
Semantics of Time-Varying Information�C. S. Jensen and R. T. SnodgrassFebruary 22, 1996AbstractThis paper provides a systematic and comprehensive study of the semantics of temporaldatabases. We �rst examine how facts may be associated with time, speci�cally with one ormore dimensions of valid time and transaction time. One common case is that of a bitemporalrelation, in which facts are associated with exactly one valid time and one transaction time.These two times may be related in various ways, yielding temporal specialization. Multipletransaction times arise when a fact is stored in one database, then later replicated or transferredto another database. By retaining the transaction times, termed temporal generalization, theoriginal relation can be e�ectively queried by referencing only the �nal relation.We attempt to capture the essence of time-varying information via a very simple datamodel, the bitemporal conceptual data model. We discuss various representations of timestampsand the representation of the database variable \now." We emphasize the notion of snapshotequivalence of the information content between various data models.We then turn to the semantics of individual attributes. One such aspect is the observationand update patterns of attributes|when an attribute changes value and when the changes arerecorded in the database. A related aspect is when an attribute has some value, termed itslifespan. Yet another aspect is the values themselves of attributes|how to derive a value foran attribute at any point in time from stored values, termed temporal derivation.Temporal database design is a natural next topic. Normal forms play a central role duringthe design of conventional relational databases. We show how to extend the existing relationaldependency theory, including the dependencies themselves, keys, normal forms, and schemadecomposition algorithms, to apply to temporal relations. However, this theory is still atem-poral in nature; it does not fully take into account the temporal semantics of the attributesof temporal relations. Thus, the semantics of individual attributes are subsequently used forformulating temporal guidelines for the design of the logical schema, and implications of thesemantics for the design of views and the physical schema are considered.1 IntroductionThis paper summarizes the result of an intensive collaboration between the two authors over a�ve year period into the semantics of time-varying information. A wide variety of topics wereinvestigated, yielding a comprehensive understanding both of this semantics and of why suchdisparate approaches to temporal data modeling have appeared in the literature.�C. S. Jensen is with Department of Mathematics and Computer Science, Aalborg University, Fredrik Bajers Vej7E, DK{9220 Aalborg �, DENMARK, csj@iesd.auc.dk. R. T. Snodgrass is with Department of Computer Science,University of Arizona, Tucson, AZ 85721, USA, rts@cs.arizona.edu.1

2 Historical ContextChristian initially came to Tucson in January, 1991 to start a seven-month sabbatical1. Rick hadbeen at the University of Arizona for 16 months. We had each read the other's work, but had metonly a few times at conferences. There was no established joint research stream, or commonalityother than a shared interest in temporal databases. Fortunately, in turned out that we worked verye�ectively together, and Christian was able to come to Tucson for additional sabbaticals duringJanuary{August, 1992 and July, 1994{January, 1995. Rick returned the favor with several shortervisits to Denmark.Rick had previously worked on temporal query language design and implementation, in thecontext of his TQuel language [?, MS90, Sno87, ?, Sno93], and on temporal semantics, specif-ically characterizing the orthogonality of valid time and transaction time [?, SA86]. Christianhad previously worked on transaction-time databases, speci�cally architecture [JMRS93, JM93],implementation [JMR91], and language support [JM92].In our initial discussions once Christian arrived, we identi�ed two areas of common interest:nailing down the semantics of temporal data, and developing e�cient implementation techniquesfor bitemporal databases. In large part due to the many projects already underway by Rick'sstudents addressing implementation, we decided to focus instead on the semantics of time-varyinginformation.At that time, there had already been over a decade of work on temporal databases, principallyon temporal query languages and their associated data models. Unlike relational databases, inwhich a single data model, the relational data model [Cod79], held sway, there were perhaps 20extant temporal data models described in the literature (that number has since doubled). Therewas little consensus on the features that a temporal data model should include. Quite the contrary:there was a raging debate over whether the data model should be nested or not (characterizedas �rst normal form (1NF) versus non-1NF (N1NF) approaches). While there had been somecomparisons between the proposals (e.g., [MS91a]), there had been little work to delineate thenotions underlying these varied models.This lack of consensus of even a starting point for work on query language design, query op-timization, or temporal access methods was starting to have a constricting e�ect on temporaldatabase research. Certainly it was complicating temporal semantics and its close relative, tem-poral database design.The lack of a single, or at least consensus, temporal data model had less impact on early workon conceptual modeling of time and time-varying information, the latter primarily in the contextof the ER model and its temporal extensions. There were also insights from temporal logic, aprominent example being the various models of the time line: dense, continuous, discrete, andbranching. Several authors had emphasized the utility of a stepwise constant semantics, in whicha fact stored in the database remains true until modi�ed or updated (a kind of Newtonian secondlaw). There had been a few e�orts to de�ne temporal normal forms; however, all were speci�c to aparticular data model, limiting their applicability. Finally, there occasionally appeared in papersvarious observations about attribute semantics, anomalies, and normalization.At the start, we explicitly intended not to produce yet another data model, with its ownpeculiarities; that would only add to the confusion. Instead, we hoped to discern the underlyingsemantics of temporal data. Our vague intuition was that much of the work on temporal datamodels was \representational" in nature. It seemed that the model-independent semantics oftime-varying information was being forced into speci�c con�gurations by existing data models.The resulting structures did capture some of the essence, but were to a large extent artifacts of the1Mention of one author is in the third person; mention of both authors is in the �rst person.2

data model itself, rather than emphasizing the underlying information content. At the same time,we realized that considering information outside the context of a data model, some data model,would have been an aimless and ultimately unsatisfying exercise.Our early discussions focused on several confusing aspects that we felt might lead us to morefundamental issues.� Why are there so many temporal data models? Is a single ideal model even possible? Asa more speci�c related question, should data be stored as events (state transitions) or asstates?� Are transaction time and valid time really orthogonal, as Rick had previously claimed [SA86]?More speci�cally, what is the relationship between POSTGRES' two timestamps, TQuel'sfour timestamps, and Ben-Zvi's �ve timestamps? Are there more than two dimensions oftime? How does Thompson's taxonomy of four kinds of time relate to valid and transactiontime?� Is 1NF vs. N1NF really a fundamental distinction?� Which data model aspects are concerned with the information content of the modeled data,which aspects are best justi�ed by their interaction with query language facilities, and whichaspects concern only e�ciency, and thus are in the domain of physical design? As a speci�cquestion, is the problem of NULL values in some temporal data models a logical issue,concerning data semantics, or a physical issue, concerning only performance?� Can conventional dependency theory be applied in a model-independent fashion to temporaldatabases? Can existing temporal functional dependencies and normal forms particular toindividual data models be recast to apply to a larger subset of data models?� What are the implications of temporal interpolation on data semantics?Thinking about these questions and following the technical threads that emerged turned out to bea great adventure. This paper gives some of the of the milestones along that journey.Rather than adhering to a strict chronological order, we �rst consider the fundamental questionof how to associate time with facts. We then address the semantics of individual attributes, tuplesand relations. We start with the initial questions that got us thinking about the issue, then followthe investigation from there.3 Associating Time with FactsThe past decade of temporal DB research presented a conundrum. Time-varying data seems sosimple: rather than one value, there is a value for each instant of time. Yet it seemed that temporaldata model design was terribly complicated. There were a plethora of temporal data models, nowover 40 discussed in the literature [Ozs]. There must be something else going on. So we workedhard to get to the essence of temporal data.Philosophers have long recognized the dichotomy, and the duality, between events and states[RU71]. A state is something that has extent over time. Something is true about an object foran interval of time, but was not true before and not after. An event is instantaneous [JCE+94];it is something that \happens," rather than being true over time2. Events delimit states. The2We do not consider the so-called \macro events" that are true, or take place, for an interval of time, but are nottrue for any subset of their interval. A wedding is an example [Eva90, MMCR92].3

occurrence of an event results in a fact becoming true; later, the occurrence of another eventrenders that fact no longer valid. Hence, events and states are duals; states can be represented bytheir delimiting events, and events are implied by states.A conventional relation models the reality relevant to an enterprise as a single state [Sno87].This is often illustrated as a two-dimensional table, with the tuples as rows and the attributes ascolumns. If nothing changes in reality, the tuples will remain in the relation. Otherwise, sometuples are removed and others are inserted into the relation.It is well known that database facts have at least two relevant temporal aspects [SA85, SA86].Valid time concerns when a fact was true in the modeled reality [JCE+94]. Transaction timeconcerns when a fact was current in the database. These two aspects are orthogonal, in that eachcould be independently recorded or not, and each has associated with it speci�c properties. Thevalid time of a fact can be in the past or the future and can be changed freely. In contrast, thetransaction time of a fact cannot extend beyond the current time (there is no way of knowingwhether the fact will be current in the database in the future), and the transaction time cannotbe changed (we cannot now change what was stored in the database in the past).Such was the context for the start of our investigation of temporal database semantics. Thesimplicity of associating with each fact two times, one valid time, indicating when the fact wastrue in reality, and one transaction time, indicating when that fact was current in the database,was not adequate in capturing the full semantics of time-varying information. We then began asystematic study of the frayed edges of this appealing framework.3.1 Temporal SpecializationWhile valid time and transaction time had been shown to be orthogonal [SA86], some papers didnot make a distinction between the two. Instead, they seemed to use one time to handle bothaspects. For example, The POSTGRES Papers mentioned \time travel," terminology stronglysuggesting valid time: \For example to �nd the salary of Sam at time T one would query [...]POSTGRES will automatically �nd the version of Sam's record valid at the correct time andget the appropriate salary" [SRH90, p. 515]. However, POSTGRES technically supports onlytransaction time in its data model and query language. Clearly something was going on that wasnot being captured.Example Consider a relation recording the assignment of employees to departments, usingtwo attributes, Name and Dept. On Monday, we observe that employee Bob is in the Shippingdepartment and that Kate is in the Loading department. By end of Tuesday, Bob leaves theShipping department, and on Wednesday another employee, Sam, starts in Shipping. By end ofThursday, Kate leaves Shipping. This can be represented in a temporal table as illustrated inFigure 1(a). Name Dept TimeBob Shipping Monday { TuesdayKate Loading Monday { ThursdaySam Shipping Wednesday { now(a) Name DeptKate LoadingSam Shipping(b)Figure 1: A Sample Temporal Relation (a) and a Timeslice (b)The timeslice at any time yields the conventional relation at that time. For example, the timesliceat time Wednesday yields the relation in Figure 1(b). ut4

The question we asked was, is the temporal relation a valid-time relation or a transaction-timerelation? Our eventual answer was: either, or perhaps even both, i.e., a bitemporal relation.The insight was to consider the interaction between valid and transaction time. While thesemantics of these two times is indeed orthogonal, their use in a particular application needs notbe. In the employee example, the relation is updated precisely (at a granularity of days) whenreality changes. On Tuesday, there was no change to the assignment of employees (we will examinethis stepwise constant assumption more fully in Section 4.4), and so no updates were made to therelation. The relation is assumed to be always up to date; otherwise, the timeslice might not yieldthe correct result. In this light, the employee relation may be considered to be a transaction-time relation, and the timestamp a transaction time representing when the fact was stored inthe database. All modi�cations are insertions, except that right end points for the timestampsare being are being supplied when assignments are terminated (more on this in Section 3.9). Atimeslice at any time in the past yields what the database stored as current at that time.An equally correct interpretation is that the employee relation is a valid-time relation, with thetimestamps indicating when in the past the employee assignments held true. Modi�cations reecta change in our understanding of reality; when we learn about a change, we update the relation.A timeslice at a time in the past yields what assignments were valid in reality at that time.A third, equally correct interpretation is that the employee relation is a bitemporal relation.The transaction time and the valid time, for this application, are synchronized. Hence we couldreplicate the timestamp, and consider one the valid time and one the transaction time. Whilea bitemporal relation a�ords additional query and update capabilities (e.g., retroactive updates),such features are not used by this particular application.This led us to consider other interactions between valid and transaction time. We term re-lations with such relationships specialized temporal relations [JS94a]. We identi�ed a taxonomyof interrelationships|in between the extremes of identity and no interrelation at all|that arepossible between the valid and transaction times of facts, shown in Figure 2.In this taxonomy, the employee relation would be classi�ed as degenerate. As another example,a temporal relation is retroactive if the facts stored by the tuples are valid before they are enteredinto the relation, i.e., the facts became true before they were stored. Retroactive relations arecommon in monitoring situations, such as process control in a chemical production plant, wherevariables such as temperature and pressure are periodically sampled and stored in a database forsubsequent analysis.Further, it is often the case that some (non-negative) minimum delay between the actual timeof measurement and the time of storage can be determined. For example, a particular set-up forthe sampling of temperatures may result in delays that always exceed 30 seconds. This gives riseto a delayed retroactive relation if it is retroactive and if there is a bound on the time betweenwhen the fact became true in reality and when it was stored in the database.In a data warehousing application where, e.g., point-of-sales records from an operational systemare entered into a warehouse relation on a monthly basis, the valid times of the point-of-sales recordsare between a month and a few hours earlier than the corresponding transaction times. Thus, thetemporal warehouse relation is delayed strongly retroactively bounded.A temporal relation is predictive if the values of an item are not valid until some time after theyhave been entered into the relation. An example is a relation that records direct-deposit payrollchecks. Generally a copy of this relation is made on magnetic tape near the end of the month,and sent to the bank so that the payments can be e�ective on the �rst day of the next month.The early predictive temporal relation is the specialization of the predictive temporal relation. Thedirect-deposit payroll check relation is an example if the tape must be received by the bank at5

bbbbbb�����bbbbbb""""""ZZZZZ""""""�����bbbbbbZZZZZ """""" bbbbbb"""""" PPPPPPPPPPP�����������PPPPPPPPPPP�����������
delayed strongly retroactively boundeddegenerateearly strongly predictively bounded strongly retroactively boundedstrongly predictively bounded delayed retroactiveearly predictive retroactivepredictive strongly bounded predictively boundedretroactively bounded undeterminedgeneral

