
DBMS Metrology: Measuring Query Time

Sabah Currim
University of Arizona

scurrim@email.arizona.edu

Richard T. Snodgrass
University of Arizona
rts@cs.arizona.edu

Young-Kyoon Suh
University of Arizona
yksuh@cs.arizona.edu

Rui Zhang
Teradata

Rui.Zhang@teradata.com

Matthew Wong Johnson
Univ. of California, San Diego

mwj@email.arizona.edu

Cheng Yi
University of Arizona
yic@cs.arizona.edu

ABSTRACT
It is surprisingly hard to obtain accurate and precise mea-
surements of the time spent executing a query. We review
relevant process and overall measures obtainable from the
Linux kernel and introduce a structural causal model re-
lating these measures. A thorough correlational analysis
provides strong support for this model. Using this model,
we developed a timing protocol, which (1) performs sanity
checks to ensure validity of the data, (2) drops some query
executions via clearly motivated predicates, (3) drops some
entire queries at a cardinality, again via clearly motivated
predicates, (4) for those that remain, for each computes a
single measured time by a carefully justified formula over
the underlying measures of the remaining query executions,
and (5) performs post-analysis sanity checks. The result-
ing query time measurement procedure, termed the Tucson
Protocol, applies to proprietary and open-source DBMSes.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query Pro-
cessing

Keywords
accuracy; repeatability; Tucson Protocol

1. INTRODUCTION
A common approach for at least the last twenty-five years

to measure database management system query time is as
follows.

“We used the UNIX time command to measure
the elapsed time and CPU time. All queries were
run 10 times. The resultant CPU usage was av-
eraged.” [8]

Consider the measured times in Table 1, for which consid-
erable care (to be described in detail later) was taken to
get repeatable results, and for which many sources of time
variation (also to be discussed) were eliminated.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

Even after taking these many proactive steps to improve
the measurements, they still vary quite a lot, from 6290 msec
to 8510 msec (with the lowest and highest numbers in bold),
a range of 2220 msec, which is over 25% of the highest time.
As we will see, this variability arises from necessary daemons
and DBMS utility processes and their I/O and interactions
with the DBMS.

The accuracy of any measurement system is the “closeness
of agreement between a measured quantity value and a true
quantity value of a measurand” while the precision of that
system is the “closeness of agreement between ... measured
quantity values obtained by replicate measurements on the
same or similar objects under specified conditions” [9]. (Ac-
curacy is termed external validity and precision, repeatabil-
ity, in some contexts.)

In the following, we address the central question just raised:
how to achieve precise and accurate measurements of query
execution time? In considering the approach that is the
norm, averaging ten runs, one asks, why average? In fact,
why not minimum? Should all ten times be used? If some
are dropped, how many should remain? Can additional in-
formation from the operating system help refine the deter-
mination of query processing time?

In this paper, we address both accuracy and precision in
detail, along the way developing a comprehensive, carefully
motivated query time measurement protocol. This proto-
col is much more precise, with a measurement resolution
for many queries averaging ±1.2%. Due to the many exter-
nal vagaries that have been eliminated, this protocol is also
much more accurate.

While many (most?) database papers contain measure-
ments, this is the first detailed time measurement protocol
to be presented, providing a concrete and carefully specified
sequence of steps to arrive at a defensible measurement of
query evaluation time.. Along the way, we present the first
detailed causal model of the ways in which per-processor and
overall measures are related and examine support for that
model by a correlational analysis over hundreds of thousands
of program runs.

2. BACKGROUND
There is a spectrum of granularities with regard to what

is being measured and how it is measured, as summarized
in the taxonomy shown in Figure 1. The first decision is
whether to consider time as an independent variable (that
is, specified when the experiment is run) or as a dependent
variable (that is, measured). The TPC-C [12] benchmark is
run for a user-specified length of time (minutes to hours),

1 2 3 4 5 6 7 8 9 10 Avg Std Dev
T imemeas (msec) 6530 6571 8764 7961 8427 7829 8246 8506 8239 6991 7806 818

Table 1: Measured time of ten executions of a query on PostgreSQL

Query Time

Independent Variable Dependent Variable

Mix of Transactions

Wall-Clock Time DBMS Process(es)

CPU Overall JDBC

User Processes

Single Statement Single Transaction

Daemons

Network I/O

Time
Instruction

Counts

Cache

Misses

Request

Counts
Time

Packet

Counts
Time

Figure 1: DBMS Time Taxonomy

long with the transaction mix (ratio of read and update
transactions) and the number of completed transactions is
measured, yielding a measured transactions per minute. We
focus in this paper on measured query time. This could be
of a mix of transactions, each with one or more queries and
updates, of a single transaction, or of a single SQL statement
(query or update). We focus here on measuring the total
time of a single query. Some of these measurements can also
be made of cloud databases, in which the queries are run
over many distributed computers [4] or at a smaller scale,
on a local distributed system [5].
When measuring how much time an individual query run-

ning on a single server requires, one can look again at wall
clock time, which will include all the DBMS process(es), in-
cluding those not actually evaluating the query, as well as
operating system daemons and processes invoked by other
users. The TPC-H [13] benchmark runs a host of queries
over a prescribed database and measures total time for each,
as do the XBench [16] and τBench [15] benchmarks. Or one
can look more closely, restricting oneself to just those DBMS
processes actually executing the query, or even to the time
required for JDBC interaction, I/O, network, or CPU execu-
tion. One can measure I/O time, or obtain counts, such as
the number of blocks read or written, perhaps differentiat-
ing between random and sequential disk I/O. One could also
study the pattern of accesses, including differentiating syn-
chronous from asynchronous I/O. For computation, one can
also measure time or counts (such as number of CPU ticks).
The same differentiation applies to measuring network ac-
tivity. JDBC activity is generally composed of network ac-
tivity (if the SQL statement initiator is running off-server)
and computation. Finally, one can delve into the specifics of
the CPU performance of a DBMS, examining for example
processor cache effects [1] using profiling tools like Valgrind

and Callgrind [14], which provide instruction and cache hit
metrics. Counts are generally collected either through the
operating system or instrumented DBMS or by running a
disk or cache simulation on the instrumented DBMS [19].

The present paper will consider how to more accurately
and precisely measure the time required to execute a sin-
gle SQL statement, examining (a) overall wall clock time,
(b) overall DBMS process time, (c) CPU time, and (d) I/O
time. For understanding DBMS behavior, wall clock time is
highly variable due to extraneous operating system daemons
and user processes, which is why we focus in this paper on
the harder problem: finer-grained measurements of DBMS
process time and its CPU and I/O components. (Doing so
can then provide insight into the additive effect of daemons
and user processes.) We will extract counts from the operat-
ing system but as we are measuring proprietary DBMSes, we
will not consider approaches that require that the DBMS it-
self be instrumented. Thus, we do not consider CPU or I/O
simulation to obtain detailed counts and measures of cache
performance nor of random versus sequential I/O (we will
consider overall I/O time). We do not focus on measuring
network time; instead, we reduce network time to the ab-
solute minimum by mounting the disks on the server (not
using a network file server). We minimize JDBC activity by
returning a minimal result.

