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example being the timestamping of tuples with valid and transaction start and end times [25])may introduce redundancy because attribute values that change at di�erent times are repeatedin multiple tuples. The non-1NF models, one being timestamping attribute values with sets ofintervals [9], may not be capable of directly using existing relational storage structures or queryevaluation techniques that depend on atomic attribute values.It is our contention that focusing on data presentation (how temporal data is displayed tothe user), on data storage, with its requisite demands of regular structure, and on e�cient queryevaluation has complicated the primary task of capturing the time-varying semantics. The resulthas been a plethora of incompatible data models and query languages, and a corresponding surfeitof model speci�c database design approaches and implementation strategies.We advocate instead a very simple data model, the Bitemporal Conceptual Data Model (BCDM),which captures the essential semantics of time-varying relations, but has no illusions of being suit-able for presentation, storage, or query evaluation. The BCDM is termed a conceptual modelbecause of these properties. In essence, we advocate moving the distinction between the variousexisting temporal data models from a semantic basis to a physical, performance-relevant basis,utilizing our proposed conceptual data model to capture the time-varying semantics. The termi-nology of \conceptual" is used only to emphasize the use of the model for design and as a basisfor a query language; otherwise this new model is similar to other temporal data models in theformalism used to de�ne it.We rely on existing data model(s) for the other tasks, by exploiting equivalence mappingsbetween the conceptual model and the representational models. The equivalence mappings arebased on the notion of snapshot equivalence, which says that two relation instances have the sameinformation content if all their snapshots, taken at all times (valid and transaction), are identical.Snapshot equivalence provides a natural means of comparing relation instances in the modelsconsidered in this paper. Finally, while not addressed here, we feel that the conceptual data modelis the appropriate location for database design and logical query optimization [13].In the next section, the conceptual model is de�ned. We then examine �ve representationaldata models that have been previously proposed. These representational models can be classi�ed aseither tuple timestamping (e.g., [1, 21, 22, 23, 25, 27]), backlog-based (e.g., [11, 15]), or attribute-value timestamping (e.g., [5, 9, 17, 20, 32]). We provide mappings between the conceptual modeland these representational models.Having presented both the conceptual data model and the representational data models, Sec-tion 4 presents an overview of the interaction among the data models. Snapshot equivalence isthe subject of Section 5. The de�nitions of snapshot equivalence rely on model-speci�c operationsbecause the notion of snapshot equivalence allows us to relate relation instances, as well as op-erators, of di�erent representations, and also allows us to relate representations to the semanticsascribed to the conceptual model. Section 6 is devoted to generalizing algebraic operators of therelational model to apply to objects in the bitemporal conceptual model as well as one of the tuple-timestamped representational models. As with data instances, we demonstrate correspondence ofthese operators. We also discuss transformations, e.g., coalescing , of the bitemporal elements oftuples in a relation instance. Finally, we demonstrate that the BCDM is a temporally ungroupeddata model [6].After summarizing, we outline the next steps to be taken in utilizing the conceptual model tointegrate existing temporal data models. 2



2 Bitemporal Conceptual RelationsThe primary reason for the success of the relational model is its simplicity. A bitemporal relationis necessarily more complex than a conventional relation. Not only must it associate values withfacts, as does the relational model, it must also specify when the facts were valid in reality, as wellas when the facts were current in the database. Since our emphasis is on semantic clarity, ouraim is to extend the conventional relational model as small an extent as necessary to capture thisadditional information.2.1 De�nitionTuples in a bitemporal conceptual relation instance are associated with time values from twoorthogonal time domains, namely valid time and transaction time. Valid time is used for capturingthe time-varying nature of the portion of reality being modeled, and transaction time models theupdate activity associated with the relation. For both domains, we assume that the databasesystem has limited precision; the smallest time units are termed chronons [14]. The time domainshave total orders and both are isomorphic to subsets of the domain of natural numbers. Thedomain of valid times may be given as DV T = ft1; t2; : : : ; tkg and the domain of transaction timesmay be given as DTT = ft01; t02; : : : ; t0jg [ fUCg where UC is a distinguished value which is usedduring update as will be explained later in this section. A valid-time chronon is thus an elementof DVT , a transaction-time chronon is an element of DTT n fUCg, and a bitemporal chronon isan ordered pair of a transaction-time chronon and a valid-time chronon. We expect that the validtime domain is chosen so that some times are before the current time and some times are after thecurrent time.We also de�ne a set of names DA = fA1; A2; : : : ; AnAg for explicit attributes and a set ofattribute domains DD = fD1; D2; : : : ; DnDg. In general, the schema of a bitemporal conceptualrelation, R, consists of an arbitrary number, e.g., n, of explicit attributes from DA, with domains inDD, encoding some fact (possibly composite) and an implicit timestamp attribute, T, with domainDTT �DV T . Thus, a tuple, x = (a1; a2; : : : ; anj tb), in a bitemporal conceptual relation instance,r(R), consists of a number of attribute values associated with a bitemporal timestamp value.An arbitrary subset of the domain of valid times is associated with each tuple, meaning thatthe fact recorded by the tuple is true in the modeled reality during each valid-time chronon in thesubset. Each individual valid-time chronon of a single tuple has associated a subset of the domainof transaction times, meaning that the fact, valid during the particular chronon, is current in therelation during each of the transaction-time chronons in the subset. Any subset of transaction timesless than the current time and including the value UC may be associated with a valid time. Noticethat while the de�nition of a bitemporal chronon is symmetric, this explanation is asymmetric.This assymmetry is also present in the the update operations to be de�ned shortly, and it reectsthe di�erent semantics of transaction and valid time.We have thus seen that a tuple has associated a set of so-called bitemporal chronons (\tinyrectangles") in the two-dimensional space spanned by transaction time and valid time. Such a setis termed a bitemporal element1, denoted tb. Because no two tuples with mutually identical explicitattribute values (termed value-equivalent) are allowed in a bitemporal relation instance, the fulltime history of a fact is contained in a single tuple.In graphical representations of bitemporal space, we choose the x-axis as the transaction-timedimension, and the y-axis as the valid-time dimension. Hence, the ordered pair (t, v) represents1This term is a generalization of temporal element, used to denotes a set of single dimensional chronons [9].Alternative terms include time period set [1] and bitemporal lifespan [5].3



the bitemporal chronon with transaction time t and valid time v.Example: Consider a relation recording employee/department information, such as \Jake worksfor the shipping department." We assume that the granularity of chronons is one day for both validtime and transaction time, and the period of interest is some given month in a given year, e.g.,June 1992. Throughout, we use integers as timestamp components. The reader may informallythink of these integers as dates, e.g., the integer 15 in a timestamp represents the date June 15th.Figure 1 shows how the bitemporal element in an employee's department tuple changes. Em-ployee Jake was hired by the company as temporary help in the shipping department for theinterval from time 10 to time 15, and this fact became current in the database at time 5. This isshown in Figure 1(a). The arrows pointing to the right signify that the tuple has not been logicallydeleted; it continues through to the transaction time until changed (UC ).Figure 1(b) shows a correction. The personnel department discovers that Jake had really beenhired from time 5 to time 20, and the database is corrected beginning at time 10. Later, thepersonnel department is informed that the correction was itself incorrect; Jake really was hired forthe original time interval, time 10 to time 15, and the correction took e�ect in the database attime 15. This is shown in Figure 1(c). Lastly, Figure 1(d) shows the result of three updates to therelation, all of which become current starting at time 20. (The same transaction could have causedall three updates.) While the period of validity was correct, it was discovered that Jake was notin the shipping department, but in the loading department. Consequently, the fact (Jake, Ship) isremoved from the current state and the fact (Jake, Load) is inserted. A new employee, Kate, ishired for the shipping department for the interval from time 25 to time 30.
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The example illustrates how transaction time and valid time are handled. As time passes, i.e.,as the computer's internal clock advances, the bitemporal element associated with a fact is updated,if the fact remains current in the database. For example, consider the fact (Jake, Ship) which �rstbecomes current in the database at time 5. Due to the semantics of insertion as described in thenext section, a fact, when �rst appended to the relation, has associated the special transactiontime value UC . When the clock advances, additional bitemporal chronons are appended to thetimestamp associated with the fact. Each bitemporal chronon with a transaction time of UCproduces an appended bitemporal chronon with UC replaced by the current transaction time.Thus, for (Jake, Ship) to become current at time 5, the fact �rst appears in the relation at time4 with the six valid-time chronons 10, 11, : : : , 15, each associated with the transaction time valueUC . Note that, logically, the fact is not yet current. This does not occur until time 5 when thesix new bitemporal chronons, (5; 10); : : : ; (5; 15), are appended. This continues for every clock tickuntil time 9, when a correction to the fact's valid time is made. Thus, starting at time 10, 16bitemporal chronons are added at every clock tick.The actual bitemporal relation corresponding to the graphical representation in Figure 1(d) isshown in Figure 2 below. This relation contains three facts. The timestamp attribute T showseach transaction-time chronon associated with each valid-time chronon as a set of ordered pairs.Emp Dept TJake Ship f(5; 10); : : : ; (5; 15); : : : ; (9; 10); : : :; (9; 15);(10; 5); : : : ; (10; 20); : : : ; (14; 5); : : :; (14; 20);(15; 10); : : : ; (15; 15) : : :; (19; 10); : : :; (19; 15)gJake Load f(UC ; 10); : : : ; (UC ; 15)gKate Ship f(UC ; 25); : : : ; (UC ; 30)gFigure 2: Bitemporal Relation Instance utValid-time relations and transaction-time relations are special cases of bitemporal relations thatsupport only valid time or transaction time, respectively. Thus a valid-time tuple has associateda set of valid-time chronons (termed a valid-time element and denoted tv), and a transaction-timetuple has associated a set of transaction-time chronons (termed a transaction-time element anddenoted tt). For clarity, we use the term snapshot relation for a conventional relation. Snapshotrelations support neither valid time nor transaction time.2.2 UpdateIn this section, we describe the semantics of the three forms of update, insertion, deletion, andmodi�cation. This description is pedagogical, meant only to illustrate the semantics of the oper-ations, and not intended for implementation. Possible techniques for e�ciently supporting thesesemantics are discussed in Section 3.An insertion is issued when we want to record in bitemporal relation instance r that a currentlyunrecorded fact (a1; : : : ; an) is true for some period(s) of time. These periods of time are representedby a valid-time element. When the fact is stored, its valid-time element stamp is transformed intoa bitemporal-element stamp to capture that, until its explicit attribute values are changed, thefact is current in the relation. This is indicated with the special transaction time value, UC .The arguments to the insert routine are the relation into which a fact is to be inserted, theexplicit values of the fact, and the set of valid-time chronons, tv, during which the fact was true5



in reality. The insert routine returns the new, updated version of the relation. There are threecases to consider. First, if (a1; : : : ; an) was never recorded in the relation, a completely new tupleis appended. Second, if (a1; : : : ; an) was part of some previously current state, the tuple recordingthis is updated with the new valid time information. Third, if (a1; : : : ; an) is already currentin the relation, a modi�cation is required, and the insertion is rejected (in this case, a modifyoperation should have been used). In the following, we denote valid-time chronons with cv andtransaction-time chronons with ct.insert(r; (a1; : : : ; an); tv) =8>>><>>>: r [ f(a1; : : : ; anjfUCg � tv)g if :9 tb ((a1; : : : ; anj tb) 2 r)r � f(a1; : : : ; anj tb)g[f(a1; : : : ; anj tb [ ffUCg � tvg)g if 9 tb ((a1; : : : ; anj tb) 2 r ^ :9 (UC ; cv) 2 tb)r otherwiseThe insert routine adds bitemporal chronons with a transaction time of UC .As transaction time passes, new chronons must be added. Logically, this is performed bya special routine ts update which is applied to all bitemporal relations at each clock tick. Thisfunction simply updates the timestamps to include the new transaction-time value. The timestampof each tuple is examined in turn. When a bitemporal chronon of the type (UC ; cv) is encounteredin the timestamp, a new bitemporal chronon (ct; cv), where time ct is the new transaction-timevalue, is made part of the timestamp.ts update(r; ct) :for each x 2 rfor each (UC ; cv) 2 x[T]x[T]  x[T][ f(ct; cv)g;We note again that ts update is part of the logical semantics of the conceptual model, and thatdirect implemention would be prohibitively expensive. In Section 3, we discuss e�cient ways tosupport these semantics.Deletion concerns the logical removal of a tuple from the current valid-time state of a bitemporalrelation. To logically remove a qualifying tuple from the current state, we delete all chronons(UC ; cv), where cv is some valid-time chronon, from the timestamp of the tuple. As a result, thetimestamp is not expanded by subsequent invocations of ts update, and the tuple will not appearin future valid-time states. If there is no qualifying tuple in the relation, or if a qualifying tupleexists but has no chronons with a transaction time of UC , then the deletion has no e�ect.delete(r; (a1; : : : ; an)) =( r � f(a1; : : : ; anj tb)g [ f(a1; : : : ; anj tb � uc ts(tb))g if 9 tb ((a1; : : : ; anj tb) 2 r)r otherwisewhere uc ts(tb) = f(UC ; cv) j (UC ; cv) 2 tbg.Finally, a modi�cation of an existing tuple is de�ned by a deletion followed by an insertion asfollows. modify(r; (a1; : : : ; an); tv) = insert(delete(r; (a1; : : : ; an)); (a1; : : : ; an); tv)6