Figure 2: Generalization/Specialization Structure of the Taxonomy for Temporal Specializationleast, say, three days before the day the deposits are to be made e�ective.The taxonomy of specialized temporal relations provides a coherent framework that allows usto more precisely describe, distinguish, and thus understand temporal relations. The taxonomymay also be used for characterizing the many existing temporal data models. We illustrate this bycharacterizing several well-known temporal data models.Ariav's Temporally Oriented Data Model includes the temporal isomorphism assumption, inwhich \there is a tight correspondence between the database and the temporally concurrent realityit is aimed to capture." [Ari86, p. 503]. As the transaction time of a fact can be determined fromthe stored valid time, under this assumption, this data model supports degenerate bitemporalrelations as well as general transaction-time relations.Gadia presents a multi-dimensional data model which is in turn restricted to a two-dimensionaldata model with valid and transaction time as the dimensions [?]. In this model, however, onlydata valid in the past may be stored. For example, it is impossible to store on May 11, 1995 thefact that \Employee Kate will be in the Shipping department from September 1, 1995 until August31, 1997." Therefore, the model does not support fully general bitemporal relations, but supportsinstead retroactive bitemporal relations. The restriction to retroactive data is inherited from anearlier (retroactive) valid-time data model [Gad88].Sarda proposes another specialized temporal data model in which current facts may be ap-pended and where so-called retrospective updates (changes to information about the past) arepossible [?]. Hence, the transaction time is always equal to or after the valid time, and, like theprevious model, this model supports retroactive bitemporal relations.The POSTGRES data model [?, ?] supports degenerate bitemporal relations, in that facts validnow in the real world are stored now, and all past states are retained. The POSTGRES query6

language [Sto90] supports transaction-time (viewing the time dimension as transaction time) andvalid-time timeslice (viewing the time dimension as valid time), but does not support generalvalid-time queries. This query language may be viewed alternatively as a transaction-time querylanguage or as a highly restricted valid-time or bitemporal query language.Temporal specialization goes down the taxonomy, adding constraints on the interaction ofvalid and transaction time. Temporal generalization goes up the taxonomy, removing constraints.While considering a di�erent aspect of temporal semantics, we discovered that it made sense toapply generalization above even the top-most point of the hierarchy in Figure 2, yielding temporalrelations more general than those termed general in the hierarchy, as we will see in the next section.3.2 Temporal GeneralizationA common concern voiced about temporal data models was, why timestamp facts with only oneor two timestamps?Example Consider a promotion decision at a University, which is associated with many dates:the date materials were submitted, the date the departmental committee made their decision, thedate the department head made her decision, the date the college committee decided, the datethe Dean decided, the date the Provost's committee decided, the date the Provost decided, thedate the President decided, the e�ective date of the promotion, and the dates when each of thesedecisions was stored in the database (whew!). utDoes it make sense to associate more than one timestamp (valid or transaction) with a fact?Which timestamps are in fact valid and which are transaction? Does it really matter?The latter two questions are easier to answer. Yes, it does matter, for the simple reason thateach kind of time has a particular semantics. The database designer determines the temporalsupport|valid-time, transaction-time, or bitemporal|of the relations that is appropriate for theapplications at hand. The application programmers then exploit that support. Valid and trans-action time have precise, crisp de�nitions. If changes to the past are important, then valid-timesupport is required. If it is necessary to, e.g., rollback to a previous state of the database, thentransaction time support is called for.Let us examine the promotion decision example more closely. The submission of materials con-cerns reality, as do the various decisions. These would have dates associated with them regardlessof whether they were ever stored in the database. This hints that each of these dates concernsvalid time. But which is the valid time of the promotion? None of these dates is, it turns out. Thevalid time of the promotion is the time the promotion was valid, that is, its e�ective date.The apparent confusion, both in the paragraph above and in some of the research literature,occurs because it makes little sense to reason about what the transaction time and the valid time isabstractly, without reference to a particular fact. We must �rst identify the fact we are considering!Then it not only makes sense, but also becomes easy to talk about transaction time, valid time,and other times.So, let us �rst determine what fact is being timestamped. If the fact is \person X was promotedto Professor," the valid time is the time when the person became a Professor, and the transactiontime is when the fact that the person was a Professor was recorded in the database. If the fact is\person X was approved for promotion by the department head," then the valid time is the timewhen that approval was made (probably when the letter from the department head was signed)and the transaction time is when that fact was recorded in the database. If the fact is \person Xis a Professor," the valid time is the interval that started when the promotion decision took e�ect7

and is terminated when person X is no longer a Professor. Hence, we see that there are manyinterrelated facts, each with di�erent valid times and (potentially!) with transaction times.This discussion provides insight into the relationship between valid time and the so-calleddecision time that has been considered in the literature (e.g., [?, ?, ?, ?, ?, ?, ?]). Assume thatwe are considering the fact \person X is a Professor." In the example, many decisions took placea di�erent times before person X could become a Professor. These times are decision times ofour fact. Di�erent types of facts may have di�erent numbers of di�erent types of decision times.The discussion above reveals that the decision times of a fact are also valid times of facts that areclosely related to the \main" fact. What the \closely related" facts are is dependent on the realityto be modeled and on the requirements of application at hand. Speci�cally, no general statementcan be made about the number and speci�c meaning of the decision times can be made.The question then is how to best reect decision times in a data model. One approach is tostore decision times as valid times of the related facts. This permits any number of decision timesto be (indirectly) supported, and it clari�es what the individual decision times actually mean.Another approach is to allow for the direct association of an arbitrary number of decision timeswith all database facts. So far, proposals that take this approach have considered only one decisiontime per fact. As the meaning of this decision time will vary from application to application, littlesemantics can be built into the data model for this time. As it is not yet known what are thebene�ts of a general solution with this approach and whether these bene�ts outweigh the addedcomplexity, we advocate following the �rst approach to handling decision time.There is, however, an unrelated rationale for storing multiple transaction times in a tuple. Thisinsight followed from considering the four time domains introduced in Thompson's dissertation[Tho91]. When facts ow between temporal relations, several time dimensions may be associatedwith individual facts.Example Consider again the promotion decision. This fact has an associated time when thepromotion was e�ective as well as the time when it was entered into a relation on the University'sadministrative computer. Later, this fact was copied into the departmental personnel relation ona di�erent machine, and is associated with an additional time value, namely the time it was storedthere. This personnel relation has three times. Storing both transaction timestamps makes itpossible to query the one relation from another relation. In the example, it is possible to querythe time-varying relation on the centralized administrative machine indirectly via the personnelrelation on the departmental machine. Unlike in the previous discussion, when the multiple timeswere associated with multiple facts, here we have a single fact, \person X is a Professor," with asingle valid time and two transaction times: when that fact was stored in the University's databaseand when it was stored in the departmental database. utThe ability to have multiple transaction times �ts in well with temporal specialization. Theconcepts of specialization and generalization have been used previously within data modeling (e.g.,[?, HM81, ?]). A subclass may be created from a class by means of specialization, i.e., by makingthe de�ning properties (the intension) of the class more restrictive and thus also restricting theset of examples (the extension) of the class. As the dual, a superclass may be created from aclass by means of generalization, i.e., by making the intension of the class less restrictive and thusexpanding the extension of the classTemporal specialization and generalization are also duals. As we have seen, specialization con-tracts the space of possible timestamp combinations. Temporal generalization appears in at leastfour guises, each of which expands the space of possible timestamps. The �rst is removing restric-tions. For example, a strongly predictively bounded relation may be generalized to a predictively8

bounded relation. This generalization is the opposite of specialization. It involves moving up thelattice given in Section 3.1, thereby expanding the space of possible interrelations.A second way to de�ne a generalized temporal relation is to simply add completely new, or-thogonal time dimensions. In systems where facts ow between multiple temporal relations, factsmay accumulate transaction timestamps by retaining their previous timestamps and gaining newtransaction timestamps as they are entered into new temporal relations. Consequently, a fact in ageneralized temporal relation has several kinds of timestamps: a valid timestamp, which recordswhen the fact was true in reality, a primary transaction timestamp, which records when the factwas stored in this relation, and one or more inherited transaction timestamps, which record whenthe fact was stored in previous relations.A third, more involved, means of de�ning generalized relations is to have derived relationsinherit transaction time-stamps from their underlying relations. For example, consider processcontrol in a chemical manufacturing plant. Values from temperature and pressure sensors may bestored in temporal relations. The sensed data may later be processed further to derive new data,such as the rates at which the reaction is progressing [Ram92]. This derivation typically woulddepend on past temperature and pressure trends. The derived temporal relation that records thereaction rates would store the transaction time when the rate was recorded, along with one or moreinherited transaction times, specifying when the underlying data, the temperature and pressurereadings, were originally recorded. These underlying transaction times provide an indication ofthe relevance of the calculated rates.A fourth way of generalizing temporal relations occurs when di�erent beliefs about the modeledreality is to be recorded. For example, a database that records the history of some country andis being used by historians may bene�t from the inclusion of multiple valid-time dimensions. Thedi�erent valid-time dimensions may be used for accommodating di�erent competing perceptionsof history.This elaboration of the original taxonomy of valid and transaction time [SA85] allowed us tobetter understand Thompson's 4-time model [CT90, Tho91]. Speci�cally, Thompson's physicaltime is precisely the transaction time of a base �nancial relation, his logical time is the valid timeof this relation, his accounting time (when that relation is closed out) is the valid time of therelation resulting from the close out process, and his engineering time is the inherited transactiontime in the close out relation.Our conclusion is that for facts stored in databases, two kinds of times are fundamental anduniversal, namely valid time and transaction time, and that these are indeed orthogonal. However,an application's usage of these two time dimensions may introduce interdependencies between thetimestamps, multiple valid times, and multiple (inherited) transaction times. In this light, decisiontime and Thompson's physical, logical, accounting, and engineering times may be seen as valid ortransaction times with re�ned semantics.From now on, we will assume one valid time (either event or state) and one transaction time.3.3 Temporal Data ModelsAt this point, we felt that we had a good handle on the semantics of timestamps. We then turnedto the central question of the semantics of time-varying values. How should time be associatedwith facts? There were at the time some two dozen temporal data models that timestamp factsin some way with valid time. Each proposal came with justi�cations as to why it was better thanthe others. Each proposal appeared in a refereed conference or journal, and thus had survived thereviewing process, and was judged to make a contribution.Rick and a colleague previously analyzed a dozen or so models [MS91a], and had come to the9

conclusions that (a) there were many desirable criteria for a temporal data model, (b) each modelsatis�ed a substantial subset of the desirable criteria, (c) the design space had been thoroughlyexplored, in that for each combination of relevant aspects, there generally existed a data modelwith that combination, and (d) the desirable criteria were mutually incompatible. So a temporaldata model that did everything was simply unattainable.The implicit mind-set of those developing temporal data models was to �nd the ideal combi-nation of properties, to come as close to the perfect model as possible. The data models we hadindividually designed before our collaboration also sought this holy grail [JMR91, MS90, MS91b,Sno87]. We eventually decided that that course of action was inappropriate. The speci�c designdecisions were highly subjective. Because the criteria were incompatible, many design decisionnecessarily forced useful properties to be unmet. Instead of one design towering over the othersby virtue of it satisfying most of the desirable properties, the situation was unavoidably one of aplethora of designs, each with its strong, but also weak, points.So we decided that the best approach was to alter our goals, instead advocating a separationof concerns. Rather than attempt to de�ne a temporal data model that did everything, we wouldeliminate those aspects not central to capturing the temporal semantics of the data, which isafter all the primary job of a temporal data model. In particular, we would not be concernedwith presenting all the information concerning an object in one tuple, or of ensuring ease ofimplementation and query evaluation e�ciency. With a shorter list of requirements, we wouldthen identify a data model that was ideal, in that it did all that was asked of it.Focusing just on semantics, we found that the existing data models, including our own, weretoo complicated. These complications arose from the other requirements they were addressing. Sowe developed a very simple data model, the Bitemporal Conceptual Data Model, or BCDM [JSS94],whose sole goal was to capture when facts were valid in reality and when they were stored in thedatabase.The BCDM is termed a conceptual model dues to its single-minded focus on semantics. Inessence, we advocate moving the distinction between the various existing temporal data modelsfrom a semantic basis to a physical, performance-relevant basis, utilizing our proposed conceptualdata model to capture the time-varying semantics. The terminology of \conceptual" is used onlyto emphasize the use of the model for design and as a basis for a query language; otherwise, thisnew model is similar to other temporal data models in the formalism used to de�ne it.We rely on existing data model(s) for the other tasks, by exploiting equivalence mappingsbetween the conceptual model and the representational models. The equivalence mappings arewell-behaved in that they preserve snapshot equivalence, which says that two relation instanceshave the same information content if all their snapshots, taken at all times (valid and transaction),are identical (a precise de�nition will be provided later). Snapshot equivalence provides a naturalmeans of comparing relation instances in the models considered in this paper. Finally, we feel thatthe conceptual data model is the appropriate location for database design, as we shall demonstratein Section 4.3.4 The Bitemporal Conceptual Data ModelThe idea behind the BCDM was to retain the simplicity of the relational model while also allowingfor the capturing of the temporal aspects of the facts stored in a database. This was accomplishedby associating with each conventional relational database tuple a region in the space spanned bytransaction time and valid time that succinctly de�nes the temporal aspects of the tuple. Below,we describe this in more detail.The BCDM employs the same model of time for both time domains: that of a �nite sequence10

of chronons. In mathematical terms, this sequence is isomorphic to a �nite sequence of naturalnumbers [JS94b]. The sequence of chronons may be thought of as representing a partitioningof the real time line into equal-sized, indivisible segments. Thus, chronons are thought of asrepresenting time segments such as femtoseconds or seconds or years, depending on the particulardata processing needs. Real-world time instants are assumed to be much smaller than chrononsand are represented in the model by the chronons during which they occur. We will use c, possiblyindexed, to denote chronons.A time interval is de�ned as the time between two instants, a starting and a terminating instant.A time interval is then represented by a sequence of consecutive chronons, where each chrononrepresents all instances that occurred during the chronon. We may also represent a sequence ofchronons simply by the pair of the starting and terminating chronon. Unions of intervals aretermed temporal elements [Gad88].The domain of valid times is given as DV T = fcv1; cv2; : : : ; cvkg, and the domain of transactiontimes may be given as DTT = fct1; ct2; : : : ; ctjg. A valid-time chronon cv is thus a member of DV T ,a transaction-time chronon ct is a member of DTT , and a bitemporal chronon cb = (ct; cv) is anordered pair of a transaction-time chronon and a valid-time chronon.Next, we de�ne a set of names, DA = fA1; A2; : : : ; AnAg, for explicit attributes and a setof domains for these attributes, DD = fD1; D2; : : : ; DnDg. For these domains, we use ?i, ?u,and ? as inapplicable, unknown, and inapplicable-or-unknown null values, respectively (see, e.g.,[ADA93, Zan82]). We also assume that a domain of surrogates is included among these domains.Surrogates are system-generated unique identi�ers, the values of which cannot be seen but onlycompared for identity [?]. Surrogates are used for representing real-world objects. With thepreceding de�nitions, the schema of a bitemporal conceptual relation, R, consists of an arbitrarynumber, e.g., n, of explicit attributes from DA with domains in DD , and an implicit timestampattribute, T, with domain 2(DTT[fUCg)�DV T n;. Here, UC (\until changed") is a special transaction-time marker. A value (UC ; cv) in a timestamp for a tuple indicates that the tuple being valid attime cv is current in the database. The example below elaborates on this.A tuple x = (a1; a2; : : : ; anj tb), in a bitemporal conceptual relation instance, r(R), consists ofa number of attribute values associated with a bitemporal timestamp value. Depending on theextent of decomposition, such a tuple may be thought of as encoding an atomic or a compositefact. For convenience, we will simply use the terminology that a tuple encodes or records a factand that a bitemporal relation instance is a collection of (bitemporal) facts.An arbitrary subset of the domain of valid times is associated with each tuple, meaning thatthe fact recorded by the tuple is true in the modeled reality during each valid-time chronon in thesubset. Each individual valid-time chronon of a single tuple has associated a subset of the domainof transaction times, meaning that the fact, valid during the particular chronon, is current in therelation during each of the transaction-time chronons in the subset. Any subset of transaction timesless than the current time and including the value UC may be associated with a valid time. Noticethat while the de�nition of a bitemporal chronon is symmetric, this explanation is asymmetric.This asymmetry reects the di�erent semantics of transaction and valid time.We have thus seen that a tuple has associated a set of so-called bitemporal chronons in the two-dimensional space spanned by transaction time and valid time. Such a set is termed a bitemporalelement [JCE+94] and is denoted tb. Because no two tuples with mutually identical explicitattribute values (termed value-equivalent) are allowed in a bitemporal relation instance, the fullhistory of a fact is contained in a single tuple.In graphical representations of bitemporal space, we choose the x-axis as the transaction-timedimension, and the y-axis as the valid-time dimension. Hence, the ordered pair (ct, cv) represents11

the bitemporal chronon with transaction time ct and valid time cv.Example Consider a relation recording employee/department information, such as \Bob worksfor the shipping department." We assume that the granularity of chronons is one day for both validtime and transaction time, and the interval of interest is some given month in a given year, e.g.,January 1995. Throughout, we use integers as timestamp components. The reader may informallythink of these integers as dates, e.g., the integer 15 in a timestamp represents the date January15, 1995. The current time is assumed to be 19 (i.e., NOW = 19).Figure 3(a) shows an instance, empDep, of this relation. A graphical illustration of the empDeprelation is shown in Figure 3(b). Right-pointing arrows in the graph and the special value UC inthe relation signify that the given tuple is still current in the database and that new chronons willbe added to the timestamps as time passes and until the tuple is logically deleted.The relation shows the employment information for two employees, Bob and Sam, contained inthree tuples. The �rst two tuples indicate when Bob worked for the shipping and loading depart-ments, respectively. These two tuples are shown in the graph as the regions labeled \(Bob, Ship),"and \(Bob, Load)," respectively. The last tuple indicates when Sam worked for the shipping de-partment, and corresponds to the region of the graph labeled \(Sam, Ship)." utEName Dept TBob Ship f(5; 10); : : : ; (5; 15); : : : ; (9; 10); : : : ; (9; 15);(10; 5); : : : ; (10; 20); : : : ; (14; 5); : : : ; (14; 20);(15; 10); : : : ; (15; 15) : : : ; (19; 10); : : : ; (19; 15)gBob Loading f(UC ; 10); : : : ; (UC ; 15)gSam Shipping f(UC ; 25); : : : ; (UC ; 30)g(a) ----6 -(Sam,Ship)(Bob,Ship) (Bob,Load)302552015100 0 105 15 20 25 30(b) TTVT
Figure 3: A Bitemporal Conceptual RelationValid-time relations and transaction-time relations are special cases of bitemporal relations thatsupport only valid time or transaction time, respectively. Thus a valid-time tuple has associateda set of valid-time chronons (termed a valid-time element and denoted tv), and a transaction-timetuple has associated a set of transaction-time chronons (termed a transaction-time element anddenoted tt). For clarity, we use the term snapshot relation for a conventional relation. Snapshotrelations support neither valid time nor transaction time.As evidence of the simplicity of the relations in the BCDM, it should be noted that, unlike inother models, there is exactly one tuple per fact. We shall also see that BCDM relation instancesthat are syntactically di�erent have di�erent information content, and vice versa. This concep-tual cleanliness is generally not obtained by other bitemporal models where syntactically di�erentinstances may record the same information.3.5 Associated Algebraic OperatorsWe have so far described the objects in the bitemporal conceptual data model|relations of tuplestimestamped with bitemporal elements. We now de�ne some algebraic operators on these objectsthat will be used later. A complete algebra for the BCDM is de�ned elsewhere [SJS95].12

