
MONITORING IN A S O F T W A R E D E V E L O P M E N T E N V I R O N M E N T :

A RELATIONAL A P P R O A C H

Richard Snodgrass

Department of Computer Science
University of North Carolina

Chapel Hill, NC 27514

Abstract:

A monitor is an important component of a software development environment. The infor-
mation collected and processed by a monitor is vital for debugging and tuning programs,
and is useful to compilers performing selective optimization. A relational database, extend-
ed to incorporate time, is introduced as an appropriate representation of dynamic informa-
tion concerning a program's execution. TQuel, a language permitting high level queries
about a program's behavior, is briefly described. Measurements of an initial implementa-
tion of the relational monitor show that it can efficiently support the conceptual viewpoint
of a dynamic database of a program's behavior.

1. In t roduc t ion

This paper presents a new approach to the
specification and implementation of monitoring
actions. Monitoring is the extraction of dynamic
information concerning a computational process, as
that process executes. This definition encompasses
aspects of measurement, observation, and testing.*
One use of monitoring is to facilitate the debugging
of complex programs [Model 1978]. Monitoring is a
necessary first step in understanding a complex
computational process, for it provides an indication

* There are at least two other definitions of monitor that should
be mentioned: a synonym for operating system and an arbiter of
access to a data structure in order to ensure specified invariants,
usually relating to synchronization IHoare 1974]. Both
definitions emphasize the control, rather than the observational,
aspects of monitoring. Monitoring is closely associated with,
but strictly separate from, activities which change the course of
the computational activity. The term monitor as used in this
paper is the (usuaLly software) agent performing the monitoring.

Portions of this research were performed at Carnegie-Mellon
University, and was supported in part by the Defense Advanced
Research Projects Agency (DOD), ARPA Order No. 3507, moni-
tored by the Air Force Avionics Laboratory under Contract
F33615-78-C-1551, in part by the Ballistic Missile Ddease
Advanced Technological Center under Contract DASG60-81-
0077, and in part by an NSF fellowship.

Permission to copy without fee all or Dart of this material is granted
provided that the copies are not made or distributed for direct com-
nnercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Assooation for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1984 ACM 0-89791-131-8/84/0400/0124500.75

of what happened, thus serving as a prerequisite to
ascertaining why it happened. Monitoring is also
necessary to make efficient use of limited comput-
ing resources. In order to selectively optimize a
program, the compiler must be able to access infor-
mation on the execution of the program. A moni-
tor is thus a vital tool in an software development
environment, and the information the monitor col-
lects is a useful component of a program's represen-
tation.

A uniform yet comprehensive representation
of dynamic information regarding a program's pro-
gress is essential if this information is to be used by
programmers and by tools in a programming
environment. This paper introduces one elegant
representation, that of a temporal database, and
describes an implemented system that allows users
to ask high level questions about the behavior of
their programs. This approach exploits the
significant theoretical and practical results of
research in the area of relational databases. By
emphasizing the information processing aspects of
monitoring, it is possible to formalize the
specification of monitoring activity, and to bring
powerful techniques to bear to reduce the computa-
tional demands of this activity.

2. Approach
In an abstract sense, the process of monitor-

ing is concerned with retrieving information and
presenting this information in a derived form to the

124

user. Hence, the monitor is fundamentally an
information processing agent, with the information
describing time-varying relationships between enti-
ties involved in the computation.

A great deal of research has considered
effective ways to process information. One of the
results of this research has been the relational
model [Codd 1970]. The relational model provides
both a structuring of the information and manipu-
lations on that structure. A relation, modeling a
particular relationship between collections of enti-
ties, may be thought of as a table having a number
of rows {called tuple~) and columns {called
domains). New relations can be derived from exist-
ing ones using one of several data manipulation
languages developed for the relational model; these
query languages axe syntactically concise, yet axe
remarkably powerful in their expressiveness lUll-
man 1982]. One important aspect of some query
languages is that they are declarative rather than
procedural: they allow the user to specify what
information is desired, rather than how this infor-
mation is to be derived.

