
Fine Grain.ed Data Management
To Achieve Evolution Resilience

in a Software Development Environment

Richard Snodgrass
Department of Computer Science

University of Arizona
rts@cs.arizona.edu

Abstract

A software development environment (SDE) ex-
hibits evolution resilience if channes to the SDE do
not adversely affect its functionality nor performance,
and also do not introduce delays in returning the SDE
to an operational state after a change. Evolution re-
silience is especially difficult to achieve when manipu-
lating fine grained data, which must be tightly bound
to the language in which the SDE is implemented to
achieve adequate performance. We examine a spec-
trum of approaches to tool integration that range from
high SDE-development-time efficiency to high SDE-
execution-time efficiency. We then present a meta-
environment, a specific SDE tailored to the develop-
ment of target SDE’s, that supports easy movement of
individual toois along this spectrum.

A software development environment (SDE) is a collec-
tion of tightly coupled tools cooperating to facilitate the ac-
tivities of design, implementation, testing and management
involved in producing a software artifact. An SDE is itself
a large collection of tools, comprising 1OOK to lh!![lines of
code and involving significant development effort by a team
of programmers over several years. The close interaction
of tools required to achieve integration unfortunately com-
plicates their implementation, as changes to a tool or to the
structure of the shared data will necessitate changes to other
tools. Due to the size and complexity of the SDE being de-
veloped, evolution is a constant occurrence; the challenge is
in reducing its costs, in terms of programmer time and effort
and execution efficiency [Taylor et al. 19881.

An SDE exhibits evolution resilience if it meets two re-
quirements. First, changes to the SDE must not adversely
affect its functionality nor performance, to ensure that the
end product performs correctly and efficiently. Second, there
must not be significant delays in returning the SDE to an
operational state after a change, to ensure that the devel-
opment effort required to realize the end product is mini-
mized. Implementation techniques, development st,rategies,
and support software that increase the evolution resilience
of the emerging SDE are needed [Wileden et al. 19901.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
Q 1990 ACM O-89791-41 8-X/90/001 2-0144...$1.50

Karen Shannon
Department of Computer Science

University of North Carolina
shannon(Pcs.unc.edu

In this paper we discuss the kinds of evolution that occur
during development of an SDE, and the often substantial
impact of these changes. We focus on fine grained data, in
part because the performance requirements concerning fine
grained data are the most difficult to meet. A spectrum of
approaches to tool interaction is presented; this spectrum
incorporates and generalizes several approaches previously
proposed by others. We examine implementation techniques
that allow tools to be moved individually along this spectrum
with relative ease, significantly ameliorating the adverse im-
pact of evolution. Finally, we discuss specific facilities that
when present allow the SDE developer to precisely control
the evolution of the emerging SDE, and briefly examine our
implementation of these facilities.

1 The Problem

As discussed above, the defining characteristic of a software
development environment, as opposed to simply a collection
of tools, is the close interaction of the tools enabled by their
sharing of information concerning the program under devel-
opment [Barstow et al. 19841. An SDE is employed by an
environment user (often a team) to develop a software sys-
tern consisting of the software itself, along with supporting
specification and design documents, test data, management
reports such as schedules, and other artifacts necessary for
continuing maintenance and enhancement of the software
system. We are concerned here with an earlier activity: the
development of the SDE itself by an environment developer
(almost definitely a team). SDE’s also evolve over time,
initially as they are implemented but also as they are main-
tained and extended by the developer. Tools in the SDE
must be easy to change, it must be possible to generate an
executable version of the modified portions of the SDE in a
timely fashion, so that the environment developer’s time is
not wasted, and the resulting SDE must be highly efficient
if it is to be employed by the user to develop large software
systems.

1.1 Characterizing Evolution of an SDE

There are four primary ways that an SDE may evolve. Data
specification evolution refers to changes in the kinds of in-
formation stored in the central database. Examples include
adding a new object type such as a bug report, changing

144

the name of an attribute in a symbol table entry, or mov-
ing an attribute from the database into an individual tool,
if that attribute contains information relevant only to that
tool and to a single execution of the tool. Representation
evolution refers to changes in the specific encodings of the
information, both in the database and within the tools. Ex-
amples include increasing the precision of integer constants
stored in a symbol table, changing the implementation of a
sequence of objects from a linked list to pointers embedded
in the objects themselves, and reordering attributes within
an object. Tool evolution involves changes to the algorithm
embodied in a tool; examples include changing the way out-
standing bugs are assigned to programmers, or modifying an
equation in an attribute grammar specification for semantic
analysis. Finally, system evolution deals with changes made
at an architectural level. Examples include adding a cross
reference tool, or augmenting a low level debugger to support
the display of information in terms of the source code; both
may involve fairly significant changes to the central database
and to several tools in the SDE [Wileden et al. 19901

Each kind of evolution impacts the developing SDE. It
can affect the semantics of existing data: new attributes or
objects may have to be computed, and other attributes or
objects may have to be deleted or changed. Additionally,
the representation of existing data stored in the database
may have to be modified. Finally, the representation of data
inside tools may have changed, necessitating at worst modi-
fication of the code by the environment developer and gener-
ally at least a recompilation of the tool [Conradi & Wanvik
19851.

This paper focuses on approaches to tool integration that
support all four kinds of evolution, while minimizing the
impact in its various guises of that evolution. Our con-
cern primarily is the data management support necessary to
accommodate evolution of an SDE, while preserving SDE-
execution-time efficiency. We assume that smart(er) recom-
pilation [Schwanke & Kaiser 1988, Tichy 19861 is employed
to eliminate redundant computation. We do not consider
here techniques such as parser generators, attribute gram-
mar systems, and other approaches that permit the algo-
rithms of the tools to be easily modified. We also do not
consider the issue of data reorganization, as several database
techniques are available for restructuring existing data after
a change [Banerjee et al. 1987, Gerritsen & Morgan 1976,
Lerner & Habermann 1990, Navathe & Fry 1976, Shu et al.
1977, Sockut & Goldberg 1979, Staudt 19881. We do not dis-
cuss here the specific algorithms used to move data in and
out of main memory; however, some of the techniques we
present provide information that can make such movement
more efficient. We assume that the SDE is implemented
in potentially several languages, with these languages being
compiled, strongly typed, and statically type-checked, for
greater efficiency. Finally, we emphasize support for fine
grained data, which we now justify.

1.2 Data Granularity

An SDE manipulates data across a wide range of granularity.
At one end are very coarse objects, encoding information on
large entities as a whole, such as projects, modules, devel-
opment tasks, and requirement specifications [Penedo 1986,
Tichy 1982, Wolf et al. 19891. At the other end are very
fine grained objects such as symbol table entries, statements
in an abstract syntax tree, and procedure signatures [Clarke
et al. 19861. The performance requirements related to such

data, relative to those concerning coarse grained objects, are
quite severe. Fine grained objects are small, numerous, and
tightly interconnected; they must be moved in and out of the
tools with minimal overhead [Andrews & Harris 19871. Con-
sequently, fine grained data must be tightly bound, termed
impedance-matched, to the language in which the tools are
written to achieve adequate performance [Cockshott et al.
1984, Conradi et al. 1986, Straw et al. 19891. That is, they
must appear to the tool’s code as instances of data types
provided by the programming language. Objects are usually
represented by records and object references by pointers, al-
lowing navigation by pointer chasing, rather than via calls
to a DBMS runtime library. Alternative language bindings,
such as those available with conventional database systems,
simply require too much overhead to navigate a graph or tree
of objects, resulting in unacceptable performance, generally
an order of magnitude slower than an impedance-matched
representation.

While some work has addressed evolution of coarse grained
data [Bernstein 1987, Dittrich et al. 1986, Garlan et al.
1986, Penedo et al. 1989, Skarra & Zdonik 1986, Skarra &
Zdonik 19871, supporting evolution of fine grained data is an
open research problem, and is the target of the strategies to
be discussed shortly.