We �rst de�ne bitemporal analogues of some of the snapshot relational operators, to be denotedwith the superscript \B".De�ne a relation schema R = (A1; : : : ; AnjT), and let r be an instance of this schema. Wewill use A as a shorthand for all attributes Ai of R. Let D be an arbitrary set of explicit (i.e.,non-timestamp) attributes of relation schema R. The projection on D of r, �BD(r), is de�ned asfollows.�BD(r) = fz(jDj+1) j 9x 2 r (z[D] = x[D])^ 8y 2 r (y[D] = z[D]) y[T] � z[T])^8t 2 z[T] 9y 2 r (y[D] = z[D] ^ t 2 y[T])gThe �rst line ensures that no chronon in any value-equivalent tuple of r is left unaccounted for,and the second line ensures that no spurious chronons are introduced.Let P be a predicate de�ned on A1; : : : ; An. The selection P on r, �BP (r), is de�ned as follows.�BP (r) = fz j z 2 r ^ P (z[A])gAs can be seen from the de�nition, �BP (r) simply performs the familiar snapshot selection, withthe addition that each selected tuple carries along its timestamp T.Finally, we de�ne two operators that select on valid time and transaction time. They have nocounterparts in the snapshot relational algebra. Let cv denote an arbitrary valid-time chronon andlet ct denote a transaction-time chronon. The valid-timeslice operator (�B) yields a transaction-time relation; the transaction-timeslice operator (�B) evaluates to a valid-time relation3.�Bcv(r) = fz(n+1) j 9x 2 r (z[A] = x[A]^ z[T] = fctj(ct; cv) 2 x[T]g ^ z[T] 6= ;)g�Bct(r) = fz(n+1) j 9x 2 r (z[A] = x[A]^ z[T] = fcvj(ct; cb) 2 x[T]g ^ z[T] 6= ;)gThus, �Bcv(r) simply returns all tuples in r that were valid during the valid-time chronon cv. Thetimestamp of a returned tuple is all transaction-time chronons associated with cv. Next, �Bct(r)performs the same operation, except the selection is performed on the transaction time ct.Example Consider the empDep relation shown in Figure 3(a). The following result is producedby �B12(empDep). EName Dept TBob Shipping f5; : : : ; 19gBob Loading fUCgUsing the graphical representation, valid timeslice can be visualized by drawing a horizontal linethrough the graph at the given valid time. The tuples returned are those that overlap with thedrawn line. The timestamps of the returned tuples are set to the segments of transaction timecorresponding to the overlapped regions. utThe operators above apply only to bitemporal relations. Similar operators for valid-time andtransaction-time relations are simpler special cases and are omitted for brevity. We will use super-scripts \T" and \V" for the transaction and valid-time counterparts, respectively.To extract from r the tuples valid at time cv and current in the database during ct (termeda snapshot of r), either �Vcv(�Bct(r)) or �Tct(�Bcv(r)) may be used; these two expressions evaluate to3Operator � was originally termed the rollback operator, hence the choice of symbol.13

the same snapshot relation [JSS94]. While other temporal data models often do not provide exactcounterparts of these timeslice operators, models generally include functionality that permits thisextraction of snapshots.Note that since relations in the data model are homogeneous, i.e., all attribute values in a tupleare associated with the same timestamp [Gad88], the valid or transaction timeslice of a relationwill not introduce any nulls into the resulting relation.3.6 Representational ModelsA bitemporal conceptual relation is structurally simple|it is a set of facts, each timestamped witha bitemporal element, which is a set of bitemporal chronons. Ostensibly, it is modeling the sametime-varying reality that the many other temporal data models capture. How can we characterizethis interaction between the models? We need to emphasize the notion of \information content."Speci�cally, a BCDM database, in a simple and straightforward manner, captures a portion ofreality. If a database in another data model captures that same portion, then that database hasthe same information content as the BCDM database.Central to this comparison of databases is the concept of snapshot equivalence. Two rela-tion instances with the same non-temporal attributes are snapshot equivalent if for all valid andtransaction-time pairs, their snapshots are identical. The snapshots are produced using timesliceoperators or other language constructs, as described in the previous section. Snapshot equivalenceis thus a formalization of the notion that two temporal relations have the same information content.This fundamental insight is due to Gadia, who characterized the information content of individualrelations by stating that two relations are weakly equal if they are snapshot equivalent [Gad86].We extended this notion to apply to relations of di�erent data models, thereby providing a naturalmeans of comparing structurally diverse databases.We developed precise mappings, respecting snapshot equivalence, between instances of theBCDM and instances of each of the existing bitemporal data models that have been previouslyproposed [JSS94]. These data models fall into the class of temporally ungrouped bitemporal models[CCT94] and constitute all such models proposed to date, to our knowledge. We also showed howthe relational algebraic operators de�ned in the previous section induced analogous operators ineach of the representational models, and how updates of bitemporal conceptual relations could bemapped into updates on relations in the representation. This provides an explicit homomorphismbetween the BCDM and the six bitemporal data models, emphasizing their similarities (in termsof information content) and abstracting out their di�erences, which can be argued concern moree�ciency and data presentation than semantics.This homomorphism has wide-ranging implications, some yet to be explored adequately, fortemporal database design and implementation. A database designer could design the conceptualschema of the database as a (normalized) collection of BCDM relation schemas, as will be discussedin Section 4. This approach yields guidelines for the design of the logical database schema, also tobe discussed in detail, that are independent of any particular representation of a temporal relation.A temporal DBMS may use any of the existing temporal data models as physical data models.The query language, again focusing on semantics, would be based on the BCDM (an example isthe consensual query language TSQL2 [Sno95]). Queries against the BCDM would be mapped intoalgebraic expressions against the representational data model(s) by the DBMS, to be evaluated inan e�cient manner. Physical database design would also be in terms of the representational datamodel. Snapshot equivalence is the central underpinning of this entire framework.14

3.7 Implications of the BCDMWith its accompanying separation of information content and particular encodings of the infor-mation content, the BCDM allowed us to answer some of the fundamental questions we beganwith. Should data be stored as events (state transitions) or as states? Our answer is that at alogical level, the natural extension of a conventional relation to a temporal relation, the BCDMrelation, encodes states rather than events. An event would be eeting in a conventional relation:a tuple would appear for a single chronon, then disappear. Only states have persistence in the(conventional) relational model. As events and states are duals, the BCDM relation is su�cient.Relations capturing events are still useful. A database designer might decide that focusing onthe events in a particular corner of the design is more natural than focusing on the states inducedby those events.At a physical level, the answer to whether data should be stored as events or states is: it dependson which representational model one feels is most appropriate to achieve good performance for theapplication at hand. Five of the representational models are state-based; the sixth, Jensen'sbacklog-based scheme, is event-based. For each, applications may be identi�ed for which thatrepresentation is suitable.Is 1NF versus N1NF really a fundamental distinction? Our reply becomes: yes, at a represen-tational level, but no at a conceptual level. Two of the representational models are attribute times-tamped; the other four are tuple-timestamped. The distinction is not one of semantics. Rather,the distinction may be relevant for performance. We provide more insight into this distinction inSection 4.3.2.What is the relationship between POSTGRES' two timestamps, TQuel's four timestamps,and Ben-Zvi's �ve timestamps? We showed in Section 3.1 that POSTGRES was a degeneratebitemporal data model, and thus a tuple's two timestamps Tmin and Tmax [Sto87] serve as bothvalid and transaction time, equal to TQuel's four timestamps, two valid (begin = Tmin and end= Tmax) and two transaction (start = Tmin and stop = Tmax). Using the BCDM, and inparticular its spatial metaphor (cf. Figure 3b), we see that POSTGRES tuples are timestampedwith rectangles, with the bottom-left and top-right corners constrained to be on the 45� line ofTT = V T .We then considered Ben-Zvi's �ve tuple timestamps. Again, the question was, was the times-tamp format chosen to reect the semantics of data, or for presentation, or for query languagereasons? To review, Ben-Zvi's Temporal Relational Model is a tuple-timestamped model, sup-porting both valid and transaction time. Let a bitemporal relation schema R have the attributesA1; : : : ; An;T where T is the timestamp attribute de�ned on the domain of bitemporal elements.Then R is represented by a relation schema R in Ben-Zvi's data model as follows.R = (A1; : : : ; An;Tes;Trs;Tee;Tre;Td)In a tuple, the value of attribute Tes (e�ective start) is the time when the explicit attribute valuesof the tuple start being true. The value for Trs (registration start) indicates when the Tes valuewas stored. Similarly, the value for Tee (e�ective end) indicates when the information recorded bythe tuple ceased to be true, and Tre (registration end) contains the time when the Tee value wasrecorded. The last implicit attribute Td (deletion) indicates the time when the information in thetuple was logically deleted from the database.It is not necessary that Tee be recorded when the Tes value is recorded (i.e., when a tuple isinserted). The symbol `{' indicates an unrecorded Tee value (and Tre value). Also, the symbol `{',15

when used in the Td �eld, indicates that a tuple contains current information.Example The Ben-Zvi relation corresponding to the conceptual relation in Figure 3 is shownbelow. Emp Dept Tes Trs Tee Tre TdBob Shipping 10 5 15 5 10Bob Shipping 5 10 20 10 15Bob Shipping 10 15 15 15 20Bob Loading 10 20 15 20 {Kate Shipping 25 20 30 20 {In the example, the timestamps Tes and Tee are stored simultaneously, hence the registrationtimestamps associated with the e�ective timestamps are identical within each tuple. As facts arecorrected, the deletion timestamp Td is set to the current transaction time, e�ectively outdatingthe given fact, and a new tuple without a deletion time is inserted. As only two facts are currentwhen all updates have been performed on the database, only two tuples with no deletion timesremain. utThe di�erent updates possible in this model lead to six di�erent types of tuples, as discussedbelow and illustrated in Figure 4.1. A tuple is inserted with recorded Tes and Trs timestamps.2. A tuple is inserted with recorded Tes, Trs, Tee and Tre timestamps. In this case, Trs = Tre.3. A tuple with an unrecorded Tee timestamp (1, above) has that timestamp set to a particulartime.4. A tuple with an unrecorded Tee timestamp (1, above) is deleted, setting the Td timestamp.5. A tuple with the �rst four timestamps recorded (2, above) is deleted, setting the Td times-tamp.6. A tuple with the �rst four timestamps recorded, with Trs 6= Tre (3, above), is deleted, settingthe Td timestamp.Let's examine each resulting tuple in terms of the BCDM two-dimensional graphical metaphor,cf. Figure 3. Tuple (5) corresponds to a rectangle, with bottom left coordinate (Trs, Tes) and topright coordinate (Td, Tee). The bitemporal elements of the remaining �ve tuples are open-ended.If Tee is not recorded, the bitemporal element is open-ended at the top; if Td is not recorded, it isopen at the right.The di�erent ways the various data models have adopted for timestamping tuples may beexplained as the models having adopted di�erent covering functions that encode the regions ina bitemporal element using one or more graphical entities. POSTGRES uses two timestampsto encode a rectangle with two corners on the 45� line; TQuel uses four timestamps to encodearbitrary rectangles, as well as open rectangles (regions 1, 2, and 4 of Figure 4); and Ben-Zvi uses�ve timestamps to encode the six shapes of Figure 4. From a semantic point of view, all can encode(snapshot-) equivalent information. Their di�erences are more of an issue of data presentation (howusers want to see the temporal information) and storage e�ciency. For example, to encode regions16

6 -
-6 -6 -

6 6-- 6 6
1(Trs;Tes)6

3 (Trs;Tee)
(Trs;Tes)(Tre;Tee) TT(Trs;Tes) (Td;Tee)(Td;Tes)4

(Trs;Tes)(Trs;Tes)(Trs;Tes)VT 52 (Tre;Tee)(Td;Tee)6 (Td;Tes)
(Td;Trs)(Trs;Tee)

Figure 4: Ben-Zvi's Tuples as Bitemporal Elements3 and 6 of Figure 4 each require two TQuel tuples. On the other hand, TQuel's data model canencode regions 1, 2, 4, and 5 with one fewer timestamp than Ben-Zvi's data model.Ben-Zvi's model illustrates another issue, that of what transaction time is. Some authors de�nethe transaction time of a tuple as what is the transaction-time start attribute in TQuel (i.e., start)and emphasize that the transaction time of a tuple is a single time instant [?]. This contrasts thede�nition that we use [?]. In TQuel terms, the transaction time of a tuple is the time from thestart to the stop attribute value, an interval. With our de�nition, it is not hard to characterize thetransaction time of tuples in Ben-Zvi's model. With the other de�nition (as a single time instant),we wonder what the transaction time is of each of the six types of tuples (see also [?] where Tre issaid to be the end of transaction time!).3.8 Coalescing and Repetition of InformationIt turns out that even within a single representational data model, there often is exibility inrepresenting a bitemporal element. To see this, we use TQuel's four-timestamp rectangles andexamine two transformations that can change the covering in a representation without a�ectingthe results of queries, as the transformations preserve snapshot equivalence [JSS94].The �rst transformation is termed coalescing. Informally, it states that two temporally over-lapping or adjacent, value-equivalent tuples may be collapsed into a single tuple [Sno87]. We saythat a bitemporal relation instance is coalesced if no pair of tuples may be coalesced. Coalescingmay reduce the number of tuples necessary for representing a bitemporal relation, and, as such, isa space optimization.Coalescing of overlapping, value-equivalent tuples is illustrated in Figure 5. The �gure showshow rectangles may be combined when overlap or adjacency occurs in transaction time (a) orvalid time (b). Note that it is only possible to coalesce rectangles when the result is a bitemporalrectangle. Compared to valid-time relations with only one time dimension, this severely restricts17