Example: The conceptual relation in Figure 2 is created by the following sequence of commands,invoked at the indicated transaction time.Command Transaction Timeinsert(dept,("Jake","Ship"),[10,15]) 5modify(dept,("Jake","Ship"),[5,20]) 10modify(dept,("Jake","Ship"),[10,15]) 15delete(dept,("Jake","Ship")) 20insert(dept,("Jake","Load"),[10,15]) 20insert(dept,("Kate","Ship"),[25,30]) 20 utWe have given a de�nition of a bitemporal conceptual relation. As part of the de�nition, weused the special value UC in conjunction with the routine ts update to allow timestamps of tuplesto grow as time passes. It should be emphasized that users will not see the value UC . Query resultsare static, and there is no need to display this value. In the next section, we shall see how thetemporal relations de�ned thus far may be mapped to other formats, some of which may be betterfor display or storage of temporal data.3 Representation SchemesA bitemporal conceptual relation is structurally simple|it is a set of facts, each timestampedwith a bitemporal element which is a set of bitemporal chronons. In this section, we examine �verepresentations of bitemporal relations that have been previously proposed. These representationsfall into the class of temporally ungrouped models [6], and constitute all such models proposedto date, to our knowledge. For each, we briey specify the objects de�ned in the representation,provide the mapping to and from conceptual bitemporal relations to demonstrate that the sameinformation is being stored, and show how updates of bitemporal conceptual relations may bemapped into updates on relations in the representation. We progress from a simple model to onesassociated with more complex mappings.In the following, we will use R and S to denote relation schemas. Relation instances aredenoted by r, s, and t, and r(R) means that r is an instance of R. For brevity, we use A to denotethe set of all (explicit) attributes Ai, 1 � i � n of a relation. For tuples we use, x, y, and z,possibly indexed, and the notation x[Ai] denotes the Athi attribute of x. Similarly, x[T] denotesthe timestamp associated with x. Often, when discussing representational models, we will use x[V]and x[T] to denote the valid-time and transaction-time intervals, respectively, associated with arepresentational tuple x. The di�ering use associated with conceptual tuples should be clear fromcontext.3.1 Snodgrass' Tuple Timestamped Representation SchemeIn the conceptual model, the timestamp associated with a tuple is an arbitrary set of bitemporalchronons. As such, a relation schema in the conceptual model is non-1NF, which representsdi�culties if directly implemented. We describe here how to represent conceptual relations by 1NFsnapshot relations, allowing the use of existing, well-understood implementation techniques [25].Let a bitemporal relation schema R have the attributes A1; : : : ; An;T where T is the timestampattribute de�ned on the domain of bitemporal elements. Then R is represented by a snapshotrelation schema R as follows. 7



R = (A1; : : : ; An;Ts;Te;Vs;Ve)The additional attributes Ts, Te, Vs, Ve are atomic-valued timestamp attributes containing astarting and ending transaction-time chronon and a starting and ending valid-time chronon, re-spectively. These four values represent the bitemporal chronons in a rectangular region, the ideabeing to divide the region covered by the bitemporal element of a tuple in a conceptual relationinto a number of rectangles and then represent the conceptual tuple by a set of representationaltuples, one for each rectangle.There are many possible ways of covering a bitemporal element. To ensure the representationremains faithful to the semantics of the conceptual relation, we require that any covering functionon a bitemporal element x[T] of a bitemporal tuple x satisfy two properties.1. Any bitemporal chronon in x[T] must be contained in at least one rectangle.2. Each bitemporal chronon in a rectangle must be contained in x[T].The �rst condition ensures that all chronons in the bitemporal element of x are accounted for; thesecond ensures that no spurious chronons are introduced. Hence, the covering represents the sameinformation as is contained in the original tuple.Apart from these requirements, the covering function is purposefully left unspeci�ed|an im-plementation is free to choose a covering with properties it �nds desirable. For example, a set ofcovering rectangles need not be disjoint. Overlapping rectangles may reduce the number of tuplesneeded in the representation, at the possible expense of additional processing during update.Example: While the results presented in this paper are independent of particular covering func-tions, it is still useful to consider some examples to illustrate the range of possibilities.Figure 3 illustrates three ways of covering the bitemporal element associated with the fact(Jake, Ship) contained in Figure 2, and shown graphically in Figure 1(d). We may distinguishbetween those covering functions that partition the argument set into disjoint rectangles and thosethat allow overlap between the result rectangles. Figure 3(a) and Figure 3(b) are examples ofpartitioned coverings while the covering in Figure 3(c) has overlapping rectangles.
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Figure 3: Example Coverings of a Bitemporal ElementFigure 3(a) illustrates a type of covering where regions are partitioned by transaction time.Maximal transaction-time intervals are located so that each transaction time in an interval hasthe same interval of valid times associated. In the �gure, the transaction-time interval (5,9) ismaximal, and the associated valid-time interval is (10,15). Thus, the rectangle with corners (5,10)8



and (9,15) is part of the result. Similarly, the two rectangles with corners ((10,5), (14,20)), and((15,10), (19,15)) are in the result. Due to the semantics of transaction time [11], this is perhapsthe most natural choice of covering [25]. Indeed, all the examples of representations of the employeebitemporal relation use covering functions that partition by transaction time.Figure 3(b) illustrates the symmetric partitioning by valid time. Here, three rectangles arecreated with corners at ((5,10), (19,15)), ((10,5), (14,10)), and ((10,15), (14,20)).Figure 3(c) exempli�es a type of covering that allows overlaps. The two rectangles in thiscovering have corners at ((5,10), (19,15)) and ((10,5), (14,20)). The overlap of these rectanglesmeans that two tuples will express the fact that Jake was in the shipping department from time10 to time 15, recorded as current information from time 10 to time 14.The last example demonstrates that a covering function that allows overlap may result in asmaller number of covering rectangles, and therefore may yield a more compressed representationthan a covering function that partitions. However, this repetition of information makes someupdates more time consuming, as more tuples may be a�ected by a single update. utWe will make use of covering functions throughout this section when representing bitemporalelements of conceptual tuples with rectangles.Example: The 1NF relation corresponding to the conceptual relation in Figure 2 is shown below.Emp Dept Ts Te Vs VeJake Ship 5 9 10 15Jake Ship 10 14 5 20Jake Ship 15 19 10 15Jake Load 20 UC 10 15Kate Ship 20 UC 25 30Here we use a non-overlapping covering function that partitions the bitemporal element by trans-action time. utThe following functions convert between a bitemporal conceptual relation instance and a cor-responding instance in the representation scheme. The second argument, cover, of the routineconceptual to snap is a covering function. It returns a set of rectangles, each denoted by a setof bitemporal chronons.conceptual to snap(r0, cover):s ;;for each x 2 r0z[A]  x[A];for each t 2 cover(x[T])z[Ts]  min 1(t); z[Te]  max 1(t);z[Vs]  min 2(t); z[Ve]  max 2(t);s s [ fzg;return s; snap to conceptual(r):s ;;for each z 2 rr  r � fzg;x[A]  z[A];x[T]  bi chr(z[T];z[V]);for each y 2 rif z[A] = y[A]r  r � fyg;x[T]  x[T] [ bi chr(y[T];y[V]);s s [ fxg;return s;Recall that A is an abbreviation for all attributes A1; : : : ; An of the argument relations. Thefunctions min 1 and min 2 select a minimum �rst (transaction time) and second (valid time) com-ponent, respectively, in a set of bitemporal chronons. The function max 1 returns the value UC9



if encountered as a �rst component; otherwise, it returns a maximum �rst component. The func-tion max 2 selects a maximum second component. The function bi chr computes the bitemporalchronons covered by the argument rectangular region.The conceptual to snap routine generates possibly many representational tuples from eachconceptual tuple, each generated tuple corresponding to a rectangle in valid/transaction-time space.The snap to conceptual routine merges the rectangles associated with a single fact into a singlebitemporal element.Note that the functions are the inverse of each other, i.e., for any conceptual relation instance r0,snap to conceptual(conceptual to snap(r0; cover)) = r0:We sketch an argument around which a formal proof can be constructed. Consider a tuple x inthe conceptual relation r0. The function conceptual to snap produces a set of value-equivalentrepresentational tuples fz1; z2; : : : ; zkg, k � 1, from this x, where the bitemporal rectangle asso-ciated with zi is produced by cover(x[T]). We claim that the reverse transformation performedby snap to conceptual coalesces the set of tuples fz1; z2; : : : ; zkg back into the conceptual tuplex. To see this, note that any value-equivalent tuples in conceptual to snap(r0; cover) must havebeen produced from x, otherwise value-equivalent tuples must have been present in r0. Let y be theconceptual tuple produced by coalescing fz1; z2; : : : ; zkg. Then y[T] contains exactly the chrononscontained in the union of the rectangles produced by cover(x[T]). By the de�nition of coveringfunctions, these are exactly the chronons in x[T]. Hence y = x. It is easy to see that no spurioustuples can be produced by the transformations. Hence, the same conceptual relation is produced.For the update routines, the most convenient covering functions partition on either valid ortransaction time and do not permit overlaps. The current transaction time is ct.insert(r;(a1; : : : ; an); tv; coverv):cvr coverv(tv);for each x 2 rif x[A] = (a1; : : : ; an) and x[Te] = UCfor each t 2 cvrif x[V] \ t 6= ;cvr  (cvr� t) [ (t� x[V]);for each t 2 cvrz[A] (a1; : : : ; an);z[Ts] ct; z[Te] UC ;z[Vs] t[s]; z[Ve] t[e];r  r [ fzg;return r
delete(r;(a1; : : : ; an); ct):for each x 2 rif x[A] = (a1; : : : ; an) and x[Te] = UCx[Te] ct;return rThe function coverv in the insert routine returns a set of valid-time intervals (each a set ofcontiguous valid-time chronons). The routine �rst reduces the valid time elements, produced bythe covering function, to avoid overlap with the valid times of existing tuples that have a transactiontime extending to UC and that are value equivalent to the one to be inserted. Then, one tupleis inserted for each of the remaining valid-time intervals. The delete routine simply replaces thetransaction end time with the current time, ct.As for the conceptual data model, modify is simply a combination of delete and insert.3.2 Jensen's Backlog-Based Representation SchemeThe previous representation scheme presented a very natural and frequently used way of repre-senting a bitemporal relation by a snapshot relation.10



