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Abstract. When web servers publish data formatted in XML, only the current 
state of the data is (generally) published. But data evolves over time as it is up-
dated. Capturing that evolution is vital to recovering past versions, tracking 
changes, and evaluating temporal queries. This paper presents a system to build 
a temporal data collection, which records the history of each published datum 
rather than just its current state. The key to exchanging temporal data is provid-
ing a temporal schema to mediate the interaction between the publisher and the 
reader. The schema describes how to construct a temporal data collection by 
“gluing” individual states into an integrated history. 

1   Introduction 

An XML schema describes the structure of XML data. The schema is used by a pub-
lisher to format the data for publication and by a reader to validate acquired data and 
add it to a data collection. Validation ensures that the data conforms to the formatting 
rules for XML (is well-formed) and to the types, elements, and attributes defined in 
the schema (is valid). A schema is also used as a guide in interpreting, editing and 
querying the data. Several schema languages have been proposed for XML; among 
them XML Schema is the most widely used. 

Data formatted in XML is already available from many web servers. One example 
of a data provider is the National Center for Biotechnology Information (NCBI). Us-
ers can search the NCBI databases to locate data on genes and proteins. The data can 
then be downloaded in several formats, including as XML. In fact NCBI publishes 
data in three XML schemas. However, NCBI like most XML publishers only pro-
vides the current snapshot of the data. A snapshot is the data that is available at a 
single point in time, stripped of its historical context. But a data collection varies over 
time as new data is inserted and existing data is revised. In general, scientists want to 
know the provenance of their data: who, what, where, and when [3]; the evolution of 
the data is an important part of that provenance. Though NCBI users can download 
the current snapshot, they are unable to track and download changes to data. Obtain-
ing data in an historical context is useful in many applications. For instance, scientific 
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insights gained by analyzing data often have to be revised when the data changes. To 
help determine whether a reanalysis is needed, especially in a large data set where 
manual comparison is infeasible, it is crucial to be able to ascertain whether data has 
been added, modified, or deleted. One might want to look at coarse changes to an 
entire XML document or track the evolution over time of specific elements. 

Fig. 1 illustrates the process by which a user currently downloads data from a pub-
lisher like NCBI. A user requests the current snapshot, Dnow. The data is then added to 
the reader’s data collection, DB, typically by overwriting a previously acquired ver-
sion of D in DB. A better strategy, not currently supported by NCBI, is to transmit 
only the changes to the data, as shown in Fig. 2. A user requests a change summary of 
updates to D from time t, when the user last acquired D, to now. The summary, which 
is represented as “ΔD,” is used to update the local snapshot of D. A Service Data 
Object (SDO) is one technology that supports change summaries [28]. In contrast, 
Fig. 3 shows the process of acquiring temporal data. A user requests a thick slice of 
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Fig. 3. A download of temporal data 

data from time t, when the user last acquired D, to now. The slice as returned by the 
server is represented as “ΔD[t,now].” The temporal data is then added to DB, extending 
the history of D. Unlike the snapshot data in Fig. 1 and Fig. 2, temporal data records 
the entire version history of every data item. 
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Systems that support the publication of and subscription to temporal data need sev-
eral novel features.  

• A data publisher has to add timestamps and other markup to indicate the life-
time of versions of the data.  

• The temporal data produced by a publisher has to be amenable to automatic 
processing on the reader’s side; for instance, the reader has to be able to 
validate the temporal data and update a temporal data store. 

• To conserve bandwidth the slice “ΔD[t-now]” should be compact. Ideally it 
will be proportional in size to the changes to D since time t.  

• It should be possible to validate the changes to a data collection, i.e.,       
ΔD[t-now]. Unfortunately an SDO’s change summary cannot be validated us-
ing the data’s schema, rather the changes must first be applied to the data, 
which must then be entirely re-validated. It would be more desirable if it 
were possible to validate a slice of temporal data in isolation from the rest of 
the data collection.    

• A publisher may have changed its schema since time t, so each step in the 
process must account for changes to the schema as well. 

All of the above features can be supported by using a temporal schema to mediate the 
exchange of XML data. 