1.3 An Example

To illustrate the adverse effects of evolution, let us consider
the ramifications of a specific change to an SDE. We decide
to add a cross reference generator tool to this SDE. This
tool wiU extract the symbol table of a selected module from
the database, traverse it, and print out a formatted list of
symbols along with the line number where each was declared.
This change may be characterized as system evolution.

Unfortunately, the symbol table currently does not record
source position information, as the other tools using the sym-
bol table did not require that data. So we must also modify
the symbol table structure (data specification evolution) and
the lexical analysis tool, which should compute the source
position (tool evolution). We decide to represent the source
position as a single 16-bit integer storing the line number
where the symbol occurred.

The impact of these changes is pervasive. First, all ex-
isting symbol tables stored in the database must be altered
to add the new attribute, with a default value, say, a line
number of 0, stored. Secondly, all tools that reference sym-
bol tables must be modified. Due to an impedance-matched
language binding, internal data structures used by each tool
that encode symbol tables must be altered to include the
new attribute. The tools must then be recompiled. Clearly,
adding an attribute may be very costly.

Later we discover that our encoding is flawed: we have not
allocated sufficient bits for the line number. So we increase
the size of the source position attribute from 16 to 32 bits
(representation evolution).

This impact of this seemingly minor change may be as per-
vasive as the original change. All existing source positions in
the database must be updated: the new representation must
be computed from the old and the data reformatted on disk,
since an attribute has grown in size. All other tools that ref-
erence the symbol table must again be modified, even though
they do not access the source position attribute. Hence, a
minor change in representation of a little used attribute can
also be costly, potentially generating several hours of data
reorganization, code modification, and recompilation.

145

1.4 Previous Work

Several approaches have been proposed that can dramati-
cally reduce the impact of seemingly minor changes, such
as the example of representation evolution discussed above.
One proposal is to apply the database concept of views [Date
1986, Ullman 19881 to SDE’s. Each tool manipulates an
identified subset, termed the view, of the database. The
other side of the coin is the database may be characterized
as the union of all of the tools’ views [Garlan 19871. Each
tool is insulated from changes to portions of the database
outside of that tool’s view. For example, the semantic an-
alyzer’s view of the symbol table does not include a source
position attribute, so the addition or change in representa
tion of this attribute will not affect this tool.

Views effectively isolate the source code of the tool from
many changes to the database; for this reason they are used
frequently in conventional database applications. They are
less successful when applied to fine grained datal manipu-
lated by an SDE. Views imply data conversion between the
database and the tool. In the example given in the pre-
vious section, the source position attribute is present in a
symbol table entry in the database, but is not present when
that entry appears in the semantic analysis tool. If an at-
tribute is added to an object, but that attribute is not part
of the tool’s view, then the source code for the tool need
not change. However, the tool is impacted indirectly by
this change. If the data conversion implied by the view is
handled by table-driven DBMS runtime routines, then the
tables need to be regenerated. Also, the runtime overhead
imposed by table-driven conversion when reading and writ-
ing data is significant. If the conversion is handled by spe-
cialized code generated for each tool, then this code must be
regenerated, compiled, and the tool relinked. In either case,
additional overhead resulting from a change occurs when the
data specifications for each tool that references the database
are reanalyzed, a task that itself can take significant time.
While a view may isolate the logical interface of a tool to
changes to the database, such changes necessarily affect the
code maintaining the physical interface.

The GRAPHITE system uses a related scheme,, support-
ing two versions of the physical interface [Clarke et al. 19861.
The logical interface to fine grained objects consists of a set
of routines that access and modify values of attributes. The
development version provides a table-driven implementation
of these routines, with similar advantages and dlrawbacks
of views. The production version specifies inline expansion
of these routines, so that attribute access expands into ac-
cess via absolute offsets into the objects. The advantage
is much higher execution-time performance; the drawback
is significantly worsened development-time performance, as
the entire tool must be recompiled on changes to the shared
database.

The approach of providing development and production
implementations underneath an identical logical interface
is an excellent one. However, it falls short of providing a
complete solution to achieving evolution resilience. First,
it involves a binary decision, development or production
version, while the environment developer would like finer
control over the development-time/execution-time efficiency
tradeoff. Second, the development version still requires sig-
nificant work to return the SDE to an operational state.
For the example above, when the source position attribute
is changed, the database interface module for the semantic
analyzer must be regenerated and compiled, and the seman-
tic analyzer tool relinked. We desire an alternative that

necessitates no changes to the semantic analysis tool when
a source position attribute is added, even if execution-time
performance suffers. Finally, this approach requires that a
procedural interface to attribute access be used, which many
find syntactically awkward and verbose.

Newcomer proposed that the previous representation be
considered when computing the new representation after a
change [Nestor et al. 1989, Newcomer 19861. His approach
applies to both tight language bindings and inline compiled
accessor routines, such as those just discussed. The trick is
to modify the representation in such a way that code access-
ing unaltered attributes is still correct. In the example, the
source position attribute would be added to the end of the
symbol table object. Then, all the code that accesses the
symbol table, such as the semantic analysis tool, need not
be altered, or even recompiled. Deleted attributes can be
left in the object, and modified attributes can be treated as
attributes that have been deleted and then later added.

The benefit of this approach is that SDE-development-
time efficiency is enhanced. However, the resulting object
layout may waste space, especially when classes and multiple
inheritance are supported in the data model [Nestor et al.
19891. Tools that create data objects must be relinked with
a newly generated table that specifies the size of each object.
More fundamentally, this approach is quite dangerous when
applied manually, as tools can easily become inconsistent.

To summarize, previous work provides valuable tech-
niques, yet does not support evolution resilience in a com-
prehensive fashion. For adequate SDE-execution-time per-
formance, the representation of fine grained data must be
tightly bound to each tool. Yet tight binding implies lit-
tle or no resilience to change: the binding must be recom-
puted, often at significant cost at SDE-development-time,
each time some aspect of the data or tools is modified. On
the other hand, very loose binding, such as through table-
interpreted views or accessor/modifier routines, which may
achieve faster reorganization at SDE-development-time, will
inevitably result in an inefficient SDE. Finally, even if the
requirement for high performance were ignored completely,
say, for the initial testing phases of the SDE, none of these
approaches can accommodate a change without necessitat-
ing at least a relink of the effected tools, which may still
imply a rather long minimal modify-recompile-test cycle.

1.5 Desiderata

We can summarize the problem by listing the requirements
that must be met to achieve evolution resilience in an SDE.
The rest of the paper will then integrate the previously pro-
posed approaches discussed above with some new techniques
to address these requirements.

l Each change should have as small an impact as possible.
Ideally few if any tools not directly changed through
tool or system evolution will need to be modified, re-
compiled, or even relinked. For instance, the semantic
analyzer tool should be unaffected by either adding the
source position attribute or changing its representation.

l No source level changes should be required of tools not
specifically participating in tool or system evolution.
If we must alter the executable of the semantic anal-
ysis tool when the source position attribute is added,
such alteration must involve only recompilation or re-
linking. Involving the environment developer each time
evolution occurs somewhere in the SDE is an invitation

146

for bugs and rapidly rising implementation costs as the
SDE grows in number of tools and in complexity.

l Environment developer time should be minimized when
restoring the SDE to operational status, which involves
making the required changes to the source code, recom-
piling the tools, and restructuring existing data. For
those tools that must be changed, relinking is prefer-
able to recompiling, which is preferable to regenerating
source code (for those components that are generated
from other specifications, such as a grammar).

l Tool execution efficiency should not be compromised by
approaches used to achieve evolution resilience. The se-
mantic analyzer should not run slower after the source
position attribute is added. Infact, the semantic an-
alyzer should execute as fast as known optimizations
permit.

l Consistency among the tools and the software database
is paramount, and must be able to be guaranteed when
requested by the environment developer. After the
source position attribute is added, and various changes
have been made, a support tool must be available to be
used by the developer to at least check that consistency
has again been achieved. Even better are support tools
that ensure consistency at all times.

