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Abstract 
Aggregate computation, such as selecting the minimum 

attribute value of a relation, is expensive, especially in a 
temporal database. We describe the basic techniques be- 
hind computing aggregates in conventional databases and 
show that these techniques are not efficient when applied 
to temporal databases. We examine the problem of com- 
puting constant intervals (intervals of time for which the 
aggregate value is constant) used for temporal grouping. 
We introduce two new algorithms for computing temporal 
aggregates: the aggregation tree and the k-ordered aggre- 
gation tree. An empirical comparison demonstrates that 
the choice of algorithm depends in part on the amount of 
memory available, the number of tuples in the underlying 
relation, and the degree to which the tuples are ordered. 
This study shows that the simplest strategy is to first sort 
the underlying relation, then apply the k-ordered aggrega- 
tion tree algorithm with k = 1. 
KEYWORDS: Temporal Databases, Aggregate Com- 
putation, Query Evaluation, Query Optimization 

1 Introduction 
Aggregate functions are evaluated on relations and 

compute a scalar value, such as the average salary of 
all employees. Aggregate functions are an important 
component of data query languages, and are heavily 
used in many applications. Query benchmarks often 
contain a large percentage of aggregate queries (e.g., 
[Gray 19911). Hence, efficient execution of aggregate 
functions is an important goal. 

In temporal databases, relations model time- 
varying aspects of an enterprise. Information such as 
when the tuple was written to disk (known as trans- 
action t ime) ,  or when the tuple was known to be valid 
(known as valid time) may be represented [Jensen 
et al. 19941. Temporal database models and query 
languages have recently been developed that require 
new implementation strategies for aggregate functions 
[Kline 1993, Tansel et al. 19931. 

One reason that existing approaches are not effi- 
cient is due to temporal grouping, where we may wish 
to  group the results by time. In this paper we focus on 
aggregates computed over interval relations grouped 
by instant, where we wish to know the aggregate value 
at each point in time. This is perhaps the most com- 
mon grouping. This computation is difficult because 
it is necessary to know which tuples overlap each in- 
stant, and simply considering each tuple in order in 

a sorted-by-time relation will not be sufficient due to 
the varying interval lengths. 

In this paper we present efficient implementation 
techniques for temporal aggregates. We describe the 
query language constructs used to express aggregates 
in snapshot and temporal query languages. We an- 
alyze related work on the evaluation of snapshot ag- 
gregates and consider their efficacy for temporal ag- 
gregate computation. We introduce two different al- 
gorithms and implementation strategies more suitable 
for temporal databases: the aggregation tree and the 
k-ordered aggregation tree. We describe how to im- 
plement these algorithms assuming sufficient memory 
is available. We evaluate the performance of these al- 
gorithms by evaluating queries over relations differing 
in size, number of long-lived tuples, and the degree to 
which the relation is sorted. 

We empirically examine both the space and time re- 
quirements of the algorithms and specify how a query 
analyzer would choose the proper technique. Exam- 
ple temporal queries will be specified in TSQL2 [Snod- 
grass et al. 19941. TSQL2 extends SQL-2 in an up- 
ward compatible manner to support many aspects of 
temporal databases, including temporal aggregation. 

2 Aggregates in Query Languages 
Aggregates in most relational query languages may 

be divided into two types, scalar aggregates and ag- 
gregate functions. Scalar aggregates yield single scalar 
values, while aggregate functions return relations. 

For example, the scalar aggregate in the SQL query 

SELECT AVG(Sa1ary) 
FROM Employed 

will compute the average salary of all the employees 
and return a scaler value. 

Aggregate functions may return a set of values be- 
cause of qualifications in the query. The tuples be- 
ing aggregated must be partitioned as specified in the 
group-by clause. The following query will compute the 
average salary of employees grouped by department, 
and return these values as a new relation. 

SELECT Dept. AVG(Sa1ary) 
FROM Employed 
GROUP BY Dept 
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Scalar aggregates may be computed and then re- 
placed by their value in their query, since they are 
independent of the query in which they are nested 
[Epstein 19791. 

In temporal databases, we extend the domain and 
range of aggregates to include time. In this paper, 
we assume that the temporal dimensions are inter- 
vals; aggregates may also be evaluated over event re- 
lations. We also extend the groupby clause with tem- 
poral grouping. We will term the beginning time of an 
interval the start time and the terminating time the 
end time. 

Query language features to support aggregation are 
included in TSQL2 [Kline et al. 19941. Aggregates in 
databases either select their values (such as the aggre- 
gate maximum) or compute their values (such as the 
aggregate count). In TSQL2, aggregates are defined 
over both temporal and non-temporal values. If the 
previous query were computed over a temporal rela- 
tion, then the result returned would still be the av- 
erage salary grouped by department, but this would 
be a time-varying value. The average per department 
would vary over time reflecting the information in the 
database changing over time. 

