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ABSTRACT 

Recently, attention ha8 been focuased on historical databases (HDBe), representing an en- 
terpriee over time. We have developed a new language, TQuel, to query an HDB. TQuel ia 
a superaet of Quel, the query language in the Ingres relational database manogement sya- 
tern. This paper provide8 an overview of the language, motivating the vorioua deaign deci- 
siona with the objective that it be a minimal eztenaion, both eyntactically and semantically, 
of Quel. 

INTRODUCTION 
Most conventional databases, whether based 

the hierarchical, network, relational, or entity- 
relationship model, represent the state of an enter- 
prise at a single moment of time. Although they 
continue to change as new information is added, 
these changes are viewed as modifications to the 
state, with the old, out-of-date data being deleted 
from the database. The current contents of the 
database may be viewed as a snapshot of the enter- 
prise at a particular moment of time. 

Recently, dttention has been focussed on hi8- 
torical databases, representing many states of an 
enterprise over an interval of time. In such da& 
bases, changes are viewed as additions to the infor- 
mation in the database, reflecting the progress of 
the enterprise over time. Historical databases 
(HDBs) are thus generalizations of conventional 
(termed static) databases. 

We have developed a new language, TQueI 
(Temporal QCrEry Language), to query an HDB. 
The language was originally used in a monitoring 
system based on the relational model (Snodgrass 
198Z], but it may be used on HDBs having nothing 
to do with monitoring. TQuel is a superset of Quel 
[Held et al. 19751, the query language for the Ingres 
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relational database management system [Stone- 
braker et al. 19761. The result is a natural exten- 
sion of a static relational query language into one 
which may query a historical database. 

This paper discusses the basic design deci- 
sions in the context of previous efforts in section 2, 
and provides an overview of the language in the 
third section. Aggregates and defaults in TQuel 
are the topics 01 sections 4 and 5. The final section 
concludes with a brief overview of progress on 
developing a formal semantics for TQuel, and a 
description of the implementation. The appendix 
gives the complete syntax of the TQuel retrieve 
statement. 

2. QUERY LANGUAGES FOR HISTORI- 
CAL DATABASES 

Temporal information has been stored in 
computerized information systems for many years. 
Payroll and accounting systems are but two exam- 
ples. In these systems, the attributes involving time 
are manipulated solely by the application pr+ 
grams; the DBMS interprets dates as values in the 
base data types. For example, the ENFORM da& 
base management system encodes dates and times 
in character arrays [Tandem 19831; the Query-by- 
Example system supports both date and time 
domain types directly [Bontempo 19833; and Ingres 
has been extended with a time expert able to con- 
vert dates to and from an internal format and to 
perform comparisons and arithmetic operations on 
these domains [Overmyer & Stonebraker 1984. 
None of these systems interpret temporal domains 
when deriving new relations. 

The need to handle time more comprehen- 
sively surfaced in the early 1970’s in the area of 
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medical information systems, where a patient’s 
medical history is particularly important. The 
model supported by TOD (for Time Oriented Data 
bank) (Wiederhold et al. 19751 and several other 
medical DBMS6 (e.g., CLINFO [Palley et al. 19761) 
views the database as a set of entity-attribute- 
value-time quadruples, where the time portion indi- 
cates when the information represented by the 
tuple became valid. Hence, only events are 
recorded. In these systems, the query language is 
used to select subsets of quadruples from the three 
dimensional database of entities (i.e., patients), 
attributes, and times. 

In the last five years, there has been increased 
interest in the area of HDBs. In a recent, quite 
extensive bibliography [Bolour et al. 19821, contain- 
ing 69 articles from the period 1960 to June, 1982, 
over half of the referenced articles were published 
since 1978. This activity may be loosely cl&lied 
into three emphases: the formulation of a semantics 
of time at the conceptual level, the development of 
a model for HDBs analogous to the relational 
model for static databases, and the design of tem- 
poral query languages. It should be noted that the 
problems inherent in the modeling of time are not 
unique to information processing; there is a 
significant literature on related issues in logic (c.f., 
[McArthur 1976, Prior 1967, Rescher & Urquhart 
1971]), philosophy (c.f., [Whitrow 19801), linguistics 
(c.f., [Dowty 1972, McCawley 1971, Montague 
1973]), physics (c.f., (Taylor & Wheeler 19661), and 
artificial intelligence (c.f., [Findler 62 Chen 1971, 
Kahn & Gorry 19751). 

