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Abstract 

A software development environment (SDE) ex- 
hibits evolution resilience if channes to the SDE do 
not adversely affect its functionality nor performance, 
and also do not introduce delays in returning the SDE 
to an operational state after a change. Evolution re- 
silience is especially difficult to achieve when manipu- 
lating fine grained data, which must be tightly bound 
to the language in which the SDE is implemented to 
achieve adequate performance. We examine a spec- 
trum of approaches to tool integration that range from 
high SDE-development-time efficiency to high SDE- 
execution-time efficiency. We then present a meta- 
environment, a specific SDE tailored to the develop- 
ment of target SDE’s, that supports easy movement of 
individual toois along this spectrum. 

A software development environment (SDE) is a collec- 
tion of tightly coupled tools cooperating to facilitate the ac- 
tivities of design, implementation, testing and management 
involved in producing a software artifact. An SDE is itself 
a large collection of tools, comprising 1OOK to lh!![ lines of 
code and involving significant development effort by a team 
of programmers over several years. The close interaction 
of tools required to achieve integration unfortunately com- 
plicates their implementation, as changes to a tool or to the 
structure of the shared data will necessitate changes to other 
tools. Due to the size and complexity of the SDE being de- 
veloped, evolution is a constant occurrence; the challenge is 
in reducing its costs, in terms of programmer time and effort 
and execution efficiency [Taylor et al. 19881. 

An SDE exhibits evolution resilience if it meets two re- 
quirements. First, changes to the SDE must not adversely 
affect its functionality nor performance, to ensure that the 
end product performs correctly and efficiently. Second, there 
must not be significant delays in returning the SDE to an 
operational state after a change, to ensure that the devel- 
opment effort required to realize the end product is mini- 
mized. Implementation techniques, development st,rategies, 
and support software that increase the evolution resilience 
of the emerging SDE are needed [Wileden et al. 19901. 
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In this paper we discuss the kinds of evolution that occur 
during development of an SDE, and the often substantial 
impact of these changes. We focus on fine grained data, in 
part because the performance requirements concerning fine 
grained data are the most difficult to meet. A spectrum of 
approaches to tool interaction is presented; this spectrum 
incorporates and generalizes several approaches previously 
proposed by others. We examine implementation techniques 
that allow tools to be moved individually along this spectrum 
with relative ease, significantly ameliorating the adverse im- 
pact of evolution. Finally, we discuss specific facilities that 
when present allow the SDE developer to precisely control 
the evolution of the emerging SDE, and briefly examine our 
implementation of these facilities. 

1 The Problem 

As discussed above, the defining characteristic of a software 
development environment, as opposed to simply a collection 
of tools, is the close interaction of the tools enabled by their 
sharing of information concerning the program under devel- 
opment [Barstow et al. 19841. An SDE is employed by an 
environment user (often a team) to develop a software sys- 
tern consisting of the software itself, along with supporting 
specification and design documents, test data, management 
reports such as schedules, and other artifacts necessary for 
continuing maintenance and enhancement of the software 
system. We are concerned here with an earlier activity: the 
development of the SDE itself by an environment developer 
(almost definitely a team). SDE’s also evolve over time, 
initially as they are implemented but also as they are main- 
tained and extended by the developer. Tools in the SDE 
must be easy to change, it must be possible to generate an 
executable version of the modified portions of the SDE in a 
timely fashion, so that the environment developer’s time is 
not wasted, and the resulting SDE must be highly efficient 
if it is to be employed by the user to develop large software 
systems. 

1.1 Characterizing Evolution of an SDE 

There are four primary ways that an SDE may evolve. Data 
specification evolution refers to changes in the kinds of in- 
formation stored in the central database. Examples include 
adding a new object type such as a bug report, changing 
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the name of an attribute in a symbol table entry, or mov- 
ing an attribute from the database into an individual tool, 
if that attribute contains information relevant only to that 
tool and to a single execution of the tool. Representation 
evolution refers to changes in the specific encodings of the 
information, both in the database and within the tools. Ex- 
amples include increasing the precision of integer constants 
stored in a symbol table, changing the implementation of a 
sequence of objects from a linked list to pointers embedded 
in the objects themselves, and reordering attributes within 
an object. Tool evolution involves changes to the algorithm 
embodied in a tool; examples include changing the way out- 
standing bugs are assigned to programmers, or modifying an 
equation in an attribute grammar specification for semantic 
analysis. Finally, system evolution deals with changes made 
at an architectural level. Examples include adding a cross 
reference tool, or augmenting a low level debugger to support 
the display of information in terms of the source code; both 
may involve fairly significant changes to the central database 
and to several tools in the SDE [Wileden et al. 19901 

Each kind of evolution impacts the developing SDE. It 
can affect the semantics of existing data: new attributes or 
objects may have to be computed, and other attributes or 
objects may have to be deleted or changed. Additionally, 
the representation of existing data stored in the database 
may have to be modified. Finally, the representation of data 
inside tools may have changed, necessitating at worst modi- 
fication of the code by the environment developer and gener- 
ally at least a recompilation of the tool [Conradi & Wanvik 
19851. 

This paper focuses on approaches to tool integration that 
support all four kinds of evolution, while minimizing the 
impact in its various guises of that evolution. Our con- 
cern primarily is the data management support necessary to 
accommodate evolution of an SDE, while preserving SDE- 
execution-time efficiency. We assume that smart(er) recom- 
pilation [Schwanke & Kaiser 1988, Tichy 19861 is employed 
to eliminate redundant computation. We do not consider 
here techniques such as parser generators, attribute gram- 
mar systems, and other approaches that permit the algo- 
rithms of the tools to be easily modified. We also do not 
consider the issue of data reorganization, as several database 
techniques are available for restructuring existing data after 
a change [Banerjee et al. 1987, Gerritsen & Morgan 1976, 
Lerner & Habermann 1990, Navathe & Fry 1976, Shu et al. 
1977, Sockut & Goldberg 1979, Staudt 19881. We do not dis- 
cuss here the specific algorithms used to move data in and 
out of main memory; however, some of the techniques we 
present provide information that can make such movement 
more efficient. We assume that the SDE is implemented 
in potentially several languages, with these languages being 
compiled, strongly typed, and statically type-checked, for 
greater efficiency. Finally, we emphasize support for fine 
grained data, which we now justify. 

