may be more amenable to presentation and stor-
age, those representations can be employed for those
purposes, while retaining the semantics of the concep
tual data model. Figure 2 shows the placement of the
bitemporal conceptual data model and the five repre-
sentational data models with respect to storage repre-
sentation and display. It indicates that logical data-
base design produces the conceptual relation schemas,
which are then refined into relation schemas in some
representational data model(s). Query optimization
may be performed on the logical algebra, parameter-
ized by the cost models of the representation(s) c h e
sen for the stored data. Finally, display presentation
should be decoupled from the storage representation.
The sample conceptual relation introduced in Section
2.1 can be expressed in the various representational
data models, and each resulting relation may be appro-
priate for presentation in some situation, independent

of how the relation is stored.
Note that this arrangement hinges on the semantic

equivalence of the various data models. It must be
possible to map between the conceptual model and the
various representational models, as discussed next.

5 Semantic Equivalence
The previous section claimed that many equivalent

representations of the same conceptual relation may
ceexist. In this and the next section, we explore
in more detail this relationship between the concep
tual data model and the sample representational data
model. We focus here on the objects in the models; the
next section will examine operations on these objects.
5.1 Transaction and Valid Timeslice Op-

erators
We use snapshot equivalence to formalize the no-

tion of equivalent representations. Snapshot equiva-
lence makes use of the notions of transaction and valid
timeslice, which we define for the sample representa-
tion.

The tmnsaction timeslice operator, pa , takes two ar-
guments, a bitemporal relation and a time value, the
latter appearing as a subscript. The result is a valid-
time relation. In order to explain the semantics of
p* , we describe its operation on a conceptual bitem-
poral relation. Each tuple is examined in turn. If any
of its associated bitemporal chronons have a transac-
tion time matching the argument time, the explicit at-
tribute values and each of the valid-time chronons with
a matching transaction time become a tuple in the re-
sult. The transaction timeslice operator may also be
applied to a transaction-time relation, in which case
the result is a snapshot relation.

The valid timeslice operator, P, is very similar. It
also takes two ar uments, a bitemporal relation and
a time value. T\e difference is that this operator
does the selection on the valid time and produces a
transaction-time relation. The valid timeslice operator
may also be applied to a valid-time relation, in which
case the result is a snapshot relation.

DEFINITION: Define a relation schema R =
(A I , :. . ,An, T,, Te, V,, Ve), and let r be an instance
of this schema. Let t 2 denote an arbitrary time value
and let t 1 denote a time not exceeding NO W.

p,"l(r) = { z (" + ~) 132 E f

r t (r) = 132 E r
(z [A] = z[A] A .[VI = .[VI At' E z[T])}

(z[A] = z[A] A z[T] = z[T] A t E z[V])} 0

The transact ion t imeslice operator for transaction- t ime
relations (p') and the valid timeslice operator for valid-
time relations (T") are straightforward special cases.
Note further that transaction and valid timeslice may
be defined for the other representational data models
as well.

5.2 Snapshot Equivalence
We can now define snapshot equivalence so that it

applies to each representational data model for which

267

the valid timeslice and transaction timeslice operators
have been defined2.

DEFINITION: Two relation instances, r and s, are
snapshot equivalent, r Z s, if for all times t l not ex-
ceeding NOW and all times t2,

0

There is no reason to apply p before r in this def-
inition, as the following theorem states. Proofs of all
theorems in terms of the tuple-timestamped represen-
tational data model may be found elsewhere [JSS92B].

THEOREM 1 Let r be a bitemporal relation. Then
for all times 11 not exceeding NOW and for all times
t 2 ,

Snapshot equivalence precisely captures the notion
that relation instances in the representation scheme
have the same information content. More precisely, all
representations of the same conceptual bitemporal re-
lation instance are snapshot equivalent, and two bitem-
poral relations that are snapshot equivalent represent
the same conceptual bitemporal relation.