The central thesis of this paper is that the
relational model is an appropriate formalization of
the information processed by the monitor. The user
is presented with the conceptual viewpoint that the
dynamic behavior of the monitored program is
available as a collection of temporal relations.
Modelling the dynamic behavior in this fashion has
several important ramifications. Queries expressed
in existing query languages can be used to select
and summarize this information. The relational
algebra, suitably extended for temporal relations,
provides a convenient executable form for such
queries. Optimization strategies result in efficient
implementations. In particular, the overhead of
data collection, usually a large component, is
dramatically reduced by ~aese strategies.

A similar approach was taken by Powell and
Linton over the entire software development pro-
cess [Powell and Linton 1982], and, in particular, in
the domain of debugging [Powell & Linton 1983].
In this system, all program information, including
the parse tree, symbol table, version history,
configuration descriptions, etc., are stored in a rela-
tional database system. This uniform representa-
tion allows, among other things, queries that refer
to entities in the program being monitored. How-
ever, their system is based on a static relational
database in which temporal information is not
stored, a complete query language was never
developed, and the system was never implemented.
The system described here is more limited in scope,
focusing on monitoring. However, this emphasis

results in a more thorough design and implementa-
tion.

Ceri and Crespi-Beghizzi are more ambitious:
all data structures in their compiler-interpreter are
relations [Ceri & Crespi-Reghezzi 1983]. This
approach has severe performance implications. In
the system described in this paper the advantages
of the the relational model are preserved while
avoiding the performance penalties associated with
a straightforward implementation using relations.

This paper will describe how the relational
view is supported by the monitor. Section 3
discusses how the low level dynamic state of a pro-
gram may be captured in a collection of relations.
Section 4 illustrates how the monitor supports the
derivation of more useful, higher level information
on the behavior of the program. Section 5 shows
how the computational aspects of the monitor can
be organized, in particular, how the dynamic incre-
mental updating of temporal relations can be
implemented effectively. Section 6 gives an over-
view of an implementation of the relational moni-
tor, and section 7 discusses of the performance of
the monitor. Further details on all of these issues
may be found in [Snodgrass 1982].

3. C a p t u r i n g Dynamic Behavior In the Rela-
t ional Model

The dynamic behavior is recorded by a collec-
tion of sensors which are placed in the user's pro-
gram. Each sensor is a section of code which
transfers to the monitor information concerning an
event or state within the program. The sensor may
be inserted by the programmer into the source
code, by the compiler into the object code, or by
the runtime system into the executing program
using the conventional technique of breakpoints. If
the sensor is traced, then a data record is
transferred to the monitor each time a particular
event occurs. If the sensor is sampled, then a data
record is transferred each time the monitor requests
the sensor to do so. The data record contains some
system dependent information, such as the identity
of the sensor, usually a timestamp, as well as infor-
mation specified by the user. Sensors may be dis-
abled, when the data records they produce are no
longer desired, and re-enabled at a later time.

The information collected by the sensors is
viewed by the user as a set of relations. These
relations are differentiated temporally: there are
event relations and interval relations. A tuple in an
event relation describes a change in the state of the
program which occurred at a particular instant of
time. An example is the Call event relation, which
has two explicit domains, the calling procedure and

125

the called procedure, and one implicit domain, the
time the event occurred; Figure 1 illustrates a por-
tion of the Call temporal relation for a monitored
compiler. The tuple (DoTypeDec, lnsertSymbol,
130) in this relation represents the instantaneous
event of "the procedure DoTypeDec called the pro-
cedure InsertSymbol at time 130". The time indi-
cates the number of microseconds since the pro-
gram began execution.

Call (Caller, Callee):

Caller
Main

DoTypeDec
DoTypeDec

tee II time
DoTypeDec 15

InsertSymbol 130
InsertSymbol 426

Figure 1. An Event Relation

A tuple in an interval relation specifies a rela-
tionship valid during an interval of time. An
example is the Execu t ing relation, with the single
explicit Procedure domain (see Figure 2). The
tuple (InsertSymboi, 130, 158) in this relation
represents the relationship of "the procedure Insert-
Symbol executed from time 130 to time 158."