2 Approach

Unfortunately, there is no resolution to the tradeoff between
SDE-development-time and SDE-execution-time efficiency
when manipulating fine grained data [Wileden et al. 19901.
(We emphasize time efficiency here, but space efficiency is
an important parallel issue.) No known techniques achieve
both development-time and execution-time efficiency simul-
taneously, and none are anticipated. However, it is possible
to exploit the different efficiency requirements present at var-
ious points during the development of an SDE. Specifically,
for most of the time, rapid turnaround is paramount: when a
change is made, a functioning SDE must be available rather
quickly, so that productivity of the developer is maximized.
SDE-execution-time efficiency is relatively less important,
because test cases are generally small and because few tools
are exercised by each test. As the evolving SDE matures,
and as global changes, e.g., to the data base specification,
become less prevalent, SDE-development-time efficiency is
less important, because changes are more localized. How-
ever, at this point in the development cycle, SDE-execution-
time efficiency becomes more of an issue, because test cases
tend to be Iarge and exercise many of the tools in the SDE.
When the SDE is delivered, execution-time efficiency is vir-
tually the only relevant metric; environment users will not
be happy to hear that their SDE is slow because it was easier
to build it that way!

Our approach has three components.

1. We define a coupling spectrum, consisting of a vari-
ety of approaches to tool interaction. Some of these
strategies are very efficient, but are quite fragile, re-
quiring a complete reanalysis on any change. Others
are robust, yet are rather inefficient. Still others are
intermediate in both SDEdevelopment-time and SDE-
execution-time efficiency. We introduce implementation

Figure 1: Central Database SDE Architecture

techniques that support easy movement along the cou-
pling spectrum anchored at one end by rapid SDE de-
velopment and at the other end by efficient SDE exe-
cution. In particular, no source code need be changed
when moving along alternatives within this spectrum.

To provide precise control to the developer, we employ a
meta-environment, a specific SDE tailored to the spec-
ification, design, implementation, and testing of target
SDE’s.

We use an explicit tool topology to describe the data
shared among the tools, the tools themselves, and the
static composition and interaction of the tools.

We next examine the need for an explicit tool topology and
the support provided by the meta-environment. We then
discuss the many points along the coupling spectrum.

3 Tool Interaction

The basic model of tool interaction employed in most SDE’s,
proposed or implemented, is the central database architec-
ture shown in Figure 1. Tools (denoted with ovals) inter-
act indirectly via information communicated through the
database [Buxton 1980, Didriksen et al. 1987, Dittrich et
al. 1986, Dowson 1987, Garlan 1987, Habermann & Notkin
1986, Hitchcock et al. 1986, Hudson & King 1988, Lew-
erentz 1988, Narayanaswamy & Scacchi 1987, Notkin 1985,
Paseman 1989, Penedo 1986, Perry & Kaiser 1988, Reps &
Teitelbaum 1989, Tichy 19821.

This model is not sufficiently expressive for the meta-
environment to generate efficient code or to manage evolu-
tion of the developing SDE. We adopt a more refined model,
in which tools communicate instances of strongly typed data
structures. A tool topology is specified for the SDE, stating
explicitly how the tools interact and what data is commu-
nicated. Figure 2 displays the topology of the SDE illus-
trated in Figure 1 (here, data structures are denoted with
rectangles). Clemm and Osterwei! have proposed a similar
topology to automate tool invocation [Clemm & Osterweil
1990, Osterweil & Clemm 39831; the two uses are consistent
and orthogonal. The Polylith environment also includes this
notion of tool integration [Kaplan, et al. 1986, Purtilo 1985,
Purtilo 19881.

147

An explicit tool topology differs from the central database
architecture in two ways. First, the central database is par-
titioned into multiple logical databases, with only a. few tools
interfacing to each of these smaller databases. The central
database model implies more interaction than actually oc-
curs; an explicit tool topology allows the ramifications of a
specific change to be more precisely determined by the meta,
environment. The second difference is that tool interaction
need not be through the database. It is common, even in
a tightly integrated SDE, for an output of a particular tool
to be read by only one other tool. In such cases, the gen-
erality provided by a central database is not needed, and
the performance degradation implied by that generality is
not acceptable. Instead, these two tools can communicate
through highly specialized interfaces that extract ultimate
performance.

The presence of multiple databases brings up the issue of
shared data. Some of the logical databases, such as one con-
taining the attributed syntax tree of the standard prelude in
an Ada environment, will be referenced by data i.n many of
the other databases. The appropriate structuring and use of
these databases is crucial to evolution resilience. One advan-
tage of an explicit tool topology is that such dat(abases are
naturally emphasized in the topology, alerting the designer
to their importance.

The (target) environment developer describes tool inte-
gration by formally specifying the data structures commu-
nicated among the tools. This specification is analogous to
the schema written for and interpreted by a database man-
agement system. The developer then states, for each tool
and database, where along the coupling spectrum that com-
ponent should be placed. The meta-environment will au-
tomatically generate interface code and internal data struc-
tures in the implementation language of the tool, along with
tables or code for the databases of the target SDE. The ex-
plicit tool connectivity allows the meta-environment to han-
dle more of the details of tool connectivity, including com-
puting representations for data structures, gener,ating code
tailored to the tool connectivity, organizing the structure of
shared data, checking consistency between connec:tions, and
allowing the late binding of certain decisions. Automating
these analytical and generative tasks is not possible with-
out the meta-environment having access to the connectivity
structure.

4 From Fast Evolution to High Perfor-
mance

In this section we examine many points along the spec-
trum anchored at one end with high SDE-development-time
efficiency (termed fast evolution) and at the other end with
high SDE-execution-time efficiency (termed simply high per-
formance). To characterize this spectrum, we utilize the
concept of coupling of the representations of data structures
internal to and passed between tools [Snodgrass & Shannon
19861. At one end of the spectrum, cueal; coupln’ng, a generic
external representation is chosen and the tools must convert
the internal data structure to and from this generic struc-
ture. With strong coupling, at the other end of the spectrum,
the external representation closely mirrors that of the inter-
nal representation. Coupling, evolution, and performance
are interrelated. In general, with stronger coupling the per-
formance of the interacting tools is higher, but it is much
more difficult to incorporate changes into a tool due to the

For each

For each

connection:
Content
Representation
Consistency: Repacking,

Consistency Maintenance
Form: ASCII External Representation,

Independent Binary,
Dependent Binary,
Incremental I/O,
Shared Memory

tool:
Content
Representation
Consistency: Repacking,

Consistency Maintenance
Physical Interface: Impedance-matched,

Procedural
Binding: Compile-time,

Link-time,
Runtime

Figure 3: Developer Decisions

heavy dependence between the representation of the internal
and external data structures. Conversely, weak coupling pro-
motes fast evolution but results in low performance due to
the extra conversions required between data structures. In
this section, we describe the two end points and many inter-
mediate points along this spectrum and show how different
selections affect evolution and performance. In each case,
we describe the representation of the shared data written by
one tool and read by another, thereby establishing a con-

nection between the two tooh. Each connection present in
the tool topology of the (target) SDE may be independently
positioned along the coupling spectrum, thereby affording
the developer precise control over the fast evolution/high
performance tradeoff.

For each connection between two interacting tools, the
developer must make four decisions, as summarized in Fig-
ure 3. The first is the content of the shared data, that is,
the objects and attributes to be included. The second de-
cison is the representation of this data, e.g., the number of
bits required to encode an integer value. The third decision
is the consistency of the representation of the shared data.
The default is repacking, where the previous representation
is not considered in determining various low level details
such as attribute order within an object. The alternative
is consistency maintenance, where the low level details are
chosen so that previous data wiU still be acceptable to the
tool, if possible. A related, but distinct, technique is lazy
reorganization, where a portion of a database is reorganized
upon first access [Banerjee et al. 1987, Lerner & Habermann
19901. Lazy reorganization offers a partial solution when re-
organization of the data is not possible, as with backed-up
data, data archived on read-only optical disk, or data for
which write permission is not available. The final decision
is the form of the data, of which there are five alternatives
located along the coupling spectrum.