1.2 Data Granularity 

An SDE manipulates data across a wide range of granularity. 
At one end are very coarse objects, encoding information on 
large entities as a whole, such as projects, modules, devel- 
opment tasks, and requirement specifications [Penedo 1986, 
Tichy 1982, Wolf et al. 19891. At the other end are very 
fine grained objects such as symbol table entries, statements 
in an abstract syntax tree, and procedure signatures [Clarke 
et al. 19861. The performance requirements related to such 

data, relative to those concerning coarse grained objects, are 
quite severe. Fine grained objects are small, numerous, and 
tightly interconnected; they must be moved in and out of the 
tools with minimal overhead [Andrews & Harris 19871. Con- 
sequently, fine grained data must be tightly bound, termed 
impedance-matched, to the language in which the tools are 
written to achieve adequate performance [Cockshott et al. 
1984, Conradi et al. 1986, Straw et al. 19891. That is, they 
must appear to the tool’s code as instances of data types 
provided by the programming language. Objects are usually 
represented by records and object references by pointers, al- 
lowing navigation by pointer chasing, rather than via calls 
to a DBMS runtime library. Alternative language bindings, 
such as those available with conventional database systems, 
simply require too much overhead to navigate a graph or tree 
of objects, resulting in unacceptable performance, generally 
an order of magnitude slower than an impedance-matched 
representation. 

While some work has addressed evolution of coarse grained 
data [Bernstein 1987, Dittrich et al. 1986, Garlan et al. 
1986, Penedo et al. 1989, Skarra & Zdonik 1986, Skarra & 
Zdonik 19871, supporting evolution of fine grained data is an 
open research problem, and is the target of the strategies to 
be discussed shortly. 

1.3 An Example 

To illustrate the adverse effects of evolution, let us consider 
the ramifications of a specific change to an SDE. We decide 
to add a cross reference generator tool to this SDE. This 
tool wiU extract the symbol table of a selected module from 
the database, traverse it, and print out a formatted list of 
symbols along with the line number where each was declared. 
This change may be characterized as system evolution. 

Unfortunately, the symbol table currently does not record 
source position information, as the other tools using the sym- 
bol table did not require that data. So we must also modify 
the symbol table structure (data specification evolution) and 
the lexical analysis tool, which should compute the source 
position (tool evolution). We decide to represent the source 
position as a single 16-bit integer storing the line number 
where the symbol occurred. 

The impact of these changes is pervasive. First, all ex- 
isting symbol tables stored in the database must be altered 
to add the new attribute, with a default value, say, a line 
number of 0, stored. Secondly, all tools that reference sym- 
bol tables must be modified. Due to an impedance-matched 
language binding, internal data structures used by each tool 
that encode symbol tables must be altered to include the 
new attribute. The tools must then be recompiled. Clearly, 
adding an attribute may be very costly. 

Later we discover that our encoding is flawed: we have not 
allocated sufficient bits for the line number. So we increase 
the size of the source position attribute from 16 to 32 bits 
(representation evolution). 

This impact of this seemingly minor change may be as per- 
vasive as the original change. All existing source positions in 
the database must be updated: the new representation must 
be computed from the old and the data reformatted on disk, 
since an attribute has grown in size. All other tools that ref- 
erence the symbol table must again be modified, even though 
they do not access the source position attribute. Hence, a 
minor change in representation of a little used attribute can 
also be costly, potentially generating several hours of data 
reorganization, code modification, and recompilation. 
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1.4 Previous Work 

Several approaches have been proposed that can dramati- 
cally reduce the impact of seemingly minor changes, such 
as the example of representation evolution discussed above. 
One proposal is to apply the database concept of views [Date 
1986, Ullman 19881 to SDE’s. Each tool manipulates an 
identified subset, termed the view, of the database. The 
other side of the coin is the database may be characterized 
as the union of all of the tools’ views [Garlan 19871. Each 
tool is insulated from changes to portions of the database 
outside of that tool’s view. For example, the semantic an- 
alyzer’s view of the symbol table does not include a source 
position attribute, so the addition or change in representa 
tion of this attribute will not affect this tool. 

Views effectively isolate the source code of the tool from 
many changes to the database; for this reason they are used 
frequently in conventional database applications. They are 
less successful when applied to fine grained datal manipu- 
lated by an SDE. Views imply data conversion between the 
database and the tool. In the example given in the pre- 
vious section, the source position attribute is present in a 
symbol table entry in the database, but is not present when 
that entry appears in the semantic analysis tool. If an at- 
tribute is added to an object, but that attribute is not part 
of the tool’s view, then the source code for the tool need 
not change. However, the tool is impacted indirectly by 
this change. If the data conversion implied by the view is 
handled by table-driven DBMS runtime routines, then the 
tables need to be regenerated. Also, the runtime overhead 
imposed by table-driven conversion when reading and writ- 
ing data is significant. If the conversion is handled by spe- 
cialized code generated for each tool, then this code must be 
regenerated, compiled, and the tool relinked. In either case, 
additional overhead resulting from a change occurs when the 
data specifications for each tool that references the database 
are reanalyzed, a task that itself can take significant time. 
While a view may isolate the logical interface of a tool to 
changes to the database, such changes necessarily affect the 
code maintaining the physical interface. 

The GRAPHITE system uses a related scheme,, support- 
ing two versions of the physical interface [Clarke et al. 19861. 
The logical interface to fine grained objects consists of a set 
of routines that access and modify values of attributes. The 
development version provides a table-driven implementation 
of these routines, with similar advantages and dlrawbacks 
of views. The production version specifies inline expansion 
of these routines, so that attribute access expands into ac- 
cess via absolute offsets into the objects. The advantage 
is much higher execution-time performance; the drawback 
is significantly worsened development-time performance, as 
the entire tool must be recompiled on changes to the shared 
database. 