In the backlog-based representation scheme, bitemporal relations are represented by backlogs,which are also 1NF relations [11, 15]. The most important di�erence between this and the previousschemes is that tuples in backlogs are never updated, i.e., backlogs are append-only. Therefore, thisrepresentation scheme is well-suited for log-based storage of bitemporal relations, and it admitsthe possibility of using cheap write-once optical disk storage devices. This is highly desirable sincethe information content of bitemporal relations is ever-growing, resulting in very large relations.A bitemporal relation schema R = (A1; : : : ; An jT) is represented by a backlog relation schemaR as follows. R = (A1; : : : ; An;Vs;Ve;T;Op)As in the previous representation scheme, the attributes Vs and Ve store starting and ending valid-time chronons, respectively. Attribute T stores the transaction time when the tuple was insertedinto the backlog. Tuples, termed change requests, are either insertion requests or deletion requests,as indicated by the values, I , and D, of attribute Op. The fact in an insertion request is currentstarting at its transaction timestamp and until a matching deletion request with the same explicitand valid-time attribute values is recorded. Modi�cations are recorded by a pair of a deletionrequest and an insertion request, both with the same T value.Example: The backlog relation corresponding to the conceptual relation in Figure 2 is shownbelow. Emp Dept Vs Ve T OpJake Ship 10 15 5 IJake Ship 10 15 10 DJake Ship 5 20 10 IJake Ship 5 20 15 DJake Ship 10 15 15 IJake Ship 10 15 20 DJake Load 10 15 20 IKate Ship 25 30 20 I utNext, we consider the conversion between a bitemporal relation and its backlog representation.The �rst function, conceptual to back, takes a conceptual relation as its �rst argument. Thesecond argument is an arbitrary covering function as described in Section 3.1. The result is abacklog relation. Each conceptual tuple, x, is treated in turn. For each rectangle of bitemporalchronons in the cover of the timestamp of x, an insertion request is appended to the result. Further,if the rectangle has an ending transaction time di�erent fromUC then a deletion request is inserted.
11



conceptual to back(r0, cover):r  ;;for each x 2 r0for each t 2 cover(x[T])z[A] x[A];z[Vs] min 2(t); z[Ve] max 2(t);z[Op]  I; z[T] min 1(t);r  r [ fzg;if max 1(t) 6= UCz[Op]  D; z[T] max 1(t);r  r [ fzg;return r;
back to conceptual(r;ct):r0  ;;for each z1 2 rif z1[Op] = Ia z1[Vs]; b z1[Ve];c z1[T]; d ct + 1;x1[A] z1[A];r  r � fz1g;for each z2 2 rif z2[A] = z1[A] and z2[V] = z1[V] andz2[Op] = D and z1[T] < z2[T] < dd z2[T];z3  z2;if d 6= ct + 1r  r � fz3g;x1[T] bi chr([c; d]; [a; b]);if d = ct + 1x1[T] x1[T] [ fUC g � fa; : : : ; bg;for each x2 2 r0if x2[A] = x1[A]x1[T] x1[T] [ x2[T];r0  r0 � fx2g;r0  r0 [ fx1g;return r0;The second function, back to conceptual, is the inverse transformation. It is rather complexbecause not only is information about a single fact spread over a set of update requests, but,depending on the covering function, a single bitemporal chronon may be represented in multiplechange requests. The change requests in the argument backlog relation are treated in turn. First,an insertion request is located, and its attribute values are recorded as appropriate. It is initiallyassumed that the information recorded by the insertion request is still current, indicated by theending transaction-time value, ct+ 1, where, as before, ct represents the current transaction time.Note that all transaction times in the backlog must be smaller than ct + 1.In the second loop, the backlog is scanned for a matching deletion request with a larger trans-action time. If more than one exists, the earliest is chosen. If no such deletion request exists,denoted when d = ct + 1, then the fact is still current. Now, the correct rectangular region ofbitemporal chronons has been computed, and this can be recorded in the bitemporal conceptualrelation. If other chronons have already been computed and recorded for the same fact, the twosets of chronons are simply merged.As before, we claim that the transformation functions are inverses of each other. Briey,consider a tuple x in the conceptual relation r0. The function conceptual to back produces a setof value-equivalent change requests, depending on the covering of x[T]. Note that each x mustproduce at least one change request, and if a change request is value-equivalent to x then it musthave been produced from x, otherwise value-equivalent conceptual tuples were present. The reversetransformation, back to conceptual, produces a single conceptual tuple from each set of value-equivalent change requests in the argument backlog. It can be shown that the same conceptualrelation is produced.As expected, insertion into backlogs, where tuples are never changed, is straightforward. Foreach set of consecutive valid-time chronons returned by the argument covering function, an insertionrequest with the appropriate attribute values is created. The current transaction time is assumedto be ct.Deletion follows the same pattern, the only complication being that a deletion request can onlybe inserted if a value-equivalent, previously entered and so far undeleted insertion request is found.12



First, the backlog is scanned to locate a matching insertion request. Second, it is ensured that thelocated insertion request has not previously been deleted. For every undeleted, matching insertionrequest that is found, a deletion request is inserted.insert(r;(a1; : : : ; an); tv; coverv; ct):for each t 2 coverv(tv)r  r [ f(a1; : : : ; an;min(t);max(t); ct; I)g;return r; delete(r;(a1; : : : ; an); ct):r0  r;for each x1 2 rif x1[A] = (a1; : : : ; an) and x1[Op] = Ifound  TRUE;for each x2 2 rif x2[A] = x1[A] and x2[V ] = x1[V ] andx2[OP] = D and x2[T ] > x1[T ]found  FALSE;if foundr0  r0 [ f(a1; : : : ; an; x1[Vs]; x1[Ve]; ct;D)g;return r0;3.3 Gadia's Attribute Value Timestamped Representation SchemeNon-1NF representations consolidate all information about an object within a single tuple. Assuch, attribute-value timestamped representations have become popular for their exibility indata modeling. We describe here how to represent conceptual relations by non-1NF attribute-value timestamped relations [10]. A novel feature of this representation is that a relation may berestructured [10], causing the relation to consolidate information using di�erent attributes.Let a bitemporal relation schemaR have the attributesA1; : : : ; An;T, where T is the timestampattribute de�ned on the domain of bitemporal elements. Then bitemporal relation schema R isrepresented by an attribute-value timestamped relation schema R as follows.R = (f([Ts;Te] � [Vs;Ve] A1)g; : : : ; f([Ts;Te] � [Vs;Ve] An)g)A tuple is composed of n sets. Each set element a is a triple of a transaction-time interval [Ts;Te],a valid-time interval [Vs;Ve], representing in concert a rectangle of bitemporal chronons, and anattribute value, denoted a:val. As shorthand we will use T to denote the transaction time interval[Ts,Te], and, similarly, V for [Vs,Ve], and will refer to them as a:T and a:V, respectively.Example: In an attribute-value timestamped representation, the structure of information withina tuple can be based on the value of any attribute or set of attributes. For example, we couldrepresent the conceptual relation in Figure 2 by restructuring on the employee attribute. Then allinformation for an employee is contained within a single tuple, as shown below.Emp Dept[5,9] � [10,15] Jake [5,9] � [10,15] Ship[10,14] � [5,20] Jake [10,14] � [5,20] Ship[15,19] � [10,15] Jake [15,19] � [10,15] Ship[20,UC ] � [10,15] Jake [20,UC ] � [10,15] Load[20,UC ] � [25,30] Kate [20,UC ] � [25,30] ShipA tuple in the above relation shows all departments for which a single employee has worked. Adi�erent way to view the same information is to perform the restructuring by department. A singletuple then contains all information for a department, i.e., the full record of employees who haveworked for the department. 13



Emp Dept[5,9] � [10,15] Jake [5,9] � [10,15] Ship[10,14] � [5,20] Jake [10,14] � [5,20] Ship[15,19] � [10,15] Jake [15,19] � [10,15] Ship[20,UC ] � [25,30] Kate [20,UC ] � [25,30] Ship[20,UC ] � [10,15] Jake [20,UC ] � [10,15] LoadRestructuring using both attributes consolidates the information for one employee and one depart-ment into a single tuple. This yields three tuples, as shown next.Emp Dept[5,9] � [10,15] Jake [5,9] � [10,15] Ship[10,14] � [5,20] Jake [10,14] � [5,20] Ship[15,19] � [10,15] Jake [15,19] � [10,15] Ship[20,UC ] � [10,15] Jake [20,UC ] � [10,15] Load[20,UC ] � [25,30] Kate [20,UC ] � [25,30] ShipThis notion of restructuring provides exibility. One user may want to focus on employees and willthen use the restructuring on employee names. Another user may want to investigate departmentsand would restructure the relation on the department attribute. Finally, users may want to studythe relationships between employees and departments, in which case the last format above may beadvantageous. utNext we consider the conversion between a conceptual relation and an attribute-value times-tamped representation. The �rst function, conceptual to att, takes three arguments, r0, a con-ceptual relation, cover, a covering function, and restruct, a restructuring function. Arguments r0and cover are as described for the other representation schemes. Argument restruct partitions r0into disjoint subsets where all tuples in a subset agree on the values of a particular attribute orset of attributes, as illustrated in the above example. Each such set of conceptual tuples producesone representation tuple.conceptual to att(r0,cover,restruct):s ;;G  restruct(r0);for each g 2 Gz  (;; : : : ; ;);for each x 2 gfor each t 2 cover(x[T])for i 1 to nz[Ai] z[Ai] [f([min 1(t);max 1(t)] `�'[min 2(t);max 2 (t)] x[Ai])g;s s [ fzg;return s;
att to conceptual(r):s ;;for each z 2 rfor i 1 to ng[i] ;;for each y 2 z[Ai]t bi chr(y:T,y:V);z[Ai] z[Ai]� fyg;for each y0 2 z[Ai]if y:val = y0:valt t [ bi chr(y0:T,y0:V);z[Ai] z[Ai]� fy0g;g[i] g[i] [ f(y:val; t)g;for each (a1; a2; : : : ; an) 2 facts(g)t a1:t;for i 2 to nt t \ ai:t;if t 6= ;for i 1 to nx[Ai] ai:val;x[T] t;s s [ fxg;return s;14



The second function, att to conceptual, performs the inverse transformation. Given anattribute-value timestamped representation, it produces the equivalent conceptual relation. Ifwe regard the transaction/valid times associated with an attribute value as rectangles, then thefunction simply constructs these rectangles for each attribute value in a tuple and then uses in-tersection semantics to determine the equivalent tuple timestamp. In this transformation, therestructuring is ignored.In the above, the facts function computes, for an array of attribute value/rectangle sets, allcombinations of facts that can be constructed from those attribute values.facts(g) = f((a1; t1); (a2; t2); : : : ; (an; tn)) j 8i 1 � i � n((ai; ti) 2 g[i])gAs before the function bi chr computes the bitemporal chronons represented by a given rectangle.As for the previous representational models, the conversion functions perform inverse transfor-mations. As an outline of a proof, note that conceptual to att produces, for each set of conceptualtuples satisfying the restructuring, a single attribute-value timestamped tuple. This representa-tional tuple has homogeneous timestamps (identical temporal elements for each attribute), since theconceptual tuples that produced it were trivially homogeneous, being tuple timestamped. In thereverse transformation performed by att to conceptual this representational tuple is explodedinto the set of conceptual tuples that formed it.Insertion of a fact into an attribute-value timestamped relation can result in either of twoactions. Either the new information is merged into an existing tuple x 2 r or no such x exists andthe creation of an entirely new tuple is required.The former case occurs when r is structured so that x matches the explicit attribute values inexactly the structuring attributes, G. Placing the new information into x preserves the structuringof the relation. For any given attribute value x[Ai], some or all of the information being insertedmay already be present in x[Ai]. A triple y containing such information must match the informationbeing inserted in the explicit attribute value ai, be current in the database, and overlap in valid-time. We remove all such overlapping valid-times chronons, perform a covering of the remainingchronons, and insert triples into x[Ai] for each element of the covering.In the latter case, no tuple with matching structuring attributes is found. The new informationcannot be merged into an existing tuple without violating the structure of the relation. Therefore,a new tuple containing only the added information is created.insert(r;(a1; : : : ; an); tv; coverv; ct):found FALSE;for each x 2 rif x[G] = (a1; : : : ; an)[G];found TRUE;for i 1 to nt0  tv;for each y 2 x[Ai]if y:val = ai and y:T[e] = UCt0  t0 � fy:Vg;for each t 2 coverv(t0)x[Ai] x[Ai][ f([ct;UC ] `�' [min(t);max(t)] ai)g;if found = FALSEfor each t 2 coverv(tv)r  r [ ff([ct;UC ] `�' [min(t);max(t)] a1)g : : : f([ct;UC ] `�' [min(t);max(t)] an)gg;return r;Deletion is more complicated. Removing a fact (a1; : : : ; an) from an attribute-valued times-tamped relation r involves locating the tuple x containing the fact, if such an x exists, and altering15



x to reect that the fact is no longer current. As we are interested only in current information, i.e.,when (a1; : : : ; an) is current in the database, the triples in the attribute values of x that can partic-ipate in producing the fact must all have an ending transaction time of UC . The function currentproduces tuples from x representing the current information contained in x. It selects triples fromeach x[Ai], 1 � i � n, with an ending transaction time of UC and performs a Cartesian product,resulting in a relation whose tuples have attribute values each containing a single triple.current(x) = f((t1v1a1); (t2v2a2); : : : ; (tnvnan)) j 8i 1 � i � n((tiviai) 2 x[Ai]^ UC 2 ti)gEach tuple y potentially has information that must be deleted from the current database state.This is the case if the explicit-attribute values of y match (a1; : : : ; an), and y contains a rectanglein bitemporal space where each of the triples (tiviai), 1 � i � n, overlap. For each such y, weinsert triples indicating that the fact has been deleted from the current database state, and, withthe help of a covering function, reinsert una�ected information back into the relation.delete(r;(a1; : : : ; an); coverv; ct):for each x 2 rz[Ai] ;; : : : z[An] ;;for each y 2 current(x)if y[A1]:val = a1 and : : : and y[An]:val = ant1  bi chr(y[A1]:T; y[A1]:V); : : : tn  bi chr(y[An]:T; y[An]:V);t t1 \ : : : \ tn;if t 6= ;for i 1 to nx[Ai] x[Ai]� fy[Ai]g;x[Ai] x[Ai] [ f([min1(t); ct � 1] `�' [min2(t);max2(t)] y[Ai]:val)g;for each t0 2 coverv(ti � t)x[Ai] x[Ai] [ f([min1(t0);max1(t0)] `�' [min2(t);max2(t)] y[Ai]:val)g;return r;As before, modify is simply a combination of insert and delete.3.4 McKenzie's Attribute Value Timestamped Representation SchemeLike the representation of the previous section, McKenzie's data model uses non-1NF attribute-value timestamping [19, 20].In McKenzie's model, a bitemporal relation is a sequence of valid-time states indexed by trans-action time. Tuples within a valid-time state are attribute-value timestamped. The timestampsassociated with each attribute value are sets of chronons, i.e., valid-time elements. In addition,the model does not assume homogeneity|attributes within the same tuple may have di�erenttimestamps.A bitemporal relation schema R = (A1; : : : ; An j T) is represented by an attribute valuedtimestamped relation schema R as follows.R = (T;VR)where VR is a valid-time relation, and T is the transaction time when VR became current in thedatabase. Stepwise-constant semantics are assumed.The schema of the valid-time state VR is as follows.VR = (A1V1; : : : ; AnVn)Here A1, : : : , An are explicit attribute values. Associated with each Ai, 1 � i � n, is a valid-timeelement Vi denoting when Ai was true in the modeled reality.16