At the weakest end of the spectrum, tools interact via
an ASCII external representation of the shared data. The
ASCII representation is machine independent as well as in-
dependent of the language of the interacting tools. With this
form of data, changing the representation of a type within

148

Figure 2: An Explicit Tool Topology

one tool does not affect the external representation of the
data or the representation of the data within the second
tool, thus allowing representation changes to remain local-
ized within a tool. Adding an attribute or object within one
tool will not affect either the external representation nor the
second tool. If a tool does not use an attribute or object
type of a data structure that is read in, that attribute or
object type may be removed without needing to modify or
even recompile the tool. If an attribute is removed from the
database, and the tools that previously used it are modified
to no longer use it, then no existing data nor other tools
need be modified; that attribute will simply be ignored dur-
ing input.

Since changes to the representation require only a possi-
ble recompilation of the affected tool, this localization allows
for fast evolution of tools. The price is poor SDEexecution-
time performance due to the extensive conversions required
on input and output. To write the data, the producing
tool converts each internal data structure into a formatted
ASCII description. To read the data, the receiving tool must
parse the ASCII representation of the data and map each ob-
ject into its corresponding data structure in main memory.
Finally, external data instances in this representation are
rather large, as each object and attribute is named with a
text string each time it is mentioned, and values of basic
types such as integers are also given as text strings. The
performance of these conversions is therefore poor in terms
of both time and space.

An improvement in performance is gained by replacing
the ASCII external representation of the shared data with
an independent binary representation. This representation is
also machine and language independent but is more strongly
coupled with the internal representation of the data [Lamb
1987A]. Here, object and attribute names can be encoded in
one byte, integers and rationals generally in 4 or 8 bytes, and
boolean values potentially in one bit. Some changes to the
specification or representation of internal data may affect the
conversion code within the both tools, For instance, if one
attribute is removed, the names of the remaining attributes
might be assigned different byte encodings. Other type rep
resentation changes, such as adding an attribute within a sin-
gle tool, will remain localized. The amount of work for tool
evolution is therefore slightly higher than with the ASCII ex-
ternal representation. The benefit is increased performance
in the conversions between external and internal representa-
tions of the data. Although it is still necessary to convert

between the independent binary representation of the exter-
nal data and the language dependent internal representation
of the internal data, the parsing or formatting of the external
data is much simpler because the two representations of the
data are more similar than with the ASCII representation.

Further improvements in performance are possible by
using a dependent binary representation for external data
which is neither machine or language independent. The
external representation of the data is effectively a slightly
altered core dump of the internal data representation, with
two alterations: pointers are virtualized and some attributes
may be omitted [Newcomer 19871. Input and output are thus
more efficient than previously described techniques, espe-
cially when the internal and external representations contain
the same attributes. The external and internal representa-
tions are therefore very strongly coupled with the result that
evolution requires more work. Changes to objects or their
representations in one tool are guaranteed to affect the rep-
resentation in the second tool.

In the three previous described representations, we as-
sumed that all possible accessible objects are read at tool
initialization. The advantages are that no cache residency
checks (that determine whether a referenced object is actu-
ally in main memory) are required, and disk I/O requires few
seeks since data is read sequentially. The disadvantages are
excessive main memory usage and excessive I/O. A perfor-
mance improvement is obtained by using increment01 I/O,
where only a subset of the reachable objects are cached in
main memory. In one approach, termed object faulting, a
single object is read into main memory when it is first refer-
enced; all subsequent references to this object are converted
into pointers [Cockshott et al. 1984, Wileden et al. 39881. A
more efficient approach is clustering, where the unit of data
transfer is a segment containing multiple objects [Andrews
& Harris 1987, Hornick & Zdonik 1987, Krueger et al. 1989,
Shannon & Snodgrass 1990, Stamos 19841. The advantage
is that I/O is more efficient since segments are generally a
multiple of the page size and only relevant segments are re-
trieved. Thii advantage depends on an assumed correlation
of temporal locality and spatial locality; objects referenced
together in time reside together in the same segment. The
main disadvantages are that each object fault interrupts the
tool and causes a disk seek and some cache residency checks
are required. However, proper clustering can minimize cache
residency checks and object faults and subsequently reduce
disk seeks. With clustering, small changes to one tool’s data

149

representation or clustering definitely affect the external rep-
resentation and the second tool’s representation.

At the farthest end of the coupling spectrum, 1;wo tools
interact via shared memory. The tools may be in separate
processes, if the operating system supports memory sharing
by disparate processes, or the tools may reside in a single
process. In this form of data, the tools do not actually read
or write data instances; the data instances reside only in
main memory and the tools simply pass pointers. The ad-
vantageis greater performance since I/O between the tools is
eliminated. The disadvantage is the dependence between the
tools’ internal representations results in extensive changes if
one tool modifies a type representation.

As also shown in Figure 3, the developer must make five
decisions for each tool in the SDE. The first three are the
content of the internal data manipulated in main memory
by the tool, the representation of this data, and the con-
sistency of the main memory representation. The fourth is
the physical interface to the object residing in main mem-
ory (we advocate a particular logical interface, visible to the
programmer, in Section 6.2). There are two alternatives,
an impedance-matched interface, in which attributes are ac-
cessed directly using the target language constru.cts, and
a procedural interface, in which attributes are manipulated
through routines generated for that purpose. The last deci-
sion to be made for each tool is the binding of the code that
performs data I/O and manipulates attribute values. The al-
ternatives are compile-time binding, which implies hLard code
for I/O and inline attribute manipulation routines, link-time
binding, which implies table-driven I/O, with the tables im-
plemented as static data initialized in a separately-compiled
module that is linked with the rest of the tool’s code, and
attribute manipulation routines not inlined, but placed in a
separately-compiled module, and runtime binding, which is
similar except that the code is dynamically linked into the
running executable when the first routine call is maade. With
the table-driven approach (link-time and runtime .binding),
there is no need to regenerate the reader and writer of the
external data structure on a change; only the table describ-
ing the representation need be regenerated and the program
relinked. Even less work is required for runtime binding
to return the tool to an operatiomal state after a change.
With compilation-time binding, all code for tool I/O is re-
generated. As one might expect, the reduction in evolution
flexibility is offset by an increase in performance over the
table-driven approach.

Alternatives for each of the decisions just discussed may
be combined in various ways, yielding the coupling spectrum
shown in Figure 4. The ordering among options is approx-
imate. Some options are actually collections of related op-
tions. For instance, there are many approaches to clustering
(e.g., clustering by object type, dynamic adaptation, syntac-
tic clustering, semantic clustering, fragmentation [Shannon
& Snodgrass 1990]), all grouped under options 21 and 22.
Hence, there are more points along the spectrum than shown
in Figure 4, though any meta-environment would of course
support only a subset.

Some combinations of physical interface and binding do
not make sense. For example, a procedural physical interface
with a compile-time binding is not shown, because this com-
bination would be slightly less efficient than an im:pedance-
matched interface with compile-time binding, while not ex-
hibiting any greater evolution resilience, and so would be
dominated by the latter combination.

In general, the approaches with weaker coupling between

tools (at the top of the figure) are more advantageous for
fast evolution since changes are more localized within a tool.
As the tools evolve toward a more stable state, approaches
with stronger coupling (towards the bottom of the figure)
are preferable due to higher performance. Note that the last
six options in the coupling spectrum have a compile-time
binding. In cases where recompilation of existing tools is in-
feasible (say, once the tool has been delivered to users), the
developer will be restricted to linktime and runtime bind-
ings, and option 14 or 1’7 may yield the highest feasible per-
formance.