Bubenko [Bubenko 1976, Bubenko 19771, sug- 
gested a specification of an HDB and examined two 
possible implementation strategies, in the binary 
and n-ary relational models. Since the appearance 
of this paper, various semantic models have been 
proposed that incorporate the temporal dimension 
to varying degrees [Anderson 1981, Anderson 1982, 
Breutmann et al. 1979, Bubenko 1980, Codd 1979, 
Hammer & McLeod 1981, Klopprogge 19811. 

There are at least two possible approaches to 
the development of a model for HDBs. One is to 
extend the semantics of the relational model to 
directly incorporate time. The other is to base 
HDBs on the static model, with time appearing as 
an additional domain type. The first has been suc- 
cessfully applied by Clifford and Warren [Clifford & 
Warren 19831, with the entity-relationship model 
used in the formulation of the intensional logic IL,. 
This logic serves as a formalism for the temporal 
semantics of an HDB much as the first-order logic 
serves as a formalism for the. static relational 
model. Sernadas has take the same approach in 

defining the temporal process specification language 
DMTLT, which incorporates a special modal tense 
logic [ Sernadas 19801. 

In the second approach, the static relational 
database model jCodd 19701 serves as the underly- 
ing model of the HDB. Each relation contains an 
additional temporal domain specifying when that 
tuple was valid. The query language must provide 
the appropriate values for this domain in the rela- 
tion being derived. Several benefits accrue from 
such an approach. The relational database model is 
simple and is based on the well-developed formal- 
isms of set theory and predicate calculus; database 
models directly incorporating time are significantly 
more complex, and are based on newer and less 
developed logics such as Montague, multiple transi- 
tion, and temporal logics. Extensions involving 
aggregates and indeterminacy are easier to formu- 
late in the standard model. Finally, a temporal 
database based on the relational model can be 
implemented directly on conventional relational 
database management systems, utilizing the 
significant results obtained in this area in the past 
decade. Many of the same advantages resulted 
from a similar approach in the design of GEM, a 
query and update’language for a (static) semantic 
data model [Zaniolo 19831. 

Three query languages taking this approach 
have appeared in the literature. DATA (Dynamic 
Alerting Transaction System) extends the relational 
model to include time by viewing the database as 
time-ordered lists of transactions, each consisting of 
a tuple and a time when that tuple became valid 
[Ariav t Morgan 19811. The database can be 
queried at previous points of time, or a sequence of 
recorded events between two times may be 
displayed. The query language effectively accesses 
a static database embedded in the HDB. 

There have been two relational query 
languages developed that include temporal con- 
structs. Ironically, both evolved from projects con- 
cerned more with the application of data base con- 
cepts to other areas than with the development of 
a new query language. The first, LEGOL 2.0, 
involved formalizing legislation, where the history 
of a case is particularly relevant [Jones, et al. 1979, 
Jones 62 Mason 19801. The model supported by 
this system allows time attributes specifying the 
period of time each tuple is valid; events may not 
be stored. LEGOL 2.0 is based on the relational 
algebra (Codd 19721. The language was never 
implemented, although an earlier version of the 
language was implemented [Stamper 19761 using 
ISBL /Todd 1976). In addition, there has been no 
attempt at a formalization either of the language 
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or of the way the tempoial constructs of the 
language were to be implemented. The second is 
TQuel, which, as has been previously mentioned, 
was developed in conjunction with the specification 
of a relational monitor. In contrast with LEGOL 
2.0, TQuel is based on the relational calculus (Codd 
19721, both events and time intervals may be mani- 
pulated in TQuel, and the major aspects of the 
language have been formalized [Snodgrass 19841 
and implemented (Snodgrass 19821. 