Example: The sequence of valid-time states indexed by transaction time corresponding to theconceptual relation in Figure 2 is shown below.T VR0 ;5 f(Jake f10,: : : ,15g, Ship f10,: : : ,15g)g10 f(Jake f5,: : : ,20g, Ship f5,: : : ,20g)g15 f(Jake f10,: : : ,15g, Ship f10,: : : ,15g)g20 f(Jake f10,: : : ,15g, Load f10,: : : ,15g), (Kate f25,: : : ,30g, Ship f25,: : : ,30g)gNotice that for each tuple in each valid-time state, the timestamps associated with the attributevalues in a tuple are identical, i.e., the timestamps are homogeneous. As mentioned above, this isnot required by the model, but in our example the values of the attributes Emp and Dept changesynchronously, hence the timestamps associated with each are identical. utNext, we consider the conversion between a bitemporal relation and its representation as asequence of valid-time states in McKenzie's data model. As before, we exhibit two functions. The�rst maps conceptual instances into representational instances, and the second performs the inversetransformation.conceptual to att2(r0; ct):r  ;;uc present FALSE;for each x 2 r0for each (t; v) 2 reduce(x[T]);if t = UCuc present TRUE;elsefor i 1 to nz[Ai] x[Ai];z[Ti] v;r  r [ f(t; fzg)g;if not uc presentr  r [ f(ct; ;)g;r  r [ f(0; ;)g;r  collapse(r);return r;
att2 to conceptual(r;ct):for each (t; vr) 2 rvr  homogenize(vr);reverse sort(r);r0  ;;(t; vr) next(r);for each y 2 vrz[A] y[A];z[T] bi chr([t; ct � 1]; y[V]) [ bi chr(fUC g; y[V]);r0  r0 [ fzg;tlast  t; (t; vr) next(r);while (t; vr) 6=?for each y 2 vrfound FALSE;for each z0 2 r0if z0[A] = y[A]z0[T] z0[T][ bi chr([t; tlast � 1]; y[V]);found TRUE;if not foundz[A] y[A]z[T] bi chr([t; tlast� 1]; y[V]);r0  r0 [ fzg;tlast  t; (t; vr) next(r);return r0;The �rst function, conceptual to att2, takes a conceptual relation as its �rst argument andreturns a sequence of valid-time relations, indexed by transaction time, in McKenzie's data model.A conceptual tuple x can contribute possibly many tuples to the result, with the generated tuplesresiding in possibly many di�erent valid-time states. For example, the �rst tuple in the conceptualrelation of Figure 2 would contribute three tuples, (Jake f10,: : : ,15g, Ship f10,: : : ,15g), (Jakef5,: : : ,20g, Ship f5,: : : ,20g), and (Jake f10,: : : ,15g, Ship f10,: : : ,15g), in the valid-time statesassociated with transaction times 5, 10 and 15, respectively. Value-equivalent tuples with identicalvalid-timestamps but at intermediate transaction times, e.g., (Jake f10,: : : ,15g, Ship f10,: : : ,15g)at transaction time 6, are not generated. 17



We accomplish this by deriving for each conceptual tuple x a set of stepwise constant statesfrom its bitemporal element x[T]. The result is a set of pairs (t,v), the �rst element being atransaction time and the second being a valid-time element. E�ectively, each (t,v) denotes thestate of x[A] as being valid during the set v at the transaction time t. Intermediate states are notincluded in the computed set of pairs, e�ectively preserving the stepwise constant assumption.The set of stepwise constant states is computed by the function reduce shown below. For theabove example, reduce returns the set f(5,f10,: : : ,15g), (10,f5,: : : ,20g), (15,f10,: : : ,15g)g. Thefunction next state is called by reduce; it examines each bitemporal chronon in the timestampand derives a state (t,v) where t is the earliest transaction time present in the timestamp, and vis the set containing exactly those valid-time chronons associated with t.reduce(T):T 0  ;;while T 6= ;(t; v) next state(T );T 0  T 0 [ f(t; v)g;T  T � bi chr(ftg; v);t0  t+ 1;while (t0; v) = next state(T )T  T � bi chr(ft0g; v);t0  t0 + 1;return T 0; next state(T):v ;;t UC;for each b 2 Tif b:T < tv  fb:Vg;t b:T;elseif b:T = tv  v [ fb:Vg;return (t; v);For a given pair (t,v), a tuple is generated and placed in a valid-time state indexed by thetransaction time t. The end result is a set of pairs of single tuple valid-time states indexed at thegiven by a transaction time.Finally, the function collapse collapses all pairs with identical transaction-time componentsinto a single valid-time state, indexed at the given transaction time.collapse(r):S  ;;for each (t; vr) 2 r;found FALSE;for each (t0; vr0) 2 Sif t = t0S  S � (t0; vr0);S  S [ f(t0; vr0 [ vr)g;found TRUE;if not foundS  S [ f(t; vr)g;return S;The second function, att2 to conceptual, performs the inverse transformation. It takes asequence of valid-time states r, indexed by transaction time, and produces the equivalent conceptualrelation.As the valid-time states of r may contain tuples with non-homogeneous timestamps, we �rsttransform each input valid-time state into an equivalent tuple-timestamped relation. This is thepurpose of function homogenize shown below. For each tuple x 2 vr, homogenize generatespossibly many result tuples, one for each valid-time chronon present in a timestamp associated withan attribute value of x. The function determines the maximal set of attribute values simultaneouslyvalid during that chronon, and generates a result tuple, whose tuple timestamp contains the singlechronon. 18



homogenize(vr):vrh  ;;for each x 2 vrfor i 1 to nfor each v 2 x[Vi]z[A1] ?; : : : z[An] ?;z[Ai] x[Ai];z[V] v;for j  1 to nif j 6= i and v 2 x[Vj]z[Aj] x[Aj]vrh  vrh [ fzg;return coalesce(vrh);
coalesce(vr):vr0  ;;for each x 2 vrvr  vr � fxg;for each y 2 vrif x[A] = y[A]x[V] x[V][ y[V];vr  vr � fyg;vr0  vr0 [ fxg;return vr0;As many value-equivalent tuples may be produced, function coalesce is used to collapse suchtuples into a single tuple. The timestamps of matching tuples are unioned into a single resulttuple.The valid-time states of r are then processed from latest to earliest in transaction time order;the pairs (t; vr) 2 r are sorted into descending order of t, and a function next returns the next(t; vr) in the sorted order. The current valid-time state is treated specially to accommodate thestepwise constant semantics between the time the state was stored, the current transaction time,and UC .The remaining valid-time states are converted as follows. For a tuple x 2 vr, its bitemporaltimestamp is generated using the appropriate range of transaction-time and valid-time elementassociated with the tuple. However, since value-equivalent tuples may be present in di�erent valid-time states, we must consolidate the information in such tuples within one resulting conceptualtuple. If a value-equivalent tuple z0 is already present in the result, we augment its timestampwith the generated bitemporal element. Otherwise, a new tuple is inserted.As for the previous representational models, it is possible to construct a proof showing thatthe functions truly perform the inverse transformations. A possible argument would show thatconceptual to att2 explodes each conceptual tuple into value-equivalent tuples in possibly manyvalid-time states. In the reverse transformation, these value-equivalent tuples are coalesced andany \holes" in the timestamp corresponding to intermediate transaction times are �lled in.We now show how the semantics of bitemporal update are supported within this representation.Insertion of a fact into the database involves the creation of a new current state containing thefact and the time that it was, is, or will be valid. This state is constructed in one of two ways.If the valid-time state current at the time of the insertion contains a value-equivalent tuple, thetimestamps of that tuple are augmented to reect the new information. Otherwise a new tupleis inserted. In both cases, the updated valid-time state is inserted into r indexed by the currenttransaction time, ct. The function rollback simply returns the valid time state in r current duringthe argument transaction time. For example, if r is the sequence of valid-time states shownin the previous example then rollback(r; 11) returns the valid-time state f(Jake f5,: : : ,20g, Shipf5,: : : ,20g)g.
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insert(r;(a1; : : : ; an); tv; ct):vr  rollback(r; ct);found FALSE;for each x 2 vrif x[A] = (a1; : : : ; an)for i 1 to nx[Ti] x[Ti] [ tv;found TRUE;if not foundvr  vr [ (a1tv; : : : ; antv);r  r [ f(ct; vr)g;return r;
delete(r;(a1; : : : ; an); ct):vr  rollback(r; ct);for each x 2 vrif x[A] = (a1; : : : ; an)t x[T1] \ : : : \ x[Tn];if t 6= ;for i 1 to nx[Ti] x[Ti]� t;if x[T1] = ; and : : : and x[Tn] = ;vr  vr� fxg;r  r [ f(ct; vr)g;return r;Deletion of a fact involves the removal of the fact from the current valid-time state if it exists, andno action otherwise. A fact to be deleted is present in a tuple x, if the explicit attribute values ofx match (a1; : : : ; an) and the intersection of the valid-time elements associated with the attributevalues of x is non-empty. We delete from each timestamp the computed intersection, and removethe entire tuple if all resulting timestamps are empty.3.5 Ben-Zvi's Tuple Timestamped Representation SchemeLike the representational model in Section 3.1, Ben-Zvi's data model is a 1NF tuple-timestampingmodel. Appended to each tuple are �ve timestamp attributes [1].Let a bitemporal relation schema R have the attributes A1; : : : ; An;T where T is the timestampattribute de�ned on the domain of bitemporal elements. ThenR is represented by a relation schemaR in Ben-Zvi's data model as follows.R = (A1; : : : ; An;Tes;Trs;Tee;Tre;Td)In a tuple, the value of attribute Tes (e�ective start) is the time when the explicit attribute valuesof the tuple start being true. The value for Trs (registration start) indicates when the Tes valuewas stored. Similarly, the value for Tee (e�ective end) indicates when the information recorded bythe tuple ceased to be true, and Tre (registration end) contains the time when the Tee value wasrecorded. The last implicit attribute Td (deletion) indicates the time when the information in thetuple was logically deleted from the database.It is not necessary that Tee be recorded when the Tes value is recorded (i.e., when a tuple isinserted). The symbol `{' indicates an unrecorded Tee value (and Tre value). Similarly, the symbol`{', when used in the Td �eld, indicates that a tuple contains current information.Example: The Ben-Zvi relation corresponding to the conceptual relation in Figure 2 is shownbelow. Emp Dept Tes Trs Tee Tre TdJake Ship 10 5 15 5 10Jake Ship 5 10 20 10 15Jake Ship 10 15 15 15 20Jake Load 10 20 15 20 {Kate Ship 25 20 30 20 {In the example, the timestamps Tes and Tee are stored simultaneously, hence the registrationtimestamps associated with the e�ective timestamps are identical within each tuple. As facts are20