Execut ing (Procedure):

Pro edure II st t s p
DoTypeDec 15 923

lnsertSymbol 130 158
InsertSymbol 426 466

Figure ~. An Interval Relation

Since the program state is constantly chang-
ing, the relations evolve over time. For instance,
the tuple (InsertSymbol, 130, 158) is valid in the
Execu t ing relation for only a few microseconds,
and new tuples are constantly being added.

These relations are called primitive relations
because they contain information directly accessi-
ble to the monitor. For example, the Call relation
may be maintained either by periodically sampling
the program counter, or by tracing the call instruc-
tion. Similarly, the Execu t ing relation is main-
tained by sampling the program counter or by trac-
ing both the call and return instructions. Sampling
is usually less expensive, but it is also less precise.
The primitive relations correspond directly to the

sensors that have been inserted into the program.
Each time a new sensor is added, a new primitive
relation becomes available.

The user is probably not interested in the
level of detail of the primitive relations; instead,
the user desires more summary information
extracted from this detail. A query language pro-
vides a powerful mechanism for specifying exactly
the information the user wants to retrieve from
the program, by specifying the content of derived
relations. In this way, information not anticipated
by the designer of the monitor is still available to
the user, provided the basic information (i.e., the
primitive relations) is collected by the sensors. This
approach is in direct contrast to most monitoring
systems, which support a fixed set of analysis com-
mands.

4. A T e m p o r a l Q u e r y Language

TQuel (Temporal QUEry Language! is a
high-level, non-procedural monitoring specification
language. TQuel is a strict superset of the rela-
tional tuple calculus query language Quel [Held et
al. 1975 l, augmenting the retrieve statement with
additional constructs and providing a more
comprehensive semantics by treating time as an
integral part of the database. This semantics has
been formalized in the tuple calculus [Snodgrass
1984b], and the syntax and motivation of the
language is given in some detail elsewhere
[Snodgrass 1984a]; this paper will provide only a
few examples to illustrate TQuel's power and flexi-
bility.

To determine when the InsertSymboi pro-
cedure was executing,

range of E Is Executing
re t r ieve InsertExec
where E.Procedure ~ InsertSymbol

Ezample 1. When was lnsertSymbol active?

Since the underlying relation (Executing) was an
interval relation, Inser tExe¢ is also an interval
relation. The tuple variable E is associated Exe-
cu t ing relation. The where clause selects tuples in
E satisfying the given predicate. This query does
not specify any user defined domains; the itnplicit
temporal domains may not be directly manipulated
by the user, and are automatically computed by
the system (see Figure 3). This query is also a
valid Quel query; the semantics are slightly
different since the query applies to temporal rela-
tions.

126

InsertExec:

](start) (stop)
130 158
426 466

Figure 8. A Derived Relation

To determine when the InsertSymbol pro-
cedure was active when called, either directly or
indirectly by the DoTypeDee procedure,

range of I is lnsertExee
retr ieve DoTypeDec_Insert
where E.Procedure = DoTypeDec
when E overlap I

Ezample £. Use of the when clause

This example illustrates one of the clauses added to
Quei: the when clause. This clause is the temporal
analogue of the where clause. In this case, it
selects tuples in the Execut ing and Inser tExec
relations that overlap in time (i.e., that are simul-
taneously valid at some point). Since InsertSymbol
never calls DoTypeRec, the only situation where
the intervals overlap is when InsertSymbol was
called during an invocation of DoTypeDec.

To select the invocation of InsertSymbol with
the longest execution time, when called by the
DoTypeDec procedure, either directly or indirectly:

range of D k DoTypeDec_Insert
retr ieve MaxInsert (ExecutionTime -~-

Max (Duration(O)))

Ezample 8. Use of an aggregate operator

MaxInser t has only one explicit domain (see Fig-
ure 4). This example illustrates both a temporal
unary operator, Duration, and a conventional
aggregate operator, Max, over a temporal relation.
Note that the value of the ExecutionTime domain
is constant over the intervals [0..130] and
1158..454], but is increasing over the intervals
[130..1581 and [454..466]. As an example, the value
of the ExecutionTime domain at time t -~- 150 is
20.

