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Abstract: 

A monitor is an important component of a software development environment. The infor- 
mation collected and processed by a monitor is vital for debugging and tuning programs, 
and is useful to compilers performing selective optimization. A relational database, extend- 
ed to incorporate time, is introduced as an appropriate representation of dynamic informa- 
tion concerning a program's execution. TQuel,  a language permitting high level queries 
about a program's behavior, is briefly described. Measurements of an initial implementa- 
tion of the relational monitor show that it can efficiently support the conceptual viewpoint 
of a dynamic database of a program's behavior. 

1. In t roduc t ion  

This paper presents a new approach to the 
specification and implementation of monitoring 
actions. Monitoring is the extraction of dynamic 
information concerning a computational process, as 
that process executes. This definition encompasses 
aspects of measurement, observation, and testing.* 
One use of monitoring is to facilitate the debugging 
of complex programs [Model 1978]. Monitoring is a 
necessary first step in understanding a complex 
computational process, for it provides an indication 

* There are at least two other definitions of monitor that  should 
be mentioned: a synonym for operating system and an arbiter of 
access to a data structure in order to ensure specified invariants, 
usually relating to synchronization IHoare 1974]. Both 
definitions emphasize the control, rather than the observational, 
aspects of monitoring. Monitoring is closely associated with, 
but strictly separate from, activities which change the course of 
the computational activity. The term monitor as used in this 
paper is the (usuaLly software) agent performing the monitoring. 
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of what happened, thus serving as a prerequisite to 
ascertaining why it happened. Monitoring is also 
necessary to make efficient use of limited comput- 
ing resources. In order to selectively optimize a 
program, the compiler must be able to access infor- 
mation on the execution of the program. A moni- 
tor is thus a vital tool in an software development 
environment, and the information the monitor col- 
lects is a useful component of a program's represen- 
tation. 

A uniform yet comprehensive representation 
of dynamic information regarding a program's pro- 
gress is essential if this information is to be used by 
programmers and by tools in a programming 
environment. This paper introduces one elegant 
representation, that of a temporal database, and 
describes an implemented system that allows users 
to ask high level questions about the behavior of 
their programs. This approach exploits the 
significant theoretical and practical results of 
research in the area of relational databases. By 
emphasizing the information processing aspects of 
monitoring, it is possible to formalize the 
specification of monitoring activity, and to bring 
powerful techniques to bear to reduce the computa- 
tional demands of this activity. 

2. Approach 
In an abstract sense, the process of monitor- 

ing is concerned with retrieving information and 
presenting this information in a derived form to the 
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user. Hence, the monitor is fundamentally an 
information processing agent, with the information 
describing time-varying relationships between enti- 
ties involved in the computation. 

A great deal of research has considered 
effective ways to process information. One of the 
results of this research has been the relational 
model [Codd 1970]. The relational model provides 
both a structuring of the information and manipu- 
lations on that structure. A relation, modeling a 
particular relationship between collections of enti- 
ties, may be thought of as a table having a number 
of rows {called tuple~) and columns {called 
domains). New relations can be derived from exist- 
ing ones using one of several data manipulation 
languages developed for the relational model; these 
query languages axe syntactically concise, yet axe 
remarkably powerful in their expressiveness lUll- 
man 1982]. One important aspect of some query 
languages is that they are declarative rather than 
procedural: they allow the user to specify what 
information is desired, rather than how this infor- 
mation is to be derived. 

The central thesis of this paper is that the 
relational model is an appropriate formalization of 
the information processed by the monitor. The user 
is presented with the conceptual viewpoint that the 
dynamic behavior of the monitored program is 
available as a collection of temporal relations. 
Modelling the dynamic behavior in this fashion has 
several important ramifications. Queries expressed 
in existing query languages can be used to select 
and summarize this information. The relational 
algebra, suitably extended for temporal relations, 
provides a convenient executable form for such 
queries. Optimization strategies result in efficient 
implementations. In particular, the overhead of 
data collection, usually a large component, is 
dramatically reduced by ~aese strategies. 