8. OVERVIEW OF TQUEL 
TQuel is a superset of Quel [Held et al. 19751, 

the query language for Ingres [Stonebraker et al. 
19761. An important goal in the design of TQuel 
was that it be a minimal extension, both syntacti- 
cally and semantically, of Quel. This objective had 
three important ramifications: all legal Quel state- 
ments are also valid TQuel statements, such state- 
ments have an identical semantics in Quel and 
TQuel when the time domain is fixed, and the 
additional constructs defined in TQuel to handle 
time have direct analogues in Quel. 

TQuel will be illustrated using example 
queries on the database shown in Figure 1. The 
Faculty relation lists the faculty members and their 
rank (one of the values Assistant, Associate, or 
Full); the Submitted relation lists those papers sub- 
mitted. In the discussion that follows, the reader is 
assumed to be familiar with Quel. 

Faculty (Name, Rank): 
NCUtl-2 Rank 
Jane Full 

Merrie Associate 
Tom Associate 

Submitted (Author, Journal): 
Author Journal 

Jane CACM 

t 

Merrie CACM 
Merrie TODS 
Tom JACM 

Figure 1: A static databo8e 

The Quel retrieve statement consists of two 
basic components, the target list, specifying how 
the domains of the relation being derived are COT- 
puted from the domains of the underlying relations, 
and a wlrere clause, specifying which tuples partici- 
pate in the derivation. The query 

range off is Faculty 
retrieve into Associates (Name = f.Name) 
where f.Rank = “Associate” 
Ezampie 1. List tit Associate prOft66Or6. 

will result in the relation shown in Figure 2 when 
applied to the sample database. 

Associates (Name): 
Name 
Merrie 
Tom 

Figure &: Result of u query on a static database 

To convert a static database into an I-IDB, a 
temporal domain is appended to each relation. 
The value of this domain, specifies when that tuple 
was valid. For event reMon8, which consist of 
tuples representing instantaneous occurrences, the 
temporal domain contains a single time value. For 
inferuol relations, which consist of tuples represent- 
ing a state valid during a time interval, the tem- 
poral domain contains two time values. Figure 3 
illustrates the Faculty relation extended to become 
an interval relation, and the Submitted relation 
extended to become an event relation. 

Faculty (Na 
Name 
Jane 
Jane 
Jane 

Merrie 
Merrie 
Tom 
Tom 

e, Rank): 
Rank 

Assistant 
Associate 

Full 
Assistant 
Associate 
Assistant 
Associate 

12-76 12-80 
12-80 3-84 
9-77 12-82 
12-82 3-84 
9-75 12-80 
12-80 3-84 

Submitted (Autho;, Journal):,, 
Author ] Journal ]I (Start) 

Jane ] CACM ] ] 11-79 
Merrie CACM 
Merrie 
Tom I /I 

9-78 
TODS 5-79 
JACM 12-82 

Figure 3: A hidoticd database 

Since TQuel is a strict superset of Quel, the 
identical query, when applied to the sample HDB, 
results in the relation shown in Figure 4. 
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Associates (Name): 

Figure 4: The 8ume query on u historical datnbase 

Providing a temporal domain is not suffkient 
for defining the semantics of an HDB, for users 
must be constrained in the manner in which they 
employ this capability. The query language must 
be designed so that temporal domains are used 
correctly. The approach taken here is to make the 
temporal domain implicit in the query language, 
and to provide facilities in the language lor mani- 
pulating this implicit domain. TQuel augments the 
retrieve statement with two components, analogous 
to the components of the Quel retrieve statement, 
one specifying how the implicit time domain is 
computed, and one specifying the temporal rela- 
tionship of the tuples participating in the deriva- 
tion. 

The &en clauee is the temporal analogue to 
Quells where clause. This clause consists of the 
keyword followed by a temporal predicate on the 
tuple variables, which represent the implicit time 
domain of the associated relations. The syntax is 
similar to path ezprerrsions, which are regular 
expressions augmented with parallel operators 
[Andler 1979, Habermann 1975, Shaw 19801. 

The overlap operator specifies that the 
events and/or intervals overlap in time: 

range of a is Associates 
retrieve into FirstDayAssociates (Name = LName) 
when a overlap “Sept. 1, 1983” 
Ezam$e 2. List the associate profeseorr on the first 
day of class. 