6 - �- 6 - 6 -(b)(a)VT VT VTTT TT TTFigure 5: Coalescingthe applicability of coalescing.As a precursor to explaining the other transformation, we �rst describe the notion that a relationmay have repeated information among its tuples. Speci�cally, a bitemporal relation instance hasrepetition of information if it contains two distinct tuples that are value-equivalent (i.e., haveidentical non-temporal attribute values) and have timestamps that encode overlapping regions inbitemporal space. A relation with no such tuples has no repetition of information.While coalescing may both reduce the number of rectangles and reduce repetition of infor-mation, its applicability is restricted. The next transformation may be employed to completelyeliminate temporally redundant information, possibly at the expense of adding extra tuples. Thetransformation maps two value-equivalent tuples with overlapping bitemporal rectangles to threevalue-equivalent tuples with non-overlapping bitemporal rectangles.The transformation may partition the regions covered by the argument rectangles on eithertransaction time or valid time. These two possibilities are illustrated in parts (a) and (b), respec-tively, of Figure 6. 6 -� -6 -6 - (b)(a)VT VT VTTT TT TTFigure 6: Eliminating Representational Repetition of InformationThe transformation is well-behaved. First, it does eliminate repetition among two tuples.Second, the result of an application of the transformation produces at most one additional tuple.Third, repeated application produces a relation instance with no repetition of information. Theelimination of repetition of information may thus increase the number of tuples in a representation.The transformation may still be desirable because subsequent coalescing may be possible and, moreimportantly, because certain modi�cation operations are simpli�ed. (See [JSS94] for a formalizationand proofs of these properties.)3.9 Now and ForeverThe next aspect of temporal data that drew our attention was the arrows in Figures 3 and 4.One question was, does the particular semantics of valid time and transaction time imply anydi�erences between upward-pointing arrows and right-pointing arrows? Do open rectangles andL-shaped regions capture the semantics we desire?Let us return to the employment example. Figure 3 contains only right-pointing arrows, indi-cating information that is still thought to be true, i.e., that has not been logically deleted. Such18

arrows correspond to occurrences of the special value UC in the bitemporal elements. Because wecannot know what is stored in the database in the future, the right arrow is always at a transactiontime of the current time, or NOW .The �gure does not contain upward-pointing arrows because the interval of employment forboth Bob and Sam was always known (though not always known correctly, for Bob).Upward-pointing arrows are illustrated in regions 1, 3, 4, and 6 of Figure 4. These are caseswhere the terminating time (Tee in Ben-Zvi's model) is not known. We do not know when a factceased or ceases being true in reality, so we model it as being forever true. For example, to modelthe fact that Tom was hired on June 10 in the Loading department, with an unknown terminationdate, an open rectangle shaped as region 1 of Figure 4 would be used.If the valid-time domain is bounded, say at some time way in the future, then `{' in Ben-Zvi'smodel and `1' in TQuel's model (other data models are similar) are simply shorthands for thismaximum valid time. In this sense, in Figure 4, tuples (1) and (2), and (4) and (5), are identical.Tuple (1) is merely a special case of tuple (2) in which Tee is �xed to a particular value; the sameapplies for tuples (4) and (5).Modeling Tom's employment as continuing forever is an overly optimistic assumption, and onethat is certainly false. We do not know Tom's termination date, but it is certainly within the next150 years, and probably within the next 10{20 years. In fact, all that we feel that we know forcertain is that Tom was in the Loading department from June 10 to June 10 (now), assuming thatwhenever reality changes (such as Tom resigning), the database is immediately updated. Tomorrow(June 11), if Tom does not resign in the meantime, we will know that Tom was in the Loadingdepartment from June 10 to June 11.In the BCDM, we handled the concept of NOW in transaction name by using a special marker,UC , that indicated where to add bitemporal chronons to the tuples' timestamps every time theclock advances a tick. This approach is not useful in a practical representation of temporal data.Instead, our solution to being able to model the dependence on the current time is to allow themodel to include variables as well as ground facts in the stored data [CDI+94]. NOW in one suchvariable that evaluates to the current time. Including such variables increases the �delity of thedata model considerably. To understand its impact, it is useful to consider another kind of time,the reference time, which is the time of the database observer's \frame of reference." Referencetime is a concept analogous to the indices or \points of reference" in intensional logic [Mon73],and discussed more recently in the context of valid-time databases [Fin92]. The reference timefacilitates a kind of \time travel" by means of which we may observe the database at times otherthan the present.A related time is the query time. It is the time at which a query is processed. The referencetime and query time are independent concepts. In general, the time when a query is initiated isalways the current time, while the reference time is the time at which an observer \observes" thedatabase. In many queries, the user \observes" the database with respect to the frame of referencein which the query was initiated, so the reference time and the query time are the same. But theuser may choose to \observe" the database from a previous perspective; for this kind of query, thereference time is earlier than the query time. For example, if today is June 19 and we wish toobserve the database from the perspective of a week ago, then the current time (and the querytime) is June 19 and the reference time is June 12.So, how may we visualize a tuple's timestamp when it contains a variable such as NOW intransaction and valid time? As the reference time increases, say from June 12 to June 13, theregion of the temporal element grows. Only when NOW is replaced with a ground value (forvalid time, this means that the fact is known to have terminated, and for transaction time, thismeans that the tuple is logically deleted), does the temporal element not grow, in valid time or19

TT

VT

tcurrent

June 10

June 10

RT

Figure 7: A Rectangle with a Transaction Stop Time and a Valid To Time of NOWtransaction time, respectively. Illustrating this behavior requires three dimensions: valid time,transaction time, and reference time. In Figure 7, the dimension that goes into the page illustratesreference time. Here, the fact being recorded is \Tom was in the loading department." Initially,at a reference time of June 10, the database records that the information was valid on June 10.Finally, we would also like to model facts such as \Tom is de�nitely employed from June 10until now, and will probably be employed until the end of the summer, when he will return toschool." If we know that changes in reality take two days to make it into the database, we wouldamend that to \Tom is de�nitely employed from June 12 until now minus two days, and : : :" Thesefacts can be modeled using a re�nement of now variables, speci�cally indeterminate now-relativevariables [CDI+94].3.10 SummaryUp to this point, our main focus has been on the association of facts with times. We have seenthat while the semantics of valid time and transaction time are orthogonal, their usage within anapplication may exhibit interactions, such as the valid time always preceding the transaction timein the case of a retroactive relation. A fact may be timestamped with multiple transaction times,if it is copied several times between relations or databases. A fact has precisely one valid time,specifying when it was true in reality. The decision time(s) of a fact were seen to be valid times ofdi�erent, closely related facts.We have seen that there can be no ideal temporal data model, but that by focusing only onthe semantics of time-varying data, and ignoring other possible criteria, a simple data model,the Bitemporal Conceptual Data Model, is quite satisfactory. The BCDM provides insights intothe expressiveness of existing temporal data models. Speci�cally, using snapshot equivalence asthe measure, all such models encode the same information; they just break up the bitemporalelements, which are sets of regions in bitemporal chronon space, in di�erent ways, sometimesincluding a bitemporal chronon in the timestamps of two or more value-equivalent tuples. Asanother di�erence, the various models enter the times at di�erent levels (e.g., tuples, attributevalues) in the temporal relations. 20

The right and upward pointing arrows of bitemporal regions represented with timestamps inthese models suggested the addition of now-relative variables to the stored data, thereby increasingthe modeling power of the model.4 Design of Relation SchemasWith a considerably increased understanding of temporal data, facts with associated times, weturned to the design of the relations themselves, addressing the question of what constitutes facts(tuples). Existing work on temporal relational design was fragmented, incomplete, and model-speci�c. We found this confusing and unappealing. As there has been a comprehensive dependencytheory developed for relational databases, it seemed to us that that theory should be applicable totemporal databases as well.Previously, an array of temporal normalization concepts had been proposed, including �rsttemporal normal form [SS88a] and two di�erent normal forms termed time normal form [BZ82,NA89]. Each of these is speci�c to a particular data model, and thus appropriates the inherentpeculiarities of its data model. Furthermore, these normal forms often deviate substantially innature from conventional normal forms and are in some sense not \true" extensions of these, for avariety of reasons [JSS95].We adopted a di�erent approach. Since relations in the BCDM can be related to those of othertemporal data models, then functional dependencies and normal forms expressed in terms of theBCDM can also be mapped into other data models. We thus chose to apply dependency theory tothe BCDM. Furthermore, we wanted our normal forms to be natural extensions of those de�nedfor conventional relations. It turned out that the clean semantics of the BCDM allowed us to doso in a natural and appealing fashion.4.1 Temporal Functional DependenciesAs in design of snapshot relational databases, dependencies are also important during temporalrelational database design. As background, we �rst state the notion of a functional dependencyfor snapshot relations.Definition Let a relation schema R be de�ned as R = (A1; A2; : : : ; An), and let X and Y besets of attributes of R. The set Y is functionally dependent on the set X , denoted X ! Y , if forall meaningful instances r of R,8s1; s2 2 r(s1[X] = s2[X]) s1[Y] = s2[Y]):If X ! Y , we say that X determines Y . utA functional dependency constrains the set of possible extensions of a relation. Which func-tional dependencies are applicable to a schema reects the reality being modeled and the intendeduse of the database. Determining the relevant functional dependencies is a primary task of thedatabase designer.4.1.1 Generalizing Functional Dependencies to Temporal DatabasesIn database design, functional dependencies are intensional, i.e., they apply to every possibleextension. This intuitive notion already encompasses time, for a functional dependency may beinterpreted as applying at any time in reality and for any stored state of the relation.21

To be more speci�c, consider the restricted case of a transaction-time relation r, with schemaR = (A1; : : : ; AnjT), and a parallel snapshot relation r0 with the same schema (but without theimplicit timestamp attribute): R0 = (A1; : : : ; An). The current state of r, denoted by �Tnow(r),where \now" denotes the current time, will faithfully track the current state of r0. Past states of r0will be retained in r, and can be extracted via �Tt (r), with \t" being the desired past point in time.A functional dependency on R0 will hold for all possible extensions, and hence for all past statesof r0. Hence, the same functional dependency must hold for all snapshots of r (this insight �rstappeared over a decade ago [CW83]). A similar argument can be applied to valid-time relationsand to bitemporal relations, yielding the following characterization [JSS95].Definition Let X and Y be sets of non-timestamp attributes of a bitemporal relation schemaR. A temporal functional dependency , denoted X T!Y , exists on R if for all meaningful instance rof R, 8cv ; ct 8s1; s2 2 �Vcv(�Bct(r)) (s1[X] = s2[X]) s1[Y] = s2[Y]). utFor example, the instance empSal in Figure 11(a) satis�es the dependency EName T! Sal.Note that temporal functional dependencies are generalizations of conventional functional de-pendencies. In the de�nition of a temporal functional dependency, a temporal relation is perceivedas a collection of snapshot relations. Each such snapshot of any extension must satisfy the corre-sponding functional dependency.The parallel between conventional functional dependencies and temporal functional dependen-cies means that inference rules such as Armstrong's axioms have close temporal counterparts thatplay the same role in the temporal context as do the non-temporal rules in the non-temporalcontext.With this de�nition of temporal functional dependency, we can also de�ne temporal keys[JSS95].Definition The explicit attributes X of a temporal relation schema R form a (temporal) key ifX T!R. ut4.1.2 Temporal Functional DependenciesWe can now generalize snapshot normal forms, using temporal functional dependencies in a mannersimilar to when generalizing keys.Definition 1 A pair (R; F) of a temporal relation schema R and a set of associated temporalfunctional dependencies F is in temporal Boyce-Codd normal form (TBCNF) if8 X T!Y 2 F+ (Y � X _X T!R). utDefinition 2 A pair (R; F) of a temporal relation schema R and a set of associated temporalfunctional dependencies F is in temporal third normal form (T3NF) if for all non-trivial temporalfunctional dependencies X T!Y in F+, X is a temporal super-key for R or each attribute of Y ispart of a minimal temporal key of R. utOne can also de�ne temporal variants of second normal form, multivalued dependencies [Zan76],fourth normal form [DF92], join dependencies [Ris77], �fth normal form (also called project-joinnormal form) [Fag79], embedded join dependencies [Fag77], inclusion dependencies [CFP84], tem-plate dependencies [SU82], domain-key normal form [Fag81], and generalized functional dependen-cies [Sad80]. The extensions exploit the intensional quality of these properties (i.e., applying to22

every extension implies applying over all time), as well as the simplicity of the bitemporal concep-tual data model. Similarly, the notions of lossless-join and dependency-preserving decompositioncan be naturally extended to temporal relations. Furthermore, one can de�ne temporal variantsof conventional integrity constraints involving uniqueness, referential integrity, and subset andcardinality constraints.Via the mappings that exist between the BCDM and the representational data models, thesedependencies, normal forms, and integrity constraints can also be applied to these models. Theresult is a consistent and wholesale application of existing dependency and normalization theoryto valid-time, transaction-time, and bitemporal databases in a wide variety of temporal relationaldata models.4.1.3 Parameterized Temporal Functional DependenciesIn the de�nition of temporal functional dependency, each constituent snapshot of a temporalrelation must satisfy the corresponding snapshot functional dependency for the temporal relation tosatisfy the temporal functional dependency. We next generalized that de�nition by parameterizingthe dependency with a subset of constituent snapshots that must satisfy the snapshot dependencyfor the temporal relation to satisfy the parameterized temporal functional dependency.The resulting dependencies may capture the temporal semantics of a database schema moreprecisely than the standard temporal dependency.Definition Let X and Y be sets of non-timestamp attributes of a temporal relation schema R.A parameterized temporal functional dependency , denoted XT [P]! Y , exists on R if for all meaningfulinstances of r of R,8cv; ct 8s1; s2 2 �Vcv(�Bct(r)) ((P (cv; ct) ^ s1[X] = s2[X])) s1[Y] = s2[Y]). utWith this more general de�nition, it is possible to de�ne a range of di�erent temporal functionaldependencies by specifying the predicate P. Examples of the predicate P include the following.(1) P1(ct; cv) � True. This yields the temporal functional dependency as �rst de�ned, and isrelevant to general temporal relations (as de�ned in Section 3.1) for which there is no statedrelationship between valid and transaction time [JS94a]. Such temporal dependencies havebeen termed intraelement integrity constraints [Boe94].(2) P2(ct; cv) � cv � ct. With this predicate, only snapshots that concern a past state of reality,relatively to the time the snapshot was current, are required to satisfy the snapshot depen-dency. For retroactive temporal relations, in which the stored information lags the modeledreality, this predicate is equivalent to the generally less restrictive predicate above.(3) P3(ct; cv) � ct = cv. Here, only snapshots that are about the current state of reality, relativeto the snapshot was current in the database, are considered. This matches degenerate rela-tions in which the transaction time always equals the valid time, i.e., updates occur instantly.(4) P4(ct; cv) � ct = now ^ ct = now. Here, only the snapshot about the current state of realityin the current state of the database is considered.(5) P5(ct; cv) � ct 2 [1; 10]. This predicate speci�es absolute limits on the states of the databasewithin which all snapshots must satisfy the corresponding snapshot dependency for the tem-poral relation to satisfy the parameterized temporal functional dependency.23