We show that it is possible to measure DBMS query pro-
cess I/O and compute times, which when summed provides
a much more stable measure of DBMS processing than wall
clock time. This allows us to isolate the contribution of
DBMS query processing in terms of compute and I/O time,
within the context of realistic execution. By comparing
these measures to those of non-DBMS processes, we can
also characterize the contributions of those other processes,
thereby achieving a more comprehensive picture. Indeed,

Scenario (e.g., Exhaustive1, OnePass2)
Experiment (query set (Q1-Q6),

data spec, scenario parameter(s))
DBMS (DB2, Oracle, PostgreSQL)

Machine (sodb6–sodb12)
Experiment Run (on a particular date)

Query Instance (query number
within query set)

Query at Cardinality (10K–2M)
Q@C Execution (1–10)

Figure 2: Hierarchy of Query-at-Cardinality (Q@C) execu-
tions

our approach allows one to accurately measure all of the
shaded variables in Figure 1.
Such measurements can be an initial step in broader stud-

ies, with these measures to be used as input to create more
efficient query evaluation algorithms, to refine the query op-
timizer, such as its cost model (e.g., [7, 11]), to predict query
performance (e.g. [2, 6, 8]), to characterize workloads (e.g.,
[17]), or to do provisioning and capacity planning (e.g., [18]).

3. TERMINOLOGY
Figure 2 presents a simple representation of the structure

of our experiments, as a hierarchy of eight levels, ending at
a particular query execution of a particular query at a par-
ticular cardinality for the underlying table(s), as part of a
particular experiment run started on a stated date and time
on a designated machine using a specified release of a spe-
cific DBMS, in the context of a specified experiment setup
(stating the set of queries, the characteristics of the data,
and various other parameters), of a selected experiment sce-
nario.
As an example of this hierarchy, we previously presented

in Table 1 measurements of 10 Q@C Executions. For the
data in this table, we utilized the OnePass Scenario, an Ex-
periment specifying a second set (Q2) of 20 queries (out of
six such sets of queries), specifying data with a maximum
cardinality of 2M rows, decreasing by 10K rows at a time,
and specifying the scenario parameter of 10 executions per
Q@C. We ran this query on the PostgreSQL DBMS, on the
sodb10 machine, from an experiment run started January
20, 2012 at 3:31pm, for query number 17, thus identifying
a particular query instance running on a variable table with
a cardinality of 1,770,000, and examining all ten Q@C exe-
cutions. This paper concerns a total of 36 experiment runs,
each taking a few days to a week on a single machine, involv-
ing a total of 353,630 query executions (35,363 Q@Cs) over
the DB2, MySQL, Oracle, and PostgreSQL DBMSes run-
ning on the Linux operating system, totalling almost 3000
hours (4 months) of cumulative time.

4. MEASURING QUERY TIME
We now turn our attention to the central problem: mea-

suring in a defensible manner the execution of a Q@C: a
particular query at a specified cardinality on a particular
machine for a specified DBMS within the context of a par-
ticular scenario and experiment.

1Executing a plan at each cardinality as cardinality changes.
2Executing a plan only when the current plan is different
from the previous one as cardinality changes.

We execute in quick order, for a single query at a single
cardinality, a certain number of Q@C executions. In our
protocol, we execute each Q@C 10 times, which is sufficient
for timing purposes. (As we’ll see, Step 3-(iii) of the pro-
tocol drops Q@Cs with fewer than 6 query executions after
many checks on these executions. This step retained 85%
of the Q@Cs, indicating that 10 is about the right number
of query executions to start with.) From various low-level
measurements gathered during these multiple executions, we
then compute a query execution time for that Q@C.

4.1 Wall-Clock Query Time
The Linux kernel provides several system calls that return

the current time. (This method of measuring time is called
software monitoring; it “is most suited for program-level
measurements” [10].) The major difference among these
functions is their measurement resolution. We use the Java
method currentTimeMillis() which is based on the Linux
gettimeofday system call. As we will see, milliseconds is
actually a finer granularity than we will be able to achieve
in the end, given all that is going on in a DBMS query.

Table 1 given on the second page of this paper is a pure
cold cache measurement of query time using currentTime-

Millis for 10 executions on PostgreSQL of the following
query.

SELECT t0.id3, t1.id2

FROM ft_HT3 t3, ft_HT1 t1, ft_HT3 t2, ft_HT1 t0

WHERE t3.id3=t1.id2 AND t1.id2=t2.id1

AND t2.id1=t0.id4

This query is on two tables. ft_HT1 (the variable table)
contains 177,000 tuples, each with four integers; ft_HT2 (one
of the constant tables) contains 2 million tuples, also each
with four integers.

In these measurements we have taken the following steps:
(a) stopped as many operating system daemons as possible,
(b) eliminated network delays by running the executor on
the same machine as the DBMS and by using a local disk,
(c) eliminated user interactions by having the executor inter-
act with an external lab DBMS to obtain the queries to be
run and disallowing other user access, (d) ensured that the
exact same query plan was being executed, on exactly the
same database content, in exactly the same environment, to
achieve data and within-run repeatability, and (e) ensured
repeatability of I/O by clearing the many caches involved.
Steps (a)–(c) improve accuracy while (d) and (e) address
precision.

Most machines now have multiple cores, from 2 to 8 cores.
As we will see, it is very difficult to get precise measure-
ments for even a single core. Multiple cores are more com-
plicated, as execution can continue as long as there are more
unblocked processes as there are cores. Otherwise, one or
more cores will be in an IOwait status for that tick. So
we configure the Linux kernel to enable just one core, by
adding maxcpus=1 to the kernel arguments and verifying
with cat /proc/cpuinfo. We applied this configuration to
all the experimental machines. We note in passing that for
all the DBMSes we measured, their default configuration
limits query evaluation to just one process, so this is not a
significant limitation, as for the great majority of the time
the DBMS query process was the only one executing on the
system.

As mentioned at the beginning of the paper, even when
all of these other interactions have been eliminated to the
extent possible, the measured times still vacillate a lot, by
over 25% of the highest time. To reduce this variability, we
need to use other information, specifically per-process and
processor-wide measures provided by the O/S.

4.2 Per-Process Measures
By examining the measures in /proc, a pseudo-file sys-

tem maintained by Linux which provides an interface to
kernel data structures, the measurement protocol can ob-
tain through file reads valuable per-process statistics for each
active process identifier. Most are counts in units of ticks,
which for our processors are exactly 10msec. The measures
of interest to us are (a) minflt [3], the number of minor
page faults, those which do not require loading a memory
page from disk, and so do not incur I/O, (b) majflt, the
number of major page faults, which cause the process to
be blocked while that page is swapped in, thus incurring
I/O, (c) utime, the number of ticks in which that process
was running in user mode, (d) stime, the number of ticks
in which a request from that process was being handled by
the operating system, (e) guest time, the number of ticks in
spent running a virtual CPU for a guest operating system
(always 0 for our protocol). These values are cumulative for
each process, counting from 0 when the process was instan-
tiated/forked; hence, these values are also accessed both be-
fore and after the query. We retrieve these statistics with a
getProcs method within the protocol that itself takes about
16 milliseconds. Note that thread synchronization costs are
not recorded by the O/S, and thus cannot be measured in
this way.