A similar approach was taken by Powell and 
Linton over the entire software development pro- 
cess [Powell and Linton 1982], and, in particular, in 
the domain of debugging [Powell & Linton 1983]. 
In this system, all program information, including 
the parse tree, symbol table, version history, 
configuration descriptions, etc., are stored in a rela- 
tional database system. This uniform representa- 
tion allows, among other things, queries that refer 
to entities in the program being monitored. How- 
ever, their system is based on a static relational 
database in which temporal information is not 
stored, a complete query language was never 
developed, and the system was never implemented. 
The system described here is more limited in scope, 
focusing on monitoring. However, this emphasis 

results in a more thorough design and implementa- 
tion. 

Ceri and Crespi-Beghizzi are more ambitious: 
all data structures in their compiler-interpreter are 
relations [Ceri & Crespi-Reghezzi 1983]. This 
approach has severe performance implications. In 
the system described in this paper the advantages 
of the the relational model are preserved while 
avoiding the performance penalties associated with 
a straightforward implementation using relations. 

This paper will describe how the relational 
view is supported by the monitor. Section 3 
discusses how the low level dynamic state of a pro- 
gram may be captured in a collection of relations. 
Section 4 illustrates how the monitor supports the 
derivation of more useful, higher level information 
on the behavior of the program. Section 5 shows 
how the computational aspects of the monitor can 
be organized, in particular, how the dynamic incre- 
mental updating of temporal relations can be 
implemented effectively. Section 6 gives an over- 
view of an implementation of the relational moni- 
tor, and section 7 discusses of the performance of 
the monitor. Further details on all of these issues 
may be found in [Snodgrass 1982]. 

3. C a p t u r i n g  Dynamic  Behavior  In the  Rela- 
t ional  Model  

The dynamic behavior is recorded by a collec- 
tion of sensors which are placed in the user's pro- 
gram. Each sensor is a section of code which 
transfers to the monitor information concerning an 
event or state within the program. The sensor may 
be inserted by the programmer into the source 
code, by the compiler into the object code, or by 
the runtime system into the executing program 
using the conventional technique of breakpoints. If 
the sensor is traced, then a data record is 
transferred to the monitor each time a particular 
event occurs. If the sensor is sampled, then a data 
record is transferred each time the monitor requests 
the sensor to do so. The data record contains some 
system dependent information, such as the identity 
of the sensor, usually a timestamp, as well as infor- 
mation specified by the user. Sensors may be dis- 
abled, when the data records they produce are no 
longer desired, and re-enabled at a later time. 

The information collected by the sensors is 
viewed by the user as a set of relations. These 
relations are differentiated temporally: there are 
event relations and interval relations. A tuple in an 
event relation describes a change in the state of the 
program which occurred at a particular instant of 
time. An example is the Call  event relation, which 
has two explicit domains, the calling procedure and 
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the called procedure, and one implicit domain, the 
time the event occurred; Figure 1 illustrates a por- 
tion of the Call  temporal relation for a monitored 
compiler. The tuple (DoTypeDec, lnsertSymbol, 
130) in this relation represents the instantaneous 
event of "the procedure DoTypeDec called the pro- 
cedure InsertSymbol at time 130". The time indi- 
cates the number of microseconds since the pro- 
gram began execution. 

Call (Caller, Callee): 

Caller 
Main 

DoTypeDec 
DoTypeDec 

tee II time 
DoTypeDec 15 

InsertSymbol 130 
InsertSymbol 426 

Figure 1. An Event Relation 

A tuple in an interval relation specifies a rela- 
tionship valid during an interval of time. An 
example is the Execu t ing  relation, with the single 
explicit Procedure domain (see Figure 2). The 
tuple (InsertSymboi, 130, 158) in this relation 
represents the relationship of "the procedure Insert- 
Symbol executed from time 130 to time 158." 