Besides new aggregates, TSQL2 provides extended 
query language features to support aggregation. One 
new feature is temporal grouping. Temporal grouping 
is the process in temporal databases where the time- 
line is partitioned over time, tuples are grouped over 
these partitions, and aggregate values are computed 
over these groups. There are two types of partitioning, 
by a span a calendar defined length of time, such as 
a year), or b y each instant (an instant is the smallest 
measurable period of time in a temporal database). In 
this paper we consider partitioning by instant. 

For partitioning by instant, we first create a parti- 
tion of the underlying relation for each instant. We 
then compute the aggregate over each partition. Sup- 
pose that for two consecutive instants, the same tu- 
ples overlap both of them. The aggregate will have 
the same value for both of these partitions, since they 
both are computed over identical sets of tuples. This 
will be true for any sequence of instants for which the 
same tuples overlap. We call these sequences of in- 
stants (or partitions) where the aggregate values do 
not change (and equivalently the group of tuples they 
are computed over do not change) constant intervals. 
Notice that although we describe a partitioning of a 
time-line, the partitioning is determined by the tuples. 

3 Snapshot Aggregate Computation 
Aggregate computation in conventional databases 

is well-understood. In this section we will describe 
the typically used techniques used to compute aggre- 
gates in snapshot databases and also discuss several 
optimizations. 

A scalar aggregate is composed of an aggregate ex- 
pression and an optional qualification. Epstein out- 
lined a simple algorithm for evaluating scalar aggre- 
gates consisting of two steps [Epstein 19791. 

1. Allocate a tuple to hold the result. This tuple 
contains two attributes, a counter (initialized to 

2. 

zero) used to count the number of tuples that 
satisfy this aggregate’s qualification, and a result 
attribute. 

For each tuple that qualifies, update the counter 
and the aggregate result. 

The count field is used for computing aggregates that 
need to know how many tuples satisfied the qualifica- 
tion, such as count and average. For other aggregates, 
such as minimum and maximum, it may be used to 
recognize the first tuple. 

To handle many scalar aggregates in a query, com- 
pute each of them separately and store each result in a 
singleton relation, referring to that singleton relation 
when evaluating the rest of the query. 

4 Temporal Aggregate Computation 
In this discussion, we first consider extending exist- 

ing approaches to aggregate computation. The prob- 
lem we address is how to compute a temporal aggre- 
gate over intervals of a time-line. These intervals are 
constant intervals, induced by the timestamps of the 
underlying relation. Then we discuss some general 
points about computation of constant intervals. 
4.1 A Previous Implementation 

One approach for implementing aggregation in a 
temporal query language is based on an extension of 
existing approaches [Tuma 19921. This approach sup- 
ports temporal aggregates using extensions of existing 
aggregation techniques but, as stated in the referenced 
paper, the efficiency suffers. Basically, the constant 
intervals are determined first, then the aggregate is 
evaluated using the technique described above. Specif- 
ically, five steps are involved. 

First, determine the periods of time during which 
the relation remained fixed. These are the times dur- 
ing which no new tuples entered or exited the relation 
and hence are constant intervals. For each constant 
interval, select the tuples which overlap it. Third, if 
there is a group-by clause present, partition each con- 
stant interval of tuples into subsets, where each sub- 
set has a different unique value for the partitioning 
attribute. These are referred to as aggregation sets. 
Fourth, compute the aggregate value for each aggre- 
gation set. Finally, associate these values with the 
proper combination of tuples from the original query, 
based on the values indicated by the group-by clause, 
time interval of the aggregation set, and interval or 
event from the valid clause in the original query. 

Since the computation of constant intervals is com- 
puted first, and then the aggregate values are com- 
puted for each constant interval, the relation must be 
read twice. The algorithms we present below need 
only to read the relation once. 
4.2 Extending Epstein’s Approach 

We may extend the temporary relation approach 
of Epstein (used to handle group-by clauses) to man- 
age the constant intervals for aggregation in temporal 
databases. We do this by replacing or supplement- 
ing as appropriate the group-by-value with an interval- 
value which represents the interval over which we are 
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computing the aggregate. Each element’s interval r e p  
resents a constant interval. To compute the constant 
intervals (and the aggregate value over each at the 
same time), we use a temporary relation to main- 
tain a list of the constant intervals and their aggre- 
gate values, incrementally updating this list for each 
tuple. This may also be formulated as an optimiza- 
tion of the algorithm from the previous section, where 
we have combined the computation of the aggregate 
step 4) with the computation of the constant intervals 
steps 1-3). 

Implementing this simple extension to Tuma and 
Epstein’s work requires considering each tuple only 
once. When we are ready to consider a new temporal 
tuple, we simply compare the tuple’s start and end 
times with the start and end times of each interval in 
the list. If the tuple’s interval overlaps a list element’s 
interval, then we update the element’s aggregate value. 
We will implement this algorithm using a linked list 
and call this the naive or linked list approach. 

5 New Algorithms 
In this section we introduce several new algorithms 

which may be used to compute a temporal aggregate. 
For these algorithms, we assume that there is sufficient 
main memory to store the structures. 

First we will discuss an example temporal aggregate 
query. We use 0 as the origin or earliest timestamp 
and co as the greatest timestamp. 