This paper utilizes τXSchema (Temporal XML Schema), which is an infrastructure 
and suite of tools for constructing and validating XML data collections as both the 
data [8] and schema [10] evolve, though in this paper we consider only the data evo-
lution aspects of τXSchema. τXSchema extends XML Schema with the ability to 
define temporal element types.1 A temporal element type denotes that an element can 
vary over time, describes how to associate elements in different snapshots, and pro-
vides constraints that broadly characterize how an element evolves. Biologists are 
reticent to learn a new data model, or even a significant extension of a data model 
with which they have just gotten comfortable. Similarly, they don't want to have to 
acquire and learn how to use a new suite of tools that comes with the new data model. 
Hence, an important goal in the development of τXSchema was to maximally reuse 
existing XML standards and technology. In τXSchema, any element type can be de-
noted as a temporal element type by including a single, simple temporal annotation in 
the type definition. So a τXSchema document is just a conventional XML Schema 
document with a few temporal annotations. The tools operate in most cases identically 
to extant tools and in fact utilize those existing tools, such as conventional validating 
parsers. In most cases, the scientists don't even need to care if their XML data is static 
or temporal. 

This paper is organized as follows. The next section motivates the differences be-
tween conventional (static) XML data and temporal XML data. We then discuss how 
snapshots of a temporal data collection are glued to create items and versions. The 
extensions to XML Schema to support temporal data are presented in Section 4.  
Section 5 sketches the process of constructing a representational schema. The paper 
concludes with a discussion of related work and a summary. 

                                                           
1 This use of “temporal element” is a generalization of “XML element,” and is not related to the 

“temporal element” defined by Gadia [11]. 
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2   Example  

Assume that data on the gene trypsin 4 (TRY4) is described in an XML data collec-
tion called gene.xml. The collection has information about gene function, which is 
described using the Mouse Genome Institute ontology. On 2005-01-01 the function of 
TRY4 was unknown as shown by the XML in Fig. 4. In subsequent months, new 
scientific data about TRY4 became available. On 2005-02-14 it was learned that 
TRY4 is involved in synthesizing the trypsinogen protein. The value of the “function” 
attribute was updated creating a new version of the data, as shown in Fig. 5. On 2005-
03-06, the gene description became more specific, relating TRY4 to β-cell receptors 
so an additional “desc” element was inserted as shown in Fig. 6. 

Researchers that prepared a paper on TRY4 in 2005-01 would like to learn of any 
updates to the TRY4 data since that time, and in particular how the data has changed. 
Certain changes will require a new analysis of their experiments. But the data in each 
figure is the data at a single point in time. Instead of the current snapshot, the re-
searchers need the version history, which consists of the information in each version 
of the data along with a timestamp indicating the version’s lifetime. The version his-
tory would describe how the knowledge about a particular gene has changed over 
time. This is of particular interest since new genomic and proteomic data is being 
constantly generated, and existing data is being revised and corrected. A version his-
tory would also aid in time-related analysis such as in tracking how a disease and its 
symptoms evolve over time (e.g., in an epidemic like the avian flu). 

 
  <gene name="TRY4"> 
      <desc>trypsin 4</desc> 
      <ontology ref="MGI" function="unknown"/> 
  </gene>  

Fig. 4. gene.xml on 2005-01-01 

 
  <gene name="TRY4"> 
      <desc>trypsin 4</desc> 
      <ontology ref="MGI" function="synthesizes trypsinogen"/> 
  </gene>  

Fig. 5. TRY4 codes for a protein, as of 2005-02-14 

 
 <gene name="TRY4"> 
     <desc>trypsin 4, beta-cell receptor</desc> 
     <ontology ref="MGI" function="synthesizes trypsinogen"/> 
 </gene>  

Fig. 6. TRY4 is related to β-cell receptors, as of 2005-03-06 

Fig. 7 shows the temporal data that captures the history of the TRY4 data. The data 
is largely a list of gene and ontology items. The concept of an item is a central contri-
bution of this paper. An item is an element that persists across individual snapshots. 
Each item has an itemId attribute that uniquely numbers the item. There is one gene 
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item in the data, and one ontology item. Each item is referenced by a temporal ele-
ment, which places it in the context in which it appears in a snapshot of the data. For 
example, in Fig. 7 the element <ontologyTemporal> references the ontology item, 
which indicates that a version of that item appears within the context of a <gene> 
element for each snapshot in the range of the version’s timestamp. 