The approach of providing development and production 
implementations underneath an identical logical interface 
is an excellent one. However, it falls short of providing a 
complete solution to achieving evolution resilience. First, 
it involves a binary decision, development or production 
version, while the environment developer would like finer 
control over the development-time/execution-time efficiency 
tradeoff. Second, the development version still requires sig- 
nificant work to return the SDE to an operational state. 
For the example above, when the source position attribute 
is changed, the database interface module for the semantic 
analyzer must be regenerated and compiled, and the seman- 
tic analyzer tool relinked. We desire an alternative that 

necessitates no changes to the semantic analysis tool when 
a source position attribute is added, even if execution-time 
performance suffers. Finally, this approach requires that a 
procedural interface to attribute access be used, which many 
find syntactically awkward and verbose. 

Newcomer proposed that the previous representation be 
considered when computing the new representation after a 
change [Nestor et al. 1989, Newcomer 19861. His approach 
applies to both tight language bindings and inline compiled 
accessor routines, such as those just discussed. The trick is 
to modify the representation in such a way that code access- 
ing unaltered attributes is still correct. In the example, the 
source position attribute would be added to the end of the 
symbol table object. Then, all the code that accesses the 
symbol table, such as the semantic analysis tool, need not 
be altered, or even recompiled. Deleted attributes can be 
left in the object, and modified attributes can be treated as 
attributes that have been deleted and then later added. 

The benefit of this approach is that SDE-development- 
time efficiency is enhanced. However, the resulting object 
layout may waste space, especially when classes and multiple 
inheritance are supported in the data model [Nestor et al. 
19891. Tools that create data objects must be relinked with 
a newly generated table that specifies the size of each object. 
More fundamentally, this approach is quite dangerous when 
applied manually, as tools can easily become inconsistent. 

To summarize, previous work provides valuable tech- 
niques, yet does not support evolution resilience in a com- 
prehensive fashion. For adequate SDE-execution-time per- 
formance, the representation of fine grained data must be 
tightly bound to each tool. Yet tight binding implies lit- 
tle or no resilience to change: the binding must be recom- 
puted, often at significant cost at SDE-development-time, 
each time some aspect of the data or tools is modified. On 
the other hand, very loose binding, such as through table- 
interpreted views or accessor/modifier routines, which may 
achieve faster reorganization at SDE-development-time, will 
inevitably result in an inefficient SDE. Finally, even if the 
requirement for high performance were ignored completely, 
say, for the initial testing phases of the SDE, none of these 
approaches can accommodate a change without necessitat- 
ing at least a relink of the effected tools, which may still 
imply a rather long minimal modify-recompile-test cycle. 

1.5 Desiderata 

We can summarize the problem by listing the requirements 
that must be met to achieve evolution resilience in an SDE. 
The rest of the paper will then integrate the previously pro- 
posed approaches discussed above with some new techniques 
to address these requirements. 

l Each change should have as small an impact as possible. 
Ideally few if any tools not directly changed through 
tool or system evolution will need to be modified, re- 
compiled, or even relinked. For instance, the semantic 
analyzer tool should be unaffected by either adding the 
source position attribute or changing its representation. 

l No source level changes should be required of tools not 
specifically participating in tool or system evolution. 
If we must alter the executable of the semantic anal- 
ysis tool when the source position attribute is added, 
such alteration must involve only recompilation or re- 
linking. Involving the environment developer each time 
evolution occurs somewhere in the SDE is an invitation 
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for bugs and rapidly rising implementation costs as the 
SDE grows in number of tools and in complexity. 

l Environment developer time should be minimized when 
restoring the SDE to operational status, which involves 
making the required changes to the source code, recom- 
piling the tools, and restructuring existing data. For 
those tools that must be changed, relinking is prefer- 
able to recompiling, which is preferable to regenerating 
source code (for those components that are generated 
from other specifications, such as a grammar). 

l Tool execution efficiency should not be compromised by 
approaches used to achieve evolution resilience. The se- 
mantic analyzer should not run slower after the source 
position attribute is added. Infact, the semantic an- 
alyzer should execute as fast as known optimizations 
permit. 

l Consistency among the tools and the software database 
is paramount, and must be able to be guaranteed when 
requested by the environment developer. After the 
source position attribute is added, and various changes 
have been made, a support tool must be available to be 
used by the developer to at least check that consistency 
has again been achieved. Even better are support tools 
that ensure consistency at all times. 

2 Approach 

Unfortunately, there is no resolution to the tradeoff between 
SDE-development-time and SDE-execution-time efficiency 
when manipulating fine grained data [Wileden et al. 19901. 
(We emphasize time efficiency here, but space efficiency is 
an important parallel issue.) No known techniques achieve 
both development-time and execution-time efficiency simul- 
taneously, and none are anticipated. However, it is possible 
to exploit the different efficiency requirements present at var- 
ious points during the development of an SDE. Specifically, 
for most of the time, rapid turnaround is paramount: when a 
change is made, a functioning SDE must be available rather 
quickly, so that productivity of the developer is maximized. 
SDE-execution-time efficiency is relatively less important, 
because test cases are generally small and because few tools 
are exercised by each test. As the evolving SDE matures, 
and as global changes, e.g., to the data base specification, 
become less prevalent, SDE-development-time efficiency is 
less important, because changes are more localized. How- 
ever, at this point in the development cycle, SDE-execution- 
time efficiency becomes more of an issue, because test cases 
tend to be Iarge and exercise many of the tools in the SDE. 
When the SDE is delivered, execution-time efficiency is vir- 
tually the only relevant metric; environment users will not 
be happy to hear that their SDE is slow because it was easier 
to build it that way! 

Our approach has three components. 

1. We define a coupling spectrum, consisting of a vari- 
ety of approaches to tool interaction. Some of these 
strategies are very efficient, but are quite fragile, re- 
quiring a complete reanalysis on any change. Others 
are robust, yet are rather inefficient. Still others are 
intermediate in both SDEdevelopment-time and SDE- 
execution-time efficiency. We introduce implementation 

Figure 1: Central Database SDE Architecture 

techniques that support easy movement along the cou- 
pling spectrum anchored at one end by rapid SDE de- 
velopment and at the other end by efficient SDE exe- 
cution. In particular, no source code need be changed 
when moving along alternatives within this spectrum. 