Figure 1 shows an example temporal relation. This 
relation maintains the period of time that people were 
employed by a company. Notice that “Nathan” was 
not employed during times [13,17], and that the re- 
lation is in no particular order. We assume that the 
intervals are closed intervals. 

name salary 11 start I end 
Richard 40K II 18 I oc, 
Karen 45K 8 20 
Nathan 35K 1 1  :8 I 1; I 
Nathan 37K 

Figure 1: The Employed Relation 

In Figure 2 we see how the Employed relation in- 
duces constant intervals. The tuples are shown above 
the time-line. In Figure 2.a, we have a timeline with a 
single constant interval. In Figure 2.b, we see the con- 
stant intervals induced by timestamps of the first tuple 
[Richard, 40K, 18, CO]. Since only the 18 is a unique 
timestamp we only add one constant interval. In Fig- 
ure 2.c, we see that adding a tuple with two unique 
timestamps adds two new constant intervals. Each 
unique timestamp adds one more constant interval. 
So with 6 unique timestamps and the initial constant 
interval, we have 7 constant intervals induced by the 
4 tuples in the Employed relation. 
5.1 The Aggregation Tree 

In this section we introduce the aggregation tree al- 
gorithm. We describe how to incrementally construct 
a tree structure which manages the constant intervals 
and computes the aggregate values. We describe an 

a, 0 (a single, empty constant 
set, before we add any tuples) 

I 

18 00 0 
(b) ’ 

(2 constant sets, [0,17] and 
[18,a] after we add [18, col) 

(4 constant sets) 

Figure 2: Constant Intervals Induced by The Em- 
ployed Relation 

evaluation technique which assumes sufficient mem- 
ory is available for construction of the tree. There are 
other techniques which may be used to implement the 
aggregation tree with only limited memory resources, 
such as preallocating the tree in a linear memory ar- 
ray, thus avoiding the need for tree node pointers, but 
we will not discuss these alternatives here. 

The following TSQL2 query will compute the num- 
ber of tuples valid over each constant interval. 

SELECT COUNT(Name) 
FROM Employed E 

The default grouping expression in TSQL2 groups 
queries by instant, which means we will compute the 
aggregate value separately at each point in time. The 
result is coalesced by valid-time such that each inter- 
val in the result is a constant interval with at least one 
instant. 

Recall that the Employed relation records the times 
that certain people were employed. The result of this 
query when applied to the Employed relation is shown 
in Table 1. 

13 17 
18 20 

2 21 21 
1 22 CO I 

Table 1: Result of Temporal Aggregate Query 

The algorithm proceeds in two steps: build the ag- 
gregation tree, and perform a depth first search to 
compute the aggregate values at the leaves. Each node 
in the tree has an aggregate state value (here it is a 
count of the number of nodes which overlap this con- 
stant interval) and a start and end time. The start and 
end times at a leaf node encode a constant interval in 
the query’s result. Each leaf also contains the partial 
aggregate result for that constant interval. Initially, a 
single node valid from 0 to co has a count of 0 (Fig- 
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. For each tuple, we search for the constant 
~ ~ ~ e ~ v ~ ~ ( s )  containing the start and end times. When 
we find these intervals, if the timestamp falls between 
the boundaries of the constant interval, we split the 
interval in two. Figure 3.b shows the effect of adding 
the first tuple’s interval, 18,001. First we search in 
the initial tree(Figure 3.a\ for the bounding interval 
for 18. We see that the ending time of the tuple’s in- 
terval (m) was the same as the ending time of the tree 
node’s interval. So, we split the node into two pieces. 
We do not need to search further for the tuple’s end- 
ing timestamp (00) because that was contained in the 
node. 

The algorithm continues by considering the second 
tuple, with a valid timestamp interval of [8,20]. The 
start time, 8, is searched for in the current tree, Fig- 
ure 3.b. The bounding node is [0,17] but the con- 
stant interval extends past the end of this node so 
the searching must continue. The node [0,17] is split 
according to the tuple’s start time of 8. Searching 
continues for the ending timestamp, 20, and again a 
node is split. The result of processing this second tu- 
ple is Figure 3.c. Notice that only the count values 
stored at the leaves were adjusted. The node [8,17] 
has a count of 1 because this is the part of the pre- 
vious constant interval [0,17] which is overlapped by 
the current tuple. The other child of [0,17], [0,7], is 
not overlapped by the current tuple so its aggregate 
value is initialized to 0. We adjust the internal node 
aggregate values when a tuple’s constant interval com- 
pletely overlaps a node. We continue processing the 
tuples and the final result is shown in Figure 3.d. 

One advantage of this algorithm is that it is not 
always necessary to search the leaf nodes of the tree. 
Suppose that to the final tree, we wished to add a 
tuple with a constant interval of [5,50]. We would 
search the tree for the constant interval containing 
5. We find the node [0,7] and split it. We continue 
search the tree, and see that the node 8,171 is com- 
pletely overlapped by our tuple interva I . We update 
the aggregate value stored here, the count, to 2. We 
need to do this for the intervening nodes in the tree. 
But, since we completely overlapped node [8,17], we 
did not need to search the tree past this node to its 
leaves, we only needed to update the value stored at 
this node. We would continue processing this new tu- 
ple until we found the constant interval which overlaps 
the end timestamp, 50. 