corrected, the deletion timestamp Td is set to the current transaction time, e�ectively outdatingthe given fact, and a new tuple without a deletion time is inserted. As only two facts are currentwhen all updates have been performed on the database, only two tuples with no deletion timesremain. utIn the conversion functions presented next, the functions min 1 and min 2 select a minimum�rst and second component, respectively, in a set of binary tuples. The function max 1 returnsthe symbol `{' if UC is encountered as a �rst component; otherwise, it returns a maximum �rstcomponent. The function max 2 selects a maximum second component. The function bi chr mayaccept the symbol `{' as a transaction-time end value, in which case the symbol is treated as thecurrent time. Bitemporal chronons with UC as �rst component are then generated. When `{' isencountered as a valid-time end, it is treated as the maximum valid-time value, c1vt . Analogously,when `{' is encountered as a transaction-time value, it is treated as the current transaction time,ct, as well as the value UC .The �rst conversion function is very similar to the corresponding function in Section 3.1. Theroutine conceptual to snap2 constructs an output tuple for each rectangle in a covering of abitemporal element. The e�ective-start and e�ective-end timestamps are set to the minimum andmaximum valid-time chronons in the rectangle, respectively. We set the times when the validtimestamps were stored to the minimal transaction time chronon in the rectangle. The deletiontime of the tuple is set to the maximal transaction time of the rectangle (possibly UC ), therebydenoting when the fact was last current in the relation.conceptual to snap2(r0, cover):s ;;for each x 2 r0z[A]  x[A];for each t 2 cover(x[T])z[Trs]  min 1(t);z[Tre]  z[Trs];z[Td]  max 1(t);z[Tes]  min 2(t);z[Tee]  max 2(t);s s [ fzg;return s;
snap2 to conceptual(r):s ;;for each z 2 rr  r � fzg;x[A]  z[A];x[T] make ts(z[Tes]; z[Trs]; z[Tee]; z[Tre]; z[Td]);s s [ fxg;return coalesce(s);The function snap2 to conceptual performs the inverse transformation. It constructs oneconceptual tuple for each set of value-equivalent tuples in the representation. Initially, each repre-sentational tuple is examined, and a conceptual tuple corresponding to that representational tupleis generated.The function make ts constructs a bitemporal element from the �ve timestamps in the rep-resentational tuple. There are three cases to consider. In each case, we construct a bitemporalelement representing a rectangle or union of rectangles bounded by the argument time values.First, if the e�ective-time start and e�ective-time end values were stored simultaneously, theassociated element corresponds to a rectangular region bounded in valid time and possibly un-bounded in transaction time. Similarly, if the values were not stored simultaneously, it may be thecase that the e�ective-end time was never stored. This corresponds to a rectangular region that isunbounded in valid time and possibly bounded in transaction time, depending on if the tuple hasbeen deleted.Otherwise, both the e�ective-time start and the e�ective-time end values have been stored,and are unequal. The resulting region is unbounded in valid time between the times when thee�ective-time start and e�ective-time end were stored, and possibly bounded in transaction time,depending on if the tuple has been deleted. 21



Finally, function coalesce collapses each set of value-equivalent tuples in the result into asingle tuple.make ts(tes; trs; tee; tre; td):if trs = tret bi chr([trs; td]; [tes; tee]);elseif tre = `{'t bi chr([trs; td]; [tes; c1vt]);elset bi chr([trs; tre]; [tes; c1vt]) [bi chr([tre; td]; [tes; tee]);return t; coalesce(r):r0  ;;for each x 2 rr  r � fxg;for each y 2 rif x[A] = y[A]x[T] x[T] [ y[T];r  r � fyg;r0  r0 [ fxg;return r0;As for the previous representational models, it is possible to construct a proof showing that theconversion functions truly perform inverse transformations. We outline a proof as follows. In theconversion performed by snapshot2 to conceptual, a single conceptual tuple produces possiblymany value-equivalent snapshot tuples, each with an associated rectangle produced by the coveringfunction. In the reverse transformation, these value-equivalent tuples are coalesced back into theoriginal conceptual tuple, and the bitemporal element for the resulting tuple is constructed fromthe rectangles associated with the representational tuples.For the update routines, the most convenient covering function partitions on transaction time,and does not permit overlap.insert(r;(a1; : : : ; an); tv; coverv; ct):for each t 2 coverv(tv)for each x 2 rif x[A] = (a1; : : : ; an) and x[Td] = `{' andx[Tes;Tee] \ t 6= ;r  r � fxg;x[Td] ct;z[A] x[A];z[Tes] min(x[Tes] [ t);z[Tee] min(x[Tee] [ t);z[Td] `{';r  r [ fx; zg;return r;
delete(r;(a1; : : : ; an); ct):for each x 2 rif x[A] = (a1; : : : ; an) andx[Td] = `{'x[Td] ct;return r;3.6 SummaryWe introduced �ve representations of bitemporal relations and showed how instances in the BCDMcan be mapped to and from instances in each of these representations. The established correspon-dence between representations and the conceptual model is central to our work|the BCDM formsa unifying link between disparate relational bitemporal models. The mapping functions assignsemantics to instances in the �ve representations and allows us to meaningfully compare instancesof diverse models.In the next section, we discuss in more detail the role of the BCDM with respect to data modeluni�cation. Subsequent sections provide a detailed examination of the concept of equivalenceamong the data models.4 Data Model InteractionThe previously proposed representations arose from several considerations. They were all exten-sions of the conventional relational model that attempted to capture the time-varying nature of22



both the enterprise being modeled and the database, and hence incorporated support for both validand transaction time (the use of valid and transaction time for data modeling has been discusseda number of papers [1, 4, 24]). They attempted to retain the simplicity of the relational model;the two tuple-timestamping models were perhaps most successful in this regard. They attemptedto present all the information concerning an object in one tuple; the attribute-value timestampedmodels were perhaps best at that. And they attempted to ensure ease of implementation andquery evaluation e�ciency; the backlog representation may have advantages here.It is clear from the number of proposed representations that meeting all of these goals simul-taneously is a di�cult, if not impossible task. We therefore advocate a separation of concerns.In the representational models, the essential semantics of time-varying information becomeobscured by considerations of presentation and implementation. We feel that the bitemporalconceptual data model proposed in this paper is a more appropriate basis for expressing thissemantics. This data model is notable in its use of bitemporal chronons to stamp facts. Clearly, inmost situations, this is not the most appropriate way to present the stored data to users, nor is it thebest way to physically store the data. However, since there are mappings to other representationsthat, in many situations, may be more amenable to presentation and storage, those representationscan be employed for those purposes, while retaining the semantics of the conceptual data model.
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5 Semantic EquivalenceThe previous section claimed that many semantically equivalent representations of the same con-ceptual relation may co-exist. In this and the next section, we explore the nature of this relationshipbetween the conceptual data model and the representational data models. We focus next on theequivalence among the objects in the models; a following section will examine equivalence whenoperations on these objects is also considered.5.1 Snapshot EquivalenceWe use snapshot equivalence to formalize the notion of relation instances having the same infor-mation content.Snapshot equivalence makes use of transaction and valid timeslice operators. We initially de�nethese operators for BCDM relations, then for relations in each of the representational models.The transaction-timeslice operator, �B, takes two arguments, a bitemporal relation and a timevalue, the latter appearing as a subscript. The result is a valid-time relation. In order to explainthe semantics of �B, we describe its operation on a bitemporal conceptual relation. Each tuple isexamined in turn. If any of its associated bitemporal chronons have a transaction time matchingthe argument time, the explicit attribute values, along with each of the valid-time chronons pairedto a matching transaction time, become a tuple in the result. The transaction-timeslice operatormay also be applied to a transaction-time relation, in which case the result is a snapshot relation.The valid timeslice operator, �B, is very similar. It also takes two arguments, a bitemporalrelation and a time value. The di�erence is that this operator does the selection on valid timeand produces a transaction-time relation. The valid-timeslice operator may also be applied to avalid-time relation, in which case the result is a snapshot relation.Definition: De�ne a relation schema R = (A1; : : : ; Anj T), and let r be an instance of thisschema. Let t2 denote an arbitrary time value and let t1 denote a time not exceeding the currenttime. Then the transaction-timeslice and valid-timeslice operators may be de�ned as follows forthe conceptual data model.�Bt1(r) = fz(n+1) j 9x 2 r (z[A] = x[A]^ z[Tv] = ft2 j (t1; t2) 2 x[T]g ^ z[Tv] 6= ;)g�Bt2(r) = fz(n+1) j 9x 2 r (z[A] = x[A]^ z[Tt] = ft1 j (t1; t2) 2 x[T]g ^ z[Tt] 6= ;)g utThe transaction-timeslice operator for transaction-time relations (�T) and the valid-timeslice op-erator for valid-time relations (�V) are straightforward special cases.We can now formally de�ne snapshot equivalence so that it applies to each representationaldata model for which the valid-timeslice and transaction-timeslice operators have been de�ned.Definition: Two relation instances, r and s, are snapshot equivalent, r S� s, if for all times t1not exceeding the current time and for all times t2,�Vt2(�Bt1(r)) = �Vt2(�Bt1(s)): utThe concept of snapshot equivalence is due to Gadia and was �rst de�ned for valid-time relations[7] and was later generalized to multiple dimensions [8]. We have chosen not to use the original termweakly equivalent to avoid confusion with the di�erent notions of weak equivalence over algebraic24



expressions (e.g., [33]) and over data models [6]. In the next section, we will discuss how snapshotequivalence may also be applied to pairs of instances when the instances belong to di�erent models.The following theorem states that identity and snapshot equivalence coincide for the conceptualmodel. It is a major source of semantic clarity that two instances have the same information contentexactly when they are identical.Theorem 1 Let r and s be conceptual relations over the same schema. Then r S� s if and onlyif r = s.Proof: First assume that r S� s. We show that for each x 2 r, x = (a1; : : : ; an j tx) there exists ay 2 s, y = (a1; : : : ; an j ty), with tx = ty .By the de�nition of snapshot equivalence there exist tuples yi, i = 1; : : : ; m, in s so that forall t1, t2, where t1 does not exceed the current time, �Vt2(�Bt1(fxg)) = �Vt2(�Bt1(fy1; : : : ; ymg)). Thede�nitions of the involved operators demand that each of the yi must have a1; : : : ; an as explicitattribute values. Further, the operators demand that tx = [i tyi . By de�nition of the BCDM,no two tuples with the same explicit attribute values may exist in an instance. Thus, i = 1 andy1 = y, proving the claim. As a result, each tuple in r has an exact match in s. By the symmetricalargument, each tuple in s has a match in r, and the two instances are consequently identical.In the other direction, assuming that r = s, clearly 8t1, t2 where t1 does not exceed the currenttime, �Vt2(�Bt1(r)) = �Vt2(�Bt1(s)).5.2 Rollback and Timeslice OperatorsWe now de�ne the timeslice operators for each of the �ve representational models. These de�nitionsextend the notion of snapshot equivalence to the corresponding representation. In the de�nitions,let t denote an arbitrary time value and let t0 be a time value not exceeding the current time.Definition: (Snodgrass' Tuple Timestamped Data Model). De�ne a relation schema R =(A1; : : : ; An; Ts, Te, Vs, Ve), and let r be an instance of this schema.�Bt0(r) = fz(n+2) j 9x 2 r (z[A] = x[A] ^ z[V] = x[V] ^ t0 2 x[T])g�Bt (r) = fz(n+2) j 9x 2 r (z[A] = x[A] ^ z[T] = x[T]^ t 2 x[V])g utDefinition: (Jensen's Backlog DataModel). De�ne a relation schemaR = (A1; : : : ; An;Vs;Ve;T;Op), and let r be an instance of this schema.�Bt0(r) = fz(n+2) j 9x 2 r (z[A] = x[A]^ z[V] = x[V]^ x[T] � t0 ^ x[Op] = I^(:9y 2 r (y[A] = x[A]^ y[V] = x[V] ^ y[Op] = D ^ x[T] � y[T] � t0)))g�Bt (r) = fz(n+2) j 9x 2 r (z[A] = x[A]^ z[T] = x[T] ^ z[Op] = x[Op]^ t 2 x[V])gIn the de�nition of transaction timeslice, an insertion request contributes to the result if it wasentered before the argument transaction time t0 and if it was not subsequently countered by adeletion request before t0. The non-symmetry of these two de�nitions underscores the emphasisaccorded transaction time in this model. utDefinition: (Gadia's Attribute Value Timestamped Data Model). De�ne a relation schemaR = (f([Ts;Te] � [Vs;Ve] A1)g; : : : ; f([Ts;Te] � [Vs;Ve] An)g), and let r be an instance of R.25