In this case, the query specifies that the interval 
when the faculty member was an associate profes- 
sor should include the first day of September, 
which is also a time interval (strings, enclosed in 
double quotation marks, are temporal constants). 
Au another example, 

range of s is Submitted 
retrieve AssocPapers (Name - s.Author, 

Journal = s. Journal) 
where a.Name = s.Name 
when s overlap a 
&ample 6. What paperr were written by associate 
profesrors?. 

The time that the paper was submitted must over- 
lap with the time interval when the faculty 
member was an associate professor. 

Intervals include two time values in the 
implicit domain; a starting time and a stopping 

time. These values may be indicated by the unary 
operators atart of and end of 

range of I1 is Faculty 
retrieve Full (Name = &Name) 
where a.Name - Tom and fl.Rank = “Full” 
when fl overlap start of a 
Ezample 4. Who were the full profersorr when Tom 
wan promoted to arsoeiate?. 

Sequentiality may be tested with the pre- 
cede operator: 

rdtrieve Disgruntled (Name = a.Name) 
when (start of a) precede “Jan. 1, 1979” 

and “Jan. 1, 1984” precede (end of a) 
&ample 5. Who has been an associate projessor lor 
the last five gear&. 

This example also illustrates the and operator; the 
or operator is also allowed. The not operator is 
conspicuously absent; there were so many 
difficulties encountered in defining its semantics 
that it was disallowed. 

Given the precede operator, the extend 
operator may be introduced. This operator is simi- 
lar to the overlap operator; in fact, when used 
alone they are identical: 

retrieve Full (Name = ILName) 
where a.Name = “Tom” and fl.Rank = ‘Fk 
when f extend start of a 
Example 6. Version 2 of: Who were the full profer- 
eore when Tom wao promoted to associate?. 

The overlap operator may be thought of as a tern- 
poral and operator, in that it is true when both 
arguments are true: the predicate 

(a overlap b) precede c 
is true when the overlap of the intervals 
represented by the tuple variables a and b precedes 
the event or the start of the interval represented by 
C. However, the extend operator is more like a 
temporal or, in that it is true when either of the 
arguments are true; the predicate 

(a extend b) precede c 
is true when the period extending to the end of a 
and the end of b precedes the start of c. overIap 
and extend are commutative; precede is not. 

The valid chuee serves the same purpose as 
the target list: specifying the value of a domain in 
the derived relation. In this case, the domain in 
question is the implicit time doma+. There are 
two variants to this clause. If the derived relation 
is to be an event relation, the valid at variant 
specifies the value of the single time in the tern- 
poral domain. 

retrieve AssociatePromotions (Name - a.Name) 
valid at start of e 
&ample 7. When were the associate profesrors pro- 
moted to thir rank3. 

In this query, the underlying relation, Associates, is 
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an interval relation. One time value, the start 
time, was selected as the time value in the derived 
(event) relation. The valid clause contains an e- 
ezpreseion, also syntactically similar to path 
expressions. Eexpressions include the operators 
hut of, end of, overlap, extend, and precede. 
The boolean binary operators and and or are not 
allowed, since they introduce ambiguity as to 
which time value is desired. * 

The second variant of the valid clause, also 
containing e-expressions, is used when the derived 
relation is to be an interval relation: 

range of fl is faculty 
range of f2 ia faculty 
range of f3 is faculty 
retrieve Stars (Name - fl.Name) 
valid from start of fl 

to start of f3 
where ILName = f2.Name and RName = f3.Name 
when (fl overlap a) and (f2 overlap a) 

and (f3 overlap a) 
Example 8. Who got promoted jrom assistant to juU 
pro/error while other jaeulty remained at the asroei- 

ate ranhf. 

Tuples in the derived relation Stars indicate the 
interval of time from joining the faculty as as& 
tant professors to becoming full professors. 

The operators found in temporal predicates 
and e-expressions may be applied more generally 
than shown above; as an example, the e-expression 

valid at start of (A overlap B) 
Ezample #. start of in concert with overlap. 

specifies that the time value returned should be the 
first instant when both tuples are valid. 