THEOREM 2 Snapshot equivalent bitemporal rela-
tions represent the same conceptual bitemporal rela-
tion:

1. If concep-tosnap(r', cover1) = r1 and

2. If s1 & s 2 then
concep-to-snap(r', coverz) = r2 then r1 & r2.

snap-to-concep(s1) = snap-to-concep(s2). U

This theorem has important consequences. For each
representation, and for a given covering function, snap-
shot equivalence partitions the relation instances into
equivalence classes. Each instance in an equivalence
class maps to the same conceptual bitemporal relation
instance. The semantics of the representation instance
is thus identical to that of the conceptual instance.
This correspondence provides a way of converting in-
stances between disparate representations: this conver-
sion can proceed through a conceptual instance. Fi-
nally, the correspondence provides a way of demon-
strating that two instances in different representations
are semantically equivalent, again by examining the
conceptual instance(s) to which they map.

2The concept of snapshot equivalence is due to Gadia and was
first defined for valid-time relations [Gads] and was later gener-
alized to multiple dimensions [Gym]. We have chosen to avoid
the original term weakly equivalent to avoid confusion with the
different notion of weak equivalence over algebraic expressions
(e.g., [UIlSZ]). Disambiguating the original term by prefixing
with "temporally" is awkward.

6 An Algebra for Bitemporal Concep-
tual Relations

We now examine the operational aspects of the data
models just introduced. A major goal is to demon-
strate the existence of the operational counterpart of
the structural equivalence established in the previ-
ous section. We first define operations on conceptual
bitemporal relations and then define corresponding o p
erations on the tuple-timestamped representation. We
prove that the operators preserve snapshot equivalence
and are natural generalizations of their snapshot coun-
terparts.
6.1 Definition

Define a relation schema R = (At, . . . ,Aril T), and
let r be an instance of this schema. Let t 2 denote an
arbitrary time value and let t l denote a time not ex-
ceeding N O W . Then the valid timeslice and transac-
tion timeslice operators, defined in Section 5.1 for the
tuple-timestamped representational model, may be de-
fined as follows for the conceptual data model.

pF1 (r) = {z("+ ') 13% E r (z[A] = z[A]A

.E(.) = {z("+') 132 E r (z[A] = z[A]A
4T"l = {tz I (tl,t2) E 4TI) 4T"I # 0))

Z[Tt] = {ti I (ti,tz) E z[T]) A z[Tt] # 0))
Let D be an arbitrary set of 101 non-timestamp at-

tributes of relation schema R. The projection on D of
r , r s (r) , is defined as follows.

.E(.) = { Z (~ ~ I + ~) 132 E r z[D] = z[D])A
VY E f (!/[Dl = z t 01 * 0 1 G Z[Tl)A
Vt E z[T] 3y E f (y[D] = z[D] A t E y[T]))

The first line ensures that no chronon in any value-
equivalent tuple of r is left unaccounted for, and the
second line ensures that no spurious chronons are in-
troduced.

Let P be a predicate defined on AI, . . . , A,,. The
selection P on r , uF(r), is defined as follows.

uE(r) = { z I z E r A P(z[A]))

To define the union operator, UB, let both r1 and

I(32 E r13y E 1-2

(-3Y E rz(y[A = 441)) A 4TI = 4TI))V

r2 be instances of R.

r1 uB r2 = (.[A = z y] = yjA] A z[T] = z[T] U y[T]))V
(32 E rl (%[A = t[A A

(3y F 3 2 E rl(z[A 1 = y[A])) A z[T] = y[T])))
72 (4 4 = Y A b

The first clause handles value-equivalent tuples found
in both rl and r z ; the second clause handles those
found only in r l ; and the third handles those found
only in r2.

With r1 and r2 defined as above, relational differ-
ence is defined as follows.

268

The last two lines compute the bitemporal element,
depending on whether a value-equivalent tuple may be
found in S .

In the bitemporal natural join, two tuples join if
they match on the join attributes and have overlapping
bitemporal element timestamps. Define r and s to be
instances of R and S, respectively, and let R and S be
bitemporal relation schemas given as follows.

The bitemporal natural join of r and s, r WB s, is de-
fined below. As can be seen, the timestamp of a tuple
in the join result is computed as the intersection of the
timestamps of the two tuples that produced it.