To provide precise control to the developer, we employ a 
meta-environment, a specific SDE tailored to the spec- 
ification, design, implementation, and testing of target 
SDE’s. 

We use an explicit tool topology to describe the data 
shared among the tools, the tools themselves, and the 
static composition and interaction of the tools. 

We next examine the need for an explicit tool topology and 
the support provided by the meta-environment. We then 
discuss the many points along the coupling spectrum. 

3 Tool Interaction 

The basic model of tool interaction employed in most SDE’s, 
proposed or implemented, is the central database architec- 
ture shown in Figure 1. Tools (denoted with ovals) inter- 
act indirectly via information communicated through the 
database [Buxton 1980, Didriksen et al. 1987, Dittrich et 
al. 1986, Dowson 1987, Garlan 1987, Habermann & Notkin 
1986, Hitchcock et al. 1986, Hudson & King 1988, Lew- 
erentz 1988, Narayanaswamy & Scacchi 1987, Notkin 1985, 
Paseman 1989, Penedo 1986, Perry & Kaiser 1988, Reps & 
Teitelbaum 1989, Tichy 19821. 

This model is not sufficiently expressive for the meta- 
environment to generate efficient code or to manage evolu- 
tion of the developing SDE. We adopt a more refined model, 
in which tools communicate instances of strongly typed data 
structures. A tool topology is specified for the SDE, stating 
explicitly how the tools interact and what data is commu- 
nicated. Figure 2 displays the topology of the SDE illus- 
trated in Figure 1 (here, data structures are denoted with 
rectangles). Clemm and Osterwei! have proposed a similar 
topology to automate tool invocation [Clemm & Osterweil 
1990, Osterweil & Clemm 39831; the two uses are consistent 
and orthogonal. The Polylith environment also includes this 
notion of tool integration [Kaplan, et al. 1986, Purtilo 1985, 
Purtilo 19881. 
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An explicit tool topology differs from the central database 
architecture in two ways. First, the central database is par- 
titioned into multiple logical databases, with only a. few tools 
interfacing to each of these smaller databases. The central 
database model implies more interaction than actually oc- 
curs; an explicit tool topology allows the ramifications of a 
specific change to be more precisely determined by the meta, 
environment. The second difference is that tool interaction 
need not be through the database. It is common, even in 
a tightly integrated SDE, for an output of a particular tool 
to be read by only one other tool. In such cases, the gen- 
erality provided by a central database is not needed, and 
the performance degradation implied by that generality is 
not acceptable. Instead, these two tools can communicate 
through highly specialized interfaces that extract ultimate 
performance. 

The presence of multiple databases brings up the issue of 
shared data. Some of the logical databases, such as one con- 
taining the attributed syntax tree of the standard prelude in 
an Ada environment, will be referenced by data i.n many of 
the other databases. The appropriate structuring and use of 
these databases is crucial to evolution resilience. One advan- 
tage of an explicit tool topology is that such dat(abases are 
naturally emphasized in the topology, alerting the designer 
to their importance. 

The (target) environment developer describes tool inte- 
gration by formally specifying the data structures commu- 
nicated among the tools. This specification is analogous to 
the schema written for and interpreted by a database man- 
agement system. The developer then states, for each tool 
and database, where along the coupling spectrum that com- 
ponent should be placed. The meta-environment will au- 
tomatically generate interface code and internal data struc- 
tures in the implementation language of the tool, along with 
tables or code for the databases of the target SDE. The ex- 
plicit tool connectivity allows the meta-environment to han- 
dle more of the details of tool connectivity, including com- 
puting representations for data structures, gener,ating code 
tailored to the tool connectivity, organizing the structure of 
shared data, checking consistency between connec:tions, and 
allowing the late binding of certain decisions. Automating 
these analytical and generative tasks is not possible with- 
out the meta-environment having access to the connectivity 
structure. 

4 From Fast Evolution to High Perfor- 
mance 

In this section we examine many points along the spec- 
trum anchored at one end with high SDE-development-time 
efficiency (termed fast evolution) and at the other end with 
high SDE-execution-time efficiency (termed simply high per- 
formance). To characterize this spectrum, we utilize the 
concept of coupling of the representations of data structures 
internal to and passed between tools [Snodgrass & Shannon 
19861. At one end of the spectrum, cueal; coupln’ng, a generic 
external representation is chosen and the tools must convert 
the internal data structure to and from this generic struc- 
ture. With strong coupling, at the other end of the spectrum, 
the external representation closely mirrors that of the inter- 
nal representation. Coupling, evolution, and performance 
are interrelated. In general, with stronger coupling the per- 
formance of the interacting tools is higher, but it is much 
more difficult to incorporate changes into a tool due to the 

For each 

For each 
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Content 
Representation 
Consistency: Repacking, 

Consistency Maintenance 
Form: ASCII External Representation, 
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Shared Memory 

tool: 
Content 
Representation 
Consistency: Repacking, 

Consistency Maintenance 
Physical Interface: Impedance-matched, 

Procedural 
Binding: Compile-time, 

Link-time, 
Runtime 

Figure 3: Developer Decisions 

heavy dependence between the representation of the internal 
and external data structures. Conversely, weak coupling pro- 
motes fast evolution but results in low performance due to 
the extra conversions required between data structures. In 
this section, we describe the two end points and many inter- 
mediate points along this spectrum and show how different 
selections affect evolution and performance. In each case, 
we describe the representation of the shared data written by 
one tool and read by another, thereby establishing a con- 

nection between the two tooh. Each connection present in 
the tool topology of the (target) SDE may be independently 
positioned along the coupling spectrum, thereby affording 
the developer precise control over the fast evolution/high 
performance tradeoff. 

For each connection between two interacting tools, the 
developer must make four decisions, as summarized in Fig- 
ure 3. The first is the content of the shared data, that is, 
the objects and attributes to be included. The second de- 
cison is the representation of this data, e.g., the number of 
bits required to encode an integer value. The third decision 
is the consistency of the representation of the shared data. 
The default is repacking, where the previous representation 
is not considered in determining various low level details 
such as attribute order within an object. The alternative 
is consistency maintenance, where the low level details are 
chosen so that previous data wiU still be acceptable to the 
tool, if possible. A related, but distinct, technique is lazy 
reorganization, where a portion of a database is reorganized 
upon first access [Banerjee et al. 1987, Lerner & Habermann 
19901. Lazy reorganization offers a partial solution when re- 
organization of the data is not possible, as with backed-up 
data, data archived on read-only optical disk, or data for 
which write permission is not available. The final decision 
is the form of the data, of which there are five alternatives 
located along the coupling spectrum. 