4.3 Overall Measures
There are a variety of other overall measures available.

The per-processor cumulative counts include (a) utime, the
number of ticks in which a user process was executing, (b) user
mode with low priority in ticks (always 0, because lower-
priority processes have already been eliminated), (c) stime,
the number of ticks in which the operating system was ser-
vicing a system call or interrupt, (d) idle time, the number
of ticks when the processor has nothing to do (almost al-
ways 0), (e) IOwait time, the number of ticks in which the
system had no processes to run because all were waiting
for I/O, (f) irq (interrupt requests) handled by the system,
(g) softirq, the number of soft interrupt requests (these re-
quests can be handled with further interrupts enabled, to
allow high-priority interrupts to still get in in a timely man-
ner), (h) steal time, the number of ticks spent in other op-
erating systems when running in a virtualized environment
(always 0 in our protocol) and (i) processes, the number of
forks. Note that all of these values are cumulative, count-
ing from 0 since the last system rebooted. In our protocol,
these values are accessed before and after the query is eval-
uated (by a getProcStat() method within the protocol),
with the first value subtracted from the second value to ob-
tain the number performed during query execution. Each
getProcStat takes about 0.13 milliseconds, because there is
only one set of these measures.
We discovered that for some versions of the Linux operat-

ing system (e.g., Redhat Enterprise Linux 5.8), the irq over-
all measure is always zero. For the newest version, Redhat
Enterprise Linux 6.3, the irq measure increases very slowly,

just a few per hour, even when experiments are run contin-
uously. This rate is sufficiently low that we don’t consider
such interrupts further.

5. A PROPOSED CAUSAL MODEL
We have seen that there are a variety of per-process mea-

sures: user time, system time, and guest time measured in
ticks and minflt and majflt measured in counts, and a va-
riety of overall measures: user time, user mode with low
priority time, system time, idle time, IOwait ticks, and steal
time measured in ticks and number of irq, softirq, and pro-
cesses measured in counts. Per-process measures are mea-
sured at individual process level, extracted from the output
of getProcs(). We define per-type measures as the aggre-
gation of per-process measures for the DBMS query pro-
cess(es) (this category is termed query), for the other DBMS
processes (this category is termed utility), and for the re-
maining, operating system daemon processes (this category
is termed daemon). (We also occasionally lump the second
and third categories into what we call the non-query pro-
cesses.) The goal is how to infer/calculate the total time
used by the query process(es) to actually execute the query.
The task before us is to allocate the appropriate portion
of overall time to the query processes, using if possible the
per-process and overall times and counts in this allocation.

As noted above, steal time and user model with low prior-
ity time are always 0. We already have counts for user and
system time for those DBMS process(es). The challenge is
to estimate the portion of overall IOwait ticks directly or
indirectly caused by activities of the DBMS processes.

5.1 Structural Causal Model
Figure 3 provides an initial causal model of these mea-

sures. The model differentiates the DBMS query processes,
which dominate the time and which is known to have sig-
nificant I/O and CPU components, and is given in Fig-
ure 3a, from the non-query processes (utility and daemon
processes), which contribute much shorter run times and for
which it is not known whether they have significant I/O or
CPU components, given in Figure 3b.

Within this composite model, nodes are variables to be
measured and directed arcs hypothesize causal interactions.
The variable denoted “# of IO Requests”, a count of such
requests, cannot be measured, and thus is considered a la-
tent variable, depicted with an oval. (/proc/pid/IO pro-
vides bytes read, not I/O requests in counts of blocks read;
/proc/pid/mountstats provides a count of READ and WRITE

requests, but only to the network file server, not to the lo-
cal disk [3]. Several of the DBMSes include page reads and
writes in the statistics they maintain; we have not yet pur-
sued that source of information.)

Some variables, specifically the number of Soft IRQ Re-
quests and the number of IO Wait Ticks, are overall mea-
sures, and so represent the same values in both sub-models.
For the other three measures, user time, number of major
faults, and system time, we have both per-type and overall
measures. For Figure 3a, “User Time” is a construct with
four different operationalizations: user time of the DBMS
query process(es), total user time of the utility DBMS pro-
cess(es) (if any), user time of the daemon process(es) (if
any), and total user time, aggregated over all processes. The
other two variables, system time and major faults, have anal-
ogous operationalizations.

(a) Model for the DBMS Query Processes (b) Model for Non-Query (Utility and Daemon) Processes

Figure 3: The Causal Model

The intuition behind this model is that the DBMS in
its normal processing (measured by user time) reads data
from the database, each read which induces an IO request
to read in the block. That IO request incurs its own system
time and interrupt requests, some of which are soft IRQs. If
all processes are blocked on I/O, that request could add to
IOwait ticks. All of these causal interactions are positive.
For example, if user time increases for a different query, it
is predicted that the number of IO requests might increase,
which could itself increase the number of Soft IRQ requests,
number of IO Wait ticks, and amount of system time. The
DBMS presumably does other things that require system
time. We don’t expect to see a significant number of major
faults caused by the DBMS query process, because after just
a few query executions the entire query evaluator will have
been faulted in, though if there were any major page faults,
each would incur an IO Request to read the page in.
For all but the query process (that is, both utility and dae-

mon processes), even though most of the obvious I/O-bound
daemons are turned off, some I/O-bound daemons cannot be
eliminated, such as kjournald and pdflush. On the other
hand, some Linux kernel daemons are non-I/O bound. In
either case, we don’t know whether these non-query pro-
cesses cause system time or major faults and therefore, in
Figure 3b, there is no causal link predicted between user
time and anything.

5.2 Predicted Correlations
This causal model relates 14 measures (four for each of

user time, number of major faults, and system time plus
single overall measures of number of soft IRQ requests and
IOwait ticks), or a total of 182 interactions. For some pairs
of measures, such as between daemon user time and daemon
system time, there is no causal interaction predicted. For
some other pairs of measures, such as daemon major faults
and daemon system time, there is no direct causal link but
there is an indirect causal link, in this case, along two paths,
on involving number of soft IRQ requests. The overall model
thus makes 45 specific predictions of correlations between
pairs of measures, which we will now enumerate, motivating
the strength of the correlation we expect to find for each. We
identify expected an correlation of 0.7 or greater as a “high”
level of correlation, from 0.3 to 0.7 as “medium” and those
below that as a “low” level of correlation. Each correlation
is positive: when one variable increases in value, we expect
the other variable to increase in value.
We group these expected correlations that act in similar

ways in Table 2. In each box is an interaction between two
measures and a predicted level. We designate such pairs by
group and letter within group. An example is correlation

(Ia), the box at the top left, which concerns the interaction
between query user time and query system time.