 <dataTemporal> 
  <data><geneTemporal itemRef="1"/></data> 

  <geneItem itemId="1"> 

    <geneVersion><time start="2005-01-01" end="2005-03-05"/> 
      <gene name="TRY4"> 
        <desc>trypsin 4</desc> 
        <ontologyTemporal itemRef="2"/> 
      </gene> 

    </geneVersion> 

    <geneVersion><time start="2005-03-06" end="now"/> 
      <gene name="TRY4"> 
        <desc>trypsin 4, beta-cell receptor</desc> 

        <ontologyTemporal itemRef="2"/> 
      </gene> 

    </geneVersion> 

  </geneItem> 

  <ontologyItem itemId="2"> 

    <ontologyVersion><time start="2005-01-01" end="2005-02-13"/> 
      <ontology ref="MGI" function="unknown"/> 
    </ontologyVersion> 

    <ontologyVersion><time start="2005-02-14" end="now"/> 
      <ontology ref="MGI" function="synthesizes trypsinogen"/> 
    </ontologyVersion> 

  </ontologyItem> 

</dataTemporal>  

Fig. 7. Temporal XML data 

Whenever the item changes, a new version of the item is created. A change is de-
fined, roughly, as a difference in an element’s nontemporal content, exclusive of 
changes to content within the element’s temporal subelements. Hence, the gene item 
has two versions. The second version was created on 2005-03-06 when new text con-
tent was added to the nontemporal <desc> element. The timestamp for each version 
indicates the version’s lifetime. The end time of the second version is “now” indicat-
ing that the version is current. The ontology item also has two versions, because an 
attribute value was changed on 2005-02-14. 

Note that the history of each item in a temporal data collection is more than just the 
current snapshot. It records not only the current state of the data, but all previous 
versions as well, and has timestamps to indicate when each version was current. 
Hence, a temporal data collection is unlike an SDO or related technology that records 
only a single snapshot and/or a summary of changes from the previous version. 
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A second contribution of this paper is a description of how to construct the tempo-
ral data (Fig. 7) by gluing the data in individual snapshots (Fig. 4, Fig. 5, and Fig. 6). 
The history in Fig. 7 captures the transaction time lifetime of each version [14]. 
Transaction time is the system time when the data was edited.2  

A third contribution of this paper is explaining how to compactly represent in 
XML the change across a number of versions. Though the temporal data shown in 
Fig. 7 appears verbose in this small example, in general, it is actually compact in the 
sense that each edit results in only a localized change to the data (basically, a new 
version is created within an item). Fig. 8 shows the difference between the first and 
second versions of the data. The difference is a new version of the ontology element. 
The ability to represent the difference between two versions in isolation from the rest 
of the data is useful in both data streaming and refreshing data from a remote source, 
since the change is usually much smaller in size than the entire collection or even a 
snapshot. Note that the value of the itemId attribute in Fig. 8 is local to the temporal 
data being exchanged (the value of the attribute could be “23”). 

   <dataTemporal> 
    <ontologyItem itemId="1"> 

      <ontologyVersion><time start="2005-02-14" end="now"/> 
        <ontology ref="MGI" function="synthesizes trypsinogen"/> 
      </ontologyVersion> 

    </ontologyItem> 

  </dataTemmporal> 
 

Fig. 8. The difference between two versions 

A fourth contribution is the description of a process to construct a schema to vali-
date and interpret the temporal data. Although publishers can provide temporal data, 
there must be some means of interpreting such data. Typically, the structure of pub-
lished data is described in an associated schema document. Assume that the file 
gene.xsd contains the snapshot schema for gene.xml. The snapshot schema is 
the schema for an individual version. The snapshot schema is a valuable guide for 
editing and querying individual snapshots. The snapshot schema is given (in part) in 
Fig. 9. Note that the schema describes the structure of the fragments shown in Fig. 4, 
Fig. 5, and Fig. 6. Though the individual snapshots conform to the schema, the tempo-
ral data does not. So a snapshot schema such as gene.xsd cannot be used (directly) 
to validate or interpret the temporal data of Fig. 7. Nor can the schema be used to 
validate version differences, such as the fragment shown in Fig. 8. In our approach a 
snapshot schema is annotated with additional information to create a temporal 
schema. The temporal schema describes, at a logical level, which elements can vary 
over time, and how those elements can change. Fig. 10 shows the temporal schema 
for the running example. The temporal schema includes annotations for both the gene 
                                                           
2 Temporal data could also record the valid time versions (valid time is real world time) but for 

simplicity we consider only one kind of time in this paper, i.e., the transaction and valid times 
are the same (other relationships between valid and transaction time [16] can be easily mod-
eled in our framework). 
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and ontology element type definitions. The annotations are shaded gray in the figure. 
(Section 4 describes the annotations in detail.) We present the temporal schema here 
to emphasize that τXSchema is fully-upwards compatible with XML Schema; that is, 
it extends but does not change XML Schema. A further advantage of our approach is 
that the temporal schema can also be used to validate the differences between ver-
sions, such as the data in Fig. 8. 