(6) P6(ct; cv) � cv 2 [1; 10]. Here, the restriction is that states recording information about real-ity in the speci�ed interval are the only ones considered.Example To see the di�erences between the sample predicates (1){(6), consider the samplerelation instances in Figure 8.EmpS EName Dept Te1 Bob Shipping f(20; 1); : : :; (20; 10); : : :;(30; 1); : : : ; (30; 10)ge1 Bob Loading f(20; 1); : : :; (20; 10); : : :;(30; 1); : : : ; (30; 10)g EmpS EName Dept Te1 Bob Shipping f(1; 20); : : :; (1; 30); : : :;(10; 20); : : : ; (10; 30)ge1 Bob Loading f(1; 20); : : :; (1; 30); : : :;(10; 20); : : : ; (10; 30)g(a) empDep1 (b) empDep2Figure 8: Sample Bitemporal RelationsWith (1) as the predicate of a temporal dependency, neither empDep1 nor empDep2 satisfy thedependency EName T [P1]! Dept. However, empDep2 does satisfy the dependency if the predicate of(2) is adopted; empDep1 still does not. If predicate (3) (and thus the more restrictive (4)) isadopted, both instances satisfy the dependency. Finally, empDep1 satis�es (5), but not (6). Theopposite holds for empDep2. utParameterization also applies to integrity constraints in general for temporal databases.4.1.4 Strong Temporal Functional DependenciesThe temporal dependencies we have seen thus far apply snapshot dependencies to individual snap-shots in isolation. Thus, these dependencies are not capable of capturing the relative variationover time of attribute values. So while we were able to capture dependencies such as salary value(at any time) being determined by the employee name, we cannot capture that a salary does notchange within a month, or a salary never changes. These latter constraints require looking at morethan one time point to determine if the constraint is satis�ed by a particular relation instance, andhave been termed interstate integrity constraints [Boe94].While a (regular or parameterized) temporal dependency holds if the corresponding conven-tional dependency holds for each snapshot in isolation, our �rst step was to \bundle" tuples ofcertain snapshots and require the corresponding snapshot dependency to hold for each \bundle"in isolation. A \bundle" is de�ned to contain all tuples in all valid timeslices of the result ob-tained from applying a single transaction timeslice operation to a meaningful bitemporal databaseinstance of the schema under consideration. This is stated more precisely below.Definition Let X and Y be sets of non-timestamp attributes of a bitemporal relation schemaR. A strong temporal functional dependency , denoted X Str!Y , exists on R if for all meaningfulinstances r of R,8ct; cvx; cvy 8s1 2 �Vcvx(�Bct(r)) 8s2 2 �Vcvy(�Bct(r)) (s1[X] = s2[X]) s1[Y] = s2[Y]) . utConsider the relation instance empSal in Figure 9. While we have seen that it does satisfythe dependency EName T! Sal, it does not satisfy the dependency EName Str! Sal. For example,(e1, Bob, 30k) and (e1, Bob, 32k) are in valid timeslices at times 5 and 15, respectively, which24

violates the dependency. The dependency EmpS Str! EName, however, holds for empSal. It mightnot hold for the schema of empSal. Speci�cally, if a person may change name, e.g., person e1 maychange name from Bob to Rob, the dependency is not satis�ed. Strong temporal dependenciesare useful in part because they have a practical and intuitive interpretation. Speci�cally, if X Str!Yholds on a relation schema, this means that Y does not vary with respect to X . For example, theobservation that employees never change salary while remaining in a department may be stated asDept Str! Sal. EmpS EName Sal Te1 Bob 30k f1; : : : ; 9ge1 Bob 32k f10; : : : ; 19ge1 Bob 36k f30; : : : ; 39ge1 Bob 40k f40; : : : ; 49gFigure 9: The empSal RelationStrong temporal normal forms and integrity constraints can be analogously de�ned. Followingthis work, Wang and his colleagues generalized this notion to dependencies (and normal formsand decomposition algorithms [?]) that were along a spectrum between our temporal functionaldependencies, which apply to individual timeslices, and strong functional dependencies, whichapply to all timeslices at once. Speci�cally, they de�ne a functional dependency for each availablegranularity (e.g., second, week, year), and require that the equality hold only during a unit ofthe granularity. Our temporal functional dependency is a Wang dependency on the smallestgranularity (that of chronons); our strong functional dependency is a Wang functional dependencyon a granularity in which all of time is contained in a single granule.Returning to our dependencies, we subsequently realized that with strong temporal dependen-cies, we were able to characterize within our general framework a notion of synchronous attributesvery similar to the one that had previously been de�ned by Navathe and Ahmed [NA89] in theirparticular data model. To de�ne this notion, they �rst de�ne a notion of temporal dependency.Definition There exists a temporal dependency between two attributes, Ai and Aj , in a relationschema R = (A1; A2; : : : ; An; Ts; Te) if there exists an instance r of R containing two distinct tuples,t and t0, that satisfy each of the following three properties.1. t[K] = t0[K] where K is a chosen temporal key.2. t[Te] = t0[Ts]� 1 _ t0[Te] = t[Ts]� 1.3. t[Ai] = t0[Ai] XOR t[Aj] = t0[Aj].[NA89, p. 156] and [Ahm92] utThis de�nition captures a kind of asynchronism among attributes: If it is possible for two tupleswith the same key value (e.g., S value) to have the same Ai values and di�erent Aj values, or viceversa, then Ai and Aj are temporally dependent.Navathe and Ahmed then de�ne two attributes as being synchronous if there is no temporaldependency between them. We determined that it was possible to capture and generalize thisnotion of synchronism of attributes in a very simple manner using strong dependencies. Note that25

in a strong temporal dependency X Str!Y , attributes X may vary more often than attributes Y , butX must change when Y changes.Definition Let X and Y be sets of non-timestamp attributes of a bitemporal relation schemaR. A strong temporal equivalence, denoted X Str$Y , exists on R if X Str!Y and Y Str!X . utIntuitively, X Str$Y means that the sets of attributes X and Y change values simultaneously, andare thus synchronous. We return to this issue in Section 4.3.2.We then considered the useful and intuitive concept of time-invariant keys and attributes thathad been previously used in the context of this particular data model [NA89]. As were were ableto de�ne regular (temporal) keys, could a time-invariant key not be de�ned the same way? Onfurther thought, it became clear that there is no way to determine a time invariant attribute bysimply looking at a relation instance. We �rst needed an unambiguous means of tying an attributevalue together with the real-world entity it concerns.4.1.5 Using SurrogatesIn data modeling, an attribute is about a particular entity in the modeled reality, and we say thatthe attribute records a property of that entity. As an example, the frequency of change of a salaryattribute with respect to a speci�c employee in a company may be relatively regular, and therewill be at most one salary for the employee at each point in time. If the salary is with respect to adepartment, a signi�cantly di�erent pattern of change may be expected, and there will generallybe many salaries associated with a department at a single point in time. Hence, it is important toidentify the reference entity when discussing the semantics of an attribute.This insight is not new. For example, when using the ER model for conceptual database design,one identi�es entity types (or entity sets) at an early stage in the modeling process.In our approach, the reference-entity types are represented by surrogate attributes, and theentities are represented by surrogates. In this regard, we follow the approach adopted in, e.g.,the TEER model by Elmasri [EWK93]. Surrogates do not vary over time in the sense that twoentities identi�ed by identical surrogates are the same entity, and two entities identi�ed by di�erentsurrogates are di�erent entities. We assume the presence of surrogate attributes throughout logicaldesign. At the conclusion of logical design, surrogate attributes may be either retained, replacedby regular (key) attributes, or eliminated with no replacements. We will shortly discuss when thiscan occur.When surrogate attributes are available, it becomes possible to formally de�ne time invariancenotions.Definition Let X be a set of non-timestamp attributes of a bitemporal relation schema R withsurrogate attribute S. Then X is said to be time invariant if SStr!X . utThis de�nition reects the assumption that surrogates represent the entities being modeled by therelation. Since di�erent entities are thus represented by di�erent surrogates and the same entityalways is represented by the same surrogate, this is a rather natural de�nition of time invariantattributes. In the empSal instance in Figure 11, attribute EName is time invariant, but attributeSal is not. By combining standard temporal dependency and strong temporal dependency, thenotion of a time-invariant key (which had previously been used with a di�erent meaning [NA89])results.Definition Let X be a set of non-timestamp attributes of a bitemporal relation schema R with26

surrogate attribute S. Then X is termed a time-invariant key (TIK) if SStr!X and X T!R. utThe �rst requirement to attributes X is that they be time invariant. The second is that they be atemporal key. In combination, the requirements amount to saying that X is a key with values thatdo not change (with respect to the surrogate attribute). In the empSal instance, attribute ENameis a time-invariant key. Indeed, it would be not be inconsistent with our perception of reality tospecify EName as a time-invariant key for the schema of empSal. In situations such as this, wherethe surrogate attribute EmpS was used to determine that Emp is a time-invariant key of schemaempSal, it may be advantageous to remove the surrogate attribute from the schema.The temporal dependencies and normal forms that arise from conventional dependency theory,along with the extensions just discussed (parameterized and strong temporal functional depen-dencies), permit characterizations, as we have seen, of some existing temporal dependencies andnormal forms, in a model-independent fashion. However, there were other existing normal forms,such as Time Normal Form [NA89], that were not subsumed by our new de�nitions. So we turnedour attention to those normal forms, in an attempt to devise a comprehensive design methodology.4.2 Lifespans of Individual Time-Varying AttributesAn \anomaly" that had been mentioned in several papers was the necessity of null values, par-ticularly when tuple time-stamping was utilized. Navathe and Ahmed's notion of synchronousattributes, discussed in Section 4.1.4, served in part to identify where null values may or couldnot occur. In the absence of synchronism, one attribute might have a value when another one didnot, thereby requiring a null value. Gadia's homogeneous data model was predicated on snapshotsnot adding nulls; indeed, this was the source of the homogeneity requirement [Gad88]. In thinkingthrough this issue, we eventually came to see it as a distinction between inapplicable and unknownnulls. While both can be represented with NULL values, the former is relevant for logical design;a good design will obviate the need for inapplicable nulls.As with time-invariance (cf. Section 4.1.5), we concluded here that the mechanism of functionaldependencies|looking at the relationships among attribute values within individual meaningfulrelations to determine intensional properties|was not adequate. Rather, it was necessary toconsider the time-varying semantics of individual attributes, and make design decisions based onthat semantics. Hence, to specify when inapplicable nulls could occur, we adapted the conceptof lifespans, whose importance had previously been recognized in the context of data models.The HRDM model associates explicit lifespans with each attribute of a relation schema and witheach tuple of a relation instance [CT85, CC87, CC93]. The HRDM goes further than other datamodels in incorporating lifespans, but it still does not explicitly record the lifespans of attributesof individual tuples/surrogates (HRDM tuples correspond to our object-representing surrogates),as we do. Rather, the lifespan of an attribute of a particular object is derived as the intersection ofthe tuple's lifespan and the relation schema's lifespan for the attribute. In a recent extension to hisdata model, Gadia augmented the timestamp to incorporate de�nite and possible lifespans, bothof objects and of attribute values [?]. In the TEER model, Elmasri [EWK93] associates lifespanswith individual surrogates, which represent entities in that model. In another extension to theER model, TERM, Klopprogge [KL83] records lifespans by adding mandatory, boolean-valuedvalid-time attributes, \existence," to entity and relationship types.Our use of lifespans for database design di�ers from the use of lifespans in database instances.In particular, using lifespans during database design does not imply any need for storing lifespansin the database. Rather, we advocate using lifespans in this way to determine which attributesshould co-reside in a relation schema. 27

Intuitively, the lifespan of an attribute for a speci�c object is all the times when the object hasa value, distinct from ?i (inapplicable null), for the attribute. In its full generality, the lifespanis a temporal element, but most often, the lifespan is a single time interval. Note that lifespansconcern valid time, i.e., are about the times when there exist some valid values. Lifespans are notrelated to transaction time.To more precisely de�ne lifespans, we �rst de�ne an auxiliary function, vte, that takes as argu-ment a valid-time relation r and returns the valid-time element. Speci�cally, vte(r) = fcv j 9s (s 2r ^ cv 2 s[T])g.Definition Let a relation schema R = (S;A1; : : : ; An jT) be given, where S is surrogate valued,and let r be an instance of R. The lifespan for attribute Ai, i = 1; : : : ; n, with respect to a value sof S in r is denoted ls(r; Ai; s) and is de�ned as follows.ls(r; Ai; s) = vte(�S=s^A6=?i (r)) utLifespans are important because attributes are guaranteed to not have an inapplicable nullvalue during their lifespans. Assume that we are given a relation schema empDep = (EmpS, EName,Dept) that records the names and departments of employees (identi�ed by the surrogate attributeEmpS). If employees always have a name when they have a department, and vice versa, this meansthat inapplicable nulls are not present in instances of the schema. With lifespans, this propertymay be stated by saying that for all meaningful instances of EmpSal and for all EmpS surrogates,attributes EName and Dept have the same lifespans.Inapplicable nulls may occur in a relation schema when two attributes have di�erent lifespansfor the same entity/surrogate. To identify this type of situation, we introduce the notion of lifespanequal attributes.Definition Let a relation schema R = (S;A1; : : : ; An jT) be given where S is surrogate valued.Two attributes Ai and Aj , i; j = 1; : : : ; n, are termed lifespan equal with respect to surrogate S,denoted AiLS=SAj , if for all meaningful instances r of R,8s 2 dom(S) (ls(r; Ai; s) = ls(r; Aj; s)). utTo exemplify this de�nition, consider a relation schema Emp with attributes EmpS (the employee'ssurrogate), Dept, Salary, and MgrSince. The schema is used by a company where each employeeis always assigned to some department and has a salary. In addition, the relation records when anemployee in a department �rst became a manager in that department.For this schema, we have Dept LS=EmpS Salary because an employee has a salary (it might beunknown) exactly when that employee is associated with a department. Thus, no instances of Empwill have tuples with an inapplicable-null value for one of Dept and Salary and not for the other.Next, it is not the case that Dept LS=EmpS MgrSince and (by inference) not the case that SalaryLS=EmpS MgrSince. This is so because employees often are associated with a department where theyhave never been a manager. Thus, instances of Emp may contain inapplicable nulls. Speci�cally,the nulls are associated with attribute MgrSince as the lifespan of this attribute is shorter thanthat of Dept and Salary.Next, observe that Dept and Salary being lifespan equal with respect to EmpS does not meanthat all employees have the same lifespan for their department (or salary) attribute. Employeesmay have been hired at di�erent times, and the lifespans are thus generally di�erent for di�erentemployees. Rather, the equality is between the department lifespan and the salary lifespan forindividual employees. 28

The following de�nition then characterizes temporal database schemas with instances that donot contain inapplicable nulls.Definition A relation schema R = (S;A1; : : : ; An j T) where S is surrogate valued is lifespanhomogeneous if 8A;B 2 R (ALS=SB). utThese concepts formally tie the connection between the notion of lifespans of attributes withthe occurrence of inapplicable nulls in instances. With them, we are in a position to formulate thefollowing design rule.Definition (Lifespan Decomposition Rule) To avoid inapplicable nulls in temporal databaseinstances, decompose temporal relation schemas to ensure lifespan homogeneity. utIt is appropriate to briey consider the interaction of this rule with the the existing temporalnormal forms that also prescribe decomposition of relation schemas. Initially, observe that adatabase schema that obeys the temporal normal forms may still require inapplicable nulls in itsinstances. To exemplify, consider the Emp schema. Here, EmpS is a temporal key, and there areno other non-trivial dependencies. Thus, the schema is in temporal BCNF. It is also the casethat Emp has no non-trivial temporal multi-valued dependencies, and it is thus also in temporalfourth normal form. In spite of this, we saw that there are inapplicable nulls. The solution is todecompose Emp = (EmpS, Dept, Salary, MgrSince) into Emp1 = (EmpS, Dept, Salary) andEmp2 = (EmpS, MgrSince). Both resulting relations are lifespan homogeneous.Note that decomposition for this reason may not be required, as the temporal normal formstend to eliminate the need for inapplicable nulls.4.3 Pattern-Based SynchronismIn the context of their data model where tuples are timestamped with single time intervals, Navatheand Ahmed [NA89] had previously de�ned a normal form that is related to synchronism and isbased on their notion of temporal dependence as discussed in Section 4.1.4. The intuition was thatwhen two attributes were changing independently, tuple timestamping could generate redundancy.Their normal form then states that relation schemas should not contain temporally dependentattributes.Definition A valid-time relation schema \is in time normal form (TNF) if and only if it is in[snapshot] BCNF and there exists no temporal dependency among its time varying attributes."[NA89,p. 157] utExample Consider the relation instance empDepSal in Figure 10, recording departments andsalaries for employees.The schema for the relation is in temporal BCNF, with the surrogate-valued attribute EmpS beingthe only minimal key and no other dependencies. Yet, it may be observed that the salaries 30k and50k are repeated once in the instance. Similarly, the departments A and B are repeated once andfour times, respectively. This relation is not in TNF, because there exists a temporal dependencybetween Dept and Salary (in fact, many tuples represent the value of one attribute changing whilethe value of the other remained as before). ut29

The type of redundancy identi�ed by TNF has been mentioned in the past by several researchers(see, e.g., [CT85, GV85, Gad88, GY91]). Most often, it has been used for motivating a non-�rstnormal form data modeling approach where time is associated with attribute values rather thanwith tuples, because that approach avoids the redundancy. The problem with such data models, asdiscussed in Section 3.3, is that they jettison other desirable properties in attempting to eliminatethis redundancy.More centrally, though, this \redundancy" should be more properly termed \data replication,"as Wijsen has pointed out [?]. It does not share with other identi�ed redundancies the importantproperty that the values in question can be predicted from other information in the relation. Inthe example above, the salary 30K is indeed replicated, but nevertheless still contributes to theinformation content of the relation.Additionally, this normal form is a very restrictive one. Speci�cally, it appears that the im-position of TNF e�ectively leads to a binary data model, in which all relations have just twoattributes, an entity-identifying attribute and one time-varying attribute. To see this, observe thatif two time-varying attributes are to reside in the same relation schema, we must guarantee thatwhen one attribute changes value, the other also changes its value. If it is at all possible thatthe value of one attribute (not both) may at some point \change" to its existing value, there is atemporal dependency between the two attributes, and they cannot reside in the same schema.Finding TNF unnecessary and frequently undesirable, we started looking for less restrictivedecomposition guidelines that are based on synchronism. Our �rst idea was that we did not wantto decompose a schema just because an attribute at rare occasions may \change" its value toits existing value. Decomposition guidelines that accomplish this cannot be based solely on theattribute values, as is TNF; and we can use neither strong temporal dependencies nor Navatheand Ahmed's temporal dependency. Rather, we had to focus not on the values themselves, buton the times that the values were observed. As we shall see, this led to a pattern-based notionof synchronism that is quite di�erent from the value-based notions of synchronism that have beenconsidered by others.4.3.1 Time Patterns of Individual Time-Varying AttributesInformally, a time pattern is simply a sequence of times. We will use time patterns to de�ne adatabase design rule that serves a purpose similar to Time Normal Form.Definition The time pattern T is a partial function from the natural numbers N to a domainDT of times: T : N ,! DT . If T (i) is de�ned, so is T (j) for all j 2 N where j < i. T (i) is termedthe i'th time point. utEmpS Dept Salary Te1 Shipping 30k f1; : : : ; 5ge1 Loading 30k f6; : : : ; 9ge1 Loading 32k f10; : : : ; 14ge1 Loading 36k f15; : : : ; 27ge1 Loading 40k f28; : : : ; 39ge1 Shipping 50k f40; : : : ; 49ge1 Loading 50k f50; : : : ; 59gFigure 10: The empDepSal relation.30