The primary difference between path expres- 
sions, temporal predicates, and e-expressions is 

path expressions specify con&taints on the 
allowed ordering of events; 
temporal predicates denote a boolean value, indi- 
cating whether the events were ordered 8s 
specified; and 
e-expressions denote one of the time value8 
involved in the expression, depending on the 
actual order of occurrence of the events. 

Path expressions were designed for use in con- 
current programs such as operating systems; tem- 
poral predicates and e-expressions were defined 
solely for use in TQuel. 

As with other languages, there are several 
ways to write most queries. The and operator can 
considerably simplify matters: 

retrieve Stars (Name ten fl.Name) 
valid from start of fl 

to atart of R 
where &Name = f2.Name and f2.Name P f&Name 
when (I1 and f2 and f3) overlap a 
Example 10. Same a6 the precriotrr example. 

In keeping with the path expression origins of tern-- 
poral predicates and e-expressions, the keyword 
“overlap” may be abbreviated with a comma, 
“precede” may be abbreviated with a semicolon, 
and “or” may be abbreviated with a vertical bar. 
Since non-temporal domains are designated by 
“<tuple-variable> . <domain>“, the prefix 
unary operators “dart of’ and “end of’ may be 
replaced by the postlix operators “&art” and 
“atop”. 

retrieve Stars (Name = tl.Name) 
valid from &start to fS.start 
where fl.Name - R.Name and f2.Name - f3.Name 
when (fl and f2 and f3) , d 
Example 11. Same an the preciour example. 

The operator precedence order, from highest 
to lowest, is the unary operators (‘Mart of”, “end 
of’), followed by the temporal binary operators 
(“extend”, “ove!rbp”, “precede”), followed by 
the logical binary operators (“and”, “or”). Opera 
tars of equal precedence are left associative. The 
appendix includes the complete BNF of the TQuel 
retrieve statement, except for the abbreviations 
mentioned previously. 

4. AGGREGATE FUNCTIONS 
Quel uses the aggregate operators count, 

rum, avg, mln, max, and any (the value is 1 if 
any tuples satisfy the qualification) to aggregate a 
computed expression over a set of tuples. The 
argument of such an operator can be either a single 
tuple variable or any expression involving con- 
stants, arithmetic operators, or domains of a single 
relation. The argument of the aggregate operator 
may be qualified by an internal where clause: 

retrieve TODSpapers (Number - 
Counf(s where s.Joumal = “TODS”)) 

Example 1% How manl paperr were rubmilted to 
TODS?. 

This query contains a dimple aggregate, which 
evaluates to a single scalar value. Aggregate lunc- 
tion8, on the other hand, partition the set of quali- 
fying tuples into groups, each of which is assigned 
a value lor the expression. 

retrieve AssocPapers (Name = a.Name, 
PaperCount - Count@ by e.Name) 

where aName p= s.Name 
&ample 13. How manl paperr were written by each 
associate projcsrorf. 

Operationally, count partitions the tuples into 
groups by name, then associates with each tuple in 

208 



the group the cardinality of the group. Each tuple 
receives the same value. 

Aggregate operators are more complicafed in 
TQuel, due to the time-varying behavior of rela- 
tions. Aggregate operators on event relations are 
cumulafive, in fhaf they take all previously valid 
tuples into account in their computation. For 
instance, the count operator in the last example 
would count the number of (submission) events 
which had occurred. The AssocPapers relation has 
a value of 1 from 11-79 to 1282, and a value of 2 
from 12-82 to S84. 

There are two versions of aggregates on inter- 
val relations, the cumulative and instantaneous 
versions. The countC operator is used to indicate 
the cumulative version, which works exactly as it 
does on event relations. The result of the (instan- 
taneous) count operator 

retrieve CurrentAssociates (Number = count(a.Name)) 
Ezamplc 14. How many asboeiate proferrorr kere 
there at any point in the part?. 

may be fairly oscillatory, but 
retrieve CurrentAssociates 

(Number = countC(a.Name)) 
Ezample 1.5. How many faeultg mcmbcrr have been 
promoted to associate profersot?. 

must increase monotonically over time. 