�Bt0(r) = fz(n) j 9x 2 r (8i (i 2 1; : : : ; n^8a 2 x[Ai](t0 2 a:T) (a:V a:val) 2 z[Ai])^8b 2 z[Ai](9a 2 x[Ai](t0 2 a:T ^ b:val = a:val ^ b:V = a:V))))g�Bt (r) = fz(n) j 9x 2 r (8i (i 2 1; : : : ; n^ 8a 2 x[Ai](t 2 a:V) (a:T a:val) 2 z[Ai])^8b 2 z[Ai](9a 2 x[Ai](t 2 a:V ^ b:val = a:val ^ b:T = a:T))))gFor each operator, the �rst line ensures that no chronon is left unaccounted for, and the secondline ensures that no spurious chronons are introduced. utDefinition: (McKenzie's Attribute Value Timestamped Data Model). De�ne a relation schemaR = (T;VR), with T being a transaction timestamp and VR = (A1V1; : : : ; AnVn), where the Ai,1 � i � n, are explicit attributes and the corresponding Vi are valid-time elements. An instanceof this schema is a sequence of valid-time states indexed by transaction times as. Let r be such aninstance.�Bt0(r) = fz(n) j 9(t; vr) 2 r (t0 � t ^ :9(t00; vr00) 2 r (t0 � t00 < t) ^ z 2 vr)g�Bt (r) = f(t00; S) j 8s 2 S (9t00 ((t00; vr) 2 r ^ 8x 2 vr (8i 1 � i � n ((t 2 x[Vi]) s[Ai] = x[Ai])^(t 62 x[Vi]) s[Ai] = ?)) ^ 9i 1 � i � n (t 2 x[Vi]))))gThe �rst operator extracts the valid time relation with the greatest transaction timestamp beforet0. The second returns a rollback relation, a sequence of snapshot states such that each tuple ineach snapshot state was valid at valid time t for all attributes. Some, but not all, attribute valuesin the tuples in the snapshot states may be null values. utDefinition: (Ben-Zvi's Tuple Timestamped DataModel). De�ne a relation schema R = (A1; : : : ;An;Tes;Tee;Trs;Tre;Td), and let r be an instance of this schema.�Bt0(r) = fz(n+2) j 9x 2 r (z[A] = x[A]^z[Tes] = x[Tes]^ x[Trs] � t0 ^ (x[Td] 6= `{') t0 � x[Td])^((x[Tre] 6= `{') t0 � x[Tre])) z[Tee] = `{')^((x[Tee] 6= `{'^ x[Tre] � t0)) z[Tee] = x[Tee])g�Bt (r) = fz(n+2) j 9x 2 r (z[A] = x[A]^ z[Trs] = x[Trs] ^ ((((x[Tes] � t) ^ (x[Tee] 6= `{') t � x[Tee]))) z[Tre] = x[Td])_((x[Tee] 6= `{'^ t � x[Tee]^ x[Trs] 6= x[Tre])) z[Tre] = x[Tre])))gIn the �rst operator, the complexity arises in computing Tee for the resulting tuples; the otherimplicit attribute, Tes, is trivial. Two possibilities for Tee exist, `{' and x[Tee], depending on thevalue of x[Tre]. For the second operator, the complexity is in determining z[Tre], which can alsoassume two possible values, x[Td] and x[Tre], depending primarily on the value of x[Tee]. utFor each of the �ve schemes, the transaction-timeslice operator for transaction-time relations(�T) and the valid-timeslice operator for valid-time relations (�V) are straightforward special casesof these de�nitions. Note that the rollback and timeslice operators in the various representationsall have the same names, �Bt and �Bt .The existence of the timeslice operators for the representational models has important im-plications, as we discuss in the following. Rather than providing theorems and proofs for eachrepresentational model, the theorems and proofs in the remainder of this section are limited to asingle model only. Speci�cally, the tuple-timestamped model introduced in Section 3.1 is used dueto its straightforward structure. Corresponding results hold for the remaining models; proofs maybe similarly obtained.There is no reason to apply � before � in the de�nition of snapshot equivalence, as the followingtheorem states. 26



Theorem 2 Let r be a temporal relation. Then for all times t1 not exceeding the current timeand for all times t2, �Vt2(�Bt1(r)) S� �Tt1(�Bt2(r)):Proof: Let x 2 �Vt2(�Bt1(r)); then there is a tuple y in �Bt1(r) with y[A] = x[A] and t2 2 y[V]. Thisimplies the existence of a tuple z in r so that z[A] = y[A], z[V] = y[V], and t1 2 z[T]. As t2 2 z[V],there is a tuple u in �Bt2(r) for which u[A] = z[A] and u[T] = z[T]. As t1 2 u[T], there is a tuplev in �Tt1(�Bt2(r)) with v[A] = u[A]. By construction, v = x. Thus, a tuple on the lhs (left handside) is also on the rhs (right hand side). Proving the opposite inclusion is similar and omitted.Combining the inclusions proves the equivalence.Snapshot equivalence precisely captures the notion that relation instances in the chosen rep-resentation scheme have the same information content. More precisely, all representations of thesame bitemporal conceptual relation are snapshot equivalent, and two bitemporal relations thatare snapshot equivalent represent the same bitemporal conceptual relation.In the proof of the following theorem, the notion of snapshot subset is utilized.Definition: A temporal relation instance, r, is a snapshot subset of a temporal relation instance,s, r S� s, if for all times t1 not exceeding UC and all times t2,�Vt2(�Bt1(r)) � �Vt2(�Bt1(s)):More generally, a temporal query expression Q1 is a snapshot subset of a temporal query expressionQ2, Q1 S� Q2, if all instantiations of Q1 are snapshot subsets of the corresponding instantiationsof Q2. utTheorem 3 Snapshot equivalent temporal relations represent the same conceptual temporalrelation. 1. If conceptual to snap(r0; cover1) = r1 and conceptual to snap(r0; cover2) = r2,then r1 S� r2.2. If s1 S� s2 then snap to conceptual(s1) = snap to conceptual(s2).Proof: We prove the two implications in turn. To prove that r1 and r2 are snapshot equivalent,we prove that r1 is a snapshot subset of r2, and conversely. We need to show that for all timest1 and t2 that if x 2 �Vt2(�Bt1(r1)) then also x 2 �Vt2�Bt1(r2)). Let tuple x be in �Vt2(�Bt1(r1)). By thede�nitions of transaction and valid timeslice, a set of tuples xi exist in r1 with xi[A] = x andt1 2 xi[T] and t2 2 xi[V]. By the premise and the de�nition of conceptual to snap, a singletuple x0 exists in r0 with x0[A] = xi[A] and so that x0[T] contains exactly the bitemporal chrononscovered by the xi. Further, the bitemporal chronon (t2; t1) must be in x0[T]. Independently of aparticular covering function, an application of conceptual to snap to x0 will then result in a setof tuples yj , each with yj[A] = x0[A]. For at least one of the yj , it must be true that t1 2 yj [T] andt2 2 yj[V] (the �rst requirement). Therefore, tuple y = x0[A] must be in �Vt2(�Bt1(r2)). Since y = x,r1 is a snapshot subset of r2. Due to symmetry, proving the reverse is similar.To prove the second implication, pick an arbitrary tuple x in some snapshot of s1 and let(ti; tj) be the set of pairs of valid and transaction times so that x is in �Vti(�Btj(s1)). (This is simplythe bitemporal element in s1 corresponding to the fact x.) By the premise and the de�nition ofsnapshot equivalence, the set of pairs (t0i; t0j) such that x is in �Vt0i(�Bt0j(s2)) must be identical to the27



set (ti; tj). In general, these sets of pairs are covered by di�erent sets of rectangles in s1 and s2.However, the function snap to conceptual simply accumulates the covered pairs (correspondingto bitemporal chronons) in sets, rendering the particular covering by rectangles immaterial.This theorem has important consequences. For each representation and for any covering func-tion, snapshot equivalence partitions the relation instances into equivalence classes where eachinstance in an equivalence class maps to the same bitemporal conceptual relation instance. Thesemantics of the representational instance is thus identical to that of the corresponding conceptualinstance. This correspondence provides a way of converting instances between representations: theconversion proceeds through a snapshot equivalent conceptual instance.Finally, the correspondence provides a way of demonstrating that two instances in di�erentrepresentations are semantically equivalent, again by examining the conceptual instance(s) to whichthey map. For example, it may be shown that the representation instances given in Sections 3.1through 3.5 are semantically equivalent to the bitemporal conceptual relation given in Section 2.1,and are thus semantically equivalent to each other.6 Algebras and EquivalenceWe now examine operational aspects of the data models just introduced. A major goal is todemonstrate the existence of the operational counterpart of the structural equivalence establishedin the previous section.In Section 5.1, we de�ned two algebraic operators, the transaction- and valid-timeslice op-erators, on conceptual relations. We then de�ned the corresponding operations on the chosentuple-timestamped representation (see Section 3.1). Each of the remaining four representationscould have been used instead. We continue by de�ning the remaining conceptual algebraic opera-tors. We prove that the operators preserve snapshot equivalence and are natural generalizations oftheir snapshot counterparts. Finally, we examine two transformations that manipulate coveringsin representations of bitemporal-relation instances.6.1 An Algebra for Bitemporal Conceptual RelationsDe�ne a relation schema R = (A1; : : : ; Anj T), and let r be an instance of this schema. Let t2denote an arbitrary time value and let t1 denote a time not exceeding the current time.Let D be an arbitrary set of jDj non-timestamp attributes of relation schema R. The projectionon D of r, �BD(r), is de�ned as follows.�BD(r) = fz(jDj+1) j 9x 2 r (z[D] = x[D])^ 8y 2 r (y[D] = z[D]) y[T] � z[T])^8t 2 z[T] 9y 2 r (y[D] = z[D]^ t 2 y[T])gThe �rst line ensures that no chronon in any value-equivalent tuple of r is left unaccounted for,and the second line ensures that no spurious chronons are introduced.Let P be a predicate de�ned on A1; : : : ; An. The selection P on r, �BP (r), is de�ned as follows.�BP (r) = fz j z 2 r ^ P (z[A])gTo de�ne the union operator, [B, let both r1 and r2 be instances of R.r1 [B r2 = fz(n+1) j (9x 2 r1 9y 2 r2 (z[A] = x[A] = y[A]^ z[T] = x[T][ y[T]))_(9x 2 r1 (z[A] = x[A]^ (:9y 2 r2(y[A] = x[A]))^ z[T] = x[T]))_(9y 2 r2 (z[A] = y[A]^ (:9x 2 r1(x[A] = y[A]))^ z[T] = y[T]))g28