   <element name="gene"> 
    <complexType> 
      <attribute name="name" type="text" use="required"/> 
      <sequence> 
        <element name="desc" type="string"/> 
        <element ref="ontology" minOccurs="0" maxOccurs="unbounded"/> 
      </sequence> 
    </complexType> 
  </element> 
  <element name="ontology"> 
    <complexType> 
      <attribute name="ref" type="text"/> 
      <attribute name="function" type="text"/> 
    </complexType> 
  </element>  

Fig. 9. An extract from the gene data schema 

   <element name="gene"> 
    <txs:temporal> 
      <txs:ItemIdentifier> 
        <txs:field path=”@name”/> 
      </txs:ItemIdentifier> 
      <txs:transactionTime kind=”state” contentVarying=”true” 
          existenceVarying=”no gaps”/> 
    </txs:temporal> 

      definition of gene from the snapshot schema omitted for space 
  </element> 
  <element name="ontology"> 

    <txs:temporal> 
      <txs:ItemIdentifier> 
        <txs:field path=”../@name”/><txs:field path=”@function”/> 
      </txs:ItemIdentifier> 
      <txs:transactionTime kind=”state” contentVarying=”true” 
          existenceVarying=”gaps allowed”/> 
    </txs:temporal> 

      definition of ontology from the snapshot schema omitted for space 
  </element>  

Fig. 10. An extract from a temporal schema 

3   Items and Versions 

This section briefly reviews concepts related to temporal data and then discusses how 
to temporally associate elements in different snapshots to create temporal data.  
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Let D be an XML document or data collection. D is typically modeled as an or-
dered tree, D = (E, V), where E is the set of edges and V is the set of nodes. Each edge 
in E is of the form (v, w, n) where v is the parent, w, is the child, and n is an ordinal 
representing the position of the child in the lexical ordering of the children. We will 
refer to XML data acquired from a (non-temporal) document as a snapshot indicating 
that it is the data at a single point in time.  

Temporal data represents the history of a sequence of snapshots. Let DT be a tem-
poral data collection. The snapshot operation extracts a complete snapshot of DT at a 
particular time. Timestamps are not represented in the snapshot. The snapshot opera-
tion is denoted as snap(t, DT) = D where D is the snapshot at time t of  DT.  

Note that we haven’t yet described the structure of temporal data, however it 
should faithfully capture entire snapshots as stated in the following definition. 

Definition [Snapshot reducibility]. Let DT be a temporal data collection. DT is said to 
be snapshot reducible to the sequence of snapshots D1, …, Dn iff for each 1 ≤ k ≤ n, 
Dk = snap(k, DT). 

To create compact temporal data it is important to identify which elements persist 
through changes to a data collection. We will sometimes refer to the process of asso-
ciating elements that persist across various snapshots as gluing the elements. When a 
pair of elements is glued, an item is created. An item is an element that evolves over 
time through various versions. Only temporal elements (that is, elements of a type that 
has a temporal annotation as described further in Section 4) are candidates for gluing.  

Determining which elements should be glued depends on two factors: the type of 
the element, and the item identifier for the element’s type. The type of an element is 
the element’s definition in the schema. We will denote the type of an element as T. An 
element can be glued only to an element or item of the same type. An item identifier 
is a list of XPath expressions (much like a key in XML Schema) so we first define 
what it means to evaluate an XPath expression. 

Definition [XPath evaluation]. Let Eval(x, E) denote the result of evaluating an XPath 
expression E from a context node x. Given a list of XPath expressions, L = [E1, …, 
Ek], then Eval(x, L) = [Eval(x, E1), …, Eval(x, Ek)]. 

Since an XPath expression evaluates to a list of values, Eval(x, L) evaluates to a list of 
lists. An item identifier is a list of XPath expressions. 