At the weakest end of the spectrum, tools interact via 
an ASCII external representation of the shared data. The 
ASCII representation is machine independent as well as in- 
dependent of the language of the interacting tools. With this 
form of data, changing the representation of a type within 
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Figure 2: An Explicit Tool Topology 

one tool does not affect the external representation of the 
data or the representation of the data within the second 
tool, thus allowing representation changes to remain local- 
ized within a tool. Adding an attribute or object within one 
tool will not affect either the external representation nor the 
second tool. If a tool does not use an attribute or object 
type of a data structure that is read in, that attribute or 
object type may be removed without needing to modify or 
even recompile the tool. If an attribute is removed from the 
database, and the tools that previously used it are modified 
to no longer use it, then no existing data nor other tools 
need be modified; that attribute will simply be ignored dur- 
ing input. 

Since changes to the representation require only a possi- 
ble recompilation of the affected tool, this localization allows 
for fast evolution of tools. The price is poor SDEexecution- 
time performance due to the extensive conversions required 
on input and output. To write the data, the producing 
tool converts each internal data structure into a formatted 
ASCII description. To read the data, the receiving tool must 
parse the ASCII representation of the data and map each ob- 
ject into its corresponding data structure in main memory. 
Finally, external data instances in this representation are 
rather large, as each object and attribute is named with a 
text string each time it is mentioned, and values of basic 
types such as integers are also given as text strings. The 
performance of these conversions is therefore poor in terms 
of both time and space. 

An improvement in performance is gained by replacing 
the ASCII external representation of the shared data with 
an independent binary representation. This representation is 
also machine and language independent but is more strongly 
coupled with the internal representation of the data [Lamb 
1987A]. Here, object and attribute names can be encoded in 
one byte, integers and rationals generally in 4 or 8 bytes, and 
boolean values potentially in one bit. Some changes to the 
specification or representation of internal data may affect the 
conversion code within the both tools, For instance, if one 
attribute is removed, the names of the remaining attributes 
might be assigned different byte encodings. Other type rep 
resentation changes, such as adding an attribute within a sin- 
gle tool, will remain localized. The amount of work for tool 
evolution is therefore slightly higher than with the ASCII ex- 
ternal representation. The benefit is increased performance 
in the conversions between external and internal representa- 
tions of the data. Although it is still necessary to convert 

between the independent binary representation of the exter- 
nal data and the language dependent internal representation 
of the internal data, the parsing or formatting of the external 
data is much simpler because the two representations of the 
data are more similar than with the ASCII representation. 

Further improvements in performance are possible by 
using a dependent binary representation for external data 
which is neither machine or language independent. The 
external representation of the data is effectively a slightly 
altered core dump of the internal data representation, with 
two alterations: pointers are virtualized and some attributes 
may be omitted [Newcomer 19871. Input and output are thus 
more efficient than previously described techniques, espe- 
cially when the internal and external representations contain 
the same attributes. The external and internal representa- 
tions are therefore very strongly coupled with the result that 
evolution requires more work. Changes to objects or their 
representations in one tool are guaranteed to affect the rep- 
resentation in the second tool. 

In the three previous described representations, we as- 
sumed that all possible accessible objects are read at tool 
initialization. The advantages are that no cache residency 
checks (that determine whether a referenced object is actu- 
ally in main memory) are required, and disk I/O requires few 
seeks since data is read sequentially. The disadvantages are 
excessive main memory usage and excessive I/O. A perfor- 
mance improvement is obtained by using increment01 I/O, 
where only a subset of the reachable objects are cached in 
main memory. In one approach, termed object faulting, a 
single object is read into main memory when it is first refer- 
enced; all subsequent references to this object are converted 
into pointers [Cockshott et al. 1984, Wileden et al. 39881. A 
more efficient approach is clustering, where the unit of data 
transfer is a segment containing multiple objects [Andrews 
& Harris 1987, Hornick & Zdonik 1987, Krueger et al. 1989, 
Shannon & Snodgrass 1990, Stamos 19841. The advantage 
is that I/O is more efficient since segments are generally a 
multiple of the page size and only relevant segments are re- 
trieved. Thii advantage depends on an assumed correlation 
of temporal locality and spatial locality; objects referenced 
together in time reside together in the same segment. The 
main disadvantages are that each object fault interrupts the 
tool and causes a disk seek and some cache residency checks 
are required. However, proper clustering can minimize cache 
residency checks and object faults and subsequently reduce 
disk seeks. With clustering, small changes to one tool’s data 
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representation or clustering definitely affect the external rep- 
resentation and the second tool’s representation. 

At the farthest end of the coupling spectrum, 1;wo tools 
interact via shared memory. The tools may be in separate 
processes, if the operating system supports memory sharing 
by disparate processes, or the tools may reside in a single 
process. In this form of data, the tools do not actually read 
or write data instances; the data instances reside only in 
main memory and the tools simply pass pointers. The ad- 
vantageis greater performance since I/O between the tools is 
eliminated. The disadvantage is the dependence between the 
tools’ internal representations results in extensive changes if 
one tool modifies a type representation. 