The �rst clause handles value-equivalent tuples found in both r1 and r2; the second clause handlesthose found only in r1; and the third handles those found only in r2.With r1 and r2 de�ned as above, relational di�erence is de�ned as follows.r1 �B r2 = fz(n+1) j 9x 2 r1 ((z[A] = x[A])^((9y 2 r2 (z[A] = y[A] ^ z[T] = x[T]� y[T]))_(:9y 2 r2 (z[A] = y[A])^ z[T] = x[T])))gThe last two lines compute the bitemporal element, depending on whether a value-equivalent tuplemay be found in r2.In the bitemporal natural join, two tuples join if they match on the join attributes and haveoverlapping bitemporal-element timestamps. De�ne r and s to be instances of R and S, respec-tively, and let R and S be bitemporal relation schemas given as follows.R = (A1; : : : ; An; B1; : : : ; Blj T)S = (A1; : : : ; An; C1; : : : ; Cmj T)The bitemporal natural join of r and s, r 1B s, is de�ned below. As can be seen, the timestampof a tuple in the result is the (bitemporal) intersection of the timestamps of the two tuples thatproduced it.r 1B s = fz(n+l+m+1) j 9x 2 r 9y 2 s (x[A] = y[A]^ x[T]\ y[T] 6= ;^z[A] = x[A]^ z[B] = x[B] ^ z[C] = y[C]^z[T] = x[T]\ y[T])gExample: To exemplify the join, consider the following relation instance, mgrDep.Dept Mgr TShip Jean f(10; 15); : : : ; (10; 30); : : : ; (UC ; 15); : : : ; (UC ; 30)gLoad Jean f(15; 5); : : : ; (15; 15); : : : ; (UC ; 5); : : : ; (UC ; 15)gNext, assign the name empDep to the relation instance in Figure 2. Then empDep 1B mgrDep,with the explicit join attribute Dept, shows who managed whom and is given by the followingrelation. Emp Dept Mgr TJake Ship Jean f(10; 15); : : :; (10; 20); : : :; (15; 15); : : :; (15; 20)gJake Load Jean f(UC ; 10); : : : ; (UC ; 15)gKate Ship Jean f(UC ; 25); : : : ; (UC ; 30)gUsing our graphical representation of bitemporal relations, the bitemporal natural join can bevisualized as the overlap of rectangles enclosing regions with matching explicit join attributes.This is easily seen by superimposing the mgrDep relation on top of the empDep relation, as shownin Figure 5. utWe have only de�ned operators for bitemporal relations. The similar operators for valid-timeand transaction-time relations are special cases. The valid and transaction time natural joins aredenoted 1V and 1B , respectively; the conventional snapshot natural join is denoted 1S . Thesame naming convention is used for the remaining operators.29
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Figure 5: Graph of empDep 1B mgrDep6.2 An Algebra for Snodgrass' Tuple Timestamped Representation SchemeFor each of the algebraic operators de�ned in the previous section, we now de�ne counterpartsfor the �rst of the �ve representation schemes. Throughout this section, R and S denote tupletimestamped bitemporal relation schemas, and r and s are instances of these schemas. Initially, Ris assumed to have the attributes A1; : : : ; An;Ts;Te;Vs; and Ve.We de�ne in turn projection, selection, union, di�erence, and natural join. The timesliceoperators were de�ned in Section 5.2.To de�ne projection, let D be an arbitrary set of jDj attributes among A1; : : : ; An. The pro-jection on D of r, �BD(r), is de�ned as follows.�BD(r) = fz(jDj+4) j 9x 2 r (z[D] = x[D]^ z[T] = x[T]^ z[V] = x[V])gNext, let P be a predicate de�ned on A1; : : : ; An. The selection P on r, �BP (r), is de�ned asfollows. �BP (r) = fz(n+4) j z 2 r ^ P (z[A]))gTo de�ne the union operator, [B, let both r1 and r2 be instances of schema R.r1 [B r2 = fz(n+4) j 9x 2 r1 9y 2 r2 (z = x _ z = y)gWith r1 and r2 de�ned as above, relational di�erence is de�ned using several functions intro-duced in Section 3.1.r1 �B r2 = fz(n+4) j 9x 2 r1 (z[A] = x[A]^9t 2 cover(bi chr (x[T]; x[V])�fbi chr (y[T]; y[V]) j y 2 r2 ^ y[A] = x[A]g)^z[Ts] = min 1 (t) ^ z[Te] = max 1 (t)^z[Vs] = min 2 (t) ^ z[Ve] = max 2 (t))gThe new timestamp is conveniently determined by set di�erence on bitemporal elements.To de�ne the bitemporal natural join, we need two bitemporal relation schemas R and S withoverlapping attributes. R = (A1; : : : ; An; B1; : : : ; Bl;Ts;Te;Vs;Ve)S = (A1; : : : ; An; C1; : : : ; Cm; ;Ts;Te;Vs;Ve)In the bitemporal natural join of r and s, r 1B s, two tuples join if they match on the join attributesand overlap in both valid time and transaction time.30



r 1B s = fz(n+l+m+4) j 9x 2 r 9y 2 s (z[A] = x[A] = y[A]^ x[T]\ y[T] 6= ; ^ x[V] \ y[V] 6= ;^z[B] = x[B] ^ z[C] = y[C]^z[T] = x[T]\ y[T]^ z[V] = x[V]\ y[V])gAs for the previous model, corresponding operators for valid-time and transaction-time relationsmay be de�ned as special cases of the operators already de�ned.6.3 Equivalence PropertiesWe have seen that a bitemporal conceptual relation is represented by a class of snapshot equivalentrelations in the representation scheme. We now de�ne the notion of an operator preserving snapshotequivalence.Definition: An operator � preserves snapshot equivalence if, for all parameters X and snapshotrelation instances r and r0 representing bitemporal relations,r S� r0 ) �X(r) S� �X(r0):This de�nition may be trivially extended to operators that accept two or more argument relationinstances. utIn the snapshot relational algebra, an operator, e.g., natural join, must return identical resultsevery time it is applied to the same pair of arguments. The same holds for the BCDM. However,in the representational models, for which several relation instances may be snapshot equivalent,only preservation of snapshot equivalence is required. Thus, we add exibility in implementingthe bitemporal operators by accepting that they return di�erent, but snapshot equivalent, resultswhen applied to identical arguments at di�erent times.We proceed by showing that the operators preserve snapshot equivalence. That is, given snap-shot equivalent operands each operator produces snapshot equivalent results. This ensures thatthe result of an algebraic operation is correct, irrespective of covering. Again, the proof is givenonly for one representation, though the theorem holds for all �ve representations considered.Theorem 4 The algebraic operators preserve snapshot equivalence. Speci�cally, let r S� r0 ands S� s0. Then r 1V s S� r0 1V s0r 1B s S� r0 1B s0�BP (r) S� �BP (r0)�BD(r) S� �BD(r0)r [B s S� r0 [B s0r �B s S� r0 �B s0:Proof: As before, we proceed by demonstrating snapshot subsets. To prove the �rst equivalence,let tuple x be in the lhs. By the de�nition of 1V there exists a set of tuples xi 2 r with xi[AB] =x[AB] and so that [ixi[V] � x[V]. Similarly, there exists a set of tuples xj 2 s with xj[AC] = x[AC]and so that [jxj[V] � x[V]. Next, by the de�nition of S� , for each xi 2 r the exists a set of tuplesxik 2 r0 with xik[AB] = xi[AB] and so that [kxik[V] � xi[V]. The set xik covers xi. For each j asimilar set xjl exists that covers xj. Applying 1V to the sets of tuples xik 2 r0 and xjl 2 s0 yieldsa set of tuples xm with xm[ABC] = x[ABC] and so that [mxm[V] � x[V]. This proves that any31



tuple in a snapshot made from the lhs will also be present in the same snapshot made from therhs. By symmetry, the reverse is also true, and the equivalence follows.The proofs of the other equivalences are similar.The next step is to combine the transformation functions with the representation level operatorsto create corresponding conceptual-level operators. Given a representation level operator, �, itscorresponding conceptual-level operator, �c, is de�ned as follows.�cX(r0) = snap to conceptual(�X(conceptual to snap(r0)))Theorems 3 and 4 in combination make this meaningful and ensure that the conceptual-level oper-ators behave like the snapshot relational algebra operators|with identical arguments, they alwaysreturn identical results. This is required because, like snapshot relations, bitemporal conceptualrelations are unique, i.e., two conceptual relations have the same information content if and onlyif they are identical.Now, we have two sets of operators de�ned on the bitemporal conceptual relations, namely thedirectly de�ned operators in Section 6.1 and the induced operators. In fact, we have constructed thetwo sets of operators to be identical. Put di�erently, the operators in Section 6.1 are the explicitlystated conceptual-level operators, induced from the representation level operators (Section 6.2)and the transformation algorithms in Section 3.1. This is formalized in the following theorem.Theorem 5 The induced algebraic operators preserve snapshot equivalence.Proof: Let �cX be an induced conceptual operator, and suppose that conceptual relations rand s are snapshot equivalent. By Theorem 1, r = s, and therefore, conceptual to snap(r) S�conceptual to snap(s). By Theorem 4, �X(conceptual to snap(r)) S� �X(conceptual to snap(s)).Finally, by Theorem 3, snap to conceptual(�X(conceptual to snap(r))) S� snap to conceptual(�X(conceptual to snap(s))).Next we show how the operators in the various data models, snapshot, transaction-time, valid-time, and bitemporal, are related. Speci�cally, we show that the semantics of an operator ina more complex data model reduces to the semantics of the operator in a simpler data model.Reducibility guarantees that the semantics of simpler operators are preserved in their more complexcounterparts.For example, the semantics of the transaction-time natural join reduces to the semantics ofthe snapshot natural join in that the result of �rst joining two transaction-time relations and thentransforming the result to a snapshot relation yields a result equivalent to that obtained by �rsttransforming the arguments to snapshot relations and then joining the snapshot relations. This isshown in Figure 6 and stated formally in the �rst equivalence of the following theorem.Theorem 6 Let t denote an arbitrary time that, when used with a rollback operator, does notexceed the current time. In each equivalence, let r and s be relation instances of the proper typesfor the given operators. Then the following hold.�Tt (r 1T s) S� �Tt (r) 1S �Tt (s)�Vt (r 1V s) S� �Vt (r) 1S �Vt (s)�Bt (r 1B s) S� �Bt (r) 1T �Bt (s)�Bt (r 1B s) S� �Bt (r) 1V �Bt (s)32



- - ?? Snapshot relationsTransaction-time relations 1S1T �Tt �Tt �Tt (r 1T r0) S� �Tt (r) 1S �Tt (r0)r 1T r0 �Tt (r), �Tt (r0)r, r0Figure 6: Reducibility of Transaction-time Natural Join to Snapshot Outer Natural Join.Proof: An equivalence is shown by proving its two inclusions separately. The non-timestampattributes of r and s are AB and AC, respectively, where A, B, and C are sets of attributes andA denotes the join attribute(s).We prove the fourth equivalence. The proofs of the remaining equivalences are similar and areomitted. Let x00 2 lhs. Then there is a tuple x0 2 r 1B s such that x0[ABC] = x00 and t 2 x0[T].By the de�nition of 1B , there exists tuples x1 2 r and x2 2 s such that x1[A] = x2[A] = x0[A],x1[B] = x0[B], x2[C] = x0[C], x0[T ] = x1[T ]\x2[T ], and x0[V ] = x1[V ]\x2[V ]. By the de�nition of�Bt , there exists a tuple x01 2 �Bt (r) such that x01 = x0[AB] and x01[V ] = x0[V ] and a tuple x02 2 �Bt (s)such that x02 = x0[AC] and x02[V ] = x0[V ]. Then there exists x0012 2 rhs such that x0012[AB] = x01,x0012[C] = x02[C], and x0012[V ] = x01[V ] \ x02[V ]. By construction x0012 S� x00 (in fact, x0012 = x00).Now assume x00 2 rhs. Then there exists tuples x01 and x02 in �Bt (r) and �Bt (s), respectively,such that x01 = x00[AB] and x02 = x00[AC] and x00[V ] = x01[V ] \ x02[V ]. This implies the existence oftuples x1 2 r and x2 2 s and with x1[AB] = x01[AB], x1[V ] = x1[V ], t 2 x1[T], x2[AC] = x02[AC],x2[V ] = x02[V ], and t 2 x2[T]. There must exist a tuple x0 2 r 1B s with x0[AB] = x1[AB],x0[C] = x2[C], x0[V ] = x1[V ] \ x2[V ], and t 2 x0[T]. Consequently, there exists a tuple x0012 2 lhssuch that x0012 = x0[ABC] and x0012[V ] = x0[V ]. By construction, x0012 S� x00.6.4 Covering TransformationsWhen a bitemporal conceptual relation is mapped to a representation scheme, a covering functionis employed to represent bitemporal elements by sets of rectangles. The mappings were used inSections 3.1 to 3.5, and di�erent types of covering functions were discussed in Section 3.1. We nowde�ne two transformations that can change the covering in a representation without a�ecting theresults of queries, as the transformations preserve snapshot equivalence. Both are generalizationsof simpler transformations used in valid time data models.The �rst transformation is termed coalescing. Informally, it states that two temporally over-lapping or adjacent, value-equivalent tuples may be collapsed into a single tuple [25]. Coalescingmay reduce the number of tuples necessary for representing a bitemporal relation, and, as such, is aspace optimization. We formally de�ne coalescing and show that it preserves snapshot equivalence.Definition: Coalescing . Let x = (a1; : : : ; an; t1; t2; v1; v2) and x0 = (a1; : : : ; an; t3; t4; v3; v4) betwo distinct tuples belonging to the same bitemporal relation instance.First, if x[T] = x0[T] and x[V] [ x0[V] = [min(v1; v3);max(v2; v4)], the two tuples may becoalesced into the single tuple y = (a1; : : : ; an; t1; t2;min(v1; v3);max(v2; v4)). Second, if x[V] =x0[V] and x[T] [ x0[T] = [min(t1; t3);max(t2; t4)], the two tuples may be coalesced into the singletuple y0 = (a1; : : : ; an;min(t1; t3);max(t2; t4); v1; v2).33