5 An Example

To illustrate the tradeoff between fast evolution and high
performance, we present the implementation of a program-
ming environment and examine several points in the lifecy-
cle of the system. While this environment is simplistic, it
nevertheless shares many aspects with larger, more realis-
tic SDE’s. The environment initially contains three tools, a
parser, a semantic analyzer, and an optimizer. The parser
reads in a textual description of a program and produces
a syntax tree. The semantic analyzer performs name reso-
lution and type analysis on the syntax tree and outputs a
directed attributed graph. Finally, the optimizer reads the
attributed graph, performs constant folding, and outputs a
potentially more efficient version of the attributed graph.
The initial configuration is shown in Figure 5. We sum-
marize the changes made over a period of months as this
simple SDE is implemented. At various points, some aspect
becomes more or less stable, and a more efficient interface
is adopted, so that the SDE executes faster and individual
test cases take less time to run.

During the early development, the specification of the data
evolves resulting in frequent changes to the shared data (in
A, B, and C) in the form of object and attribute additions
and deletions. Also, the algorithms for all three tools are in
flux. To ensure fast evolution, we specify that the parser and
the semantic analyzer communicate via the ASCII extermal
representation. One advantage of this representation is that
data instances are easily created and viewed with a text ed-
itor, simplifying debugging. The internal data structure of
the parser will consist of the syntax tree plus additional at-
tributes and object types. Since changes to the syntax tree
will probably require source level changes to the parser any-
way, we specify an impedance-matched interface, with static
table-driven output for quick regeneration of the writer (op-
tion 4). The same decisions are made for the semantic an-
alyzer and the optimizer; additionally, they employ table-
driven input. The ASCII external representation allows fast
evolution of the tools since changes to the tools are more lo-
calized requiring fewer recompilations. For instance, adding
an internal attribute in the semantic analyzer to aid process-
ing will not affect the parser or optimizer at all. Performance
is slow but is low priority at this point in the lifecycle.

Further along in the development, the specification of the
syntax tree stabilizes but the representation of the data as
well as the specification of the attributed graph and of the
internal data structures continue to evolve. We modify the
form of A to an independent binary representation to allow
bigger examples to be run, and specify that changes are to be
consistent with the previous representation. At this time the
specification and representation of the data communicated
between the semantic analyzer and the optimizer continue to
evolve, thus the external representation between those two

150

Form

1 ASCII External Representation
2 ASCII External Representation
3 ASCII External Representation
4 ASCII External Representation
5 ASCII External Representation
6 Independent Binary
7 Independent Binary
8 Independent Binary
9 Independent Binary

10 Independent Binary
11 Independent Binary
12 Independent Binary
13 Independent Binary
14 Independent Binary
15 Independent Binary
16 Dependent Binary
17 Dependent Binary
18 Dependent Binary
19 Incremental: Object Faulting
20 Incremental: Object Faulting
21 Incremental: Clustering
22 Incremental: Clustering
23 Shared Memory
24 Shared Memory

Physical
Interface
Procedural
Procedural
Impedance-matched
Impedance-matched
Impedance-matched
Procedural
Procedural
Procedural
Procedural
Impedance-matched
Impedance-matched
Impedance-matched
Impedance-matched
Impedance-matched
Impedance-matched
Impedance-matched
Impedance-matched
Impedance-matched
Impedance-matched
Impedance-matched
Impedance-matched
Impedance-matched
Impedance-matched
Impedance-matched

Binding

Figure 4: The Coupling Spectrum

Runtime
Link-time
Runtime
Link-time
Compile-time
Runtime
Link-time
Runtime
Link-time
Runtime
Link-time
Compile-time
Runtime
Link-time
Compile-time
Link-time
Link-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time

tools remains as ASCII. The table-driven I/O of all three
tools remain, implying option 11 for the parser and for the
input size of the semantic analyzer, and option 4 for the
output side of the semantic analyzer and for the optimizer.
With this arrangement, a change to the attributed graph
structure will not affect the parser at all. A change to the
syntax tree will be quite costly in terms of SDE-development
time; we’re bargaining that such changes are rare, so that
our test cases run faster.

Later, we decide to add a new tool, a cross referencer,
to the environment. The result of this system evolution is
depicted in Figure 6. We need to change both the syntax
tree and attributed graph structures to add a source posi-
tion attribute, and to change the parser tool to compute
this new attribute. Since we specified consistent changes,
this attribute will be added at the very end of the symbol
table object. The semantic analysis and optimizer tools will
need to be relinked, but not recompiled, thus reducing SDE-
development time to effect this change. The cross referencer
will utilize an impedance-matched binding, with static table-
driven input, on the assumption that the specification of the
shared syntax tree structure is relatively stable. Since we are
still primarily testing the parser-semantic analysis-optimizer
pipeline, we dora’t specify consistent changes with respect to
the cross referencer (option 14).

Still later, when we increase the size of the source position
attribute, discussed earlier in Section 1.3, only the parser and
the semantic analyzer need be changed.

The optimizer is debugged more quickly than the seman-
tic analyzer, and stabilizes about the same time as the at-
tributed graph structure. The semantic analyzer, probably
the most complex tool, continues to evolve. The optimizer
continues to read the ASCII external representation output
by the semantic analyzer but now outputs the optimized

Consistency

-
-

Consistent
Consistent
Repacking
Repacking
Consistent
Consistent
Consistent
Repacking
Repacking
Repacking
Consistent
Repacking
Repacking
Consistent
Repacking
Consistent
Repacking
Consistent
Repacking

attributed graph in dependent binary representation using
hard-wired attributes. Evolution now consists primarily of
changes to the semantic analyzer algorithm and modifica-
tions to internal attributes within this tool. The parser and
optimizer are unaffected by these changes. Since the parser
is now very stable, we switch its output to the dependent
binary representation, with hardwired output code (option
18). We do the same for the semantic analyzer. We spec-
ify that attributes are to be packed across a change, rather
than attempting to avoid recompilation. Changes will be
rare, and we want the I/O to go relatively fast.

Finally, the semantic analyzer is stable and performance
becomes a high priority. The first three tools are now
merged into a single process, as shown in Figure 7. The syn-
tax tree and attributed graph now reside in main memory
with the tools simply passing pointers. Internal attributes
for the three tools are placed in the main memory objects
(option 24). The optimizer outputs the optimized attributed
graph with clustered I/O to a single database, which is read
in a clustered fashion by the cross referencer. To make the
cross referencer as fast as possible, the attributed graph is
divided into two clusters: the portion needed by the cross
referencer and the remaining portion. The writer for the op-
timizer is configured to output this clustered version of the
attributed graph, and the reader for the cross referencer is
modified to only access the relevant segments (option 22).
The performance of the system is now at its highest, and
the SDE-development-time efficiency is at its lowest. Any
change to any aspect, whether changing one of the exter-
nal data structures such as the syntax tree, changing an at-
tribute used internally by a tool, or changing the clustering,
will generally require regenerating the input and output rou-
tines and internal data structures and recompiling all four
tools in the SDE.

151

Fig;ure 5: Initial Configuration

6 Meta-Environment Support

The last section presented a scenario where individual tools
move along the coupling spectrum during the development
of an SDE. We now discuss how the meta-environment a~-
sists the environment developer in specifying this example.
Much of this meta-environment has been implemented, and
is in daily use in the development of several SDE’s by vari-
ous academic and commercial research organizatio,ns [Snod-
grass 19901. The meta-environment contains appr’oximately
15 tools, one containing seven basic tools, for a total of ap-
proximately 1OOK lines of source code. Our implementation
currently supports options 4, 17, and 24 of Figure 4; we
are now implementing the independent binary representa
tion, incremental I/O (using a promising technique termed
semantic clustering [Shannon & Snodgrass 19901): and con-
sistency maintenance, which will provide an additional 10
options.