Execut ing  (Procedure): 

Pro edure II st t s p  
DoTypeDec 15 923 

lnsertSymbol 130 158 
InsertSymbol 426 466 

Figure ~. An Interval Relation 

Since the program state is constantly chang- 
ing, the relations evolve over time. For instance, 
the tuple (InsertSymbol, 130, 158) is valid in the 
Execu t ing  relation for only a few microseconds, 
and new tuples are constantly being added. 

These relations are called primitive relations 
because they contain information directly accessi- 
ble to the monitor. For example, the Call relation 
may be maintained either by periodically sampling 
the program counter, or by tracing the call instruc- 
tion. Similarly, the Execu t ing  relation is main- 
tained by sampling the program counter or by trac- 
ing both the call and return instructions. Sampling 
is usually less expensive, but it is also less precise. 
The primitive relations correspond directly to the 

sensors that have been inserted into the program. 
Each time a new sensor is added, a new primitive 
relation becomes available. 

The user is probably not interested in the 
level of detail of the primitive relations; instead, 
the user desires more summary information 
extracted from this detail. A query language pro- 
vides a powerful mechanism for specifying exactly 
the information the user wants to retrieve from 
the program, by specifying the content of derived 
relations. In this way, information not anticipated 
by the designer of the monitor is still available to 
the user, provided the basic information (i.e., the 
primitive relations) is collected by the sensors. This 
approach is in direct contrast to most monitoring 
systems, which support a fixed set of analysis com- 
mands. 

4. A T e m p o r a l  Q u e r y  Language  

TQuel (Temporal QUEry Language! is a 
high-level, non-procedural monitoring specification 
language. TQuel is a strict superset of the rela- 
tional tuple calculus query language Quel [Held et 
al. 1975 l, augmenting the retrieve statement with 
additional constructs and providing a more 
comprehensive semantics by treating time as an 
integral part of the database. This semantics has 
been formalized in the tuple calculus [Snodgrass 
1984b], and the syntax and motivation of the 
language is given in some detail elsewhere 
[Snodgrass 1984a]; this paper will provide only a 
few examples to illustrate TQuel's power and flexi- 
bility. 

To determine when the InsertSymboi pro- 
cedure was executing, 

range of  E Is Executing 
re t r ieve  InsertExec 
where  E.Procedure ~ InsertSymbol 

Ezample 1. When was lnsertSymbol active? 

Since the underlying relation (Executing)  was an 
interval relation, Inser tExe¢ is also an interval 
relation. The tuple variable E is associated Exe-  
cu t ing  relation. The where clause selects tuples in 
E satisfying the given predicate. This query does 
not specify any user defined domains; the itnplicit 
temporal domains may not be directly manipulated 
by the user, and are automatically computed by 
the system (see Figure 3). This query is also a 
valid Quel query; the semantics are slightly 
different since the query applies to temporal rela- 
tions. 
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InsertExec: 

](start) (stop) 
130 158 
426 466 

Figure 8. A Derived Relation 

To determine when the InsertSymbol pro- 
cedure was active when called, either directly or 
indirectly by the DoTypeDee procedure, 

range of  I is lnsertExee 
retr ieve DoTypeDec_Insert 
where E.Procedure = DoTypeDec 
when E overlap I 

Ezample £. Use of the when clause 

This example illustrates one of the clauses added to 
Quei: the when clause. This clause is the temporal 
analogue of the where clause. In this case, it 
selects tuples in the Execut ing  and Inser tExec 
relations that overlap in time (i.e., that are simul- 
taneously valid at some point). Since InsertSymbol 
never calls DoTypeRec, the only situation where 
the intervals overlap is when InsertSymbol was 
called during an invocation of DoTypeDec. 