In general, we predict correlations between two different
directly-linked measures for the same type of process (e.g.,
(Ia)) to be high. We predict overall correlations based on the
strength of the associated per-type correlations. Similarly,
indirectly-linked interactions are a sequence of directly-linked
interactions: the correlation for the entire path generally
won’t be greater than that of any interaction along the way.
An example is query major faults and query system time.
For interactions involving a per-type and overall of different
directly linked measures, as well as part-whole relationships
(between a per-type and the overall operationalization of the
same construct), we differentiate between query and non-
query measures, because query processing dominates the
computation. If the measure is only overall (that is, number
of soft IRQ requests and number of IOwait ticks), or if there
is a common ancestor, we do a case-by-case analysis.

The first group (Group I) involves correlations between
two different measures, but for the same type of process
(which can be either query, utility, or daemon). All such
pairs are expected to be highly correlated, except for those
involving major faults, because major faults are rare, and
so their contribution to IO requests is minor. This group
includes 11 predicted correlations.

The second group (II) involves correlation between the
per-type measure and overall of a directly-linked different
measure. The query process dominates the overall measure,
but there are other things going on, so there will be some
noise in overall, so we expect medium correlations. For util-
ity and daemon processes, we expect only low correlation,
for the same reason: the query process dominates the overall
measure. Finally, concerning between IO requests and soft
IRQ, we expect medium correlation, because prior investi-
gation implied that IO requests generate soft IRQs.

The third group also involves correlations between two dif-
ferent measures, but for overall, expected to be correlated
if all three per-type correlations in the first group are pre-
dicted. Also included in this group are such correlations
involving measures that are only overall.

The fourth group involves correlation between a per-type
measure and overall of an indirectly-linked different measure.
Such correlations are expected to be of medium strength
because they involve a sequence of other correlations.

The fifth group involves indirect correlations between two
overall measures, because they don’t differentiate the type
of process. There are two cases. The first case is correlations
involving user time. The interactions between user time and
any other variable for non-IO bound processes are not in the
model (Figure 3b).

a b c d e f g h i j k
query query query query query utility utility utility daemon daemon daemon

UTime/ I/O req/ UTime/ MajFlts/ MajFlts/ MajFlts/ MajFlts/ I/O req/ I/O req/ MajFlts/ I/O req/
I query query query query query utility utility utility daemon daemon daemon

STime STime I/O req I/O req STime I/O req STime STime I/O req STime STime
high high high low low low low high low low high
query query query utility utility daemon daemon utility daemon

I/O req/ I/O req/ Soft IRQ/ I/O req/ STime/ I/O req/ STime/ I/O req/ I/O req/
II overall overall query overall overall overall overall overall overall

IO wait Soft IRQ STime I/O wait Soft IRQ I/O wait Soft IRQ Soft IRQ Soft IRQ
med med med low low low low med med

overall overall overal overall overall
MajFlts/ I/O req/ IO req/ I/O req/ Soft IRQ/

III overall overall overall overall overall
I/O req STime I/O wait Soft IRQ STime
low high low med med

query query query query utility utility daemon daemon
UTime/ UTime/ MajFlts/ MajFlts/ MajFlts/ MajFlts/ MajFlts/ MajFlts/

IV overall overall overall overall overall overall overall overall
Soft IRQ IO wait Soft IRQ IO wait Soft IRQ IO wait Soft IRQ IO wait

med med med med low low low low
overall overall overall overall overall
UTime/ UTime/ MajFlts/ MajFlts/ MajFlts/

V overall overall overall overall overall
Soft IRQ IO wait Soft IRQ IO wait STime

med med med low low
query query query query utility daemon

UTime/ STime/ IO req/ MajFlts/ MajFlts/ MajFlts/
VI overall overall overall overall overall overall

UTime STime I/O req MajFlts MajFlts MajFlts
high high high low med med

overall
IO wait/

VII query
STime
med

Table 2: Hypothesized Interactions and Hypothesized Levels

The sixth group involves part-whole relationships, that is,
between the query component and the overall operational-
ization of the same construct. If the query process dominates
the overall, the correlation will be high. If query process does
not dominate, the correlation will be low. Query dominates
for user, system and IO requests. Query does not dominate
for major faults, which means that either or both utility and
other contribute.
The seventh and final group involves implied relationships,

that is, between variables that share a common ancestor,
though there is no path between them. That said, we do
so only for query measures, as less is known about non-
query processes. Since there is no direct path, we expect
the strength of the correlation to be smaller of the incoming
arcs from the common ancestor.

6. TESTING THE CAUSAL MODEL
As mentioned, the seven group contribute 45 expected cor-

relations. However, many involve the latent variable, num-
ber of IO requests, which by definition cannot be measured.
We have a remaining 27 correlations not involving the latent
variable. Our experiments provide a large amount of data
that can be used to test this model, which we do now. Then,
in Section 7, we will use this model to apportion I/O wait
time to the DBMS processes and other processes.

We tested the model in two phases. In the first, ex-
ploratory model analysis, we ran a correlation analysis on
a small portion of the query runs. We then examined our
assumptions against the results of this analysis, and revised
the model. The main changes suggested by this phase were
to separate consideration of the query process, which we felt
we understood much better, from the non-query processes,
which we understand poorly. (Note that this paper is fo-
cused on measuring the query time, that is, the execution
time of just the query process.) The result is that a single
causal model was refined to the two-part model depicted in
Figure 3.

Another aspect highlighted by the exploratory analysis
was the role that major faults play in the model. The num-
ber of major faults generally is quite low, and almost non-
existent for the query process (which made sense in retro-
spect, as the query code will have been swapped in at the
beginning of the experiment and repeated executed).

The result to this point is a set of 27 correlations, each
with an expected level: low, medium, or high. There are
other interactions that are not predicted by our model. We
then transitioned to the confirmatory model analysis stage
of our testing, in which we did a correlational analysis of all
36 query runs, followed by a comparison of the actual level
of correlation for each of the interactions in question with
their level predicted by our model, for each DBMS.