After the tree is completed, a depth first search 
is performed from the root, keeping track of the ag- 
gregate additive count value as we recurse. This will 
produce the result in time order. Whenever we reach 
a leaf node we write the aggregate value out with the 
constant interval. For example, when we reach leaf 
node [8,12] (in the final aggregation tree, Figure 3.d), 
we add the aggregate value of the leaf node’s parents 
(which is 0 + 0 + 1) to the leaf’s value of 1 and get 2. 

Since our tuples are not sorted, a tuple may be in- 
serted in any part of the tree. This could be inefficient 
if we have large numbers of tuples and limited mem- 
ory, as we could have a large working set of memory 
pages. The aggregation tree works best if the rela- 
tion is randomly ordered by time, since the tree that 

a. initial tree b. tree after adding I18.ml c. tree after adding [8.201 

d. final tree after adding 17.121 and [18.21] 

Figure 3: Aggregate Computation Tree 

results is more balanced. 
The aggregation-tree is similar to the segment tree 

[Preparata & Shamos 19851. A segment tree is a bal- 
anced structure used to store segments of numbers 
from the real number line. The use of segment-like 
trees to store constant intervals for aggregate compu- 
tations is one of the contributions of this paper. 

The worst case time to create the tree is O(n2)  be- 
cause, in the worst case, the tuples are ordered in time, 
and the tree becomes a linear list. In Section 5.3 we 
propose a variation of the aggregation tree for sorted 
and almost sorted relations. 

If we do not balance the aggregation tree, then it 
is simple to page portions of the tree to disk. This is 
relatively easy because it is simple to mark a parent as 
pointing to a subtree not currently in memory. Simply 
accumulate the tuples which would overlap this region 
of the tree and process them later. This should be an 
interesting area for future research. 
5.2 Data Considerations 

In this section we describe several ways to quantify 
the sortedness of a relation. We then describe several 
algorithms which exploit the sortedness of the relation. 

We define totally ordered by time to mean that the 
tuples are sorted in order by start-times (typically in 
increasing order), with ties broken by using the end 
time. Notice that this definition does not consider 
the degree to which the tuple intervals overlap other 
tuples. 

Another quantification is how far from being totally 
ordered a group of tuples is. We call a set k-ordered 
if each tuple is at most k positions from its position 
in a totally ordered version of the relation. A totally 
ordered set of tuples is equivalently O-ordered. One 
way which this might arise is if all tuples written to a 
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database are written around the time they are known 
to be true. For example, if a programmer was hired 
on Tuesday, we probably write her new salary infor- 
mation to the database on Tuesday or Wednesday. If 
we guaranteed that we always wrote the information 
by the next day, then we would have a form of tempo- 
ral specialization, specifically, a retroactively bounded 
relation, which is common in practice [Jensen & Snod- 
grass 19941. A more efficient variant of the aggrega- 
tion tree may be applied to both k-ordered relations 
and retroactively bounded relations (discussed in Sec- 
tion 5.3). 

Another quantification is the characterization of 
how many tuples are out of order, and how far they are 
from their totally sorted position. If there are n tuples 
in a relation, and the tuples are k-ordered, then we de- 
fine the k-ordered percentage as the following quotient, 

k 

C i * n i  

k-ordered-precentage = i=l 
k * n  ' 

where ni is the number of tuples i positions out of 
order. This ratio ranges from 0 to 1. If the tuples are 
all in order, then this ratio will be 0. If the tuples are 
maximally disordered by k, then the ratio is greater 
than 0; the higher the disorder, the higher the ratio. 
The ratio can be 1 only for certain k. For a relation 
with 6 tuples, with k = 3, if we swap tuples 1 with 4, 2 
with 5, and 3 with 6,  we have a k-ordered-precentage 

Several example k-ordered-percentages follow in 
Table 2. These examples illustrate how different or- 
dering affects the value of the k-ordered-percentage. 

of 1 (= (3 + 3 + 3)/(3 * 3)). 

k-ordered I Explanation 
percentage 

0 
0.0002 
0.002 

the tuples are sorted 
2 tuples 100 places apart are swapped 
20 tuples are 100 places from being 

I I snrted I 
0.00505 
0.0505 

_____I 

1000 are 50 places out of order 
10 tuples are 1 place out of order, 10 are 

. . ., 100 are 100 out of order; the other 
tudes are in order 

Table 2: Examples of k-ordered-percentages 
(n=10000, k=lOO) 

5.3 Garbage Collecting the Aggregation 

If the tuples in a relation are k-ordered, then we 
may garbage collect the left side of the aggregation 
tree as we create it. We may remove some nodes from 
the beginning of the tree because we can determine 
when we have considered all tuples which affect their 

Tree 

10 tuples forward 

old II 

10 tuples backwards 
n 

23 
/12 13\, current tuple 

greatest point farthest point 
foward that tuple backwards that 
2 may be in the tuple 23 may be 
totally sorted in the totally 
relation sorted relation 

Figure 4: k-ordered list for k = 10 

values. Before we remove these nodes, we send their 
associated intervals and aggregate values to the next 
stage of query evaluation. We call these variations of 
the aggregation tree k-ordered aggregation trees, be- 
cause they depend on the properties of k-ordered re- 
lations. 