As also shown in Figure 3, the developer must make five 
decisions for each tool in the SDE. The first three are the 
content of the internal data manipulated in main memory 
by the tool, the representation of this data, and the con- 
sistency of the main memory representation. The fourth is 
the physical interface to the object residing in main mem- 
ory (we advocate a particular logical interface, visible to the 
programmer, in Section 6.2). There are two alternatives, 
an impedance-matched interface, in which attributes are ac- 
cessed directly using the target language constru.cts, and 
a procedural interface, in which attributes are manipulated 
through routines generated for that purpose. The last deci- 
sion to be made for each tool is the binding of the code that 
performs data I/O and manipulates attribute values. The al- 
ternatives are compile-time binding, which implies hLard code 
for I/O and inline attribute manipulation routines, link-time 
binding, which implies table-driven I/O, with the tables im- 
plemented as static data initialized in a separately-compiled 
module that is linked with the rest of the tool’s code, and 
attribute manipulation routines not inlined, but placed in a 
separately-compiled module, and runtime binding, which is 
similar except that the code is dynamically linked into the 
running executable when the first routine call is maade. With 
the table-driven approach (link-time and runtime .binding), 
there is no need to regenerate the reader and writer of the 
external data structure on a change; only the table describ- 
ing the representation need be regenerated and the program 
relinked. Even less work is required for runtime binding 
to return the tool to an operatiomal state after a change. 
With compilation-time binding, all code for tool I/O is re- 
generated. As one might expect, the reduction in evolution 
flexibility is offset by an increase in performance over the 
table-driven approach. 

Alternatives for each of the decisions just discussed may 
be combined in various ways, yielding the coupling spectrum 
shown in Figure 4. The ordering among options is approx- 
imate. Some options are actually collections of related op- 
tions. For instance, there are many approaches to clustering 
(e.g., clustering by object type, dynamic adaptation, syntac- 
tic clustering, semantic clustering, fragmentation [Shannon 
& Snodgrass 1990]), all grouped under options 21 and 22. 
Hence, there are more points along the spectrum than shown 
in Figure 4, though any meta-environment would of course 
support only a subset. 

Some combinations of physical interface and binding do 
not make sense. For example, a procedural physical interface 
with a compile-time binding is not shown, because this com- 
bination would be slightly less efficient than an im:pedance- 
matched interface with compile-time binding, while not ex- 
hibiting any greater evolution resilience, and so would be 
dominated by the latter combination. 

In general, the approaches with weaker coupling between 

tools (at the top of the figure) are more advantageous for 
fast evolution since changes are more localized within a tool. 
As the tools evolve toward a more stable state, approaches 
with stronger coupling (towards the bottom of the figure) 
are preferable due to higher performance. Note that the last 
six options in the coupling spectrum have a compile-time 
binding. In cases where recompilation of existing tools is in- 
feasible (say, once the tool has been delivered to users), the 
developer will be restricted to linktime and runtime bind- 
ings, and option 14 or 1’7 may yield the highest feasible per- 
formance. 

5 An Example 

To illustrate the tradeoff between fast evolution and high 
performance, we present the implementation of a program- 
ming environment and examine several points in the lifecy- 
cle of the system. While this environment is simplistic, it 
nevertheless shares many aspects with larger, more realis- 
tic SDE’s. The environment initially contains three tools, a 
parser, a semantic analyzer, and an optimizer. The parser 
reads in a textual description of a program and produces 
a syntax tree. The semantic analyzer performs name reso- 
lution and type analysis on the syntax tree and outputs a 
directed attributed graph. Finally, the optimizer reads the 
attributed graph, performs constant folding, and outputs a 
potentially more efficient version of the attributed graph. 
The initial configuration is shown in Figure 5. We sum- 
marize the changes made over a period of months as this 
simple SDE is implemented. At various points, some aspect 
becomes more or less stable, and a more efficient interface 
is adopted, so that the SDE executes faster and individual 
test cases take less time to run. 

During the early development, the specification of the data 
evolves resulting in frequent changes to the shared data (in 
A, B, and C) in the form of object and attribute additions 
and deletions. Also, the algorithms for all three tools are in 
flux. To ensure fast evolution, we specify that the parser and 
the semantic analyzer communicate via the ASCII extermal 
representation. One advantage of this representation is that 
data instances are easily created and viewed with a text ed- 
itor, simplifying debugging. The internal data structure of 
the parser will consist of the syntax tree plus additional at- 
tributes and object types. Since changes to the syntax tree 
will probably require source level changes to the parser any- 
way, we specify an impedance-matched interface, with static 
table-driven output for quick regeneration of the writer (op- 
tion 4). The same decisions are made for the semantic an- 
alyzer and the optimizer; additionally, they employ table- 
driven input. The ASCII external representation allows fast 
evolution of the tools since changes to the tools are more lo- 
calized requiring fewer recompilations. For instance, adding 
an internal attribute in the semantic analyzer to aid process- 
ing will not affect the parser or optimizer at all. Performance 
is slow but is low priority at this point in the lifecycle. 

Further along in the development, the specification of the 
syntax tree stabilizes but the representation of the data as 
well as the specification of the attributed graph and of the 
internal data structures continue to evolve. We modify the 
form of A to an independent binary representation to allow 
bigger examples to be run, and specify that changes are to be 
consistent with the previous representation. At this time the 
specification and representation of the data communicated 
between the semantic analyzer and the optimizer continue to 
evolve, thus the external representation between those two 
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# Form 

1 ASCII External Representation 
2 ASCII External Representation 
3 ASCII External Representation 
4 ASCII External Representation 
5 ASCII External Representation 
6 Independent Binary 
7 Independent Binary 
8 Independent Binary 
9 Independent Binary 

10 Independent Binary 
11 Independent Binary 
12 Independent Binary 
13 Independent Binary 
14 Independent Binary 
15 Independent Binary 
16 Dependent Binary 
17 Dependent Binary 
18 Dependent Binary 
19 Incremental: Object Faulting 
20 Incremental: Object Faulting 
21 Incremental: Clustering 
22 Incremental: Clustering 
23 Shared Memory 
24 Shared Memory 

Physical 
Interface 
Procedural 
Procedural 
Impedance-matched 
Impedance-matched 
Impedance-matched 
Procedural 
Procedural 
Procedural 
Procedural 
Impedance-matched 
Impedance-matched 
Impedance-matched 
Impedance-matched 
Impedance-matched 
Impedance-matched 
Impedance-matched 
Impedance-matched 
Impedance-matched 
Impedance-matched 
Impedance-matched 
Impedance-matched 
Impedance-matched 
Impedance-matched 
Impedance-matched 

Binding 

Figure 4: The Coupling Spectrum 

Runtime 
Link-time 
Runtime 
Link-time 
Compile-time 
Runtime 
Link-time 
Runtime 
Link-time 
Runtime 
Link-time 
Compile-time 
Runtime 
Link-time 
Compile-time 
Link-time 
Link-time 
Compile-time 
Compile-time 
Compile-time 
Compile-time 
Compile-time 
Compile-time 
Compile-time 

tools remains as ASCII. The table-driven I/O of all three 
tools remain, implying option 11 for the parser and for the 
input size of the semantic analyzer, and option 4 for the 
output side of the semantic analyzer and for the optimizer. 
With this arrangement, a change to the attributed graph 
structure will not affect the parser at all. A change to the 
syntax tree will be quite costly in terms of SDE-development 
time; we’re bargaining that such changes are rare, so that 
our test cases run faster. 