In general, we found that the level predicted by our model
either exactly matched that of the actual level
(e.g., predicted high and actual high) or was close (e.g., pre-
dicted high and actual medium), for the majority of pre-
dicted interactions. For some interactions, the significance
of the correlation was greater than 0.05, which means that
there was insufficient data to determine if that interaction
was present.
We now examine those few interactions where the predic-

tion did not match the actual observed level of correlation,
for each DBMS.
For DB2, there are five interactions of concern. Consider-

ing overall major faults, while we predicted the correlation
with query major faults (interaction (VId)) would be low
and with utility major faults (VIe) and with daemon major
faults (VIf) would be medium, the actual correlations were
query, high, and utility and daemon, not correlated with
overall major faults. Looking into this further, we discov-
ered that the first execution of a query in DB2 often experi-
enced a few major faults and that these were often the only
major faults in the execution, and so query dominated the
total major faults.
The other discrepancy for DB2 was with the query user

time and overall IO Wait ticks (IVb), which we predicted
would have medium correlation but in fact were not corre-
lated at all. We discovered that less than 2% of the DB2
query executions had any IO Wait ticks. That number of
samples was too low to do a separate correlational analysis.
This also explains the fifth interaction of concern, that of
overall user time and overall IO Wait ticks (Vb).
For MySQL, there were three interactions of concern. The

first is between overall soft IRQ and daemon system time
(IIg), which was predicted to be low but whose actual corre-
lation was high. Most queries in mySQL took a long time to
complete. This resulted in both query and daemon processes
causing a large number of major faults, so that both domi-
nated the correlation between soft IRQ and system time and
high correlations and observed correlations of high for both.
The second is IVb, discussed above. For MySQL, two

things are going on. First, for many queries, there are no
overall IOwait ticks. But there are also some long-running
MySQL queries, in which the IOwait ticks accumulate, though
still in low numbers: perhaps one or two dozen, representing
less than 1% of the query user time. In both situations, the
IOwait ticks is such a small component of the run time that
no correlation was observed. Again, the exceptions, 0.97%,
were so infrequent as to disallow a separate correlational
analysis.
Finally, our model predicts a medium correlation for over-

all user time and overall IO Wait time (Vb), but no such
correlation was observed. It seems that again, this is be-
cause of the very low amount of IO Wait ticks present in
most of the query executions. For Oracle, we found that
interaction (IVf), utility major faults and overall IO Wait
ticks, was predicted to be low but was actually high. This
is probably because the Oracle utility processes were being
run intermittently, causing major faults which added to IO
Wait ticks when contended with the Oracle query process.
This also explains interaction (Vd), overall major faults and
overall IOwait ticks, from expected low to actual high. For
PostgreSQL, there was only one discrepancy (IIg), already
discussed.

In summary, for the 108 testable interactions (27 interac-
tions for each of four DBMSes), we encountered only eleven
that were of concern, none of which presents a serious chal-
lenge to the model. Our conclusion is that the model is
strongly supported by these experimental results. As we will
see in Section 7.5, after cleaning up the query executions in
Steps 2 and 3 of our protocol, the number of interactions of
concern reduced dramatically.

We now delve into the details of the timing protocol.

7. TIMING PROTOCOL
In the following, we first discuss general data collection,

then consider the intricacies of process interaction, and fi-
nally show how the data that was collected, in concert with
the causal model shown in Figure 3, can be used to ascribe
the portion of I/O time utilized by DBMS query evaluation.

7.1 Data Collection
Since the time to collect the per-type metrics is much

longer than that taken to collect the overall metrics, we per-
form measurements in the following order: getProcs()→
getProcStat()→ getTime()→execute query→getTime()→
getProcStat()→getProcs, after which we compute the dif-
ferences in the cumulative statistics.

This data needs to be carefully analyzed to understand
how the processes interact when scheduled in an interleaved
fashion, especially for allocating I/O among the processes.
We found it to be useful to retain all of this data for every
Q@C execution, but recording only those processes for which
some activity was observed during the query execution.

7.2 Process Interactions
We now consider how individual processes interact with

each other and with the measurement protocol. These in-
teractions significantly complicate the timing of queries.

As illustrated in Figure 4, processes P1, P2 and P3 are
recorded into a map, M1, when the first getProcs() is in-
voked. Process P4 might also appear in M1, depending on
exactly when it started (as getProcs() takes a while to exe-
cute, going through the processes one by one). Another map,
M2, built after the query has executed, records processes P3,
P6 and P7, and it might also have P8. We term process P5
a phantom process, since it appears and completes its task
before the query execution is finished, and thus will appear
in neither M1 or M2. However, we can detect the presence
of phantom process(es) by comparing the total number of
executed processes (forks) extracted by getProcStat() be-
fore and after the query evaluation. Process P4, even if it is
recorded in M1, will not be considered to be a phantom pro-
cess, because it did not start after the first getProcStat()
was invoked.

The comparison between M1 and M2 reveals that pro-
cesses P1 and P2 are present in M1 but not in M2. We term
these processes stopped processes. It is evident that process
P2 overlaps the query execution, but it is not easy to differ-
entiate process P1 from P2. For example, both could have
user ticks, even though only process P2 actually overlapped
with the query execution, contributing time measured by
gettime(). If process P4 was recorded in M1, then it will
also be considered a stopped process.

Processes P6 and P7 are located in M2 but not in M1.
Process P8 may also be in this situation as well, if it was
caught by getProcs(). If caught, its ticks will be captured

Figure 4: Processes considered when timing a query

U S IO U S

U

UP
DBMS

P
OTHER

t t t t t t t t Timeline
U S IO U S UP

DBMS t0 t1 t2 t3 t4 t5 t6 t7

U: user mode, S: system mode, IO: I/O wait

Timeline

Figure 5: Two interleaved, running processes

in the per-type metrics, but not in the processor metrics.)
We term these started processes. Note however that we know
the amount of user and system time these processes incurred,
because that information will be inM2, unlike that for phan-
tom processes.

7.3 Calculating the CPU Time
Generally, the CPU time is easy to calculate because we

have per-type system and user time. However, we need to
determine which DBMS process was actually running the
query. For MySQL, there is only one DBMS process. For
DB2, we can uniquely identify the query process (db2sysc).
Oracle and PostgreSQL have multiple processes of the same
name, one of which could be the one actually running the
query. For such cases, we select the process that has the
highest total user plus system time across all executions for
a single Q@C as the one that is performing the query. Note
that this could select the wrong process, if the query process
ran very quickly and a DBMS utility process performed a lot
of work during that same time frame. Hence, if the selected
process does not appear in every query execution for a Q@C,
we will drop that Q@C in Step 2-(i), below.

7.4 Calculating the I/O Time
Every tick can be in one of several modes [3]: running

a user process (user mode), running a user process in low
priority (low priority mode), running on behalf of user pro-
cesses in the operating system (system mode), running on
behalf of user processes in softirq (softirq mode), waiting for
I/O, when all user processes are blocked (IOwait mode), or
waiting for a user process, as there is no I/O or computation
to be done (idle mode). The first three modes are illustrated
in Figure 5, for two processes, the DBMS process and an-
other process. Here the DBMS process starts in user mode
for one tick, then switches to system mode, then to IOwait
mode.
Our error model is that in the absence of non-query pro-

cesses (utility and daemon), the measured time should be
accurate, though it will vary somewhat with the vagaries of
disk head position, so the number of user time plus system
time and number of IOwait ticks will trade-off in slightly
different ways for the Q@C executions. (We note in pass-

Algorithm measurementProtocol(query, card):

{turn off non-essential O/S daemons}
plan ← GetQueryP lan(query)
for iterNum← 1 to 10 do

timeSingleQuery(iterNum, query, plan, card)
end for

for iterNum← 1 to 10 do

dropQueryExecutions()
end for

if dropQ@C() then
return null {Drop some Q@C’s}

else

calculateQueryTime() {Over remaining Q@C’s}
end if

Figure 6: Measurement Protocol

ing that this error model argues against taking the average
mentioned at the start of this paper.) The utility processes
when present will increase the total time through their user
and system ticks, and will also probably increase the IOwait
ticks, as there are generally only a few processes running
at any one time. (On average, there are two or three addi-
tional processes running sometime during a Q@C execution,
though there is a long tail to 18 processes, with one execu-
tion each with 20, 27, and 53 processes, out of the 350,000
executions examined.)