We have only defined operators for bitemporal rela-
tions. The similar operators for valid time and trans-
action time relations are special cases. The valid and
transaction time natural joins are denoted w" and
We , respectively; the conventional snapshot natural

join is denoted Ws . The same naming convention is
used for the remaining operators.
8.2 Mapping the Algebra to a Represen-

tation Scheme
For each of the algebraic operators defined in the

previous section, we now define counterparts for the
sample representation scheme. Throughout this sec-
tion, R and S denote tuple-timestamped bitemporal
relation schemas, and r and s are instances of these
schemas. Initially, R is assumed to have the attributes

As the transaction- and valid-timeslice operators
were defined already in Section 3.1, we now define in
turn projection, selection, union, difference, and natu-
ral join.

To define projection, let D be an arbitrary set of ID1
attributes among A I , . . . , A,. The projection on D of
r , is defined as follows.

A I , . . . , An Ts, Te, Ve, Ve.

= { ~ (1 ~ 1 + ~) 122 E r
(z[D] = z[D] A z [q = z[q A z[V] = .[VI)}

Next, let P be a predicate defined on A I , . . . ,A,.
The selection P on r , U:(.), is defined as follows.

~ $ (r) = { z (" + ~) 131 E r (z = z A P(z[A]))}

To define the union operator, UB, let both r1 and
r2 be instances of schema R.

r1 uB r2 = { z (" + ~) I 31 E r13y E r2 (t = z v t = y))

With r1 and r2 defined as above, relational differ-
ence is defined using several functions, each introduced
in Section 3.1.

The new timestamp is conveniently determined by set
difference on bitemporal elements.

To define the bitemporal natural join, we need two
bitemporal relation schemas R and S with overlapping
attributes.

R = (AI . . - 9 A n B1, ., Ts, Te, Vs, Ve)
S = (A I , . . . , An, C1, . Ck 1 1 Ts, Te, Vs, Ve)

In the bitemporal natural join of r and s, r WB s, two
tuples join if they match on the join attributes and
overlap in both valid time and transaction time.

6.3 Equivalence Properties
We have seen that a conceptual bitemporal relation

is represented by a class of snapshot equivalent rela-
tions in the representation scheme. We now define the
notion of an operator preserving snapshot equivalence.

DEFINITION : An operator a preserves snapshot equiv-
alence if, for all arameters X and snapshot relation
instances r and r representing bitemporal relations, P

This definition may be trivially extended to operators
that accept two or more argument relation instances.

0

In the snapshot relational algebra, an operator, e.g.,
natural join, must return identical results every time
it is applied to the same pair of arguments. In our
framework, we require only preservation of snapshot
equivalence. Thus, we add flexibility in implementing
the bitemporal operators by accepting that they return
different , but snapshot equivalent, results when applied
to identical arguments at different times.

The operators preserve snapshot equivalence. That
is, given snapshot equivalent operands each operator
produces snapshot equivalent results. This ensures
that the result of an algebraic operation will be cor-
rect, irrespective of covering.

THEOREM 3 The algebraic operators preserve snap-

The next step is to combine the conceptual and
representation level transformation functions with the
representation level operators to create correspond-
ing conceptual level operators. Given a representation
level operator, a p , its corresponding conceptual level
operators, a P c , is defined as follows.

a',"(r') = snap-to-concep(aPX (concep-to-snap(r')))

shot equivalence. 0

269

Theorems 2 and 3 in combination make this meaningful
and ensure that the conceptual level operators behave
like the snapshot relational algebra operators-with
identical arguments, they always return identical re-
sults. This is required because, like snapshot relations,
conceptual bitemporal relations are unique, i.e., two
conceptual relations have the same information con-
tent if and only if they are identical.

Now, we have two sets of operators defined on the
conceptual bitemporal relations, namely the directly
defined operators in Section 6.1 and the induced o p
erators. In fact, we have constructed the two sets of
operators to be identical. Put differently, the operators
in Section 6.1 are the explicitly stated conceptual level
operators, induced from the representation level oper-
ators (Section 6.2) and the transformation algorithms
in Section 3.1.

Next we show how the operators in the various data
models, snapshot, transaction-time, valid-time, and
bitemporal, are related. Specifically, we show that the
semantics of an operator in a more complex data model
reduces to the semantics of the operator in a simpler
data model. Reducibility guarantees that the seman-
tics of simpler operators are preserved in their more
complex counterparts.