Later, we decide to add a new tool, a cross referencer, 
to the environment. The result of this system evolution is 
depicted in Figure 6. We need to change both the syntax 
tree and attributed graph structures to add a source posi- 
tion attribute, and to change the parser tool to compute 
this new attribute. Since we specified consistent changes, 
this attribute will be added at the very end of the symbol 
table object. The semantic analysis and optimizer tools will 
need to be relinked, but not recompiled, thus reducing SDE- 
development time to effect this change. The cross referencer 
will utilize an impedance-matched binding, with static table- 
driven input, on the assumption that the specification of the 
shared syntax tree structure is relatively stable. Since we are 
still primarily testing the parser-semantic analysis-optimizer 
pipeline, we dora’t specify consistent changes with respect to 
the cross referencer (option 14). 

Still later, when we increase the size of the source position 
attribute, discussed earlier in Section 1.3, only the parser and 
the semantic analyzer need be changed. 

The optimizer is debugged more quickly than the seman- 
tic analyzer, and stabilizes about the same time as the at- 
tributed graph structure. The semantic analyzer, probably 
the most complex tool, continues to evolve. The optimizer 
continues to read the ASCII external representation output 
by the semantic analyzer but now outputs the optimized 

Consistency 

- 
- 

Consistent 
Consistent 
Repacking 
Repacking 
Consistent 
Consistent 
Consistent 
Repacking 
Repacking 
Repacking 
Consistent 
Repacking 
Repacking 
Consistent 
Repacking 
Consistent 
Repacking 
Consistent 
Repacking 

attributed graph in dependent binary representation using 
hard-wired attributes. Evolution now consists primarily of 
changes to the semantic analyzer algorithm and modifica- 
tions to internal attributes within this tool. The parser and 
optimizer are unaffected by these changes. Since the parser 
is now very stable, we switch its output to the dependent 
binary representation, with hardwired output code (option 
18). We do the same for the semantic analyzer. We spec- 
ify that attributes are to be packed across a change, rather 
than attempting to avoid recompilation. Changes will be 
rare, and we want the I/O to go relatively fast. 

Finally, the semantic analyzer is stable and performance 
becomes a high priority. The first three tools are now 
merged into a single process, as shown in Figure 7. The syn- 
tax tree and attributed graph now reside in main memory 
with the tools simply passing pointers. Internal attributes 
for the three tools are placed in the main memory objects 
(option 24). The optimizer outputs the optimized attributed 
graph with clustered I/O to a single database, which is read 
in a clustered fashion by the cross referencer. To make the 
cross referencer as fast as possible, the attributed graph is 
divided into two clusters: the portion needed by the cross 
referencer and the remaining portion. The writer for the op- 
timizer is configured to output this clustered version of the 
attributed graph, and the reader for the cross referencer is 
modified to only access the relevant segments (option 22). 
The performance of the system is now at its highest, and 
the SDE-development-time efficiency is at its lowest. Any 
change to any aspect, whether changing one of the exter- 
nal data structures such as the syntax tree, changing an at- 
tribute used internally by a tool, or changing the clustering, 
will generally require regenerating the input and output rou- 
tines and internal data structures and recompiling all four 
tools in the SDE. 
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Fig;ure 5: Initial Configuration 

6 Meta-Environment Support 

The last section presented a scenario where individual tools 
move along the coupling spectrum during the development 
of an SDE. We now discuss how the meta-environment a~- 
sists the environment developer in specifying this example. 
Much of this meta-environment has been implemented, and 
is in daily use in the development of several SDE’s by vari- 
ous academic and commercial research organizatio,ns [Snod- 
grass 19901. The meta-environment contains appr’oximately 
15 tools, one containing seven basic tools, for a total of ap- 
proximately 1OOK lines of source code. Our implementation 
currently supports options 4, 17, and 24 of Figure 4; we 
are now implementing the independent binary representa 
tion, incremental I/O (using a promising technique termed 
semantic clustering [Shannon & Snodgrass 19901): and con- 
sistency maintenance, which will provide an additional 10 
options. 

6.1 Specifying Tool Topology and Evolution 

Initially, the tool developer describes the parser, semantic 
analyzer, and optimizer tools using a high level specifica- 
tion language [Snodgrass 19891. The tool developer first de- 
scribes the data shared among tools utilizing structures, or 
collections of object and attribute declarations, as a linguis- 
tic device to aid in the description. Structures can be derived 
from other structures in various ways permitting sets of sim- 
ilar data to be described in terms of each other. Structures 
can also be refined from other structures allowing further 
constraints such as representational aspects to be placed on 
the data. For the programming environment exa,mple, the 
tool developer writes a structure for the syntax tree and then 
derives from this an additional structure for the attributed 
graph. The attributed graph is conveniently described in 
terms of the syntax tree since differences consist of addi- 
tional attributes. 

The next step for the tool developer is to describe the 
three tools using the specification language. Basically, a tool 
specification describes the flow of data in a tool. Therefore, 
tools are described in terms of the data they produce and 
consume. Ports specify the data structures read and written 
by the tool. Ports are typed; associated with each port is 
a structure. Input ports read an instance of the structure 
into main memory and return the root of the instance to the 
algorithm. Output ports write from main memory the in- 
stance referenced by the root object passed as a parameter. 
In the programming environment example, the .parser has 
one output port which produces an syntax tree. The seman- 
tic analyzer has one input and one output port; the input 
port reads a structure of type syntax tree and t.he output 
port writes a structure of type attributed graph. Similarly, 
the optimizer tool also has one input and one output port, 
both of type attributed graph. The developer also defines 
the language in which the tool is implemented, as well as the 
structure and low-level representation of the dat.a in main 

memory that the tool’s algorithm uses. 
The third task for the tool developer is to specify the 

interaction of the tools, Tool interaction is specified using 
a linguistic construct called connections. This construct is 
used to connect input and output ports of communicating 
tools. In our example, one connection is used between the 
parser and semantic analyzer and a second connection is 
used between the semantic analyzer and the optimizer. 