For our running example, the per-type metrics shown in
Table 4 support this model. (In this table, the lowest and
highest values for each row are in bold.) Note how stable
the user times (UQdbms) and system times (SQdbms) are for
the DBMS process performing the query (SUquery = S+U),
with SUquery varying by only 7 ticks (less than 2%). For
PostgreSQL, there is only one DBMS process, so we don’t
see any SUutility ticks (nor major faults, MajF ltutility).

For these executions, PostgreSQL has already faulted in all
of the code to run the query, soMajF ltquery is zero (though
we do see non-zero values for this metric). The variance is
contributed by the daemon processes that we cannot turn
off, specifically SUdaemon, SoftIrq, and MajF ltdaemon
and by the interaction of those processes and the DBMS
query process in IOwait ticks.

So the challenge is in apportioning the IOwait ticks to the
query process. The model shown in Figure 3 and validated
in Section 6 provides guidance on how to do so.

7.5 Query Execution Time Computation
Recall that we start with a fixed number (10) of query

executions for each Q@C. We desire an operationalization
of the query execution time for that Q@C, which is a single
time in milliseconds.

Our general protocol is to (1) perform sanity checks to en-
sure the validity of the data, (2) perhaps drop some query ex-
ecutions via clearly motivated predicates, (3) perhaps drop
some entire Q@Cs, again via clearly motivated predicates,
(4) for those Q@Cs that remain, for each compute a sin-
gle measured time by a carefully-justified formula over the
underlying measures of the remaining query executions, and
(5) perform post-analysis sanity checks.

We now detail each step of this protocol, shown in Figure 6.
We apply the protocol to our data, consisting of a total
of 353,900 query executions (35,390 Q@Cs) over the four
DBMSes.

1 2 3 4 5 6 7 8 9 10 Avg Std Dev
Timemeas (msec) 6530 6571 8764 7961 8427 7829 8246 8506 8239 6991 7806 818
Utotal (ticks) 303 315 308 300 — 303 301 299 309 — 305 5.1
Ltotal (ticks) 4 0 5 2 — 2 3 26 24 — 9 9.8
Stotal (ticks) 171 166 171 183 — 176 176 188 185 — 177 7.7
Qtotal (ticks) 24 27 44 42 – 39 43 63 48 – 41 11.4
Idletotal (ticks) 0 0 0 0 — 0 0 0 0 — 0 0
IOtotal (ticks) 150 149 349 269 — 262 301 275 258 — 253 65.1
Timesum (msec) 6520 6570 8770 7960 — 7820 8240 8510 8240 — 7829 845.4

Table 3: Measured time versus computed sum

1 2 3 4 5 6 7 8 9 10 Avg Std Dev
Timemeas (msec) 6530 6571 8764 7961 8427 7829 8246 8506 8239 6991 7806 818
Uquery (ticks) 289 293 294 286 — 287 288 283 290 — 289 3.6
Squery (ticks) 166 161 164 171 — 168 168 177 166 — 168 4.8
SUquery (ticks) 455 454 458 457 — 453 456 460 460 — 457 2.6
SUutility (msec) 0 0 0 0 — 0 0 0 0 — 0 0

SUdaemon (msec) 33 37 41 42 — 41 43 79 84 — 50 19.7
MajF ltquery 0 0 0 0 — 0 0 0 0 — 0 0
MajF ltutility 0 0 0 0 — 0 0 0 0 — 0 0

MajF ltdaemon 17 0 7 18 — 0 0 0 0 — 5 7.9
IOwaitmeas (ticks) 150 149 349 269 — 264 301 275 258 — 252 69.5
SoftIrqmeas (ticks) 24 27 44 42 — 39 42 63 48 — 40 14.2

Table 4: Breaking out the per-type metrics

Step 1: Perform Sanity Checks.
Before starting the query execution time computation, we

assess the validity of our data by performing several sanity
checks. These sanity checks serve only to indicate possible
systematic errors across the entire experiment that need to
be examined carefully before proceeding through the rest of
the steps. (Sanity checks are always recommended within
an experimental methodology to ensure data quality before
analyzing the data.)
We have three different classes of such sanity checks, com-

prising twelve sanity checks in total.
Table 5 lists the first class: the overall cases for which not

a single violation should occur in our data. The number of
missing queries indicates how many queries were not exe-
cuted, for whatever reason. The number of process info fail-
ures represents how many query executions do not have data
stored about its processes, specifically, overall query execu-
tion information: overall ticks, number of started/stopped/
executed processes, phantom presence, total faults, and to-
tal daemon time. Finally, the unique plan violation checks
how many Q@Cs have more than one query plan. All query
executions of Q@C must have a single, identical query plan.
In prior testing, we encountered violations of several of

these sanity checks, which suggested refinements to our pro-
tocol, thereby ensuring that there were no such violations
for the runs examined in this paper.
The second class of sanity checks concerns query execu-

tions; see Table 6. Each of these six sanity checks could
encounter a few isolated violations. However, we expect the
violation percentage to be very low.
The DBMS time violation check identifies the percent-

age of query executions with the time taken by DBMS pro-
cesses (query and utility) in total less than the time taken
by daemon processes, since we expect query execution time

to dominate. Fortunately, only about 0.01% DBMS time
violations were observed across all query executions in our
data. Second, the zero query time violation check indicates
how many query executions have a query time of 0 ticks. We
would not expect such query executions. Our data showed
only 0.01% violations as well. Third, the query time vi-
olation check identifies the query executions in which the
query time is greater than measured time. In our data, we
uncovered 0.52%, which is a very low rate.

For the last three sanity checks in this class, one could be
detected but should be very low and the other two should
not be violated by any query execution. The no query pro-
cess violation check indicates how many query executions
do not have any query process. We got very low percentage
(0.19%), with most of these query executions at the mini-
mum cardinality (10K) or with a very short measured time,
less than 10ms. Finally, we ensure that (query or utility)
processes from another DBMS should not be running. We
thus check how many query executions include other query
or utility processes. There were no such query executions.