To select the invocation of InsertSymbol with 
the longest execution time, when called by the 
DoTypeDec procedure, either directly or indirectly: 

range of  D k DoTypeDec_Insert 
retr ieve MaxInsert (ExecutionTime -~- 

Max (Duration(O))) 

Ezample 8. Use of an aggregate operator 

MaxInser t  has only one explicit domain (see Fig- 
ure 4). This example illustrates both a temporal 
unary operator, Duration, and a conventional 
aggregate operator, Max, over a temporal relation. 
Note that the value of the ExecutionTime domain 
is constant over the intervals [0..130] and 
1158..454], but is increasing over the intervals 
[130..1581 and [454..466]. As an example, the value 
of the ExecutionTime domain at time t -~- 150 is 
20. 

MaxInser t  (ExecutionTime): 

Execu i°nTime If srt 38° 5 83°° sop65308 

Figure 4. Another Derived Relation 

5. The Update Network 

Because TQuel is nonprocedural, queries must 
be compiled into a representation more amenable 
to being run. The responsibility of determining 
what information should be collected (i.e., which 
sensors are enabled), and what computations 
should be performed rests with the monitor, not 
with the user. Both aspects are involved in the 
generation of an update network, which is the tar- 
get of the TQuel compiler. Static relational data- 
base management systems typically convert each 
calculus-based query into an equivalelit expression 
in the relational algebra [Ullman 1982]. This alge- 
bra consists of operators over entire relations. The 
update network generated from a TQuel query is 
essentially an executable version of the equivalent 
algebraic expression, tuned for incremental updat- 
ing of temporal relations. The nodes in this graph 
are classified as either access or operator nodes. 
Access nodes appear in the tree when the query 
involves primitive relations. Information in the 
form of tuples flows out of the access nodes (which 
are associated with the sensors in the monitored 
program) and through the network. Operator 
nodes take tuples from one or more lower nodes 
and produce tuples which will be sent on to the 
higher nodes. The entire network is driven by 
tuples originating in the access nodes. 

Update networks support the dynamic incre- 
mental updating of temporal relations. Incremen- 
tal update algorithms for temporal relations accept 
information in the form of "this relationship 
between these entities was true for the interval 
from t 1 through ~", and use this information, plus 
stored information concerning the relation, to 
derive an updated relation. Primitive relations 
evolve in time through tuples being added and 
removed. These changes cause relations derived 
from a relation to acquire or lose tuples of their 
own, a process continuing until new information 
has been completely assimilated by the relations 
defined in the program. The update network 
approach emphasizes the flow of information from 
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the sensors through access nodes to the user. 

The access and operator nodes present in the 
update network are instantiated from a set of 
predefined generic access and generic operator 
nodes. Each generic access node is associated with 
an event type, and thus with the set of sensors gen- 
erating data records of that type. Access nodes are 
instantiated from these generic access nodes, and 
are placed in the network. The generic operator 
nodes specify various relational operators, such as 
cartesian product, selection, and projection. 
Operator nodes are instantiated from these generic 
nodes by supplying appropriate parameters, then 
placed in the tree. 

The update network is driven by data records 
originating at the sensors. When a sensor generates 
a data record, the appropriate tuple is placed on 
the output arc of all access nodes instantiated from 
the appropriate generic node. At this point, the 
tuples start flowing through the network and the 
processing commences. 

6. Implementation 

The monitor consists of two main com- 
ponents, a remote monitor performing those func- 
tions requiring close interaction with the user and a 
resident monitor, performing the functions requir- 
ing close interaction with the monitored program. 
This separation is necessary when monitoring a dis- 
tributed program, where a resident monitor exists 
at each processor, sending collected data to the 
centralized remote monitor. Functionally, the 
resident monitor collects the event records and 
interacts with the program and the operating sys- 
tem, and the remote monitor analyzes and displays 
the monitoring data. 

In the implementation, the remote monitor 
runs on a Vax under Berkeley Unix [Ritchie & 
Thompson 1974]. The programs being monitored 
execute on Cm* ]Fuller et al. 1978), a tightly- 
coupled multiprocessor composed of 50 DEC LSb 
11's and a substantial amount of memory. Two 
resident monitors were implemented, one on 
StarOS [Gehringer & Chansler 1982, Jones et al. 
1978, Jones et al. 19791 and one on Medusa 
[Ousterhout et al. 1980]. A third resident monitor 
is currently being implemented directly on the Vax. 
The remote monitor on the Vax communicates 
with the resident monitor on Cm* over an Ethernet 
[ 1975], a high bandwidth (3 MBaud) network. 