6.1 Specifying Tool Topology and Evolution

Initially, the tool developer describes the parser, semantic
analyzer, and optimizer tools using a high level specifica-
tion language [Snodgrass 19891. The tool developer first de-
scribes the data shared among tools utilizing structures, or
collections of object and attribute declarations, as a linguis-
tic device to aid in the description. Structures can be derived
from other structures in various ways permitting sets of sim-
ilar data to be described in terms of each other. Structures
can also be refined from other structures allowing further
constraints such as representational aspects to be placed on
the data. For the programming environment exa,mple, the
tool developer writes a structure for the syntax tree and then
derives from this an additional structure for the attributed
graph. The attributed graph is conveniently described in
terms of the syntax tree since differences consist of addi-
tional attributes.

The next step for the tool developer is to describe the
three tools using the specification language. Basically, a tool
specification describes the flow of data in a tool. Therefore,
tools are described in terms of the data they produce and
consume. Ports specify the data structures read and written
by the tool. Ports are typed; associated with each port is
a structure. Input ports read an instance of the structure
into main memory and return the root of the instance to the
algorithm. Output ports write from main memory the in-
stance referenced by the root object passed as a parameter.
In the programming environment example, the .parser has
one output port which produces an syntax tree. The seman-
tic analyzer has one input and one output port; the input
port reads a structure of type syntax tree and t.he output
port writes a structure of type attributed graph. Similarly,
the optimizer tool also has one input and one output port,
both of type attributed graph. The developer also defines
the language in which the tool is implemented, as well as the
structure and low-level representation of the dat.a in main

memory that the tool’s algorithm uses.
The third task for the tool developer is to specify the

interaction of the tools, Tool interaction is specified using
a linguistic construct called connections. This construct is
used to connect input and output ports of communicating
tools. In our example, one connection is used between the
parser and semantic analyzer and a second connection is
used between the semantic analyzer and the optimizer.

We extended the Interface Description Language (IDL)
[Nestor et al. 19821, which already included structures, tools,
derivation, refinement, and ports (and which was definitely
not evolution resilient), with linguistic constructs to specify
connections, representations on connections, language bind-
ings, databases, and clustering. The added constructs al-
low the developer to specify the complete tool topology, to
choose among intermediate points in performance, and to be
explicit about what data is to be made persistent.

Starting with IDL had two benefits. IDL is language-
independent, allowing tools to be implemented in different
languages. Also, it was designed to express those data struc-
tures used in a programming environment, such as parse
trees and symbol tables. In particular, it supports a sophis-
ticated type model employing a class hierarchy, multiple su-
perlasses, inheritance, and set and sequence colIection types
[Shannon & Snodgrass 19891. It also has an associated asser-
tion language. However, nothing in our approach precludes
application in language-specific contexts, such as an envi-
ronment implemented entirely in C++, provided adequate
meta-environment support, discussed in the next section,
and expressive means to specify tool topology are available.

The analysis of structure, tool, connection, representation,
and clustering specifications is performed by the language
specification translator. The translator is also responsible
for generating code for attribute access, attribute modifica-
tion, object creation, object faulting, and object storage and
retrieval in the database. In this way, we achieve specifica-
tion level interoperability by providing all four required com-
ponents: a unified type model, language bindings, an under-
lying implementation, and automated assistance [Wileden et
al. 19891.

6.2 Isolating the Source Code

As the tool developer utilizes the various linguistic con-
structs to tune the performance of the system, it is impera-
tive that different representation and clustering alternatives
do not affect the source code of the tools being developed
[Clarke et al. 19861. One approach is to use inline routines
or macros for access and modification of attributes. These
routines can be generated automatically by the translator.
The advantages of using routines are that they hide the rep
resentational details of attributes and they support cluster-
ing, since memory residency can be checked in the expanded
code. The disadvantage is that the routines are syntactically
awkward to use, especially when accessing through several
levels of indirection. A second disadvantage is the overhead

152

Attributed
Graph

Attributed

Figure 6: A To01 is Added

imposed on the target language compiler due to the big in-
hale of the large number of generated routines during com-
pilation [Conradi & Wanvik 19861.

Our approach is to instead use a preprocessor that in-
serts the appropriate code for all aspects of data access and
modification, including any memory residency checks. An
advantage is that the syntax is cleaner; the construct pro-
vided by the language for attribute access in a record can
be used regardless of the implementation. In addition, there
is less overhead for the language compiler since it does not
need to contend with the many generated routines. Finally,
the opportunity exists to have very sophisticated represen-
tations for attributes. For example, some attributes can be
stored outside of the object in main memory [Lamb 1987B].
The preprocessor generates the necessary code to access the
external attribute.

The preprocessor can support both physical interface al-
ternatives. For the C language construct used in the source
code of the tool,

AnObject. attmame

the preprocessor might emit [Shannon & Snodgrass 19891

AnObject. IDLclassCommon->attmame

for the impedance-matched interface, and

getattribute(AnObject ,“Object”,“attmame”)

for the procedural interface. In this second case, the body of
getattribute would interpret an internal table describing
the layout of the object when it resides in main memory.
In all cases, the logical interface seen by the programmer
remains familiar language constructs.

It should be noted that other tools in the meta-
environment, such as debuggers and cross referencers, must
be cognizant of both the logical and physical interface. As
an example, we have implemented a tool that works with
the debugger to display data instances [Cook 19881. This
tool can display at an abstract, language-independent level,
as well as the bit encoding of the data.

The meta-environment provides the tool developer with
the ability to move easily among alternatives during evolu-
tion of the system. Linguistic constructs are provided to
specify the tool topology, structure representation, and clus-
tering. The analysis of the constructs is performed by a
language specific translator in the meta-environment. The
use of a special preprocessor provides the control necessary
for all aspects of data access, modification, and I/O. These
meta-environment features conspire to achieve evolution re-
silience of the developing SDE.

7 Conclusions

Wileden, Clarke, and Wolf have identified three basic tech-
niques for defining shared data within an SDE [Wileden et
al. 19901. After an extensive evaluation, they concluded that
one technique, specification-described, was superior to the
other two techniques, implementation-described and value-
described, in terms of consistency management and devel-
opment and reuse effort, and inferior in terms of SDE
development-time efficiency (their term was turnaround
time). Our approach, as described in Section 6.1, may be
characterized as specification-described. In this paper, we
showed how it is possible to initially sacrifice SDEexecution-
time efficiency to achieve SDEdevelopment time efficiency.
We also explained how to shift the SDE, with no changes
to its source code, to many intermediate points along the
coupling spectrum, eventually reaching the other end late
in the development, thereby achieving high SDEexecution-
time efficiency. We introduced new techniques at both ends
of the spectrum: the ASCII external representation with
a procedural interface for achieving fast evolution, and se-
mantic clustering and shared memory for achieving high tool
execution performance. Finally, we discussed our implemen-
tation of a me&environment that interprets an explicit tool
topology describing the data shared among tools in the tar-
get SDE and the static composition and interaction of the
tools, thereby providing precise control to the developer.

We conclude that evolution resilience is achievable in an
SDE without jettisoning other desirable properties such as
high performance, ease of understanding, ease of change,
reuse, consistency management, or controlling the impact of
change.

8 Acknowledgement

The referees made several helpful comments that improved
this paper.

9 Bibliography

[Andrews & Harris 19871 Andrews, T. and C. Harris.
Combining Language and Database Advances in an Object-
Oriented Development Environment, in OOPSLA Confer-
ence Proceedings. Association for Computing Machinery.
Dec. 1987, pp. 430-440.

[Banerjee et al. 19871 Banerjee, J., W. Kim, H.-J. Kim and
H.F. Korth. Semantics and Implementation of Schema Evo-

153

Figure 7: A. Faster Version of the Example SDE

lution in Object-Oriented Databases, in Proceedings of ACM
SIGMOD International Conference on Management of Data.
Ed. U. Dayal and I. Traiger. Association for Computing
Machinery. San Francisco, CA: 1987, pp. 311-322.