We extended the Interface Description Language (IDL) 
[Nestor et al. 19821, which already included structures, tools, 
derivation, refinement, and ports (and which was definitely 
not evolution resilient), with linguistic constructs to specify 
connections, representations on connections, language bind- 
ings, databases, and clustering. The added constructs al- 
low the developer to specify the complete tool topology, to 
choose among intermediate points in performance, and to be 
explicit about what data is to be made persistent. 

Starting with IDL had two benefits. IDL is language- 
independent, allowing tools to be implemented in different 
languages. Also, it was designed to express those data struc- 
tures used in a programming environment, such as parse 
trees and symbol tables. In particular, it supports a sophis- 
ticated type model employing a class hierarchy, multiple su- 
perlasses, inheritance, and set and sequence colIection types 
[Shannon & Snodgrass 19891. It also has an associated asser- 
tion language. However, nothing in our approach precludes 
application in language-specific contexts, such as an envi- 
ronment implemented entirely in C++, provided adequate 
meta-environment support, discussed in the next section, 
and expressive means to specify tool topology are available. 

The analysis of structure, tool, connection, representation, 
and clustering specifications is performed by the language 
specification translator. The translator is also responsible 
for generating code for attribute access, attribute modifica- 
tion, object creation, object faulting, and object storage and 
retrieval in the database. In this way, we achieve specifica- 
tion level interoperability by providing all four required com- 
ponents: a unified type model, language bindings, an under- 
lying implementation, and automated assistance [Wileden et 
al. 19891. 

6.2 Isolating the Source Code 

As the tool developer utilizes the various linguistic con- 
structs to tune the performance of the system, it is impera- 
tive that different representation and clustering alternatives 
do not affect the source code of the tools being developed 
[Clarke et al. 19861. One approach is to use inline routines 
or macros for access and modification of attributes. These 
routines can be generated automatically by the translator. 
The advantages of using routines are that they hide the rep 
resentational details of attributes and they support cluster- 
ing, since memory residency can be checked in the expanded 
code. The disadvantage is that the routines are syntactically 
awkward to use, especially when accessing through several 
levels of indirection. A second disadvantage is the overhead 
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imposed on the target language compiler due to the big in- 
hale of the large number of generated routines during com- 
pilation [Conradi & Wanvik 19861. 

Our approach is to instead use a preprocessor that in- 
serts the appropriate code for all aspects of data access and 
modification, including any memory residency checks. An 
advantage is that the syntax is cleaner; the construct pro- 
vided by the language for attribute access in a record can 
be used regardless of the implementation. In addition, there 
is less overhead for the language compiler since it does not 
need to contend with the many generated routines. Finally, 
the opportunity exists to have very sophisticated represen- 
tations for attributes. For example, some attributes can be 
stored outside of the object in main memory [Lamb 1987B]. 
The preprocessor generates the necessary code to access the 
external attribute. 

The preprocessor can support both physical interface al- 
ternatives. For the C language construct used in the source 
code of the tool, 

AnObject. attmame 

the preprocessor might emit [Shannon & Snodgrass 19891 

AnObject. IDLclassCommon->attmame 

for the impedance-matched interface, and 

getattribute(AnObject ,“Object”,“attmame”) 

for the procedural interface. In this second case, the body of 
getattribute would interpret an internal table describing 
the layout of the object when it resides in main memory. 
In all cases, the logical interface seen by the programmer 
remains familiar language constructs. 

It should be noted that other tools in the meta- 
environment, such as debuggers and cross referencers, must 
be cognizant of both the logical and physical interface. As 
an example, we have implemented a tool that works with 
the debugger to display data instances [Cook 19881. This 
tool can display at an abstract, language-independent level, 
as well as the bit encoding of the data. 

The meta-environment provides the tool developer with 
the ability to move easily among alternatives during evolu- 
tion of the system. Linguistic constructs are provided to 
specify the tool topology, structure representation, and clus- 
tering. The analysis of the constructs is performed by a 
language specific translator in the meta-environment. The 
use of a special preprocessor provides the control necessary 
for all aspects of data access, modification, and I/O. These 
meta-environment features conspire to achieve evolution re- 
silience of the developing SDE. 

7 Conclusions 

Wileden, Clarke, and Wolf have identified three basic tech- 
niques for defining shared data within an SDE [Wileden et 
al. 19901. After an extensive evaluation, they concluded that 
one technique, specification-described, was superior to the 
other two techniques, implementation-described and value- 
described, in terms of consistency management and devel- 
opment and reuse effort, and inferior in terms of SDE 
development-time efficiency (their term was turnaround 
time). Our approach, as described in Section 6.1, may be 
characterized as specification-described. In this paper, we 
showed how it is possible to initially sacrifice SDEexecution- 
time efficiency to achieve SDEdevelopment time efficiency. 
We also explained how to shift the SDE, with no changes 
to its source code, to many intermediate points along the 
coupling spectrum, eventually reaching the other end late 
in the development, thereby achieving high SDEexecution- 
time efficiency. We introduced new techniques at both ends 
of the spectrum: the ASCII external representation with 
a procedural interface for achieving fast evolution, and se- 
mantic clustering and shared memory for achieving high tool 
execution performance. Finally, we discussed our implemen- 
tation of a me&environment that interprets an explicit tool 
topology describing the data shared among tools in the tar- 
get SDE and the static composition and interaction of the 
tools, thereby providing precise control to the developer. 

We conclude that evolution resilience is achievable in an 
SDE without jettisoning other desirable properties such as 
high performance, ease of understanding, ease of change, 
reuse, consistency management, or controlling the impact of 
change. 
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