A bitemporal relation instance is coalesced if no pair of tuples may be coalesced. utThe proof of the next theorem utilizes a subtle requirement on null values in bitemporal re-lations. Speci�cally, we require that null information not conict with non-null information. Ifone tuple states that the value of an attribute is null then another, temporally concurrent tuplethat contains non-null information for that attribute must not exist. More formally, we de�ne thisproperty as follows.Definition: Consistency of null information. Let two tuples x and x0, both belonging to arelation instance r, be given by x = (a1; : : : ; an; t) and x0 = (a01; : : : ; a0n; t0) where 9k1 : : : km (ak1 =? 6= a0k1 ^ : : :^ akm = ? 6= a0km) and 8i 62 fk1; : : : ; kmg(ai = a0i). The last elements, t and t0, of thetwo tuples denote bitemporal elements. If, for all such tuple pairs in r, it is the case that t\ t0 = ;then the null information in r is consistent. utTheorem 7 Coalescing preserves snapshot equivalence.Proof: Let r be a relation instance containing x and x0 as given in the de�nition of coalescing. Inthe �rst of the two cases, let relation s be identical to r, but with x and x0 replaced by the tuple yas given in the de�nition. We must prove r and s snapshot equivalent. The tuples x and x0 resultin exactly the tuple (a1; : : : ; an) being present in all snapshots of r with a transaction time in [t1; t2]and a valid time in [min(v1; v3);max(v2; v4)]. Similarly, the tuple y results in (a1; : : : ; an) being partof all snapshots of s with a transaction time in [t1; t2] and a valid time in [min(v1; v3);max(v2; v4)].The requirement that null information be genuine ensures this even in the case when there arenulls among the ai. The proof for the second of the two cases is similar.6 - �- 6 - 6 -(b)(a)VT VT VTTT TT TTFigure 7: CoalescingCoalescing of overlapping, value-equivalent tuples is illustrated in Figure 7. The �gure showshow rectangles may be combined when overlap or adjacency occurs in transaction time (a) orvalid time (b). Note that it is only possible to coalesce rectangles when the result is a bitemporalrectangle. Compared to valid-time relations with only one time dimension, this severely restrictsthe applicability of coalescing.We now formalize the notion that a relation may have repeated information among tuples.Definition: A bitemporal relation instance r has repetition of information if it contains twodistinct tuples x = (a1; : : : ; an; t1; t2; v1; v2) and x0 = (a1; : : : ; an; t3; t4; v3; v4) such that x[T] \x0[T] 6= ; ^ x[V]\ x0[V] 6= ;. A relation with no such tuples has no repetition of information. utWhile coalescing may both reduce the number of rectangles and reduce repetition of infor-mation, its applicability is restricted. The next equivalence preserving transformation may beemployed to completely eliminate temporally redundant information, possibly at the expense ofadding extra tuples. We �rst de�ne the transformation and then describe its properties.34



Definition: Elimination of repetition. With x and x0 as in the de�nition above, the informationin tuple y, de�ned below, is contained in both x and x0.y = (a1; : : : ; an;max(t1; t3);min(t2; t4);max(v1; v3);min(v2; v4))The repetition incurred by x and x0 may be eliminated by replacing tuples x and x0 by the set oftuples, s, de�ned below.1 s = fz(n+4) j z[A] = x[A]^ ((z[T] 2 covermaxt (x[T]� x0[T])^ z[V] = x[V])_2 (z[T] 2 covermaxt (x0[T]� x[T])^ z[V] = x0[V])_3 (z[T] = x[T]\ x0[T]^ z[V] = x[V][ x0[V]))gThe function covermaxt transforms an argument set of transaction-time chronons into a set ofmaximal intervals of consecutive chronons. utTheorem 8 The elimination of repetition transformation has the following properties.1. It eliminates repetition among two argument tuples.2. The result, s, has at most three tuples.3. It is snapshot-equivalence preserving.4. Repeated application produces a relation instance with no repetition of information.Proof: There is no repetition of information between the resulting tuples as they do not overlapin transaction time.Let x and x0 be given as in the de�nition of elimination of repetition and de�ne Tx =covermaxt (x[T] � x0[T]) and T 0x = covermaxt (x0[T] � x[T]). Tuples x and x0 are replaced by atmost three tuples. Line 3 results in one tuple. Lines 1 and 2 collectively result in two tuples, forthe following reasons. The set Tx has two elements when x0[T] contains no endpoints of x[T]. Inthis case T 0x is empty. The sets Tx and T 0x have both one element when x0[T] contains exactly oneof the endpoints of x[T]. Lastly, Tx is empty when x0[T] contains both endpoints of x[T]. In thiscase T 0x has two elements.Being similar to that for coalescing, the proof of snapshot-equivalence preservation is omitted.The process of eliminating repetition is terminating because the new tuples that result fromone transformation step cover strictly smaller intervals in the transaction-time dimension. Inaddition, two tuples that cover only a single transaction time and have repeated information maybe coalesced into a single tuple that would not be further partitioned.The transformation partitions the regions covered by the argument rectangles on transactiontime. The symmetric transformation, which partitions on valid time, may also be included. Thesetransformations are illustrated in parts (a) and (b), respectively, of Figure 8.The elimination of repetition of information may increase the number of tuples in a represen-tation. The transformation may still be desirable because subsequent coalescing may be possibleand, more importantly, because certain updates are simpli�ed.35



6 -� -6 -6 - (b)(a)VT VT VTTT TT TTFigure 8: Eliminating Representational Repetition of Information7 The BCDM as a Temporally Ungrouped ModelLittle previous work has been reported on the interaction among multiple temporal data models.A recent paper by Cli�ord et al. [6] constitutes a notable exception, in that it provides a formalframework for the relative expressivenes of the structural and operational aspects of data models.While the work by Cli�ord et al. and the contents of this paper are quite di�erent in objectiveand focus, it is possible to relate the contributions of the paper to their framework. To do so we�rst briey and informally introduce central concepts de�ned by Cli�ord et al., then illustrate howthey apply here.Of relevance to this paper, Cli�ord et al. de�ne two types of temporal data models, temporallygrouped and ungrouped models. This categorization of a data model is based solely on its structuralaspect, and solely on its support of valid time. Speci�cally, a data model is temporally ungroupedif there exists a 1{1 and onto mapping between its set of possible relation instances and those ofa particular temporal relation structure, TU , supplied by the authors. Similarly, the notion oftemporally grouped is de�ned in terms of the speci�ed relation structure TG.Barring details such as the cardinality of the valid-time domain, the BCDM is an ungroupeddata model. To prove this, we �rst devise a function from BCDM relation instances to TU in-stances. TU relations and BCDM relations are quite similar. In fact, TU relations are in essenceBCDM relations where timestamps are restricted to be single chronons. Thus, a BCDM tu-ple is mapped to a set of value-equivalent TU tuples, one for each chronon in its timestamp.Based on this, an obvious mapping can be constructed that maps any legal BCDM instance toexactly one legal TU instance, i.e., the mapping is a function. For example, the BCDM in-stance f(Sue;Load j f1; 2; 3g); (Kay; Ship j f1; 3g)g is mapped to the TU instance f(Sue;Load; 1),(Sue;Load; 2), (Sue;Load; 3), (Kay; Ship; 1), (Kay; Ship; 3)g. Next, the mapping is 1{1 becausedistinct BCDM instances map to distinct TU instances. To show that the mapping is also onto,we pick an arbitrary TU instance and show that a BCDM instance exists that maps to the TUinstance. For any TU instance, the BCDM instance that maps to it is obtained by coalescing itsvalue-equivalent tuples.The paper by Cli�ord et al. is concerned with the completeness of ungrouped and groupedtemporal data models. Completeness is a relative notion. Given two data models, M1 and M2,with the same structural component, i.e., type of relation, M2 is complete with respect to M1 if foreach query in M1, there exists an equivalent query in M2. When the structural components of themodels di�er, the de�nition must be modi�ed as it becomes necessary to map between instances ofthe models. A mapping 
M1M2 from the instances of model M1 to those of M2 is a correspondencemapping if pairs of argument and result instances have the same explicit attributes and the sameexplicit-attribute values for all arguments. Mappings without this property are not interesting.Assume for simplicity that the query languages of M2 and M1 are algebras, as in this paper. Thendata model M2 is complete with respect to data model M1 if a correspondence mapping exists as36



de�ned above, and if a mapping, �M1M2 , from the operators of M1 to queries of M2 exists with theproperty that for all operators op of M1, 
M1M2(op(r)) = �M1M2(op)(
M1M2(r)) .The completeness of one model with respect to another is strong if the mapping 
 is 1{1;otherwise it is weak. Mutually complete models are termed equivalent. It is important to notethat the present paper uses di�erent notions of equivalence, on di�erent mathematical objects. Inparticular, we use value equivalence, between tuples of the same data model to indicate identicalvalues for the explicit attributes, and snapshot equivalence, between relation instances of the samedata model to indicate identical information content.Our paper provides a detailed study of the structural aspects of relatively diverse bitemporalrelational data models, but a detailed study of operational aspects is beyond its scope. It followsthat the paper is then not aimed at comparing the relative expressive powers of query languages.Rather, it indicates how several structural data model components can coexist in a temporal DBMSwhere they may be used for di�erent tasks. In the terminology of Cli�ord et al., we provide concrete
-mappings between speci�c, existing bitemporal data models and the BCDM. In this sense thepaper complements the framework of Cli�ord et al., which contains no such concrete mappings. Inaddition, theorems illustrate that the mappings are well behaved.As the de�nition of temporal ungroupness is speci�c to the structure of a data model, we nowconsider whether the mappings exibit the properties required for the models to qualify as tempo-rally ungrouped. It may be veri�ed that all of the provided mappings satisfy the correspondencecriterion. If TU is extended in the obvious fashion to incorporate transaction time, via bitemporalchronon timestamping, then we �nd it likely that all �ve mappings can be shown to be 1{1 andonto (via appropriate covering and grouping functions). As the BCDM was shown above to betemporally ungrouped, this would demonstrate that all �ve representational models discussed inthis paper are temporally ungrouped.The �-mapping of Cli�ord et al. also has a counterpart in this paper. In their framework, twodata models, each with its own structural and operational component, are assumed to exist. Then
- and �-mappings are devised in order to show completeness and equivalence. In this paper thesituation is di�erent. Rather than having two query languages and wanting a �-mapping, we havealgebra operators for representational models and \�-mappings," but want algebra operators forthe BCDM. We then apply the existing mappings to algebra operators of representational datamodels and induce, via Theorem 5, new operators for the BCDM.8 Summary and Future ResearchIn this paper, we de�ned the bitemporal conceptual data model which timestamps facts with bitem-poral elements, which are sets of bitemporal chronons.We showed that it is a unifying model in that conceptual instances could be mapped intoinstances of �ve existing bitemporal representational data models: a �rst normal form (1NF) tuple-timestamped data model, a data model based on 1NF timestamped change requests recorded inbacklog relations, a non-1NF data model in which attribute values were stamped with rectanglesin transaction-time/valid-time space, a non-1NF model where valid-time states are indexed bytransaction time, and a 1NF model where each tuple is accorded �ve timestamp values. Wealso showed how extensions to the conventional relational algebraic operators could be de�ned ina representational data model and then be meaningfully mapped to analogous operators in theconceptual data model.An important property of the conceptual model, shared with the conventional relational model,but not held by the representational models, is that relation instances are semantically unique; eachmodels a di�erent reality and thus has a distinct semantics. We employed snapshot equivalence to37



relate instances in these six models. It was shown how new algebra operators for the BCDM canbe induced from the algebraic operators of the representational models. Further, the operatorsof the BCDM were shown to be natural extensions of the snapshot operators. We also discussedcovering functions at di�erent points along the space-time tradeo�, and presented two types oftransformations that alter coverings of bitemporal relation representations. Finally, we showedthat the BCDM is a temporally ungrouped data model [6].We advocate a separation of concerns. Each of data presentation, storage representation, andtime-varying semantics should be considered in isolation, utilizing perhaps di�erent data models.Semantics, speci�cally as determined by logical database design, should be expressed in the con-ceptual model. Multiple presentation formats should be available, as di�erent applications requiredi�erent ways of viewing the data. The storage and processing of bitemporal relations should bedone in a data model that emphasizes e�ciency.By showing how it is possible to use the existing models in an integrated mode for the di�erent,independent tasks, we have contributed to a foundation for implementing a temporal databasesystem.Additional research is needed in database design, utilizing the conceptual data model. Itappears that normal forms may be more conveniently de�ned in this model than in the represen-tational models. We are currently investigating this topic [13]. The BCDM has been adopted asthe basis for the consensus temporal query language TSQL2 [28], and a comprehensive, underlyingalgebra has been de�ned on the data model [30]. We conjecture that this algebra yields a tempo-rally ungrouped (TU-) complete data model [6]. It would be illuminating to attempt the design ofan extension to the BCDM that could be shown to be temporally grouped (TG-) complete, andto then extend the representational mappings, the algebra, and the normal forms to this extendeddata model.AcknowledgementsPortions of this research were conducted while the �rst author visited the University of Arizona.Support was provided by the Danish Natural Science Research Council through grants 11{9675{1SE, 1{1089{1 SE, and 11{0061{1 SE; the National Science Foundation through grants IRI{8902707and IRI{9302244; the IBM Corporation through Contract #1124; and the AT&T Foundation. Wethank the anonymous referees for their insightful comments.
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