MaxInser t (ExecutionTime):

Execu i°nTime If srt 38° 5 83°° sop65308

Figure 4. Another Derived Relation

5. The Update Network

Because TQuel is nonprocedural, queries must
be compiled into a representation more amenable
to being run. The responsibility of determining
what information should be collected (i.e., which
sensors are enabled), and what computations
should be performed rests with the monitor, not
with the user. Both aspects are involved in the
generation of an update network, which is the tar-
get of the TQuel compiler. Static relational data-
base management systems typically convert each
calculus-based query into an equivalelit expression
in the relational algebra [Ullman 1982]. This alge-
bra consists of operators over entire relations. The
update network generated from a TQuel query is
essentially an executable version of the equivalent
algebraic expression, tuned for incremental updat-
ing of temporal relations. The nodes in this graph
are classified as either access or operator nodes.
Access nodes appear in the tree when the query
involves primitive relations. Information in the
form of tuples flows out of the access nodes (which
are associated with the sensors in the monitored
program) and through the network. Operator
nodes take tuples from one or more lower nodes
and produce tuples which will be sent on to the
higher nodes. The entire network is driven by
tuples originating in the access nodes.

Update networks support the dynamic incre-
mental updating of temporal relations. Incremen-
tal update algorithms for temporal relations accept
information in the form of "this relationship
between these entities was true for the interval
from t 1 through ~", and use this information, plus
stored information concerning the relation, to
derive an updated relation. Primitive relations
evolve in time through tuples being added and
removed. These changes cause relations derived
from a relation to acquire or lose tuples of their
own, a process continuing until new information
has been completely assimilated by the relations
defined in the program. The update network
approach emphasizes the flow of information from

127

the sensors through access nodes to the user.

The access and operator nodes present in the
update network are instantiated from a set of
predefined generic access and generic operator
nodes. Each generic access node is associated with
an event type, and thus with the set of sensors gen-
erating data records of that type. Access nodes are
instantiated from these generic access nodes, and
are placed in the network. The generic operator
nodes specify various relational operators, such as
cartesian product, selection, and projection.
Operator nodes are instantiated from these generic
nodes by supplying appropriate parameters, then
placed in the tree.

The update network is driven by data records
originating at the sensors. When a sensor generates
a data record, the appropriate tuple is placed on
the output arc of all access nodes instantiated from
the appropriate generic node. At this point, the
tuples start flowing through the network and the
processing commences.

6. Implementation

The monitor consists of two main com-
ponents, a remote monitor performing those func-
tions requiring close interaction with the user and a
resident monitor, performing the functions requir-
ing close interaction with the monitored program.
This separation is necessary when monitoring a dis-
tributed program, where a resident monitor exists
at each processor, sending collected data to the
centralized remote monitor. Functionally, the
resident monitor collects the event records and
interacts with the program and the operating sys-
tem, and the remote monitor analyzes and displays
the monitoring data.

In the implementation, the remote monitor
runs on a Vax under Berkeley Unix [Ritchie &
Thompson 1974]. The programs being monitored
execute on Cm*]Fuller et al. 1978), a tightly-
coupled multiprocessor composed of 50 DEC LSb
11's and a substantial amount of memory. Two
resident monitors were implemented, one on
StarOS [Gehringer & Chansler 1982, Jones et al.
1978, Jones et al. 19791 and one on Medusa
[Ousterhout et al. 1980]. A third resident monitor
is currently being implemented directly on the Vax.
The remote monitor on the Vax communicates
with the resident monitor on Cm* over an Ethernet
[1975], a high bandwidth (3 MBaud) network.

The query is entered by the user interacting
with the front end, which was derived from the
Ingres front end, and thus includes the macro and
help facilities of the Ingres system [Youssefi et al.

1977]. The TQuel query is compiled into an
update network, which is then interpreted. The
update network enables the appropriate sensors in
the program and the operating system running on
Cm*. These sensors generate data records which
are collected by the resident monitor and shipped
to the Vax over the Ethernet. There they enter
the update network, to emerge later as tuples in
the requested relation.