The avgC operator is slightly more compli- 
cated, since it takes the length of time the fuple 
was valid into account when computing the aver- 
age. The value of the argument of the avgC opera- 
tor is weighted by the dvration of the tuple, and 
intervening intervals (when no tuple is valid) are 
treated as tuples with a value of 0 for the argu- 
ment. 

retrieve TenuredRatio 
(Value = avgC(f.Name 

Example .M. The previour query, with defaults. 

When two or more tuple variables are used, 
the situation is more complex. Let us assume ini- 
tially that all the tuple variables are associated 
with interval relations. The retrieve statement 
with defaulted temporal constructs looks identical 
to a standard Quel retrieve statement; thus it 
should have an identical semantics. An Ingres 
database is not temporal; instead, it advances in 
discrete jumps. Whenever a relation is updated, 
fhe “clock” advances, and the database is assumed 
consistent at the new time. Hence, the tuples par- 
ticipating in a retrieval are all valid at, the time the 
query is executed. Extending this semantics to a 
temporal database is now straightforward: the 
result tuple is valid at all the points in time when 
aU the underlying tuples were valid. Thus, if the 
tuple variables $, t,$ .;. , tk are involved in the 
query, then the default temporal clauses are’ 

where f.Rank = “Associate” 
or f.Rank = “Full”)) 

Ezample 16. How many tenured faculty were there, 
on average?. 

TenuredRatio is also a temporal relation, with 
values ranging from 0, for the period 971 through 
12-76, when there were no tenured faculty, to .58 
on 3-84. The average will reach 1.0 in one more 
year, when the two tenured faculty will counteract 
the four year period when there were no tenured 
faculty. 

Note that the presence of an aggregate opera- 
tor in a retrieve statement automatically impIies 
that the resulting relation will be an interval rela- 
tion. The valid at clause may be used to specify 
that an event relation is to be derived. The conver- 
sion from single event relations to interval relations, 
is handled by the extendC aggregate operator (not 
fo be confused with the attend operator found in 

temporal predicates and e-expressions), which 
extends an event to an interval stretching to the 
next event,. It is cumulative since the derived 
interval depends on the preceding event. 

6. DEFAULTS 
The defaults assumed in the language are an 

important aspect of the definition. The defaults for 
the additional clauses in TQuel should be natural 
to the user. If only one tuple variable (say, A) is 
used, and it is associated with an interval relation, 
then the defaults are 

valid from starf of A to end of A 
when true 
Ezample 17. De/o&r for one interval tuple variable. 

These defaults say that the result tuple is to start 
when the underlying tuple started and stop when 
the underlying tuple stopped. When an event rela- 
tion is associated with the one tuple variable, the 
default is 

valid at A 
when true 
Ezample 18. De/o&r for one event tuple variable. 

specifying simply that the result tuple wa8 valid at 
the same instant the underlying tuple was valid. 
The first TQuel query given, 

retrieve into Associates (Name - f.Name) 
where f.Rank = “Associate’ 
Example 18. List the arsociate profesroro. 

has the following default clauses, 
retrieve info Associatee (Name q f.Name) 
valid from start off to end of f 
where f.Rank = “Associate* 
when true 
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valid from start of (tl overlap . . . overlap td 
to end of (tl overlap . . . overlap tJ 

when (tl overlap . . . overlap tJ 
Example 21. De/au&r for reverd interval tuple vari- 
ables. 

The valid from clause specilies that the result 
tuple is to start the instant all the underlying 
tuples are valid; the valid to clause specifies that 
the result tuple is to end as soon as any underlying 
tuple is no longer valid. The when clause states 
that all the tuples should overlap each other to 
some extent. If a ,particular tuple variable t, is 
associated with an event relation, simply replace ‘t, 
overlap’ in the above clauses with ‘t, extend’. 

When aggregate operators are used in interval 
relations, the decision needs to be made whether to 
consider the instantaneous or cumulative version to 
be the default. An argument similar to the one 
above concerning multiple tuple variables con- 
cludes that the instantaneous version more closely 
preserves the semantics of standard Quel. Hence 
the count operator will be the instantaneous ver- 
sion; CountC must be used if the cumulative ver- 
sion is desired. 