For illustrative purposes, let us suppose k is 10. 
The algorithm begins processing the tuples by build- 
ing a typical aggregation tree with the first 22 tuples 

, as described in Section 5.1. As the algorithm 

the last 2k + 1 (21 in this case) tuple intervals in a 
list. Begin numbering with 1 for convenience. Now, 
consider adding the next tuple, the tuple at position 
23. Tuple number 2 could have been at most 10 (or 
k) positions out of order. Thus, tuple number 2 could 
be placed, at the greatest, at position 12 (or 2 + k ,  
which is the original position plus 10 possible move- 
ment = 12) in the totally ordered list of tuples. The 
current tuple (number 23) could have been, at the ear- 
liest position in the list, at position 13 (23 - 10 = 13). 
Figure 4 shows this relationship. Since tuple 23 must 
come after tuple 2 in the totally ordered list, and any 
tuples after 23 would also appear after tuple 2 in the 
totally ordered list, then it follows that the algorithm 
is finished with any constant intervals whose end time 
is before the start of tuple number 2. 

What this means for the processing of a k-ordered 
relation is that after we process each tuple, we look 
back at the tuple 2k + 1 (21 back in our example) back 
from the current tuple. The worst case running time 
of the algorithm is still O(n2) ,  but we have reduced 
the main memory space requirement substantially. 

We garbage collect the nodes by keeping track of 
two pieces of information as we build the tree. As 
described above, we keep a window of the last 2k + 
1 tuple timestamps to use in determining when we 
can garbage collect a piece of the tree. The second 
piece of information we maintain is the current earliest 
constant interval in the tree still remaining in the tree. 

The garbage collection proceeds as follows. After 
processing a node, the tuple timestamp 2k + 1 nodes 
back in the relation is examined; any node may be 

procee (2k + Y s through the tuples, it is necessary to keep 

226 



node a 
100-m 

Parameter 

bee b 
100-00 

Values tested 

node a 
100-m 

(a) garbage collecting the suliar half of the baa 

nods a 
100-m 

(b) garbage collecting me earlier pari 01 the tree 

Legend 

A - subtree 
- gn;gnke collection 

3 0 0 - 5 0 0  -constant interval 
value at selected 
nodes 

Figure 5: Garbage Collecting Before Time 300 

garbage collected whose associated constant interval 
ends before this previous tuple’s start time (call this 
start time the gc-threshold). Examine the time stored 
at the root of the aggregation tree. If the left half 
of the tree occurs before the gc-threshold, the entire 
left subtree may be garbage collected, and the root re- 
moved, and the root may be replaceed with the root’s 
right child (or later child . This is illustrated in Fig- 

child, compare the gc-threshold to the current earli- 
est constant interval. If the earliest constant inter- 
val is before the gc-threshold, then the algorithm may 
garbage collect some interval or intervals in the earlier 
half of the aggregation tree, as shown in Figure 5.b. 
In this case, if only the earlier of two leaves of a node 
are garbage collected, the parent is removed and re- 
placed with the remaining leaf. Since the algorithm is 
only garbage collecting the earliest consecutive part of 
a tree, a “hole” is never created in the constant inter- 
vals. Testing continues until these two conditions for 
garbage collection are both false. 

6 Empirical Comparison 

ure 5.a. If it is not possi L le to remove the root’s left 

We implemented the algorithms discussed above to 
evaluate the effects of memory usage and different re- 
lation ordering. Table 3 provides the parameters used 
in our testing to contrast the different algorithms. 
We performed the tests on a lightly loaded Sun IPC 
SPARCstation running SunOS 4.1.1,  and the tests 
were compiled using gcc2 with optimization turned 
on. 

We utilized a test relation with a tuple size of 128 
bytes, which contained four germane attributes: name 
(6 bytes), salary (4 bytes), start-time (4 bytes), stop- 
time (4 bytes), as well as attributes not examined by 
the aggregate (110 bytes). We utilized 4 byte times- 
tamps since this was sufficiently large for our relation’s 

lifespan. TSQL2 permits the range and granularity of 
the timestamps to affect the allocated size of times- 
tamps; we expect one word timestamps to be common 
[Dyreson & Snodgrass 19941. 