An implementation of the monitor is now
running, and work is proceeding to develop a more
extensive system. More specifically, the update net-
work interpreter, the resident monitors, and the
TQuel compiler are essentially complete. The
semantic analysis and optimization phases of the
TQuel compiler are currently being extended to
support further optimization strategies. An update
network compiler and several other components not
mentioned have been designed, and are currently
being implemented.

7. Performance Issues

Although the high level conceptual viewpoint
of a dynamic relational database on the program's
behavior results in a powerful user interface via
TQuel, it remains to be shown that a monitor sup-
porting such a viewpoint is sufficiently efficient.
Several of the components were instrumented to
determine the overall performance of the monitor.

There are many areas where bottlenecks
could severely compromise the performance of the
monitor. In the following, the primary areas will be
examined, focusing on the steps taken to increase
performance. This analysis will then be summar-
ized using the common metric of data record rate
supported.

One such area is the data collection. Ena-
bling all the sensors and subsequently filtering the
data records in the update network resulted in an
unacceptably large execution time overhead on
Cm*. Furthermore, the other components of the
monitor could not contend with this excessive rate.
Two solutions were adopted [Snodgrass 1984c].
First, sophisticated filtering techniques were
adopted that enabled only the necessary sensors.
Sensor enabling occurs as a side effect of the
interpretation of the update network. Second, the
sensors themselves were generated automatically
from a high level description provided by the user.
The resulting code was carefully tailored based on
these specifications, and made extensive use of
existing microcoded operations.

Another potential bottleneck was the Ether-
net protocol. The event records are generated by

128

the sensors and placed in temporary storage areas,
waiting to be picked up by the resident monitor
and sent to the remote monitor via the Ethernet.
The protocol [Highnam&Snodgrass 1981] is a vari-
ant of the EFTP (Ethernet File Transfer Protocol),
simulating a transmission from the remote monitor
(the host) to the resident monitor (the slave}. This
protocol may be thought of as a modified transport
protocol using the Pup protocol as the network
layer of the communications hierarchy [Boggs et al.
1980, Zimmerman 1980]. The commands are sent
in command packets and the data records are
placed in the acknowledgement packets. The pro-
tocol uses checksums, timeouts, and packet
retransmission for reliability. Since the resident
monitor is a slave in the protocol, it must. wait for
the remote monitor to send a packet before it can
respond with an acknowledgement containing data.
Hence the remote monitor must occasionally send
packets even if there are no commands to be sent.
The resident monitor indicates in every ack-
nowledgement the amount of buffer space it has
free, allowing the remote monitor to adjust the
packet transmission rate accordingly. The size and
transmission rate of the packets were chosen to
optimize performance.

The third area critical to the performance of
the monitor is the update network. The TQuel
compiler as implemented generates correct update
networks, but does not include most of the optimi-
zation strategies discussed above. Although the
interpreted version was flexible and relatively easy
to implement, it had one major drawback: it was
slow. The maximum node fire rate was less than
140 per second, corresponding to an inp~lt data
record rate of less than 7 data records per second.
This rate is about two orders of magnitude too low.
To achieve such a speedup, it was necessary to
abandon some of the flexibility afforded by the
interpreter.

The update network compiler, not to be con-
fused with the TQuel compiler, translates an
update network into a collection of Lisp functions,
which are then compiled by the Lisp compiler
[Foderaro 1980].

The update network compiler was designed
but not implemented. However, the techniques
involved in compiling update networks are com-
monly found in standard compilers. Construction
of an update network compiler should be a
straightforward task not requiring any new break-
throughs.

Three sets of measurements were taken; one
with the update network generated by the existing
compiler, one with the update network optimized

by hand, using only strategies that could be readily
implemented (described elsewhere [Snodgrass
1982]), and one with Lisp functions generated by
hand from the optimized update network, again
using only strategies that could be readily imple-
mented. It should be emphasized that the measure-
ments only apply to one set of queries, and may
not be representative of queries in general. On the
other hand, these queries are somewhat complex,
involving several tuple variables and temporal
clauses.