In the context of databases, two distinct types of time patterns are of particular interest.The observation pattern OsA, for an attribute A relative to a particular surrogate s, is the timeswhen the attribute is given a particular value, perhaps as a result of an observation (e.g., if theattribute is sampled), a prediction, or an estimation. Observation patterns relate to valid time.The observation pattern may be expected to be closely related to, but distinct from, the actual(possibly unknown) pattern of change of the attribute in the modeled reality. The update patternU sA is the times when the value of the attribute is updated in the database. Thus, update patternsrelate to transaction time.Note that an attribute may not actually change value at a time point. It may very well bethat the existing and new values are the same (an example will be given shortly). The times inthe time patterns are supersets of the times when actual changes occur. Note that all times in theobservation pattern of an attribute belong to its lifespan. This is not necessarily true for times inthe update pattern, in particular for non-degenerate relations (cf. Section 3.1).Example Consider a valid-time relation schema ExpTemp = (ExpS, Exp, Temp) that is to be usedwhen monitoring the temperature in chemical experiments. In the schema, ExpS is a surrogate-valued attribute, the values of which represent speci�c experiments. Attributes Exp and Temprecord experiment names and temperatures.We are given the following information that allows us to characterize the observation patternfor the temperature attribute. In experiments, the temperature is sampled every ten seconds, thesampling is initiated �ve seconds after the experiment is initiated, and each experiment runs fortwo hours. There is a �xed maximum delay of two seconds from when a temperature is sampleduntil it is actually stored in the database. In this example, the update pattern is thus closelytied to the observation pattern [JS94a]; the relation is delayed strongly retroactively bounded (seeSection 3.1).Assuming that an experiment x1 starts at 9:00:00 a.m., its time patterns may be given asfollows. Ox1A (0) = 9:00:05; Ox1A (1) = 9:00:15; : : : ; Ox1A (199) = 10:59:55Ux1A (0) 2 [9:00:05; 9:00:07); : : : ; Ux1A (199) 2 [10:59:55; 10:59:57)Note that it is generally only possible to predict the update pattern within bounds. We will returnto this aspect below. utIn some temporal database applications, the observation and update patterns are identical.For example, this is the case in banking applications where an account balance by de�nition takese�ect when the balance is stored in a database. As we will show shortly, while the concepts ofobservation and change patterns are highly useful in database design, it is usually not necessary toknow the speci�c time patterns of individual surrogates (indeed, the time patterns are generallynot a priori known).To further illustrate the notion of time patterns, we introduce two important types of timepatterns, namely regular and constant. A regular time pattern is characterized by a start time ts,a starting delay �ts, a regular frequency �td, and an end time te. It is de�ned as follows.T sreg(i) = 8><>: ts + i � �ts if i 2 f0; 1gti�1 +�td if i > 1 ^ ti�1 + �td � teunde�ned otherwiseNote that the sample observation pattern above is regular with ts = 9:00.00 a.m., �t = 10, �ts = 5,and te = 11:00.00 a.m. 31

A constant time pattern is a further specialization.T sconst(i) = (ts if i = 0unde�ned otherwiseInitially, an attribute with a constant update pattern has no value. Then, at time ts, it obtains avalue, and the value never changes.We may or may not know at schema design time the actual de�nitions of the observation orupdate patterns for an attribute. In the example, we were able to calculate Ox1A (i) for any timepoint i, but we were unable to predict the precise value of Ux1A (i). The best we could do was toindicate bounds for Ux1A (i). Next, we consider this issue of predictability of time patterns.Definition A time pattern T is predictable if a function f is known that computes T . Timepattern T is predictable within bounds if a pair of functions l and u are de�ned so that for all i forwhich T is de�ned, l and u are also de�ned, and l(i) � T (i) � u(i). utExample Assuming that fx1 predicts the observation pattern for experiment x1, the pair offunctions, lx1 and ux1, shown next predicts the bounds on the update pattern for the temperatureattribute. lx1(i) = fx1(i)ux1(i) = fx1(i) + 2 utFinally, time patterns may be characterized by the bounds that exist between successive timesin the patterns. For example, a time in a pattern may be at least some (non-zero) duration �tlafter and at most some (larger) duration �tu after its predecessor time.In a company, an agreement may exist between the management and the employees that salariescannot be renegotiated within six months after they were last negotiated and that they will alwaysbe be renegotiated within a year after they were last negotiated. This illustrates a restriction oftime patterns where �tli is six months and �tui is twelve months. We again emphasize that thenew salary can be identical to the old salary, even if it was renegotiated.4.3.2 Synchronous Decomposition RuleThe synchronous decomposition rule is based on the notion of observation pattern, and its objectiveis to eliminate a particular kind of redundancy.Example Consider the empDepSal relation in Figure 10. We again observe that the salaries30k and 50k are repeated once in the instance. Similarly, the departments A and B are repeatedonce and four times, respectively. These repetitions are due to attributes Dept and Salary havingdi�erent observation patterns. Speci�cally, the instance is consistent with the patterns shownbelow. Oe1Dept =< [0 7! 1]; [1 7! 6]; [2 7! 43]; [3 7! 50]; [4 7! 60] >Oe1Salary =< [0 7! 1]; [1 7! 10]; [2 7! 15]; [3 7! 28]; [4 7! 43]; [5 7! 60] >In combination, these observation patterns imply the redundancy that may be observed in thesample instance. Thus, capturing during database design what attributes of the same relationschema have di�erent observation patterns is a means of identifying this type of redundancy.Note that patterns with additional time points are also consistent with the instance. For ex-ample, the salary may have been updated to become 50k at time 55. ut32

To characterize the synchronism of attributes, de�ne T jt to be the restriction of time patternT to the valid-time element t, that is, to include only those times also contained in t.Definition De�ne relation schema R = (S;A1; : : : ; An j T) where S is surrogate valued. Twoattributes Ai and Aj , i; j = 1; : : : ; n, with observation patterns OSAi and OSAj , are synchronous withrespect to S, denoted Ai S=SAj , if for all meaningful instances r of R and for all surrogates s,OSAi jls(r;Ai;s)\ls(r;Aj ;s) = OSAj jls(r;Ai;s)\ls(r;Aj ;s) . utThus, attributes are synchronous if their lifespans are identical when restricted to the intersectionof their lifespans. Note that this de�nition requires only that the observation patterns, when re-stricted, are identical. In most cases, it is possible to deduce this, even when the speci�c observationpatterns are not known.With this de�nition, we can characterize relations that avoid the redundancy caused by a lackof synchronism.Definition De�ne relation schema R = (S;A1; : : : ; An jT) where S is surrogate valued. RelationR is synchronous if 8Ai; Aj 2 R (Ai S=SAj). utThis de�nition provides the basis for stating the Synchronous Decomposition Rule.Definition (Synchronous Decomposition Rule) To avoid repetition of attribute values in tem-poral relations, decompose relation schemas until they are synchronous. utAbove, we de�ned pattern-based synchronism among attributes. In Section 4.1.4 we introducedstrong temporal functional dependencies that could capture a notion of value-based synchronismamong attributes. The following example will illustrate the relationship between valued-basedsynchronism and the pattern-based synchronism just introduced.Example Consider the following two relations instances. In the �rst, Dept and Salary arepattern-synchronous but not value-synchronous.empS Dept Salary Te1 Shipping 30k f1; : : : ; 5ge1 Shipping 40k f6; : : : ; 10gWe assume the following observation patterns.Oe1Dept =< [0 7! 1]; [1 7! 6]; [2 7! 11] >Oe1Salary =< [0 7! 1]; [1 7! 6]; [2 7! 11] >When, at time 6, Dept and Salary were observed, their values were Shipping and 40k, respec-tively. These observation patterns, which are consistent with the above instance, imply thatDept S=SSalary. However, in the relation instant Dept and Salary are not value-synchronous,because the value of Salary changed at time 6, while the value of Dept did not.The next relation instance is value-synchronous, but is not pattern-synchronous.33

empS Dept Salary Te1 Shipping 30k f1; : : : ; 5ge1 Loading 40k f6; : : : ; 10gSince the values of the two attributes track each other, DeptStr$Salary for this instance. Thisinstance, in turn, is consistent with the following observation patterns, which are not identical.Oe1Dept =< [0 7! 1]; [1 7! 6]; [2 7! 11] >Oe1Salary =< [0 7! 1]; [1 7! 6]; [2 7! 8]; [3 7! 11] >The pattern for OsSalary indicates that Salary was observed at time 8, and the instance indicatesthat Salary did not change value at that time, so the value observed at time 8 was the same asthe existing value. utPut together, this means that neither of the two notions, Str$ and S=, is subsumed by the other.The former notion is concerned with the values of attributes while the latter is concerned with theobservation patterns, aspects we have previously characterized as independent.However, note that instances that are consistent with a pair of di�erent observation patterns,but do not violate value-based synchronism (the latter instance in the example), only occur when itis guaranteed that no value changes for any time not in both observation patterns. In practise, weexpect this to be quite rare. (This was the basis for asserting in Section 4.3 that TNF e�ectivelyleads to a binary data model.) The synchronous decomposition rule is typically less restrictivethan TNF.We now address the positioning of the synchronous decomposition rule with respect to logicalversus physical database design. In this paper, we have made a clear distinction between logical-level relations and their physical representation in a temporal DBMS (see Section 3.6).It is clear that the synchronous decomposition rule does eliminate a kind of redundancy.Example Consider the following relation instance, under the observation patterns speci�ed.empS Dept Salary Te1 Shipping 30k f1; : : : ; 5ge1 Loading 30k f6; : : : ; 10gOe1Dept =< [0 7! 1]; [1 7! 6]; [2 7! 11] >Oe1Salary =< [0 7! 1]; [1 7! 11] >The 30k value in the second tuple is redundant: it can be guessed by using the �rst tuple and theobservation patterns. utSurely, decomposing relation schemas to eliminate this redundancy may be important whenstoring temporal relations. The speci�cs depend on the amount of redundancy and the query andupdate patterns. However, we feel that the redundancy is of little consequence at a logical level,considering query anomalies and modi�cation anomalies.For the querying of logical-level relations, we use the query language associated with thoserelation, namely TSQL2. In TSQL2, it is possible to declare variables in the from clause thatrange over groups of tuples [Sno95].Example Consider the relation instance in the previous example, containing an asynchronousattribute, Salary. The following from clause, 34

FROM emp(EmpS, Dept) AS empDept, emp(EmpS, Salary) AS empSalaryyields variables empDept and empSalary that range over the following two sets of tuples, respec-tively (the blank attributes are inaccessible through the variables).EmpS Dept Te1 Shipping f1; : : : ; 5ge1 Loading f6; : : : 10g EmpS Salary Te1 30k f1; : : : ; 10gNote that the coalescing implied by the from clause isolates the times in which the values change. utWith this facility, we believe that (pattern-based) asynchronous attributes in a relation present nospecial problems when posing queries.Assuming that lifespan decomposition has already been performed, there are no insertion nordeletion anomalies, in the sense that no inapplicable nulls are generated by the insertion anddeletion operations. Concerning update anomalies, TSQL2 provides facilities that allow the valueof an attribute over all time, or over a restricted time, to be updated via a single statement, therebyensuring that the redundancy does not generate an inconsistency.In conclusion, the synchronous decomposition rule is clearly relevant to physical-level design.Its relevance to logical-level design seems less obvious and depends on the data model employed. Inour conceptual data model, which is a tuple-timestamped �rst normal form model, it is generallynot necessary (and it is probably not even desirable) to separate attributes in logical-level temporalrelations on the sole basis of asynchronism. This characterization of the synchronous decompositionrule contrasts TNF that is proposed expressly for logical design.Several claims have been made in the past about synchronism and database design. Theneed for synchronism at the logical level has previously been claimed to make normal forms anddependency theory inapplicable (e.g., [GV85]) because it leads to binary relations with no need forfurther decomposition. This claim then does not apply to our data model. It has also been claimedthat the need for separating asynchronous attributes is inherent to tuple-timestamped data models(e.g., `[...] the notion of �rst normal form has been applied too literally to temporal databases [...]Our departure from this \hangup" brings temporal databases within the framework of classicalrelational theory' [GV85, p. 55]). We do not feel that this concern applies to our data model.For completeness, it should be mentioned that while the decomposition rule and associatedconcepts presented in this section have concerned valid time, a similar decomposition rule andassociated concepts that concern transaction time, employing update patterns rather than obser-vation patterns, may also be de�ned. For brevity, we omit these concepts.4.4 Temporal InterpolationIn the early 1980's, several researchers studied independently the notion of temporal interpolation.In the context of a Pascal-based extension of the ER model to include the time dimension, Klop-progge [?, KL83] discussed so-called \derivation functions" (also termed \induction formulas andoperators"), to be used for inferring values valid at times when no values were explicitly storedin the database. The \missing" values are inferred from stored ones, e.g., at neighbor points. Ifa procedure can be given that computes such missing values precisely, the procedure was termeda \derivation;" if the procedure can only approximate the missing values, it was termed an \ap-proximation." Independently, and contemporaneously, Cli�ord and Warren [CW83] explored thesame concepts in a mathematical and less practice-oriented context. In their own terminology,35

they considered di�erent \continuity assumptions". For example, with the step-function continu-ity assumption, a value holds until a new value is explicitly recorded, or until the object ceases toexist. More recently, Segev and Shoshani [SS87, SS93] incorporated \interpolation functions" (theirterm) directly into their time series data model; their papers lists four such functions: step-wiseconstant, continuous, discrete, and user-de�ned.The use of these properties in logical database design was unexplored. In particular, doesenumerating these properties impact the logical design? Segev, with collaborators, had used thenotions quite e�ectively in producing e�cient representations of time sequence collections [SS88a,SS88b, SC92] (in fact, Illustra's TimeSeries Datablade is based on this); what are the implicationsfor temporal databases in general, and speci�cally for data semantics?To get a handle on this, we initially examined valid-time derivation. At the end of this section,we consider the e�ects of including transaction time.A relation may record explicitly when a particular attribute value is valid. Alternatively, whatvalue is true at a certain point in time may be computed from other recorded values. An exampleclari�es the distinction between the two cases.Example Consider the two relations in Figure 11. The �rst, empSal, records names and salariesof employees, and the second, expTemp, records names and temperature measurements for ex-periments. Attributes EmpS and ExpS record surrogates representing employees and experiments,respectively. EmpS EName Sal Te1 Bob 30k f1; : : : ; 9ge1 Bob 32k f10; : : : ; 19ge1 Bob 36k f30; : : : ; 39ge1 Bob 40k f40; : : : ; 49g ExpS Exp Temp Tx1 Exp1 25 f5; 65gx1 Exp1 27 f15gx1 Exp1 31 f25gx1 Exp1 29 f35gx1 Exp1 27 f45gx1 Exp1 26 f55g(a) empSal (b) expTempFigure 11: Sample Valid-time RelationsRelation empSal records Bob's salaries at all the times he has a salary. This is clearly consistentwith what a valid-time relation is. Relation expTemp is di�erent in this regard and is perhaps moreproblematic. It does not record temperatures for all the times when there exists a temperature forexperiment x1. The temperature of x1 is sampled regularly, and we may later want to estimate x1temperature values for times with no explicitly recorded value.The di�erence between relations such as empSal and expTemp in the example above is solely inwhat additional, or even di�erent, information is implied by each of the relations. Relation empSaldoes not imply any additional information at all. No salary is recorded for Bob from time 20 totime 29, and the existing tuples do not imply any salary for Bob in that time interval. However,while no temperature for Exp1 at time 40 is recorded in expTemp, such a temperature does exist.Thus, the di�erence is that di�erent interpolation functions apply to the salary and temperatureattributes of the two relations. utWe explore several interesting aspects of interpolation in the following sections.36