6. STATUS 
Significant progress has already been made on 

both the theoretical and practical issues involved in 
introducing time into an existing, static, calculus 
based relational query language. The semantics of 
the entire TQuel retrieve statement, including 
aggregates and indeterminacy, has been informally 
specified. A formal semantics based on the tuple 
calculus [Ullman 1982} has been developed for the 
language with indeterminacy but without aggre- 
gates [Snodgrass 19841. The semantics is relatively 
simple, enabling the extensions necessary to formal- 
ize the remainder of the language. Given the 
defaults discussed in the previous section, it is pos- 
sible to show that the semantics reduces to the 
standard Quel semantics when applied to a static 
database slice (all tuples valid at a particular point 
in time) of the HDB. Work on the formalization 
and implementation of aggregates is proceeding 
[Gomez 19843. Extending the other Quel statements 
to operate on an HDB is also an important area for 
future research. 

In the course of the work described in 
[Snodgrass 19821, a compiler and runtime system 
for a subset of TQuel were implemented. The com- 
piler produces an update network for each TQuel 
retrieve statement. An update network is essen- 
tially an executable parse tree of the equivalent 
relational algebraic expression for the query. 

However, the algorithms of the relational operators, 
while performing standard functions such as join 
and select, are nevertheless quite digerent from 
their static counterparts, since they have been 
tuned for the dynamic incremental updating of 
temporal relations. The system runs on a Vax 
under Berkeley Unix [Ritchie t Thompson 19741. 
The parser was derived from the Ingres front end, 
and thus benefits from the functions provided by 
the Ingres terminal handler, particularly the exten- 
sive macro facilities. The system consists of a com- 
piler that generates an update network, and an 
update network interpreter. Both components were 
written in FranzLisp [Foderaro 19801; lurther 
developments, including a more robust compiler as 
well as an update network compiler, will be written 
in C [Ritchie et al. 1978). 
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APPENDIX: BNF OF THE TQUEL RETRIEVE STATEMENT 
This appendix lists the syntax for the TQuel retrieve statement. Since TQuel is a strict superset of 

Quel! all legal Quel retrieve statements are also legal TQuel retrieve statements. The following non- 
terminals are not Included m the syntax description because they are identical to their Quel counterparts. 

< boo1 expression> returns a value of type boolean 
<expression> returns a value of type integer, string, Boating point, or temporal 
<integer> an integer constant 
<domain> the name of a domain 
<relation> a relation name 
<string> a string constant 
<tuple variable> the name of a tsple variable 

Also not shown are the additional temporal functions and predefined relations found in TQuel. 

CTQuel retrieve> 

<retrieve head> 

<into> 

<target list > 

<t-list > 

<t-elem> 

<is> 

<valid clauee> 

<valid> 

<from clause> 

<to clause> 

<at clause> 

<e-expression> 

::= <retrieve head> <retrieve tail> 

::= retrieve <into> <target list> <valid clause> 

::= t: 1 unique 1 <relation> 1 into <relation> 1 to <relation> 

::= IZ 1 ( <tuple variable> . all ) I( <t-list> ) 

::= <t-elem> I <t-list> , <t-elem> 

::= <domain> <is> <expression> 

::= is I = I by 

::= <valid> <from clause> <to clause> I <valid> <at clause> 

::= E I valid 

::= fZ I from <texpression> 

::= E I to <*expression> 

::= E I at <e-expression> 

::= <element> 
I <e-exprtssion> 
I start of <e-expression> 
I end of <e-expression> 
) <e-expression> precede <e-expression> 
I Coexpression> overlap <e-expression> 
I <e-expression> extend <e-expression> 
I ( <e-expression> ) 

<element> ::= <tuple variable> 1 <string> I <integer> 

<retrieve tail> ::= <where clause> <when clause> 

<where clause> ::= E I where <boo1 expression> 

<when clause> := e I when <temporal predicate> 

<temporal predicate> ::= <element> 
I start of <temporal predicate> 
1 end of <temporal predicate> 
I <temporal predicate> precede <temporal predicate> 
1 <temporal predicate> overlap <temporal predicate> 
1 <temporal predicate> extend <temporal predicate> 
I <temporal predicate> and <temporal predicate> 
I <temporal predicate> or <temporal predicate> 
1 ( <temporal predicate> ) 
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