Definition [Item identifier]. An item identifier for a temporal type, T, is a list of 
XPath expressions, LT, such that for each element x of type T , Eval(x, LT) names the 
item to which x belongs.  

Each item identifier is specified by a schema designer (elsewhere we sketch a method 
for automatically constructing them [32]). Often an identifier will be the (snapshot) 
key for the element type given in the schema [4]. But an item identifier may differ 
from a snapshot key since the identifier should be a temporally-invariant key [22].  

Example [Item identifiers]. As an example, a designer might specify the following 
item identifiers for the temporal elements in Fig. 7.  

• <gene> → [@name] 
• <ontology> → [../@name, @function ] 
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The item identifier for a <gene> is the name of the gene, while the item identifier for 
an <ontology> is the gene’s name (its parent’s item identifier) combined with the 
gene’s function attribute value. 

We will further restrict item identifiers to be unique within a snapshot, that is, at most 
one element in each snapshot can belong to an item. Over time, elements that belong 
to different snapshots will belong to the same item. Elements that are temporally 
adjacent can be associated within an item as defined below. 

Definition [Temporal adjacency]. Let x be an element of type T in snap(i, DT). Let y 
be an element of type T in snap(j, DT). Finally let LT be the item identifier for elements 
of type T. Then x is temporally adjacent to y if and only if Eval(x, LT) = Eval(y, LT) 
and it is not the case that there exists an element z of type T in a snapshot between 
(exclusive) the ith and jth snapshots such that Eval(z, LT) = Eval(x, LT). 

When an item is temporally adjacent to an element in a new snapshot, the element 
either creates a new version of the item or extends the lifetime of the latest version 
within the item. So an item is a sequence of versions and associated timestamps. The 
lifetime of each version is a set of maximal, disjoint time periods. 

Definition [Item]. Let item(x) be the item named by Eval(x, LT) where x is of type T. Then 
item(x) = [(v1, t1), …, (vn, tn)] where each vi is a version of x with lifetime ti (1 ≤ i ≤ n). 

A version represents the content of an item in a snapshot. Basically, the version is a 
copy of the subtree rooted at the item, and each branch in the copy terminates at a leaf 
(attribute node, text node, etc.) or at the first element on that branch that is associated 
with an item. The element is replaced in this version with an item reference. 

Definition [Version]. Let item(x) be an item of type T in snapshot D=(E, V). Let (Ex, 
Vx) be the subtree rooted at x in D. Then version(x, D) = (Ev, Vv) where  

  Ev = {(av, bv, n) | (ax, bx, n) ∈ Ex ∧   (bx is an item ⇒ bv is an item reference)  
            ∧ (ax is an item ⇒ av = x) ∧ (ax and bx are not items ⇒ av = ax ∧ bv = bx)} 

and  Vv = {v | (v, _, _) ∈ Ex ∨ (_, v, _) ∈ Ex} ∪ {x}. 

Example [Items]. Versions appear throughout the example of temporal data shown in 
Fig. 7. The first version of the <gene> item is a copy of the <gene> element in Fig. 
4, which is the first snapshot of the data. Note that the <ontology> element is an 
item, so it has been replaced in Fig. 7 by an item reference whereas the <desc> 
element is unchanged since it is not an item. 

A lifetime of a version is computed separately. The lifetime is extended when “no 
difference” is detected in the associated element. Differences are observed within the 
context of the Document Object Model (DOM). 

Definition [DOM equivalence]. A pair of item versions is DOM equivalent if the pair 
meets all of the following conditions: they have the same number of children, same 
element tag, same set of attributes (an attribute is a name, value pair), and same text 
content, and for each child, the child is DOM equivalent to the corresponding child of 
the other (in a lexical ordering of the children). 
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As an aside, we observe that DOM equivalence in a temporal XML context is akin to 
value equivalence in a temporal relational database context.  

DOM equivalence is used to determine versions of an item, as follows.  

Definition [Versioning]. Let item(x) = [(v1, t1), …, (vn,tn)]. Let item(y) in snapshot D 
be temporally adjacent to item(x). Assume D is current during the period [t, t+k] 
where t is later than any time in tn. If vn is DOM equivalent to version(y, D) then the 
lifetime of vn is extended to be tn ∪ [t, t+k]. Otherwise, version vn+1, consisting of 
version(y, D), is added to item(x). The lifetime of vn+1 is [t, t+k]. 