4.4.1 Derivation FunctionsA derivation function fA for a speci�c attribute A of a relation schema R takes as arguments avalid-time chronon cv and a relation instance r and returns a value in the domain of attribute A.Definition A derivation function f is a partial function from the domains of valid times DV Tand relation instances r with schema R to a value domain D in the universal set of domains DD.f : DV T � r(R) ,! D utNext, we introduce three important types of derivation functions in turn, namely stepwise-constant, discrete, and nearest-neighbor derivation functions. To do so, we need the followingconcept.Definition An attribute A is snapshot single-valued in a valid-time relation r if for all chrononscv in DV T , j�VA(�Vcv(r))j � 1 (i.e., at most one A value appears in any timeslice). utDefinition The stepwise constant derivation function fA-sc for an attribute A is de�ned for allvalid-time relations r with A in its schema and attribute A is snapshot single-valued in r.fA-sc(cv; r) = 8><>: t1[A] where t1 2 r if 9cv1 2 t1[T] (cv1 � cv^:(9t2 2 r (t2[A] 62 f?;?ug ^ 9cv2 2 t2[T] (cv1 < cv2 � cv))))?i otherwiseNote that the function has a value for all cv such that there exists a tuple in r with a chronon inits timestamp that is equal to or before cv. utExample To illustrate this type of derivation function, let relation empSal1 be populated withthe following tuples. EmpS EName Sal Te1 Bob 30k f1ge1 Bob 32k f10ge1 Bob ?i f20ge1 Bob 36k f30ge1 Bob 40k f40ge1 Bob ?i f50gWe associate a step-wise constant derivation function with attribute Sal. Thus, fSal-sc(5; empSal1) =30k, fSal-sc(10; empSal1) = 32k, fSal-sc(15; empSal1) = 32k, and fSal-sc(25; empSal1) = ?i. Forthis relation, fSal-sc is unde�ned for valid times before 1. Intuitively, empSal1 with this derivationfunction encodes the same information as the tuples for Bob in empSal, yet uses instant time-stamps. utOne can add a derivation operator to the algebra, similar in spirit to Klug's aggregate formationoperator [Klu82]. Such an operator would take as a subscript the derivation operator to be applied.Here we take a more informal approach to emphasize intuition.Example To exemplify the derivation operator, consider applying such an operator using thestepwise-constant derivation function to the empSal1 relation above, with the following result,which we denote as empSal2. 37

EmpS EName Sal DSal Te1 Bob 30k 30k f1ge1 Bob ? 30k f2; : : : ; 9ge1 Bob 32k 32k f10ge1 Bob ? 32k f11; : : : ; 19ge1 Bob ?i ?i f20ge1 Bob ? ?i f21; : : : ; 29ge1 Bob 36k 36k f30ge1 Bob ? 36k f31; : : : ; 39ge1 Bob 40k 40k f40ge1 Bob ? 40k f41; : : : ; 49ge1 Bob ?i ?i f50ge1 Bob ? ?i f51; : : : ; cvkgIn the result, cvk is the largest possible valid-time chronon. We can now precisely describe the sensein which empSal1 with derivation function fSal-sc and empSal record the same information.�DSal!Sal(�VEmpS;EName;DSal(�VDSal6=?i(empSal2))) � empSalHere, �A!B(r) renames an attribute A in the schema of r to B [?]. utMost existing data models implicitly assume that only one (kind of) derivation function is ofrelevance to the attributes of the base relations representable in the model, namely the discretederivation function, de�ned as follows.Definition The discrete derivation function fA-d for an attribute A takes as arguments a valid-time chronon cv and a valid-time relation r with A in its schema R and A snapshot single-valuedin r. fA-d(cv; r) = (t[A] where t 2 �Vcv(r) if j�Vcv(r)j 6= 0? otherwise utThus, if there exists an A value in r that is valid at cv, that value is the result; otherwise, theresult is ?.4.4.2 Interpolation FunctionsInterpolation functions preserve the information content of the relations they are applied to andare special cases of derivation functions that are not restricted in this regard. Intuitively, aninterpolation function is a derivation function that does not contradict information in its argumentrelations. Discrete interpolation functions may be used for precisely characterizing those derivationfunctions that are also interpolation functions.Definition Let fA be a derivation function and let fA-d be the discrete derivation functionwith the same signature. Then fA is an interpolation function if for all pairs of a valid time cvand an argument relation r for which fA-d(cv; r) 6= ?, the condition fA(cv; r) = fA-d(cv; r) issatis�ed. utIt follows that the discrete and step-wise constant derivation functions are interpolation functions.The nearest-neighbor-interpolation interpolation function (denoted by fA-nn)d is appropriatefor the Temp attribute of expTemp in Figure 11(b). As for the previous two interpolation functions,38

it applies to a particular (numeric-valued) attribute, e.g., A of a valid-time relation. When appliedto a valid time cv and a relation r, it returns a value interpolated from the two A values in r thatare valid most recently before and after cv.4.4.3 Further Properties of Derivation FunctionsNext, we introduce derivation functions with error bounds. This type of derivation function pro-duces upper and lower bounds for each derived value. The bounds may be used for indicating howmuch the real value is expected to deviate from the derived value.Definition A derivation function with error bounds f is a partial function from the domainsof valid times and relation instances with some �xed schema to a triplet of value domains,f : DV T � r(R) ,! D �D �D;where R is a valid-time relation schema, r(R) is the domain of instances of R, and D is in theuniversal set of domains DD. utWith this concept, we may describe the concepts of stability and non-divergence of derivationfunctions. As these concepts are not essential for database design purposes, we focus solely on theintuition behind the concepts.Example Consider the relation instance expTemp in Figure 11(b). This instance stems fromthe sampling of a temperature sensor in a chemical experiment. For the purpose of this example,assume that there is a maximum delay of �ve time units between the measurement of temperaturevalues and when they are inserted in expTemp. Assume also that the only updates to expTemp aresuch insertions. Let the current time be 66.Now consider the application of some derivation function, fTemp for the temperature attributeon this relation. We know that no temperatures with a valid time before time 61 are deleted orinserted. Thus, we may expect that applications of fTemp to valid times before this time will fromnow on always yield the same value, i.e., are stable. This is true in particular for the discrete andstep-wise constant interpolation functions. For the nearest-neighbor interpolation function this isalso true because the function is unde�ned for times where earlier and later neighbor temperaturesare not available.For time arguments later than time 61, it is more di�cult to provide stability. However, thediscrete interpolation function is stable also for times after time 61 because it only returns a valuefor times where a value is already recorded. The two other interpolation functions are not. utStability is often too strong a property. In some situations, it is su�cient to ensure only that theinterpolated value at a particular time improves as more information is utilized by the interpolationfunction.Example In continuation of the previous example, assume that at time 66, a value is derivedfor time 64 and expTemp using fTemp�nn. Then, at time 68 a value is again derived for time 64 andexpTemp. The two values may be di�erent because a temperature valid at time 64 may have beenstored at time 67.However, it may still be the case that derived results improve in accuracy as time progresses.This notion of derivation functions being non-divergingmay be captured using derivation functionswith error bounds. Speci�cally, if derived values from successive applications of the derivation func-tion have error bounds that do not increase, a derivation function is non-diverging. ut39

4.4.4 Interpolation in Database DesignIn previous work, interpolations such as step-wise constant were speci�ed in the meta-data, thenutilized by the query language. We were uneasy about this, as our work with scienti�c databasestold us that interpolations are subject to change (a good example is an equipment re-calibration);there are also often several di�erent interpolation functions one might want to apply to the samedata.For each time-varying attribute, a set of perhaps several derivation functions may be relevant.It is often the case that exactly one derivation function applies to an attribute, namely the discreteinterpolation function that is a kind of identity function. However, it may also be the case thatseveral nontrivial derivation functions apply to a single attribute.The problem is then how to apply several derivation functions to the base data. We feel thatthere should be a clear separation between recorded data and data derived from the stored datavia some function. Maintaining this separation makes it possible to later add new interpolationfunctions or remove or modify existing interpolation functions.The view mechanism is an ideal solution that maintains the separation. Thus, the databasedesigner �rst identi�es which sets of derivation functions that should be applied simultaneouslyto the attributes of a logical relation instance, one function per attribute. The designer thende�nes a view for each such set. It is feasible, though not easy, to express such view de�nition inSQL, assuming the support by the DBMS of user-de�ned aggregate operators (several commercialDBMS's provide this facility). With the temporal aggregates in TSQL2 [?], and the availability ofuser-de�ned aggregate functions, such views are straight-forward to express.4.4.5 Interpolation in Transaction TimeFor transaction time, only two interpolation functions appear to be important. The discreteinterpolation function is to be used if all the times a fact is current in the database are stored withthe fact, as an interval timestamp. The stepwise-constant interpolation function is used if facts arestamped with their insertion times only, as an instant timestamp. Which interpolation functionis appropriate generally depends on the adopted temporal data model, and that function is thenbuilt into the model. All transaction-time data models known to us employ either period or instanttimestamping, and hence imply either discrete or stepwise-constant transaction-time interpolation.4.5 Additional DecompositionTo this point, we've seen how most of the aspects associated with attributes enter into the designprocess, and more fundamentally, into the semantics of the relations in which they participate.There are two aspects that remain to be examined: whether transaction-time (or valid-time)support is needed at all, and the granularity of the observation patterns.4.5.1 Temporal Support of AttributesDuring database design, a model of a part of reality is created. What aspects of the modeled realityto capture and what to leave out is determined by the functional requirements to the applicationbeing created. The application may require any combination of valid-time and transaction-timesupport, or no temporal support, for each of the time-varying attributes.Next, attributes may be either state based or event based. Values of state-based attributesare valid for durations of time while values of event-based attributes are valid only for instants intime. Combining these alternatives, there are six possibilities for the temporal support requiredfor a time-varying attribute. 40

� No temporal support at all.� Valid time support only, with{ valid-time state support or{ valid-time event support.� Transaction time support only.� Bitemporal support, with{ valid-time state support or{ valid-time event support.The characterization of attributes according to the temporal support they require is importantfor database design because data models generally support only one type of temporal support ina single relation. We embed this requirement in a simple decomposition rule.Definition (Temporal Support Decomposition Rule) To achieve the correct temporal supportof time-varying attributes, decompose temporal relation schemas to have only attributes with thesame temporal support requirements in the same schema, except for the surrogate attribute(s)forming the primary key. utExample Consider a relation schema with four attributes, Name (a surrogate attribute whichis the primary key), PromotedBy, Salary, and Dept. While all four require valid-time support,the PromotedBy attribute is associated with the promotion event, while the last two attributes areassociated with states. The promotion event is the transition between two salary and/or depart-ment states. The Temporal Support Decomposition Rule requires that this schema be decomposedinto two schemas, (Name, PromotedBy), a valid-time event relation, and (Name, Salary, Dept), avalid-time state relation. utIt may be possible to avoid such decomposition in certain circumstances, but the designershould be aware of the potential drawbacks of doing so. Consider including an attribute S requiringsnapshot support together with an attribute T requiring transaction-time support, in a transaction-time relation. Attribute S should have a single value over all time. However, since it is embeddedin a transaction-time relation, past values are automatically retained. Taking the transactiontimeslice at \now" produces the correct result, but taking a transaction timeslice at a time in thepast, at time ct <\now", may retrieve an old value of S, which is inconsistent with the requirementthat it be a snapshot attribute. Such queries must take this into account, and timeslice the relationas of \now" to get the value of S, then join this with the timeslice of the relation as of ct to getthe value of T , which is quite awkward. Another drawback is physical in nature: the fact that oldvalues of S are being retained increases the storage demand.Including an attribute S along with an attribute V requiring valid-time support is even moreproblematic. Whereas the system provides the transaction time during modi�cations, the user mustprovide the valid time. This raises the issue of what should the valid time be for the snapshotattribute S. All updates have to maintain this semantics, and queries also have to consider thevalid time. 41

4.5.2 Temporal Precision of AttributesEach time-varying attribute has an associated observation pattern, as discussed in Section 4.3. Atime pattern is a function to a time domain, and as such has an associated time granularity. Thegranularity is the precision in which the time-variance is recorded. If a hiring decision occurredsometime during the business day, but it is not known exactly when (i.e., what minute or hour)the decision occurred, then it is inappropriate to store that fact with a timestamp at a minutegranularity. The reason is that a particular minute must be chosen, and that minute is probablyincorrect, with the implication that the model is incorrect [?].This property of time-varying attributes is important for database design because temporalrelational data models and query languages are frequently based on the (sometimes implicit) as-sumption that all time-varying attributes of a relation may be recorded with the same precision.For example, in tuple timestamped models, the time-variance of all attribute values is recordedwith a single timestamp attribute (or the same set of timestamp attributes).One approach is to use the minimum granularity of the DBMS at the precision of all relations.As just discussed, this results in a low-�delity model of reality. A better approach is to choose themost appropriate granularity for each relation. We propose a simple strategy. Associate with eachattribute a set of granularities. The smallest granularity in this set is the granularity in which thetime-variance of the attribute is known. Other, coarser granularities represent granularities whichare acceptable to the applications utilizing the relation. Then decompose the relation only if thereis not a common granularity that is a member of the granularity sets of all attributes.Definition (Precision Decomposition Rule) To accurately reect the temporal precisions oftime-varying attributes, decompose relation schemas so that all attributes in a schema have acompatible temporal precision, that is, a common granularity. utExample Continuing the previous example, the observation pattern for Salary is at a gran-ularity of minute. However, it is acceptable for applications if the timestamps associated withthis attribute are stored at the coarser granularity of day, yielding a set of granularities for thisattribute of fminute, dayg. The observation pattern for Dept is at a granularity of day, and coarsergranularities are not acceptable to applications, yielding a set of granularities for this attribute offdayg. The Precision Decomposition Rule enables these two attributes to remain together in therelation, which will have a timestamp granularity of day. utA more general approach was recently proposed by Wang and his colleagues, using their tem-poral functional dependencies based on granularities, discussed briey in Section 4.1.4 [?]. Thedrawbacks of their approach are its complexity and the possibility of new granularities, of uncertaincomprehensibility by the user, being generated by the decomposition. The Precision DecompositionRule above is very simple and does not generate new granularities.4.6 SummaryBelow, we review the concepts introduced in this section and briey indicate how they may beused for capturing the semantics of time-varying attributes during database design.� Identify entity types and represent them with surrogate attributes. The real-world objects(or entities) that the attributes of the database describe are represented with surrogateattributes. 42