The final class involves three checks over each Q@C; see
Table 7. The first detects excessive query process time vari-
ations, those in which the standard deviation of the query
time (user mode ticks plus system mode ticks) is greater
than 20% of the average query process time. We observed
few violations. Monotonicity Violation identifies two Q@Cs
for the same query plan having different cardinalities, for the
query time of the Q@C’s at a lower cardinality is greater
than that of the Q@C at a higher cardinality. The query
over the larger cardinality should take more time, so such
instances indicate a problem; we term this strict monotonic-
ity violation. We expect a small number of violations due
to the small variance of query time at each query execution
Due to the unavoidable variation of query times, we also

Number of Missing Queries 0
Number of Process Info Failures 0
Number of Unique Plan Violations 0

Table 5: Overall sanity checks

Percentage of DBMS Time Violations 0.01%
Percentage of Zero Query Time Violations 0.01%
Percentage of Query Time Violations 0.52%
Percentage of No Query Process Violations 0.19%
Percentage of Other Query Process Violations 0%
Percentage of Other Utility Process Violations 0%

Table 6: Query execution sanity checks

Percentage of Excessive Var. in Query Time 0.05%
Percentage of Strict Monotonicity Violation 0.29%
Percentage of Relaxed Monotonicity Violation 0.073%

Table 7: Q@C sanity checks

At Start of Step 2 353,630 QEs
At Start of Step 2 35,363 Q@Cs
After Step 2-(i) 350,830 QEs
After Step 2-(ii) 251,270 QEs
After Step 2-(iii) 249,110 QEs
After Step 2-(iv) 247,867 QEs

At Start of Step 3 31,658 Q@Cs
After Step 3-(i) 31,658 Q@Cs
After Step 3-(ii) 31,374 Q@Cs
After Step 3-(iii) 26,841 Q@Cs

Table 8: The number of Query Executions (QEs) and Q@Cs
remaining after each sub-step

consider relaxed monotonicity violation in which half a stan-
dard deviation of query time is subtracted from the lower
cardinality and half a standard deviation is added to the
upper cardinality, to account for some of this variation.
Now that we see that the original data from our experi-

ment passes all of these sanity checks, we can proceed onto
the next step.

Step 2: Drop Query Executions.
In this step, we drop query executions that exhibit specific

problems, in order to increase accuracy and precision.
First, we drop (i) the query executions identified as prob-

lematic in Table 6 as well as the first row of Table 7 to
increase the precision of our measured query time. Table 8
shows how many query executions are valid at the beginning
of Step 2 and after Step 2-(i): about 0.87% query executions
were dropped.
Referring back to Figure 4 showing the interleaved pro-

cesses, the total time (from the algorithm, time2 − time1)
includes the time taken by the DBMS, the time taken by
P5, and portions of processes P2, P3, P5, P6, and P7. For
most of these processes, we have per-process information
from getProcs(). Not so for the stopped process P2 nor
for the phantom process P5, because neither of those pro-
cesses show up in map M2. Due to this potentially large
uncertainty, we (ii) drop any query execution that contains
a stopped or phantom process.

Percentage of Excessive Var. in Query Time 0%
Percentage of Strict Monotonicity Violations 0.38%
Percentage of Relaxed Monotonicity Violations 0.076%

Table 9: Post (Q@C) sanity checks

If P4 was included in M1, then it will also be (conser-
vatively) considered to be a stopped process (we know it
started before the query and we only know it ended before
we could get its per-process metrics). If that process was
not included in M1, then we don’t need to worry about it.

Started processes (in this case, P6 and P7) do not cause a
problem, because we have per-process information for these
processes in M2. Even if process P8 is included in M2 that
process will be ignored, as it is not a DBMS process.

We also (iii) drop query executions where the IOwait ticks
is greater than two times the median IOwait ticks for the
Q@C, when the median IOwait ticks is greater than zero.
The rationale is that such a large number of IOwait ticks
over the median could have only be caused by other pro-
cesses. Because we allocate IOwait ticks in our computation
of Timecalc, we need to be conservative.

When the median IOwait ticks is zero, a minority of query
executions have a non-zero IOwait ticks. In such cases,
we drop query executions for that Q@C whose number of
IOwait ticks is greater than 2, because such query execu-
tions will be outliers (again, to be conservative).

The discussion in Section 6 identified two places where
the overall IOwait ticks was problematic: when it was non-
zero for DB2 (for a very small percentage of queries) and
when it was significant for MySQL (also a very small per-
centage). Thus we (iv) drop DB2 query executions with
non-zero IOwait ticks and drop MySQL query executions
for non-zero IOwait ticks for which this time represents more
than 1% of the query user time. The net take away is that
for these two DBMSes, we need not concern ourselves with
an adjustment to apportion IOwait time.

For our running example of query 17, execution 5 had
one phantom and execution 10 had one phantom and one
stopped process, so we drop those two query executions in
Step 2-(ii). No other query executions from this query were
dropped, as shown in Table 3.

Table 8 shows how many query executions remained after
each sub-step in Step 2. As mentioned, 0.87% were dropped
in Step 2-(i). 28.38% query executions were dropped due to
stopped or phantom processes at Step 2-(ii). After Step 2-(iii),
0.86% query executions were dropped due to the high IOwait
ticks. After Step 2-(iv), 0.50% query executions were dropped
due to problematic IO Wait ticks from DB2 and MySQL. In
summary, Step 2 in concert dropped 29.90% query execu-
tions, and based on the remaining query executions (247,867),
a total of 31,658 Q@Cs were left, with each Q@C retaining
an average of 7.83 query executions.

Step 3: Drop Selected Q@Cs.
In this step, we look at the query executions for each Q@C,

and determine if these query executions in concert exhibit
specific problems. If so, we drop the entire Q@C, to increase
accuracy and precision.

All time metrics except for measured time via getTime()

are in ticks. For very quick queries, which take only a few
ticks, a single tick or two of additional IOwait ticks for a dae-
mon process can throw off the total by a large percentage

factor. Also, as noted in Section 7.3, very short execu-
tion times result in the wrong query process being chosen.
Hence, we (i) drop any Q@C for which the identified query
process does not appear in every query execution for that
Q@C, (ii) drop Q@Cs with T imemeas (average measured
time across remaining executions) of 2 or less ticks, and
(iii) drop those Q@Cs with less than six valid query exe-
cutions. For our running example, none of these predicates
dictated dropping this Q@C.
Table 8 shows how many Q@Cs are dropped after each

sub-step in Step 3. As indicated by the last row for Step 2,
we initially had 31,658 Q@Cs, and no Q@Cs were dropped
at Step 3-(i) thanks to previously dropping query executions
violating no query process sanity check. We dropped 0.90%
Q@Cs at Step 3-(ii) and 14.5% at Step 3-(iii). Throughout
Step 3, a total 15.2% of Q@Cs were discarded; each remain-
ing Q@C had an average of 8.52 query executions.
We expect that cardinality of the result of each each suc-

cessive step to monotonically decrease. As shown in Table 8,
the cardinalities behave as expected.

Step 4: Calculate Query Time.
In this calculation, we include (a) DBMS user time,

(b) DBMS system time, and (c) the portion of IOwait time
due to DBMS I/O requests. Due to Step 2-(iii), the data
from DB2 and MySQL will not have a meaningful number
of IOWait ticks so component (c) does not pertain to these
DBMSes.
According to the model shown in Figure 3 and validated

in Section 6, there are four factors that cause IOwait ticks:
query user time and query, utility, and daemon major faults.
(All do so via the number of IO requests, which is a latent,
and hence unmeasured, factor.) Of these three influences,
only query user time and query major faults involve the
query process.
We performed a regression, examining how much these

three factors each contributed to IOwait ticks. We ran the
following regression over the Q@C executions.