[Barstow et al. 19841 Barstow, D.R., H.E Shrobe and
E. Sandewall. Interactive Programming Environments.
McGraw-Hill Book Company, 1984.

[Bernstein 19871 Bernstein, P. A. Database System Support
for Software Engineering- An Extended Abstract, in Ninth
International Conference on Software Engineering. IEEE,
ACM. Monterey, CA: Computer Society Press, Mar. 1987,
pp. 166-178.

[Buxton 19801 B ux t on, J.N. Requirements for Ada. Program-
ming Support Environments-‘Stoneman’. Technical Report.
Department of Defense. Feb. 1980.

[Clarke et al. 19861 Clarke, L.A., J.C. WiIeden and A.L.
Wolf. Graphite: A Meta-Tool for Ada Environment De-
velopment, in Proceedings of the International Conference
on Ada Applications and Environments. Miami Beach, FL:
IEEE Computer Science Press, Apr. 1986, pp. 81-90.

[Clemm & Osterweil 19901 Clemm, G. and L. Osterweil.
A Mechanism for Environment Integration. ACM Trana-
actions on Programming Languages and Systems, 12, No. 1,
Jan. 1990, pp. l-26.

[Cockshott et al. 19841 Cockshott, W., M. Atkinson, K.
Chisholm, P. Bailey and R. Morrison. Persistent Object
Management Systems. Software-Practice and Experience,
14 (1984), pp. 49-71.

[Conradi & Wanvik 19851 Conradi, R. and D.H. Wanvik.
Mechanisms and Toots for Separate Compilation. Technical
Report 25/85. The University of Trondheim, The Norwegian
Institute of Technology. Oct. 1985.

[Conradi et al. 1986) Conradi, R., T. Didriksen and A. Lie.
IDL as a Data Description Language for a Progmmming En-
vironment Database. EPOS 15. Division of Computer Sci-
ence, University of Trondheim. July 1986.

[Cook 19881 Cook, R.E. A Tool for Viewing IDL Data Struc-
tures. M.S. Thesis. Computer Science Department, Univer-
sity of North Carolina at Chapel Hill. Apr. 1988.

[Date 19861 D t a e, C.J. An Introduction to Database Sya-
terns. Vol. I of Addison-Wesley Systems Programming Se-
ries. Reading, MA: Addison-Wesley Pub. Co., Inc., 1986.

[Didriksen et al. 19871 Didriksen, T., A. Lie and R. Con-
radi. IDL as a Data Description Language for a Program-
ming Environment Database. SIGPlan Notices, 22, No. 11,
Nov. 1987, pp. 71-78.

[Dittrich et al. 19861 Dittrich, K.R., W. Gotthard and P.C.
Lockemann. DAMOKLES- A Database System for Software
Engineering Environments, in Proceedings of the Interna-
tional Workshop on Advanced Programming Environments.
IFIP WG2.4. Trondheim, Norway: June 1986, pp. 345-259.

[Dowson 19871 Dowson, M. Integrated Project Support with
IStar. Software, 4, No. 6, Nov. 1987, pp. 6-15.

[Garlan et al. 19861 Garlan, D., C.W. Krueger and B.J.
Staudt. A Structural Approach to the Maintenance of
Structure-Oriented Environments, in SIGSoft/S.tGPtan Soft-
ware Engineering Symposium on Practical Software Devetop-
ment Environments. Association for Computing Machinery.
Palo Alto, CA: SIGPlan, Dec. 1986, pp. 160-170.

[Garlan 19871 Garlan, D. Views for Toots in Integrated En-
vironments. PhD. Diss. Computer Science Department,
Carnegie-Mellon University, May 1987.

[Gerritsen & Morgan 19761 Gerritsen, R. and H.L. Morgan.
Dynamic Restructuring of Databases with Generation Data
Structures, in Proceedings of the ACM Annual Conference.
Association for Computing Machinery. Houston, TX: Oct.
1976, pp. 281-286.

[Habermann & Notkin 19861 Habermann, A.N. and D.
Notkin. Gandalf: Software Devetopement Environments.
Transactions on Software Engineering, SE-12, No. 12, Dec.
1986, pp. 1117-1127.

[Hitchcock et al. 19861 Hitchcock, P., A.W. Brown, R. Wee-
don, A.N. Earl, R.P. Whittington and D.S. Robinson. The
Use of Databases for Software Engineering, in Proceedings of
the Fifth British National Conference on Databases-BNCOD
5. Ed. E.A. Oxborrow. University of Kent. Canterbury,
England: July 1986.

[Hornick & Zdonik 19871 Hornick, M.F. and S.B. Zdonik. A
Shared, Segmented Memory System for an Object-Oriented
Database. ACM Transactions on O&e Information Sys-
tems, 5, No. 1 (1987), pp. 70-85.

[Hudson & King 19881 Hudson, S. and R. King. The Cactis
Project: Database Support for Software Engineerings. IEEE
Transactions on Software Engineering, 14, No. 6, June 1988.

[Kaplan, et al. 19861 Kaplan, S.M., R.H. Campbell, M.T.
Harandi, R.E. Johnson, S.N. Kamin, J.W.S. Liu and J.M.
Purtilo. An Architecture for Tool Integration, in Proceedings
of the International Workshop on Advanced Programming
Environments. IFIP WG 2.4. Trondheim, Norway: June
1986, pp. 109-124.

[Krueger et al. 19891 Krueger, C.W., B.J. Staudt and A.N.
Habermann. Scaling Up Integrated Software Development
Environment Databases, in Proceedings of the 1989 ACM
SIGMOD Workshop on Software CAD Databases. Ed. L.A.
Rowe and S. Wensel. Napa, CA: Feb. 1989, pp. 74-78.

[Lamb 198’7A] Lamb, D.A. IDL: Sharing Intermediate Repre-
sentations. ACM Transactions on Programming Languages
and Systems, 9, No. 3, July 1987, pp. 297-318.

[Lamb 1987B] Lamb, D.A. 1mpZementation Strategies for DI-
ANA Attributes. SIGPlan Notices, 22, No. 11, Nov. 1987,
pp. 44-54.

[Lerner & Habermann 19901 Lerner, B.S. and A.N. Haber-
mann. Beyond Schema Evolution to Database Reorgani-
zation, in Proceedings of ECOOP/OOPSLA ‘90. Ottawa,
Canada: 1990.

[Lewerentz 19881 Lewerentz, C. Extended Programming in
the Large in a Software Development Environment, in Pro-
ceedings of the ACM SIGSOFT/SIGPLAN Software Engi-
neering Symposium on Practical Software Development En-
vironments. Ed. Peter Henderson. Boston, MA: Nov. 1988,
pp. 173-182.

[Narayanaswamy & Scacchi 19871 Narayanaswamy, K. and
W. Scacchi. A Database Foundation to Support Software
System Evolution. Journal of Systems & Software, 7, No. 1
(1987), pp. 37-49.

[Navathe & Fry 19761 Navathe, S.B. and J.P. Fry. Restruc-
turing for Large Databases: Three Levels of Abstraction.
ACM Transactions on Database Systems, 1, No. 2, June
1976, pp. 138-158.

[Nestor et al. 19821 Nestor, J.R., W.A. Wulf and D.A. Lamb.
IDL - Interface Description Language - Formal Description
- Draft Revision 2.0. Internal Document. Computer Science
Department, Carnegie Mellon University. June 1982.

[Nestor et al. 19891 Nestor, J.R., J.M. Newcomer, P. Gian-
nini and D. Stone. IDL: The Language and Its Implementa-
tion. Englewood Cliffs, NJ: Prentice-Hall, 1989.

[Newcomer 19861 Newcomer, J.M. IDL: Past Experience and
New Ideas, in Proceedings of the International Workshop
on Advanced Programming Environments. IFIP WC 2.4.
Trondheim, Norway: June 1986.