� Describe lifespans. For each relation schema, describe the lifespans of the attributes.� Determine observation and update patterns. For each relation schema, indicate which at-tributes are synchronous, i.e., share observation and update patterns.� Describe precisions. For each time-varying attribute, indicate its set of applicable granulari-ties.� For each attribute, indicate its appropriate derivation or interpolation function(s). The func-tions concern interpolation in valid-time, and there is zero, one, or several functions perattribute.� Determine the required temporal support. For each attribute, indicate the required temporalsupport for the attribute.� Specify temporal functional dependencies. These provide the basis for applying the temporalextensions of the conventional normal forms for schema decomposition.� Specify strong temporal functional dependencies.Two important goals of logical database design are to design a database schema (a) that doesnot require the use of inapplicable nulls, and (b) that avoids redundancy. Logical temporal databasedesign accomplishes this by applying the available decomposition rules.The information listed above that emerges from conceptual design guides the logical and phys-ical design of relation schemas and views.� Temporal functional dependencies may be used to achieve the temporal analogues of tra-ditional normal forms, e.g., third normal form, BCNF, fourth normal form. All standarddatabase design approaches apply here directly.� The lifespan decomposition rule ensures that inapplicable nulls are not required.� The synchronous decomposition rule removes redundant attribute values, while being lessstrict than previous de�nitions of value-synchrony.� The temporal support decomposition rule ensures that each relation has a temporal supportappropriate for the attributes it contains.� The precision decomposition rule uses the granularity sets to prescribe decomposition ofrelation schemas and to determine the granularity of the resulting relation schemas.� Strong temporal functional dependencies, together with the temporal functional dependen-cies, allow the designer to identify time-invariant keys, which may play the role of surrogates,which can subsequently be eliminated.� The derivation function associated with attributes induce views computing the derived values.While logical design is concerned with adequately modeling the semantics of the application,physical design is concerned with performance. The concepts concerning synchronism, i.e., timepatterns, including observation and update patterns, are relevant for physical design. Their usewas discussed in detail in Section 4.3.2.Physical design may also reverse some of the decomposition that is indicated by logical design.Database designers are faced with a number of design criteria which are sometimes conicting,43

making database design a challenging task. So, while we discussed the design criteria in isolation,it is understood that there may be other criteria that should be taken into consideration duringdatabase design, such as minimizing the impact of joins required on relations that have beendecomposed.Example In Section 4.5.1, the attribute PromotedBy was separated from Salary and Dept be-cause the latter two attributes are state attributes and the �rst attribute is an event attribute.This requires a valid-time join if the user is interested in combining the three attributes. Duringphysical design, it may become apparent that such queries are frequent, and have demanding per-formance requirements, dictating that these attributes remain in a single relation, even though thesemantics is not entirely correct (the relation will have to be a valid-time state relation). ut5 Status and OutlookIn order to exploit the full potential of temporal relational database technology, guidelines for thedesign of temporal relational databases should be provided.This paper has presented concepts for capturing the properties of time-varying attributes intemporal databases. These concepts include surrogates that represent the real-world objects de-scribed by the attributes, lifespans of attributes, observation and update patterns for time-varyingattributes, derivation functions that compute new attribute values from stored ones, and newtemporal functional dependencies.The paper subsequently showed how surrogates, lifespans, and dependencies play a role duringdesign of the logical database schema. In particular, the notion of lifespans led to the formulation ofa lifespan decomposition rule. The notion of observation (and update) patterns led to a synchronousdecomposition rule; it was argued that this rule should ideally apply to physical database design.Finally, it was shown how derivation functions are relevant for view design.In previous work we have extended conventional dependency theory to temporal relations. Thisled to temporal normals forms that closely track their non-temporal counterparts, but these normalforms were atemporal in nature and did not fully exploit the temporal semantics of data that iscaptured by temporal relations. This paper complements that work by providing concepts forcapturing the temporal semantics and then exploiting it during temporal database design.At this point in time, we feel that the semantics of temporal relational schemas and theirlogical design are well understood. However, it is not yet clear how to best integrate the logicaland conceptual design of temporal databases, two research areas that have hitherto evolved withminimal interaction. The third design area, physical temporal database design, is still in its infancy,with few results.We feel that several aspects merit further study. A coherent design methodology, includ-ing conceptual (implementation-data-model independent) design and logical design, for temporaldatabases is needed. An articulate methodology for physical design that takes into account bothdi�erent speci�c storage formats and primary and secondary indexing techniques still remains. Inparticular, the role of synchronous decomposition in physical design needs to be explored in greaterdetail. The methodology should be validated with actual applications. Finally, the ideas presentedhere and the methodology that will follow needs to be transitioned to existing implementationplatforms, including non-temporal query languages such as SQL-92 [?]. In the medium term, itis unrealistic to assume that applications will be designed using a temporal data model with newdesign methodologies, implemented using new temporal query languages, and run on new temporalDBMSs. 44

AcknowledgmentsThe �rst author was supported in part by the Danish Natural Science Research Council, grants 11{1089{1, 11{0061{1, and 9400911. The second author was supported in part by NSF grantISI-8902707 and ISI-9202244 and by grants from IBM, the AT&T Foundation, and DuPont.6 BibliographyReferences[ADA93] P. Atzeni and V. De Antonellis. Relational Database Theory. Benjamin/CummingsPublishing Company, 1993.[AGM92] R.K. Abbott and H. Garcia-Molina. Scheduling real-time transactions: A performanceevaluation. tods, 17(3):513{560, sep 1992.[Ahm92] R. Ahmed. Personal Communication, mar 1992.[Ari86] G. Ariav. A temporally oriented data model. tods, 11(4):499{527, dec 1986.[Boe94] M. H. Boehlen. Valid time integrity constraints. Technical Report 94-30, uazcsd, nov1994.[BZ82] J. Ben-Zvi. The Time Relational Model. PhD thesis, Computer Science Department,UCLA, 1982.[CC87] J. Cli�ord and A. Croker. The historical relational data model (hrdm) and algebrabased on lifespans. In Proceedings of the International Conference on Data Engi-neering, pages 528{537, Los Angeles, CA, feb 1987. IEEE Computer Society, IEEEComputer Society Press.[CC93] J. Cli�ord and A. Croker. The Historical Relational Data Model (HRDM) Revisited,chapter 1, pages 6{27. Benjamin/Cummings, 1993.[CCT94] J. Cli�ord, A. Croker, and A. Tuzhilin. On completeness of historical relational querylanguages. tods, 19(1):64{116, mar 1994.[CDI+94] J. Cli�ord, C. E. Dyreson, T. Isakowitz, C. S. Jensen, and R. T. Snodgrass. On thesemantics of `now' in temporal databases. Technical Report TR 94-31, Department ofComputer Science, University of Arizona, Tucson, AZ, nov 1994.[CFP84] M. A. Casanova, R. Fagin, and C. H. Papadimitriou. Inclusion dependencies and theirinteraction with functional dependencies. Journal of Computer and System Sciences,28(1):29{59, 1984.[Cod79] E.F. Codd. Extending the database relational model to capture more meaning. tods,4(4):397{434, dec 1979.[CT85] J. Cli�ord and A. U. Tansel. On an algebra for historical relational databases: Twoviews. In S. Navathe, editor, sigmod, pages 247{265, Austin, TX, may 1985. acm.45

[CT90] A. Colijin and P. Thompson. A temporal data model based on accounting principles. InProceedings of the International Conference on Computing and Information, Toronto,Canada, 1990.[CW83] J. Cli�ord and D. S. Warren. Formal semantics for time in databases. tods, 8(2):214{254, jun 1983.[DF92] C.J. Date and R. Fagin. Simple conditions for guaranteeing higher normal forms inrelational databases. tods, 17(3):465{476, sep 1992.[Eva90] C. Evans. The macro-event calculus: Representing temporal granularity. In Proceed-ings of PRICAI, Tokyo, Japan, 1990.[EWK93] R. Elmasri, G. Wuu, and V. Kouramajian. A Temporal Model and Query Languagefor EER Databases, chapter 9, pages 212{229. Benjamin/Cummings, 1993.[Fag77] R. Fagin. Multivalued dependencies and a new normal form for relational databases.tods, 2(3):262{278, sep 1977.[Fag79] R. Fagin. Normal forms and relational database operators. In sigmod, 1979.[Fag81] R. Fagin. A normal form for relational databases that is based on domains and keys.tods, 6(3):387{415, sep 1981.[Fin92] M. Finger. Handling database updates in two-dimensional temporal logic. Journal ofApplied Non-Classical Logics, 2(2), 1992.[Gad86] S. K. Gadia. Weak temporal relations. In pods, Los Angeles, CA, 1986. ACM SIGAct-SIGMod.[Gad88] S. K. Gadia. A homogeneous relational model and query languages for temporaldatabases. tods, 13(4):418{448, dec 1988.[GV85] S. K. Gadia and J. H. Vaishnav. A query language for a homogeneous temporaldatabase. In pods, pages 51{56, mar 1985.[GY91] S. K. Gadia and C.-S. Yeung. Inadequacy of interval timestamps in temporal databases.Information Sciences, 54:1 { 22, 1991.[HM81] M. Hammer and D. McLeod. Database description with sdm: A semantic databasemodel. tods, 6(3):351{386, sep 1981.[JCE+94] C. S. Jensen, J. Cli�ord, R. Elmasri, S. K. Gadia, P. Hayes, and S. Jajodia [eds]. Aglossary of temporal database concepts. sigmod, 23(1):52{64, mar 1994.[JM92] C. S. Jensen and L. Mark. Queries on change in an extended relational model. IEEETransactions on Knowledge and Data Engineering, 4(2):192{200, apr 1992.[JM93] C. Jensen and L. Mark. Di�erential Query Processing in Transaction-Time Databases,chapter 19, pages 457{491. Benjamin/Cummings, 1993.[JMR91] C. S. Jensen, L. Mark, and N. Roussopoulos. Incremental implementation model forrelational databases with transaction time. tkde, 3(4):461{473, dec 1991.46

[JMRS93] C. S. Jensen, L. Mark, N. Roussopoulos, and T. Sellis. Using di�erential techniquesto e�ciently support transaction time. The VLDB Journal, 2(1):75{111, jan 1993.[JS94a] C. S. Jensen and R. Snodgrass. Temporal specialization and generalization. tkde,6(6):954{974, 1994.[JS94b] C. S. Jensen and R. T. Snodgrass. The surrogate data type in tsql2. Commentary,TSQL2 Design Committee, sep 1994.[JSS94] C. S. Jensen, M. D. Soo, and R. T. Snodgrass. Unifying temporal models via aconceptual model. Information Systems, 19(7):513{547, 1994.[JSS95] C. S. Jensen, R. T. Snodgrass, and M. D. Soo. Extending existing dependency theoryto temporal databases. tkde, to appear, 1995.[KL83] M. R. Klopprogge and P. C. Lockemann. Modelling information preserving databases:Consequences of the concept of time. In M. Schkolnick and C. Thanos, editors, vldb,pages 399{416, Florence, Italy, 1983.[Klu82] A. Klug. Equivalence of relational algebra and relational calculus query languageshaving aggregate functions. jacm, 29(3):699{717, jul 1982.[MMCR92] A. Montanari, E. Maim, E. Ciapessoni, and E. Ratto. Dealing with time granularity inthe event calculus. In Proceedings of the International Conference on Fifth GenerationComputer Systems 1992, volume 2, pages 702{712, Tokyo, Japan, jun 1992. ICOT.[Mon73] R. Montague. The proper treatment of quanti�cation in ordinary English. D. ReidelPublishing Co., Dordrecht, Holland, 1973.[MS90] E. McKenzie and R. Snodgrass. Schema evolution and the relational algebra. Infor-mation Systems, 15(2):207{232, jun 1990.[MS91a] E. McKenzie and R. Snodgrass. An evaluation of relational algebras incorporating thetime dimension in databases. compsurv, 23(4):501{543, dec 1991.[MS91b] L. McKenzie and R. T. Snodgrass. Supporting valid time in an historical relationalalgebra: Proofs and extensions. Technical Report TR{91{15, Department of ComputerScience, University of Arizona, Tucson, AZ, aug 1991.[NA89] S. B. Navathe and R. Ahmed. A temporal relational model and a query language.Information Sciences, 49:147{175, 1989.[Ozs][Ram92] K. Ramamritham. Real-time databases. International Journal of Distributed andParallel Databases, 1992.[Ris77] J. Rissanen. Independent components of relations. tods, 2(4):317{325, dec 1977.[RU71] N. C. Rescher and A. Urquhart. Temporal Logic. Springer-Verlag, New York, 1971.[SA85] R. Snodgrass and I. Ahn. A taxonomy of time in databases. In S. Navathe, editor,sigmod, pages 236{246, Austin, TX, may 1985. acm.47

[SA86] R. T. Snodgrass and I. Ahn. Temporal databases. IEEE Computer, 19(9):35{42, sep1986.[Sad80] F. Sadri. Data Dependencies in the Relational Model of Data: A Generalization. PhDthesis, Princeton University, oct 1980.[SC92] A. Segev and R. Chandra. A Data Model for Time-Series Analysis. Springer Verlag,1992.[SJS95] M. D. Soo, C. S. Jensen, and R. T. Snodgrass. An Algebra for TSQL2, chapter 27,pages 505{546. Kluwer Academic Press, sep 1995.[Sno87] R. T. Snodgrass. The temporal query language tquel. tods, 12(2):247{298, jun 1987.[Sno93] R. T. Snodgrass. An Overview of TQuel, chapter 6, pages 141{182. Ben-jamin/Cummings, 1993.[Sno95] R. T. (editor) Snodgrass. The Temporal Query Language TSQL2. Kluwer AcademicPub., 1995.[SRH90] M. Stonebraker, L. Rowe, and M. Hirohama. The implementation of postgres. tkde,2(1):125{142, Mar 1990.[SS87] A. Segev and A. Shoshani. Logical modeling of temporal data. In U. Dayal andI. Traiger, editors, Proceedings of the ACM SIGMOD Annual Conference on Manage-ment of Data, pages 454{466, San Francisco, CA, may 1987. acm, ACM Press.[SS88a] A. Segev and A. Shoshani. The representation of a temporal data model in the rela-tional environment. In Proceeding of the 4th International Conference on Statisticaland Scienti�c Database Management, 1988.[SS88b] A. Segev and A. Shoshani. The Representation of a Temporal Data Model in theRelational Environment, volume 339, pages 39{61. Springer Verlag, 1988.[SS93] A. Segev and A. Shoshani. A Temporal Data Model Based on Time Sequences, chap-ter 11, pages 248{270. Benjamin/Cummings, 1993.[Sto87] M. Stonebraker. The design of the postgres storage system. In P. Hammersley, editor,vldb, pages 289{300, Brighton, England, sep 1987.[Sto90] M. Stonebraker. The postgres dbms (video presentation abstract). In sigmod, AtlanticCity, New Jersey, may 1990.[SU82] F. Sadri and J. Ullman. Template dependencies: A large class of dependencies inrelational databases and its complete axiomatization. jacm, 29(2), apr 1982.[Tho91] P. M. Thompson. A Temporal Data Model Based on Accounting Principles. PhD thesis,Department of Computer Science, University of Calgary, Calgary, Alberta, Canada,mar 1991.[Zan76] C. Zaniolo. Analysis and Design of Relational Schemata for Database Systems. PhDthesis, UCLA, jul 1976.[Zan82] C. Zaniolo. Database relations with null values (extended abstract). In pods, pages27{33, Los Angeles, CA, mar 1982. acm.48

Contents1 Introduction 12 Historical Context 23 Associating Time with Facts 33.1 Temporal Specialization : 43.2 Temporal Generalization : 73.3 Temporal Data Models : 93.4 The Bitemporal Conceptual Data Model : 103.5 Associated Algebraic Operators : 123.6 Representational Models : 143.7 Implications of the BCDM : 153.8 Coalescing and Repetition of Information : 173.9 Now and Forever : 183.10 Summary : 204 Design of Relation Schemas 214.1 Temporal Functional Dependencies : 214.1.1 Generalizing Functional Dependencies to Temporal Databases : : : : : : : : 214.1.2 Temporal Functional Dependencies : 224.1.3 Parameterized Temporal Functional Dependencies : : : : : : : : : : : : : : 234.1.4 Strong Temporal Functional Dependencies : : : : : : : : : : : : : : : : : : : 244.1.5 Using Surrogates : 264.2 Lifespans of Individual Time-Varying Attributes : : : : : : : : : : : : : : : : : : : 274.3 Pattern-Based Synchronism : 294.3.1 Time Patterns of Individual Time-Varying Attributes : : : : : : : : : : : : 304.3.2 Synchronous Decomposition Rule : 324.4 Temporal Interpolation : 354.4.1 Derivation Functions : 374.4.2 Interpolation Functions : 384.4.3 Further Properties of Derivation Functions : : : : : : : : : : : : : : : : : : 394.4.4 Interpolation in Database Design : 404.4.5 Interpolation in Transaction Time : 404.5 Additional Decomposition : 404.5.1 Temporal Support of Attributes : 404.5.2 Temporal Precision of Attributes : 424.6 Summary : 425 Status and Outlook 446 Bibliography 45
49