For example, the semantics of the transaction-time
natural join reduces to the semantics of the s n a p
shot natural join in that the result of first joining two
transaction-time relations and then transforming the
result to a snapshot relation yields a result equivalent
to that obtained by first transforming the arguments
to snapshot relations and then joining the snapshot re-
lations. This is shown in Figure 3 and stated formally
in the first equivalence of the following theorem.

Transact ion- t i me relations Snapshot relations

P:
r , rl

I WT PT

Figure 3: Reducibility of Transaction-Time Natural
Join to Snapshot Natural Join.

THEOREM 4 Let t denote an arbitrary time that,
when used with a transaction timeslice operator, does
not exceed NOW. In each equivalence, let r and s
be relation instances of the proper types for the given
operators. Then the following hold.

A similar analysis can be made for the other operators.
0

7 Summary and Future Research
In this paper, we defined the bitempond conceptual

data model which timestamps facts with bitemporal
elements, which are sets of bitemporal chronons. We
argued that it is a unifying model in that conceptual
instances could be mapped into instances of existing
representational data models. This was exemplified
by a first normal form (1NF) tuple timestamped data
model in which tuples were stamped with rectangles in
the transaction-time/valid-time space. We also showed
how an extension to the conventional relational alge-
braic operators could be defined in the conceptual data
model, and be mapped to analogous operators in the
representational models.

An important property of the conceptual model,
shared with the conventional relational model, but not
held by the representational models, is that relation
instances are semantically unique: each models a dif-
ferent reality and thus has a distinct semantics. We
employed snapshot equivalence to relate instances in
different models, and we showed that the operators
were equivalent , were snapshot-equivalence preserving,
and were a natural extension of the snapshot operators.

We advocate a separation of concerns. Data pre-
sentation, storage representation, and time-varying se-
mantics should be considered in isolation, utilizing dif-
ferent data models. Semantics, specifically as deter-
mined by logical database desi n, should be expressed
in the conceptual model. MAtiple presentation for-
mats should be available, as different applications re-
quire different ways of viewing the data. The storage
and processin of bitemporal relations should be done
in a data mofel that emphasizes efficiency.

Additional research is needed in database design,
utilizing the conceptual data model. I t appears that
normal forms may be more conveniently defined in this
model than in the representational models [JSS92A].
Also, more work is needed in mapping existing tempo-
ral query language proposals into the conceptual data
model.

Acknowledgements
This research was conducted while the first author

visited the University of Arizona. Support was pro-
vided by the Danish Natural Science Research Council
through grant no. 11-9675-1 SE, the National Science
Foundation through grant IRI-8902707, the IBM Cor-
poration through Contract #1124, and by Christian
and Otilia Brorsons Mindelegat.

References
[BADW82] A. Bolour, T. L. Anderson, L. J. Dekeyser,

and H. K. T. Wong. The Role of Time in
Information Processing: A Survey. SigArt
Newsletter, 80:28-48, April 1982.

G. Bhargava and S. Gadia. Achieving Zero
Information Loss in a Classical Database
Environment. In Proceedings of the Con-
ference on Very Large Data Bases, pages
2 17-224, Amsterdam, August 1989.

[BZ82] J. Ben-Zvi. The Time Relational Model.
Ph.D. dissertation, Computer Science De-
partment, UCLA, 1982.

[BG89]

270

[CC871

[Gad861

[Gad88B]

[Gad921

[GY88]

[J M RS 921

[JS92]

[JSS92A]

[JSS92B]

[JCG*92]

[Kim781

[LJ88]

J. Clifford and A. Croker. The Historical
Relational Data Model (HRDM) and Al-
gebra Based on Lifespans. In Proceedings
of the Intemational Conference on Data
Engineering, pages 528-537, Los Angeles,
CA, February 1987.

S. K. Gadia. Weak temporal relations. In
Proceedings of ACM PODS, pages 70-77,
1986.

S. K. Gadia. A Homogeneous Relational
Model and Query Languages for Tem-
poral Databases. ACM Transactions on
Database Systems, 13 (4) :4 18-448, Decem-
ber 1988.

S . K. Gadia. A Seamless Generic Ex-
tension of SQL for Querying Temporal
Data. Technical Report TR-92-02, Com-
puter Science Department, Iowa State
University, March 1992.