The query is entered by the user interacting 
with the front end, which was derived from the 
Ingres front end, and thus includes the macro and 
help facilities of the Ingres system [Youssefi et al. 

1977]. The TQuel query is compiled into an 
update network, which is then interpreted. The 
update network enables the appropriate sensors in 
the program and the operating system running on 
Cm*. These sensors generate data records which 
are collected by the resident monitor and shipped 
to the Vax over the Ethernet. There they enter 
the update network, to emerge later as tuples in 
the requested relation. 

An implementation of the monitor is now 
running, and work is proceeding to develop a more 
extensive system. More specifically, the update net- 
work interpreter, the resident monitors, and the 
TQuel compiler are essentially complete. The 
semantic analysis and optimization phases of the 
TQuel compiler are currently being extended to 
support further optimization strategies. An update 
network compiler and several other components not 
mentioned have been designed, and are currently 
being implemented. 

7. Performance Issues 

Although the high level conceptual viewpoint 
of a dynamic relational database on the program's 
behavior results in a powerful user interface via 
TQuel, it remains to be shown that a monitor sup- 
porting such a viewpoint is sufficiently efficient. 
Several of the components were instrumented to 
determine the overall performance of the monitor. 

There are many areas where bottlenecks 
could severely compromise the performance of the 
monitor. In the following, the primary areas will be 
examined, focusing on the steps taken to increase 
performance. This analysis will then be summar- 
ized using the common metric of data record rate 
supported. 

One such area is the data collection. Ena- 
bling all the sensors and subsequently filtering the 
data records in the update network resulted in an 
unacceptably large execution time overhead on 
Cm*. Furthermore, the other components of the 
monitor could not contend with this excessive rate. 
Two solutions were adopted [Snodgrass 1984c]. 
First, sophisticated filtering techniques were 
adopted that enabled only the necessary sensors. 
Sensor enabling occurs as a side effect of the 
interpretation of the update network. Second, the 
sensors themselves were generated automatically 
from a high level description provided by the user. 
The resulting code was carefully tailored based on 
these specifications, and made extensive use of 
existing microcoded operations. 

Another potential bottleneck was the Ether- 
net protocol. The event records are generated by 
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the sensors and placed in temporary storage areas, 
waiting to be picked up by the resident monitor 
and sent to the remote monitor via the Ethernet. 
The protocol [Highnam&Snodgrass 1981] is a vari- 
ant of the EFTP (Ethernet File Transfer Protocol), 
simulating a transmission from the remote monitor 
(the host) to the resident monitor (the slave}. This 
protocol may be thought of as a modified transport 
protocol using the Pup protocol as the network 
layer of the communications hierarchy [Boggs et al. 
1980, Zimmerman 1980]. The commands are sent 
in command packets and the data records are 
placed in the acknowledgement packets. The pro- 
tocol uses checksums, timeouts, and packet 
retransmission for reliability. Since the resident 
monitor is a slave in the protocol, it must. wait for 
the remote monitor to send a packet before it can 
respond with an acknowledgement containing data. 
Hence the remote monitor must occasionally send 
packets even if there are no commands to be sent. 
The resident monitor indicates in every ack- 
nowledgement the amount of buffer space it has 
free, allowing the remote monitor to adjust the 
packet transmission rate accordingly. The size and 
transmission rate of the packets were chosen to 
optimize performance. 

The third area critical to the performance of 
the monitor is the update network. The TQuel 
compiler as implemented generates correct update 
networks, but does not include most of the optimi- 
zation strategies discussed above. Although the 
interpreted version was flexible and relatively easy 
to implement, it had one major drawback: it was 
slow. The maximum node fire rate was less than 
140 per second, corresponding to an inp~lt data 
record rate of less than 7 data records per second. 
This rate is about two orders of magnitude too low. 
To achieve such a speedup, it was necessary to 
abandon some of the flexibility afforded by the 
interpreter. 