A version’s lifetime is extended when the version from the next snapshot (or a future 
snapshot) is DOM equivalent (the lifetime can have gaps or holes, although having a 
gap may violate a schema constraint as described in Section 4). A new version is 
created when temporally adjacent elements in the same item are not DOM equivalent. 

Example [Versions]. Fig. 11 depicts the items and versions in the example in Section 2. 
An abstract representation of the DOM for each snapshot of the data is shown. The 
items in the sequence of snapshots are connected within each gray shaded region. There 
is one gene item and one ontology item. Each item has two versions. The transition 
between versions is shown as a black rectangle on the gray connection arcs. The gene 
item has a new version when the content of the <desc> element changes and the on-
tology item has a new version when its content is modified on 2005-02-14. 
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Fig. 11. Items and versions in the example 

4   XML Schema Extensions 

τXSchema extends XML Schema with a single annotation to denote temporal element 
types, but otherwise leaves XML Schema unchanged. The annotation is a 
<txs:temporal> element that can appear in the content of any element type defi-
nition. The annotation denotes that elements of that type can be time-varying. The 
txs namespace indicates that the annotation is part of τXSchema. Within a 
<txs:temporal> element there must appear an item identifier. Such an identifier 
has the following general form. 

  <txs:itemIdentifier 
     <txs:field path="XPath expression"/> 
     … 
     <txs:field path="XPath expression"/> 
  </txs:itemIdentifier> 
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An item identifier is list of fields, each of which is a (relative) XPath path expression. 
Temporal constraints are optional. The constraints are evaluated after an item is 

glued. The constraints are separately specified for each kind of time, though in this 
paper we focus only on transaction time. The constraint specification for a 
<txs:transactionTime> element has the following general form. 

  <txs:transactionTime 
     txs:kind="state (default) | event" 
     txs:contentVarying="false (default) | true" 
     txs:existenceVarying="false |  gaps allowed (default) |  no gaps"/> 

The kind attribute specifies whether the lifetime of an item has duration; a state 
kind of annotation implies continuity, while an event signifies that the lifetime is a 
single instant. The terminology is borrowed from temporal databases [14] where 
events occur at a single instant in time (e.g., a wedding on July 14, 2005), whereas a 
state occurs over a period of time (e.g., married from July 14, 2005 until now). The 
contentVarying attribute is used to specify whether an item’s content must be 
constant over time, or can vary. The existenceVarying attribute governs 
whether the item can come and go in various snapshots. If the value of the attribute is 
false, then the item must be in every snapshot (or never appear). If the existence is no 
gaps, then once the item has been deleted from a snapshot, it cannot reappear in a 
later snapshot. Otherwise, the item’s existence is unrestricted. Each attribute is op-
tional, as is the transaction time element. If the attribute is not specified, the indicated 
default value applies. 

Example [τXSchema]. The biologists in our running example are interested primarily 
in tracking two kinds of changes to the NCBI data: revisions of the gene itself and 
revisions of the ontology elements. Since NCBI does not publish a temporal schema, 
biologists must download individual snapshots and maintain a temporal data collec-
tion locally. Towards this end they create the temporal schema given in Fig. 10. The 
gene and ontology element type definitions given in the snapshot NCBI schema are 
annotated to indicate that they are temporal element types, and so a version history 
will be kept for each element of those types. While genes can be both content and 
existence varying, a gene’s existence is slightly constrained to disallow gaps since a 
gene. The constraint specifies that in order for the data to be valid a gene cannot be 
deleted and then (later) reinserted.  

Currently, τXSchema has a restricted set of temporal constraints. Richer classes of 
temporal constraints have been proposed [7], but for simplicity and brevity we limit 
the variety of constraints in the current system. 

5   The Representational Schema 

The representational schema is a conventional XML Schema document that is auto-
matically generated from a τXSchema document. It is used to validate temporal data 
using a conventional validating parser. This section describes how to weave the tem-
poral annotations into a snapshot schema to create the representational schema. The 
representational schema is transitory; it is needed only for validation, and in fact need 
never be seen by the user. 
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An XML Schema specification can be viewed as a grammar. The grammar consists 
of productions of the following form for each element type. 