S. K. Gadia and C. S. Yeung. A Gen-
eralized Model for a Relational Temporal
Database. In Proceedings of ACM SIG-
MOD, pages 251-2259, 1988.

C. S. Jensen, L. Mark, N. Roussopoulos,
and T. Sellis. Using Caching, Cache In-
dexing, and Differential Techniques to Effi-
ciently Support Transaction Time. VLDB
Joumal, to appear, 1992.

C. S. Jensen and R. T . Snodgrass. Pro-
posal of a Data Model for the Tempo-
ral Structured Query Language. TempIS
Technical Report 37, Department of Com-
puter Science, University of Arizona, Tuc-
son, AZ, July 1992.

C. S. Jensen, R. T . Snodgrass, and
M. D. So0 Extending Normal Forms to
Temporal Relations. Technical Report 92-
17, Department of Computer Science, Uni-
versity of Arizona, Tucson, AZ, July 1992.

C. S. Jensen, M. D. So0 and R. T. Snod-
grass. Unification of Temporal Data Mod-
els. Technical Report TR-92-15, Depart-
ment of Computer Science, University of
Arizona, Tucson, AZ, July 1992.

C. S. Jensen, J. Clifford, S. K. Gadia,
A. Segev, and R. T . Snodgrass. A Glossary
of Temporal Database Concepts. ACM
SIGMOD Record, 21(3):35-43, September
1992.

K. A. Kimball. The Data System. MS the-
sis, University of Pennsylvania, 1978.

N. Lorentzos and R. Johnson. Extending
Relational Algebra to Manipulate Tempo-
ral Data. Information Systems, 13(3):289-
296, 1988.

[McK86]

[MS91]

[NA89]

[SA851

[Sad871

[S ar 9 01

[Sno87]

[SnoSO]

[Sno92]

[Sno93]

[So09 11

[SSSS]

[Tan861

[U11821

E. McKenzie. Bibliography: Temporal
Databases. ACM SIGMOD Record, 15(4):
40-52, December 1986.

E. McKenzie and R. Snodgrass. Support-
ing Valid Time in an Historical Relational
Algebra: Proofs and Extensions. Technical
Report TR-91-15, Department of Com-
puter Science, University of Arizona, Tuc-
son, AZ, August 1991.

S. B. Navathe and R. Ahmed. A Temporal
Relational Model and a Query Language.
Information Sciences, 49:147-175, 1989.

R. Snodgrass and I. Ahn. A Taxonomy
of Time in Databases. In Proceedings of
ACM SIGMOD, pages 236-246, 1985.

R. Sadeghi. A Database Query Lan-
guage for Opemtions on Historical Data.
Ph.D. dissertation, Dundee College of
Technology, Dundee, Scotland, December
1987.

N. Sarda. Extensions to SQL for Historical
Databases. IEEE Transactions on Knowl-
edge and Data Engineering, 2(2):220-230,
June 1990.

R. Snodgrass. The Temporal Query Lan-
guage TQUEL. ACM Tmnsactions on
Database Systems, 12(2):247-298, June
1987.

R. Snodgrass. Temporal Databases: Sta-
tus and RRsearch Directions. ACM
SIGMOD Record, 19(4):83-89, December
1990.

R. T. Snodgrass. Temporal Databases, in
Theories and Methods of Spatio- Tempoml
Reasoning in Geogmphic Space, Springer-
Verlag, LNCS 639, pages 22-64, 1992.

R. Snodgrass. An Overview of TQuel, in
Temporal Databases: Theory, Design, and
Implementation, Benjamin/Cummings
Pub. Co., to appear, 1993.

M. D. Soo. Biblio raphy on Temporal
Databases. ACM SIEMOD Record, 20(1):
14-23, March 1991.

R. Stam and R. Snodgrass. A Bibliogra-
phy on Temporal Databases. Database En-
gineering, 7(4):231-239, December 1988.

A. U. Tansel. Adding Time Dimension
to Relational Model and Extending Re-
lational Algebra. Information Systems,

J. D. Ullman. Principles of Database Sys-
tems, Second Edition. Computer Science
Press, Potomac, Maryland, 1982.

11(4):343-355, 1986.

271