Since all three update networks were correct,
they generated identical output tuples for the same
input data records. For a set of 50 test input data
records, chosen to produce interesting results, there
were 32 output tuples produced.

In the non-transformed network, each input
data record resulted in almost 20 node fires. In the
optimized update network, each data record
resulted in less than 10 node fires. The execution
time per node went down by 40~ from the original
to the optimized update network. These two
reductions cooperatively increase the number of
data records processed per second by a factor of 3.

An even larger increase (a factor of 40) occurs
with the update network is compiled. There is only
1 fire per tuple in the compiled version because
each update network in this approach is in effect a
highly specialized operator node (internal function
calls were not counted). In summary, the optimi-
zations on the original update network, coupled
with conversion of the update network into Lisp,
and then into assembly language, result in the
necessary improvement of two orders of magnitude.

At this point, the relative performance can be
analyzed. Assuming that filtering reduces the over-
head to 1~ (detailed measurements of the
effectiveness of the various filtering mechanisms
have not yet been performed), the 50 processors in
Cm* would generate 500 data records per second.
Given the observed transmission rates for the stan-
dard EFTP, a rough maximum transmission rate is
600 data records per second. Applying update net-
work optimizations and using an update network
compiler results in a processing rate of over 600
data records per second on a dedicated Vax 11/780.
Thus, the Ethernet and remote monitor can essen-
tially keep up with the 50 processors on Cm*. It is
also fair to state that if the situation is changed in
some way; say, an additional 20 processors are
added to Cm*, or the Ethernet or the Vax is
loaded, then the monitor as realized here would not
be able to sustain an adequate data record process-
ing rate.

129

8. Conclusions

This paper has argued that the relational
model provides an effective conceptual model of
dynamic information concerning a program's execu-
tion. Several specific results were detailed:

[1) A monitoring specification language, TQuel,
was developed by syntactically and semanti-
cally augmenting an existing query language.
This language is the basis for a powerful user
interface for querying the monitor concerning
the behavior of the program.

(2) Update networks were proposed to implement
the dynamic incremental updating of derived
temporal relations. The network is composed
of access nodes, which interface with the
resident monitor, and operator nodes, which
carry out the desired computations.

{3) Several general techniques were developed to
generate correct and efficient update net-
works from TQuei queries.

{4) The monitor was implemented. Measure-
ments show that the monitor can essentially
keep up with a large multiproeessor.

The point to be emphasized is that it is in
fact possible to implement an efficient monitor sup.-
porting the high level conceptual viewpoint of a
dynamic relational database on the program's
behavior which can be manipulated by a temporal,
non-procedural query language.

9. Acknowledgements

Wm. A. Wulf, Anita Jones, Joseph Newco-
mer, all of Tartan Labs, and Zary Segall, at CMU,
were very helpful in all stages of this research.
They provided ideas, encouragement, and software
systems on which to implement these ideas.

I0. Bibl iography

[Boggs et al. 1980] Boggs, D.R., J.F. Shoch, E.A.
Taft and R.M. and Metcalfe. Pup: An
internetwork architecture. IEEE Transac-
tions on Communications, COM-28, No. 4,
Apr. 1980, pp. 612-24.

[Ceri & Crespi-Reghezzi 1983] Ceri, S. and S.
Crespi-Reghizzi. Relational Data Bases in
the Design of Program Construction St/s-
terns. SIGPlan Notices, 18, No. 11, Nov.
1983, pp. 34-44.

[Codd 1970] Codd, E.F. A Relational Model of Data
for Large Shared Data Bank.

Communications of the Association of
Computing Machinery, 13, No. 6, June
197/0, pp. 377-387.

[Foderaro 19801 Foderaro, J.K. Franz Lisp Manual.
Opus 33b ed. UC Berkeley, 1980.

[Fuller et al. 1978] Fuller, S., J. Ousterhout, L.
Raskin, S. Rubinfeld, P. Sindhu and R.
Swan. Multi-microprocessors: An overview
and working example. Proceedings of the
IEEE, 66, No. 2, Feb. 1978, pp. 216-28.