[Newcomer 19871 Newcomer, J.M. Eficient Binary I/O of
IDL Objects. SIGPlan Notices, 22, No. 11, Nov. 1987, pp.
35-43.

[Notkin 19851 Notkin, D. The GANDALF Project. Journal
of Systems and Software, 5, No. 2, May 1985, pp. 91-106.

[OsterweiI & Clemm 19831 OsterweiI, L. and G. Clemm.
The Toolpack/IST Approach To Extensibility In Software
Environments, in Lecture Notes in Computer Science Ada
Software Tools Interjaces. Ed. G. Goos and J. Hartmanis.
Workshop, Bath : Springer-Verlag, 1983, pp. 133-163.

[Paseman 19891 Paseman, W. Architecture of the Atherton
Software Backplane, in Proceedings of the 1989 ACM SIG-
MOD Workshop on Software CAD Databases. Ed. L.A.
Rowe and S. Wensel. Napa, CA: Feb. 1989, pp. 105-108.

[Penedo 19861 P enedo, M.H. Prototyping a Project Master
Database for Software Engineering Environments, in Sec-
ond Software Engineering Symposium on Practical Software
Development Environments. ACM SigSoft/SigPlan; ONR.
Palo Alto. CA: Dec. 1986.

[Penedo et al. 19891 Penedo, M.H., E. Ploedereder and I.
Thomas. Object Management Issues for Software Engineer-
ing Environments. SIGPlan Notices, 24, No. 2, Feb. 1989,
pp. 226-231.

[Perry & Kaiser 19881 Perry, D.E. and G.E. Kaiser. Mod-
els of Software Development Environments, in Proceedings of
the International Conference on Software Engineering. Raf-
fles City, Singapore: Apr. 1988.

[PurtiIo 19851 PurtiIo, J.M. Polylith: An Environment to
Support Management of Tool Interfaces, in Proceedings of
the ACM SIGPlan ‘85 Symposium on Language Issues in
Programming Environments. Seattle, WA: July 1985, pp.
12-18.

[PurtiIo 1988] PurtiIo, J.M. A Software Interconnection
Technology. Technical Report UMIACS-TR-88-83, CS-TR-
2139. Institute for Advanced Computer Studies, Depart-
ment of Computer Science. Nov. 1988.

[Reps & Teitelbaum 19891 Reps, Thomas W. and Tim Teitel-
baum. The Synthesizer Generator: A System for Construct-
ing Language Based Editors. Springer-Verlag, 1989.

[Schwanke & Kaiser 19881 Schwanke, R.W. and G.E. Kaiser.
Smarter Recompilation. A CM Transactions on Program-
ming Languages and Systems, 10, No. 4, Oct. 1988, pp.
627-632.

155

[Shannon & Snodgrass 19891 Shannon, K.P. and R. Snod-
grass. Mapping the Interface Description Language Type
Model into C. IEEE Transactions on Software Engineering,
15, No. 11 (1989), pp. 1333-1346.

[Shannon & Snodgrass 19901 Shannon, K.P. and R. Snod-
grass. Semantic Clustering, in Proceedings of the Workshop
on Persistent Object Systems. Martha’s Vineyard, MA: Sep.
1990.

[Shu et al. 19771 Shu, N.C., B.C. House], R.W. Taylor, S.P.
Ghosh and V.Y. Lum. EXPRESS: A Data Extraction, Pro-
cessing, and REStructuring System. ACM Transactions on
Database Systems, 2, No. 2, June 1977, pp. 134-174.

[Skarra & Zdonik 19861 Skarra, A.H. and S.B. Zdonik.
The Management of Changing Types in an Object-Oriented
Database, in Proceedings of the Conference on Object-
Oriented Programming Systems, Languages and Applica-
tions. Ed. N. Meyrowitz. Association for Computing Ma-
chinery. Portland, OR: Nov. 1986, pp. 483-495.

[Skarra & Zdonik 19871 Skarra, A.H. and S.B. Zdonik. Type
Evolution in an Object-Oriented Database, in Research Di-
rections in Object-Oriented Programming. of ‘Computer
Systems Series. Cambridge, MA: MIT Press, 1987. Chap.
Part 3. pp. 393-415.

[Snodgrass & Shannon 19861 Snodgrass, R. and K.P. Shan-
non. S upporting Flexible and Eficient Tool Integration, in
Proceedings of the International Workshop on Aduanced Pro-
gramming Environments. IFIP WG 2.4. Trondheim, Nor-
way: Springer-Verlag, June 1986, pp. 290-313.

[Snodgrass 19891 Snodgrass, R. The Interface Description
Language: Definition and Use. Rockville, MD: lComputer
Science Press, 1989.

[Snodgrass 19901 Snodg rass, R. IDL Toolkit Release 4.2. De-
partment of Computer Science, University of Arizona, Tuc-
son, AZ, 1990.

[Sockut & Goldberg 19791 Sockut, G.H. and R.P. Goldberg.
Database Reorganization - Principles and Practice. ACM
Computing Surveys, 11, No. 4, Dec. 1979, pp. 37X-395.

[Stamos 19841 Stamos, J.W. Static Grouping of Small Ob-
jects to Enhance Performance of a Paged Virtual Memory.
ACM Transactions on Computer Systems, 2, No. 2, May
1984, pp. 155-180.

[Staudt 19881 Staudt, B., C. Krueger and D. Garlan.
TransformGen: Automating the Maintenance of Structure-
Oriented Environments. Technical Report CMU-CS-88-186.
Computer Science Department, Carnegie Mellon University.
Nov. 1988.

[Taylor et al. 19881 Taylor, R.N., R.W. Selby, M. Young,
F.C. Belz, L.A. Clarke, J.C. Wileden, L. Osterweil and A.L.
Wolf. Foundations for the Arcadia Environment Architec-
ture, in Proc. Symposium on Practical Softwure Develop-
ment Environments. Ed. P. Henderson. Association for
Computing Machinery. Boston, MA: Nov. 1988, pp. l-13.

[Tichy 19821 Tichy, W.F. Adabase*r A Data Base for Ada
Programs, in Proceedings of the Ada TEC Conference on
Ada . Association for Computing Machinery. Arlington,
VA: Oct. 1982, pp. 57-65.

[Tichy 19861 Tichy, W.F. Smart Recompilation. Transac-
tions on Programming Languages and Systems, 8, No. 3,
July 1986, pp. 273-291.

[Ullman 19881 Ullman, J.D. Principles of Database and
Knowledge-Base Systems. Potomac, Maryland: Computer
Science Press, 1988. Vol. 1.

[Wileden et al. 19891 Wileden, J. C., A. L. Wolf, W. R.
Rosenblatt and P. L. Tarr. Specification Level Interoperabil-
ity. Technical Report. University of Massachusetts. 1989.

[Wileden et al. 19881 Wileden, J.C., A.L.: Fisher Wolf, C.D.
and P.L. Tarr. PGRAPHITE: An Experiment in Persis-
tent Typed Object Management, in Proceedings of the Third
Symposium on Software Development Environments. Ed. P.
Henderson. Association for Computing Machinery. Boston,
MA: Nov. 1988, pp. 130-142.

[Wileden et al. 1990] Wileden, J.C., L.A. Clarke and A.L.
Wolf. A Comparative Evaluation of Object Definition Tech-
niques for Large Prototype Systems. ACM Transactions on
Programming Languages and Systems, to appear (1990).

[Wolf et al. 19891 Wolf, A.L., L.A. Clarke and J.C. Wile-
den. The AdaPIC Toolset: Supporting Interface Control
and Analysis Throughout the Software Development Process.
IEEE Transactions on Software Engineering, 15, No. 3,
Mar. 1989, pp. 250-263.

[Straw et al. 19891 Straw, A., F. Mellender and S.
Riegel. Object Management in a Persistent Smalltalk Sys-
tem. Software-Practice and Experience, 19, No. 8, Aug.
1989, pp. 719-737.

156