All of the algorithms tested read the relation only 
one time, so we did not measure disk access time. Note 
that this is in contrast to Tuma’s explicit constant in- 
terval algorithm, which is the only temporal aggregate 
algorithm implemented prior to our work. Tuma’s im- 
plementation required that the underlying relation be 
scanned twice, once to compute the constant intervals, 
and again to compute the aggregate over each inter- 
val [Tuma 19921. We tested different relation sizes by 
creating relations from 128K to 8M in size (1K to 64K 
tuples), doubling the relation size between tests. We 
did not test larger relation sizes because the sizes we 
used are sufficient to characterize the differences in 
algorithm performance. 

k-ordered-percent age 
Long-lived tuples 

Size of the relation in tuples 

Size of the relation in bytes 

0.02, 0.08, 0.14 
0%, 40%, 80% 
l K ,  2K, 4K, 8K,  16K, 
32K, 64K 
128K, 256K, 512K, l M ,  
2M, 4M, 8M 

Table 3: Test parameters 

We found that the choice of aggregate did not mate- 
rially alter the results. We thus provide results only for 
the count aggregate. Count uses only 4 bytes per each 
aggregate-value stored. The other aggregates would 
require more memory if they were tested. Sum, maxi- 
mum, and minimum all use 4 bytes, plus an additional 
bit to mark an empty value. Average uses 8 bytes, 4 
for the sum and 4 for the count. This information 
is in addition to the pointers and timestamp values, 
which account for a large portion of the main memory 
requirements. 

Our relation had a lifespan of 1 million instants. We 
generated the starting position of our tuples indepen- 
dently, so our relations had many unique timestamps. 
Realistic data would likely have a smaller percentage 
of unique timestamps, with an associated increase in 
performance for the tree based algorithms. We con- 
sider two basic tuple lifespans. First, short-lived lifes- 
pan tuples are tuples whose lifespan is a random length 
from 1 to 1000 instants. Second, long-lived lifespan 
tuples have duration equal to a random length be- 
tween 20% and 80% of the relation’s lifespan (200,000 
to 800,000 instants). Generated tuples that extend 
past beyond the relation’s lifespan were discarded. We 
tested different amounts of long-lived tuples on the al- 
gorithms. The presence of long-lived tuples severely 
affected some algorithms. 

We ran each test several times with different ran- 
dom number seeds to establish reliable results. We do 
not show the error bars since 95% confidence inter- 
vals never exceeded 10% of the indicated value on any 
of the tests, an especially small figure on graphs with 
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logarithmic axes. 
We first tested the linked list algorithm, and the 

aggregation tree algorithm with randomly ordered re- 
lations, using varying relation sizes and varying per- 
centages of long-lived tuples as given in Table 3. We 
indicate only CPU time, as all algorithms perform a 
single segmented scan of the input relation. 

We then added two parameters to relation gener- 
ation. We generated a sorted relation, and then al- 
tered it according to various k-ordered and k-ordered- 
percentages. While it is perhaps more realistic to test 
on retroactively bounded relations ([Jensen & Snod- 
grass 19941 , such as updates occuring within two 
days, modeling such relations is more difficult. So in- 
stead, we approximate a retroactively bounded rela- 
tion with a k-ordered relation. For a uniform arrival 
rate, the two are identical. 

As before, we also tested different relation sizes and 
percentages of long-lived tuples. For these tests, we 
compared the running times of the linked list algo- 
rithm and the k-ordered aggregation tree. 

Finally, we tested the algorithms on sorted rela- 
tions. We compared the linked list algorithm, the 
aggregation tree, and the k-ordered aggregation tree 
with k = 1. 

The results are presented in the following sections. 
Please be sure to note that the results are log-log 
graphs, and so the results may appear to be decep- 
tively close. We use logarithmic graphs since we in- 
creased the relation size by a factor of two for each 
test. 
6.1 Query Evaluation Time 

In Figure 6 we see that the query evaluation time 
for randomly ordered relations depends on the relation 
size and the percentage of long-lived tuples. At cur- 
rent processing and 1/0 rates, all of these algorithms 
will be compute bound at realistic relation sizes. We 
provide results for computation time only. Since the 
performance of the aggregation tree and the linked list 
was unaffected by the presence of long-lived tuples, we 
provide only a single result for each. The linked list 
had the worst performance over all relation sizes. For 
the largest relation, it was 300 times slower than the 
aggregation tree. 
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Figure 6: Time Comparison on Unordered Relations 

Next we consider ordered and partially ordered re- 
lations. We altered the order of a sorted relation ac- 

cording to various k and k-ordered-percentages test 
values. We see in Figure 7 how the various k values 
affect the results for no long-lived tuples (in the legend, 
entries Ktree K=4, Ktree K=4O, Ktree K=4OO). We 
combined these results with the results of comput- 
ing the algorithm over totally ordered relations for 
comparison purposes. The effect of the k-ordered- 
percentage was outweighted greatly by the effect of the 
k value (especially on a log-log graph), so we only show 
a single graph for each k value; basically, larger k- 
ordered-percentages meant a more random tree which 
lead to a small increase in performance. Smaller values 
of k resulted in more efficient run-time performance for 
the k-ordered aggregation tree algorithm. This is be- 
cause smaller k values mean a smaller “history” must 
be maintained. 