[Gehringer & Chansler 1982] Gehringer, E.F. and
R.J. Chansler, Jr.. StarOS User and System
Structure Manual. Technical Report. Com-
puter Science Department, Carnegie-Mellon
University. July 1982.

[Held et al. 1975] Held, G.D., M. Stonebraker and
E. Wong. INGRES--A relational data base
management system. Proceedings of the
1975 National Computer Conference, 44
[1975) pp. 409-416.

{Highnam&Snodgrass 19811 ttighnam, P. T. and R.
Snodgrass. The Cm*/ Simon Protocol.
Technical Report. CMUCSD. 1981.

[Hoare 1974] Hoare, C.A.R. Monitors: An Operating
System Structuring Concept. Communica-
tions of the Association of Computing
Machinery, 17, No. 10, Oct. 1974, pp. 549-
557.

[Jones et al. 1978] Jones, A.K., R.J. Chansler, Jr.,
I. Durham, P. Feiler, D. Scelza, K.
Schwans and S.R. Vegdahl. Programming
issues raised by a multiprocessor. Proceed-
ings of the IEEE, 66, No. 2, Feb. 1978, pp.
229-37.

[Jones et al. 1979] Jones, A.K., R.J. Chansler, Jr.,
I. Durham, K. Schwans and S.R. Vegdahl.
StarOS, a Multiprocess Operating System
for the support of Task Forces. In
Proceedings of the ACM Symposium on
Operating System Principles, Sep. 1979 pp.
117-127.

[Model 1978] Model, M. Monitoring System
Behavior in a Complex Computatio~tal
Environment. PhD. Diss. Stanford Univer-
sity, Jan. 1978.

[Ousterhout et al. 1980] Ousterhout, J.K., D.A.

~30

Scelza and P.S. Sindhu. Medusa: an experi-
ment in distributed operating system struc-
ture. Communications of the Association of
Computing Machinery, 23, No. 2, Feb.
1980, pp. 92-105.

[Powell and Linton 1982] Powell, M. and M. Lin-
ton. The OMEGA Programming System.
1982. (in preparation.)

[Powell & Linton 1983] Powell, M. L. a.nd M. A.
Linton. A Database Model of Debugging. In
Proceedings of the SIGSofl/ SIGPIan
Software Engineering Symposium on High-
Level Debug#in#, Ed. M. S. Johnson.
ACM. Pacific Grove, CA: Mar. 1983 pp.
67-70.

[Ritchie & Thompson 1974] Ritchie, D.M. and K.
Thompson. The Unix Time-Sharing Sys-
tem. Communications of the Association of
Computing Machinery, 17, No. 7, July
1974, pp. 365.-375.

[Snodgrass 1982] Snodgrass, R. Monitoring Distri-
buted Systems: A Relational Approach.
PhD. Diss. Computer Science Department,
Carnegie-Mellon University, Dec. 1982.

[Snodgrass 1984a1 Snodgrass, R. The Temporal
Query Language TQuel. In Proceedings of
the ACM SIGAct-SIGMOD Symposium on
Principles of Database Systems, Waterloo,
Ontario, Canada: Apr. 1984.

[Snodgrass 1984b] Snodgrass, R. Formal Semantics
of a Temporal Query Language. 1984. [Sub-
mitted for publication.)

[Snodgrass 1984c] Snodgrass, R. Monitoring Data
Collection on a Multiprocessor. 1984. (Sub..
mitted for publication.)

[Ullman 1982] Ullman, J.D. Principles of Database
Systems, Second Edition. Potomac, Mary-
land: Computer Science Press, 1982.

[Youssefl et al. 1977] Youssefi, K., N. Whyte, M.
Ubell, D. Ries, P. Hawthorn, B Epstein, R.
Berman and E. Allman. INGRES Refer-
ence Manual. 6th ed. Electronics Research
Lab., University of California, Berkeley,
California, 1977.

[Zimmerman 1980] Zimmerman, H, OSI Reference
Model - The ISO Model for Open Systems

Interconnection.
Communications,
1980.

IEEE Transactions on
COM-28, No. 4, Apr.

131