  S → <s> α </s> 

In the above production, α describes the content of elements of type S.  
A temporal schema denotes that some of the element types are time-varying. To 

construct a representational schema, several new productions are added to the schema 
for each temporal element type; no productions are removed from the non-temporal 
schema though some are modified. Since only elements can be temporal, this section 
focuses on the element-related components of a schema. The construction process 
consists of several steps. We’ll illustrate the process by describing what is done for a 
single, representative temporal element type, S.  

The first step is to add a production to indicate that the element type S is temporal. 
The temporal production has following form: 

  STemporal → <sTemporal itemRef="m"/> 

where <sTemporal> denotes a temporal element of type S and itemRef is a reference 
to an item of type S. Next a production is added to define the S item type. 

  SItem→ <sItem itemId="n"> SVersion+ </sItem> 

An item has a unique itemId value, and consists of a list of versions. The third step 
is to add a production to specify each version of type S. The production for a version 
of an element of type S has the following form:  

  SVersion→ <sVersion> τ S </sVersion> 

where τ is the schema of the timestamp and S is the non-temporal definition of the 
element’s type. The timestamp in a version records the lifetime of the version. We do 
not impose a particular schema for a timestamp, rather we assume that the schema is 
given separately and imported into the temporal document’s schema. Without loss of 
generality we will assume that each timestamp has the following form. 

  τ → <time start="…" end="…"/> 

The next step is to modify the context in which a temporal element appears. For 
each temporal element type, S, that appears in the left-hand-side of a production, 
replace S with STemporal. For example, assume that the schema has a production of the 
following form: 

  X → <x> β S γ </x> 

where β and γ describe arbitrary content before and after S, respectively. The produc-
tion is replaced by the following production. 

  X → <x> β STemporal γ </x> 

Only the element type is replaced, any other constraints on the element are kept (e.g., 
minoccurs and maxoccurs are unaffected). 

This process is repeated for every temporal element type. The final step is to aug-
ment the root element type with an additional production that appends a list of items. 
Let the root be an element of type R. Then the new root becomes the following. 

  RTemporal → <dataTemporal> R? XItem* </dataTemporal> 
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where XItem is a list of item types. The production for XItem is given below, where 
each Si

Item
 is one of k item types. 

  XItem
 →  S1

Item | … | Sk
Item 

An additional step is needed to recast constraints that appear in the original schema. 
One such constraint is the uniqueness constraint imposed by a DTD identifier or XML 
Schema key definition. Since the same identifiers and key values can appear in multi-
ple versions of an element, such values are no longer unique in a temporal document, 
even though they are unique within each snapshot. In temporal relational databases, 
the concept of a temporal key, which combines a snapshot key with a timestamp, has 
been introduced. Temporal keys can be enforced by a temporal validating parser, but 
not by a conventional parser. So constraints that impose uniqueness within a snapshot 
must be relaxed or redefined as follows. The value of each id type attribute in a time-
varying element is rewritten to be a unique value; idRefs are similarly rewritten. 
Finally, schema keys are rewritten to include itemIds and version start and end 
times, creating a temporal key.  

It is important to note that the production for the root of the temporal data specifies 
that it is just a list of items. This enables temporal data to be incrementally validated, 
which is critical in data streaming applications. 

Example [Representational schema construction]. Let’s go through the construction 
process with an example. Assume that the productions in the schema for the example 
in Fig. 6 are given below. 

     R→ <data> G+ </data> 
     G→ <gene> D[ N | text ]* </gene> 
     D→ <desc> text </desc> 
     N→ <ontology ref="text"> text </ontology> 

Next, assume that the <ontology> element type is temporally annotated, as in Fig. 
10. The schema would be transformed as follows. First, productions are added for the 
temporal elements. 

     NTemporal → <ontologyTemporal itemRef="m"/> 
Next, productions are added for the items of temporal elements. 

     NItem→ <ontologyItem itemId="n"> NVersion+ </ontologyItem> 
Productions are then added for each version type, and for the timestamp(s) in each version. 

    NVersion→ <ontologyVersion> τ N </ontologyVersion> 
    τ → <time start="…" end="…"/> 

Next, the root is modified to include the new productions. 
     RTemporal→ <dataTemporal>R? [GItem|NItem]* </dataTemporal> 

6   Related Work 

Temporal databases has been an area of intense study for the past 25 years [[29]], 
with Oracle now perhaps having the most mature temporal support: transaction-time, 
valid-time, and bitemporal tables, current modifications, and automatic support for 
temporal referential integrity [[25]]. Concerning the representation of temporal data 
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and documents on the web, Grandi has created a bibliography of previous work in this 
area [13]. Marian et al. [20] discuss versioning to track the history of downloaded 
documents. Chien, Tsotras and Zaniolo [5] have researched techniques for compactly 
storing multiple versions of an evolving XML document. Buneman et al. [4] provide 
another means to store a single copy of an element that occurs in many snapshots. 
This paper differs from all of the above papers since our focus is on temporal schemas 
and validation. 