Figure 7 also contains test results for the linked- 
list, the aggregation tree, and the k-ordered aggrega- 
tion tree with k = 1, all when computed over ordered 
relations with no long-lived tuples. The linked list al- 
gorithm was relatively unaffected by the new parame- 
ters tested here. As discussed above, when the tuples 
are sorted or nearly so, the standard aggregation tree 
has performance near O ( n 2 ) ,  and obviously the per- 
formance suffers in this test case. For this test case, 
we sorted the relation before applying the aggregation 
tree algorithm. 
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Figure 7: Time Comparison on Ordered Relations 
without Long-lived Tuples 

In Figure 8, we see how the algorithms are affected 
by the presence of many long-lived tuples. As in the 
previous figure, the k-ordered aggregation tree algo- 
rithms are computed over partially ordered relations; 
the other algorithms are computed over ordered rela- 
tions. Most algorithms are slowed here since they need 
a larger state, as discussed below. The linked-list is 
unaffected; the aggregation tree suffers from the pres- 
ence of long-lived tuples. If the relation is ordered, we 
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Figure 8: Time Comparison on Ordered Relations 
with 80% Long-lived Tuples 

may use the k-ordered aggregation tree with a window 
of 1 as we tested here. This results in a very efficient 
run-time performance, and as we shall see, efficient 
memory utilization. As discussed before, the aggrega- 
tion tree has O ( n 2 )  performance over sorted relations. 

The behavior of the k-ordered aggregation tree ap- 
pears to be complex. However, the results can be sum- 
marized as follows. Small values of k are more efficient 
because the number of tuples that are maintained in 
the tree is smaller. Larger values of k slow process- 
ing down, because a sorted or almost sorted relation 
leads to creation of a linked list. Large k-ordered- 
percentages improve the run time performance of the 
k-ordered aggregation tree as the tree is less linear; 
more randomness in good for the aggregation tree al- 
gorithms. The k-ordered aggregation tree is slightly 
more affected by the number of long-lived tuples, as 
opposed to the aggregation tree, largely because the 
k-ordered tree has fewer tuples, uses less time, and 
thus is more affected by more tuples in the tree. Re- 
call that k-ordered relations allow us to garbage collect 
the node added to the tree from a tuple’s start time 
(within a certain number of nodes depending on k). 
There may also be a node added to the tree for the 
tuple’s end time. If the end time is far away from the 
start time (i.e., the length of the tuple in time is large), 
then many tuples will have to be processed in the list 
before we move past the end time induced tree node. 
If we only have shorter-lived tuples, then the end time 
induced tree node will be closer to the start time, and 
we will be able to garbage collect that node sooner. So, 
the more longer lived tuples, the greater the number 
of nodes will be created that will be garbage collected 
later, as opposed to earlier. 

Parodoxically, the aggregation tree’s performance 
improves in the presence of many long-lived tuples. 

This is because of the size of the relation and the dis- 
tribution of the length of long-lived tuples. In Fig- 
ure 7,  the tuples are mostly short-lived. Thus few of 
the tuple insertions into the aggregation tree avoid the 
construction of a linear list. This linear aggregation 
tree strictly grows down the right hand side of tree. 
When many long-lived tuples are present as in Fig- 

the tuples are long lived here) result in a less linear 
right hand side of the tree. The tree is more “bushy”. 
As the algorithm has inserted many tuples into the 
right hand side of the tree ahead of time, this side 
of the tree is not linear. Thus we see a performance 
improvement. 
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Figure 9: Memory Comparison with No Long-lived 
Tuples 

6.2 Main Memory Comparison 
The amount of memory used for a “node” differed 

between the algorithms. Both aggregation tree algo- 
rithms used 16 bytes per node as we implemented the 
more efficient, single timestamp per node variation: 
two child pointers, an aggregate-value, and a times- 
tamp split value. The linked list algorithm used 16 
bytes per node as it stored two timestamps. 

As before, the space requirements of the algorithms 
vary with percentage of long-lived tuples. Figure 9 
compares them under the (unrealistic) assumption of 
no long-lived tuples. The memory required by the 
linked list algorithms was basically constant over dif- 
ferent k and k-ordered percentage values, so we only 
present a single result for this algorithm. The mem- 
ory requirements for the k-ordered aggregation tree 
when computed over a totally ordered relation (in the 
legend, Ktree, sorted relation, K=l) ,  were barely re- 
duced from the IC = 4 tests. The basic aggregation 
tree requires the most main memory. 

For relations with long-lived tuples, the results are 
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much worse for the k-ordered tree algorithms; the 
memory requirements for the linked list and aggrega- 
tion tree algorithms are totally unaffected by presence 
of such tuples. 

The memory used by the k-ordered tree algorithm 
varied for all three factors, but the most important 
factor was the value of k ,  closely followed by the per- 
centage of long-lived tuples. The k-ordered-percentage 
proved to be relatively unimportant in memory usage. 
This is expected because the ordering of the tuples 
affects the shape of the tree (and thus the evaluation 
time), but not the actual number of nodes in the tree 
(which determines the space usage). The relatively 
large space requirements for small relations for the 
k-ordered tree occurs because the (fixed) value of IC is 
such a large percentage of the number of tuples; hence, 
there is less opportunity for garbage collection. 
6.3 Query Optimizer Strategies 

The optimizer can exploit information on the sort- 
edness of the underlying relation. If the relation is not 
sorted, regardless of the number of long-lived tuples, 
then the aggregation tree algorithm will perform well 
when compared to the linked list and k-ordered ag- 
gregation tree, depending on the tradeoff between the 
cost of increased memory requirements and the cost 
of disk access. If memory is cheaper than disk I/O, 
then the aggregation tree is the best approach. On 
the other hand, if the relation is sorted, or if the disk 
access time necessary to sort the relation is less costly 
than the memory the aggregation tree requires, then 
the k-ordered aggregation tree is the best approach. 
If the relation is declared by the data base adminis- 
trator to be retroactively bounded, then the k-ordered 
aggregation tree would be the algorithm of choice, as 
no sorting is required. 