The update network compiler, not to be con- 
fused with the TQuel compiler, translates an 
update network into a collection of Lisp functions, 
which are then compiled by the Lisp compiler 
[Foderaro 1980]. 

The update network compiler was designed 
but not implemented. However, the techniques 
involved in compiling update networks are com- 
monly found in standard compilers. Construction 
of an update network compiler should be a 
straightforward task not requiring any new break- 
throughs. 

Three sets of measurements were taken; one 
with the update network generated by the existing 
compiler, one with the update network optimized 

by hand, using only strategies that could be readily 
implemented (described elsewhere [Snodgrass 
1982]), and one with Lisp functions generated by 
hand from the optimized update network, again 
using only strategies that could be readily imple- 
mented. It should be emphasized that the measure- 
ments only apply to one set of queries, and may 
not be representative of queries in general. On the 
other hand, these queries are somewhat complex, 
involving several tuple variables and temporal 
clauses. 

Since all three update networks were correct, 
they generated identical output tuples for the same 
input data records. For a set of 50 test input data 
records, chosen to produce interesting results, there 
were 32 output tuples produced. 

In the non-transformed network, each input 
data record resulted in almost 20 node fires. In the 
optimized update network, each data record 
resulted in less than 10 node fires. The execution 
time per node went down by 40~ from the original 
to the optimized update network. These two 
reductions cooperatively increase the number of 
data records processed per second by a factor of 3. 

An even larger increase (a factor of 40) occurs 
with the update network is compiled. There is only 
1 fire per tuple in the compiled version because 
each update network in this approach is in effect a 
highly specialized operator node (internal function 
calls were not counted). In summary, the optimi- 
zations on the original update network, coupled 
with conversion of the update network into Lisp, 
and then into assembly language, result in the 
necessary improvement of two orders of magnitude. 

At this point, the relative performance can be 
analyzed. Assuming that filtering reduces the over- 
head to 1~ (detailed measurements of the 
effectiveness of the various filtering mechanisms 
have not yet been performed), the 50 processors in 
Cm* would generate 500 data records per second. 
Given the observed transmission rates for the stan- 
dard EFTP, a rough maximum transmission rate is 
600 data records per second. Applying update net- 
work optimizations and using an update network 
compiler results in a processing rate of over 600 
data records per second on a dedicated Vax 11/780. 
Thus, the Ethernet and remote monitor can essen- 
tially keep up with the 50 processors on Cm*. It is 
also fair to state that if the situation is changed in 
some way; say, an additional 20 processors are 
added to Cm*, or the Ethernet or the Vax is 
loaded, then the monitor as realized here would not 
be able to sustain an adequate data record process- 
ing rate. 
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8. Conclusions 

This paper has argued that the relational 
model provides an effective conceptual model of 
dynamic information concerning a program's execu- 
tion. Several specific results were detailed: 

[1) A monitoring specification language, TQuel, 
was developed by syntactically and semanti- 
cally augmenting an existing query language. 
This language is the basis for a powerful user 
interface for querying the monitor concerning 
the behavior of the program. 

(2) Update networks were proposed to implement 
the dynamic incremental updating of derived 
temporal relations. The network is composed 
of access nodes, which interface with the 
resident monitor, and operator nodes, which 
carry out the desired computations. 

{3) Several general techniques were developed to 
generate correct and efficient update net- 
works from TQuei queries. 

{4) The monitor was implemented. Measure- 
ments show that the monitor can essentially 
keep up with a large multiproeessor. 

The point to be emphasized is that it is in 
fact possible to implement an efficient monitor sup.- 
porting the high level conceptual viewpoint of a 
dynamic relational database on the program's 
behavior which can be manipulated by a temporal, 
non-procedural query language. 
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