It is possible to capture transaction time information for documents through change 
analysis, as discussed below. Cho and Garcia-Molina [6] provide evidence that some 
web resources change frequently (though not specifically XML resources). Nguyen et 
al. [23] describe how to detect changes in XML documents that are accessible via the 
web [30]. Dyreson et al. [9] describe how a web server can capture some of the ver-
sions of a time-varying document. Yu and Popa provide an algorithm to convert either 
a list of changes or just the original and altered schema to a (more semantic) evolution 
mapping [31]. 

There are various XML schemas that have been proposed in the literature and in 
the commercial arena. We chose to extend XML Schema because it is backed by the 
W3C and supports most major features available in other XML schemas [19]. It 
would be relatively straightforward to apply the concepts in this paper to develop time 
support for other XML schema languages; less straightforward but possible would be 
to apply our approach to other data models, such as UML [24]. As an example, we 
have extended the Unifying Semantic Model, a conceptual model similar to the ER 
Model, to utilize annotations [17] very similar to what we propose here. 

Recently there has been interest in incremental validation of XML [2][26]. 
τXSchema takes a orthogonal approach to incremental validation in so far as the 
changes to documents can be validated in isolation. 

Only one paper has previously addressed the issue of validating temporal data [8]. 
In previous work we developed the τXSchema data model and architecture. In this 
paper we extend the architecture with items and versions, and a different construction 
process for the representational schema. Also, this paper directly extends XML 
Schema, unlike our previous paper. 

τXSchema focuses on instance versioning (representing a time-varying XML in-
stance document) rather than schema versioning [12][27]. The schema describes which 
aspects of an instance document change over time. But we assume that the schema 
itself is fixed, with no element types, data types, or attributes being added to or re-
moved from the schema over time. In other work we consider schema versioning [10]. 

One final area of related work is intensional XML data (also termed dynamic XML 
documents [1]), that is, parts of XML documents that consist of programs that gener-
ate data [21]. Incorporating intensional XML data is beyond the scope of this paper. 

7   Conclusion 

This paper presents τXSchema, which extends XML Schema to support temporal 
data. τXSchema helps schema designers easily convert existing snapshot schemas to 
temporal schemas for the construction, management, and validation of temporal data 
and documents. A temporal schema is created by adding annotations to denote that 
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some element types are temporal. Each annotation includes an item identifier, which 
is used to glue elements, yielding an item. Each change in an item over time creates a 
new version of the item. To validate a temporal document, a temporal schema is first 
converted to a representational schema, which is a conventional XML Schema 
document that describes how the temporal information is represented. The representa-
tional schema is carefully constructed to ensure every snapshot of the temporal docu-
ment conforms to the snapshot schema (which is the temporal schema without the 
temporal annotations). A conventional validating parser is then used to validate the 
temporal document against the representational schema. The temporal document is 
also checked by a temporal constraint checker. 

The architectural design of the infrastructure and even of the schema language it-
self is driven by the critical requirement from biologists, and indeed, from data users 
generally, of upward compatibility, of data, of schemas, and even of tools and infra-
structure, in the support of time-varying data. This paper has demonstrated how a 
schema for time-varying data can be extended very simply from a snapshot schema, 
and then how the data manipulation, principally gluing and validation of such data 
and schema, can be done, utilizing conventional, well-understood tools. 

In future we plan to integrate τXSchema with an XML-based editor. By incorporat-
ing τXSchema, an editor should be able to provide improved revision control and a 
change tracking feature. We have done this for an editor for the afore-mentioned 
temporal USM conceptual model [18]; it turns out that the upward-compatibility of 
the language design extends even to design support environment. Another broad area 
of work is optimization and efficiency. Currently there is no separation of elements or 
attributes based on the relative frequency of update. In the situation that some ele-
ments (for example) vary at a significantly different rate than other elements, it may 
prove more efficient to split the schema into pieces such that elements with similar 
“rates of change” are together [15]. 
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