The performance of the linked list algorithm was 
almost unaltered between the various alternatives, de- 
pending only on the relation size. Although its per- 
formance was poor in comparison to the other algo- 
rithms here, it is important to note that if there were 
very few constant intervals in the results (i.e., we were 
only interested in the results for a single year and 
instants represented days), then the linked list algo- 
rithm would have quite adequate performance. The 
number of unique timestamps in the relation has a 
a similar effect on performance. The tests described 
in this paper have randomly generated start times, 
which leads to  many unique tuple start times. If there 
were many fewer unique timestamps, which might be 
the case if the granularity was very coarse, or if most 
records were written in a short period of time (e.g., 
a student-records database with grades all written on 
the last day of the semester), then less memory would 
be required to store the “state” for each of the algo- 
rithms. This last case would especially improve the 
memory requirement of the aggregation tree and the 
linked list algorithms. 

7 Summary and Future Work 
This paper introduced several new algorithms for 

computing temporal aggregates which are much more 
efficient than the linked list algorithm. It also de- 

fined two new metrics to quantify temporal relations, 
k-orderedness and k-ordered percentage. 

We introduced the linked list algorithm, an im- 
provement over the only previously implemented tem- 
poral aggregation algorithm, which maintains buckets 
for the results in memory. For relations with only a 
small number of constant interval results, the linked 
list algorithm is expected to be the most efficient in 
time and space. The linked list algorithm was unaf- 
fected by long-lived tuples. However, the linked list 
algorithm was still slower than either of the other new 
algorithms under all tested conditions. 

For unordered relations, we introduced the aggre- 
gation tree, which builds a binary tree of the constant 
intervals, and showed that this algorithm is the most 
efficient in time, dependent in part on the number of 
long-lived tuples. The space usage of the aggregation 
tree is generally greater than the linked list algorithm, 
due mostly to the fact that each unique timestamp 
adds two nodes to the aggregation tree and only one 
in the case of the linked list algorithm. 

For k-ordered relations, we introduced the k- 
ordered aggregation tree, a variation of the aggrega- 
tion tree with garbage collection of tree nodes. This al- 
gorithm was generally the most efficient for k-ordered 
relations with any long-lived tuples. We tested this 
algorithm with different values of k and k-ordered- 
percentages and found that the k-ordered aggregation 
tree worked best for small values of k and for larger 
k-ordered-percentages. The linked list algorithm was 
unaffected by different values of k and k-ordered per- 
cent ages. 

To summarize, we have presented techniques for 
computing temporal aggregates for unordered, fully 
sorted, and almost ordered temporal relations, and 
empirically shown under what conditions each of the 
algorithms is best. The simplest strategy is to  sort 
the relation then use the k-ordered aggregation tree 
with k = 1. This gives very efficient run-time perfor- 
mance across a range of long-lived tuple percentages, 
with minimal memory usage. When the relation is 
not ordered, but is retroactively bounded, then the k- 
ordered aggregation tree is directly applicable without 
sorting. 

There are several further areas of research to ex- 
plore in temporal aggregation. One alternative to ex- 
amine is a balanced aggregation tree, which should be 
especially efficient in the case of a k-ordered relation. 

Another possibility for future research concerns the 
aggregation tree. If the relation might be sorted, then 
the best choice would be the aggregation tree algo- 
rithm, with the relation’s pages randomized when they 
are read to avoid linearizing the aggregation tree. This 
randomization could be performed on each group of 
pages read into memory, and therefore would not af- 
fect the 1 / 0  time. 

Another aspect to investigate is temporal grouping 
by span. If the number of spans is much smaller than 
the number of constant intervals, then fewer “buckets” 
need to be maintained as there will be many fewer con- 
stant interval results. The performance of the slower 
algorithm tested here (the linked list) would be ex- 
pected to improve. 
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We did not consider duplicate elimination. This 
will probably not affect the linked list algorithm very 
much, but is another matter entirely for the tree algo- 
rithms. Our choices depend on the number of tuples 
in each interval. Probably the best single approach for 
this problem involves removing the duplicates before 
the relation is processed, perhaps by sorting. 

Finally, we want to explore limited main mem- 
ory implementations of these algorithms. The perfor- 
mance of the aggregation tree appears to be a promis- 
ing alternative for true randomly ordered relations, 
but the memory requirements are excessive. 

The techniques described here may also be applied 
to spatial and spatiotemporal databases to compute 
aggregates and associate them with intervals in space 
and time. 
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