IOwaitmeas = a+ b× Uquery

+c×MajF ltquery

+d×MajF ltutility

+e×MajF ltdaemon (1)

This regression fits quite well with our error model. The
variance explained is 67% for Oracle and 38% for PostgreSQL
(due to the different characteristics of various DBMSes, we
compute regression coefficients for each individual DBMS).
None of the factors on the right dominate or appear to be
collinear with IOwait. However, the MajF ltquery factor is
not a significant contributor; thus we do not use this factor.
The y-intercept for Oracle is 67 ticks and for PostgreSQL

is 38 ticks. (Note that the model predicts that this inter-
cept should be 0, though exogenous factors such as process
startups and the latent variable contribute to this value).
We can then use the regression coefficient associated with

the query process to determine the contribution of the IOwait
time to the total query time. (As noted before, there is no
reason to scale the IOwait time for DB2 nor for MySQL.)

IOwaitcalc = b× Uquery (2)

T imecalc = (Squery + Uquery + IOwait
calc

)

×10msec (3)

The regression (evaluated over the retained query exe-
cutions) produced the needed regression coefficients of b

(the multiplier for Uquery) of 1.916 for Oracle and 0.259
for PostgreSQL. The resulting computed execution times
(T imecalc) are shown in Table 10, with the median, 5308.3
msec, being the computed query time for this Q@C (in this
case, there are an even number of remaining query execu-
tions, and so the median is the average of the two central
times, with three times on each side). The last column in-
dicates that this time is within one standard deviation of
±1.7 ticks, or ±0.3%. Across all runs, the computed time is
within one average standard deviation of ±2.9 ticks, or ±1.2.
Our conjecture is that unmeasurable factors such as thread
synchronization are contained in this variance. In addition,
we can report (see Figure 1) that the overall wall clock time
ranged from 6.5 to 8.8 seconds, with an average of 7.38 sec
±1.2 sec. The DBMS CPU time is 4570 ±35 msec and the
DBMS I/O time is 750 ±1.4 msec. We could also report
similar measures for the utility and daemon processes.

Step 5: Post Sanity Checks.
As post sanity checks, we re-examine excessively varying

query time on the refined data, and check monotonicity vi-
olations based on the calculated query times.

Table 9 shows our post sanity check results. After our
protocol was applied, no excessively varying query times
were detected. Also, the rates of monotonicity violations
increased just slightly. The total number of violations itself
was reduced but relatively more Q@Cs were dropped by our
protocol.

We reran the confirmatory correlation analysis discussed
in Section 6 on the refined data. For DB2, four of the five in-
teractions of concern in that prior analysis are now closer to
the predicted, at most one level different, with three match-
ing the predicted level exactly,. For MySQL, the number
of interactions of concern went from three to one, for Ora-
cle, two to one, and for PostgreSQL, the one concern was
resolved. In sum, the refined data reduced the number of
interactions of concern from 11 to 3, lending even stronger
support for the causal model in Figure 3.

8. SUMMARY AND FUTURE WORK
Measuring query time is complex, as a DBMS interacts

with other processes and with the operating system in quite
involved ways.

This paper has considered these interactions in detail. We
first articulated a structural causal model relating these
measures. A thorough correlational analysis provided strong
support for this model. Using this model, we developed
a timing protocol that comprises Isolation: eliminating as
many extraneous factors, including network delays, cache
effects, and daemons; Measurement: specific metrics col-
lected before and after the query execution, in a carefully
prescribed order; and Analysis: a sequence that (i) per-
forms initial sanity checks over the entire data, (ii) perhaps
drops some Q@C executions, (iii) perhaps drops some entire
Q@Cs, (iv) for those Q@Cs that remain, for each compute
a single query time using the underlying measures of the
remaining query executions, and finally, (v) does some fi-
nal sanity checks. This protocol results in a more precise
and more accurate timing of the query, reducing variance
significantly.

1 2 3 4 5 6 7 8 9 10 Avg Std Dev
Timemeas (msec) 6530 6571 8764 7961 8427 7829 8246 8506 8239 6991 7806 818
SUquery (ticks) 455 454 458 457 — 453 456 460 460 — 457 2.6
MajFltQdbms (msec) 0 0 0 0 — 0 0 0 0 — 0 0
IOwaitmeas (ticks) 150 149 349 269 — 264 301 275 258 — 252 69.5
IOwaitcalc (ticks) 74.9 75.9 76.1 74.1 — 74.3 74.6 73.3 75.1 — 74.8 0.9
Timecalc (msec) 5298.5 5298.9 5341.5 5310.7 — 5293.3 5305.9 5333.0 5311.1 — 5311.6 17.1

Table 10: Final computed times

The Tucson Protocol is quite general, applicable to most
versions of Unix that support /proc, and is also applicable to
other operating domains in which measurements of multiple
processes each doing computation and I/O is needed. While
many of the specifics, such as clearing caches before execut-
ing a query, are well-known (though not well-documented),
this is the first general query evaluation time measurement
protocol to be articulated.
In subsequent work we plan to refine this query time mea-

surement protocol to (a) incorporate network delays for a
remote disk (which necessitates clearing the network file
server cache for cold cache timings), (b) utilize block read
and write statistics available from the DBMSes and bytes
read and written from the O/S, (c) accommodate multiple
disks, connected by a single or distinct channels, (d) accom-
modate multiple processor cores, (e) accommodate phantom
processes while eliminating their impact on the computed
time, (f) extend PostgreSQL to clear its cache, (g) ensure
repeatability of file fragmentation, (h) support the Windows
operating system, which has different per-process metrics,
and thus might require an altered causal model and a dif-
ferent regression model and calculation of query time, and
(i) accommodate multiple disks. We also want to extend the
protocol to (a) measure single transactions that incorporate
multiple statements and (b) measure a mix of transactions.

9. ACKNOWLEDGMENTS
This research was supported in part by NSF grants

IIS-0639106, IIS-0415101, and EIA-0080123. We thank
Benjamin Dicken, Preetha Chatterjee, Pallavi Chilappagari,
David Gallup, Kevan Holdaway, Andrey Kvochko, and Lopa-
mudra Sarangi for their contributions to the AZDBLab and
Phil Kaslo, Tom Lowry, and John Luiten for constructing
and maintaining our experimental instrument, a laboratory
of ten machines and associated software. Phil was partic-
ularly helpful in tracking down irq behavior. Finally, we
thank Nikolaus Augsten for many helpful comments.

10. REFERENCES
[1] A. G. Ailamaki, D. J. DeWitt, M. D. Hill, and

D. A. Wood, “DBMSes on modern processors: Where
does time go?” University of Wisconsin Computer
Sciences Technical Report 1394, February 25, 1999.

[2] M. Akswew, U. Cetintemel, M. Riondato, E. Upfal,
and S. B. Zdonik, ”Learning-based Query Performance
Modeling and Prediction,” in ICDE’12, pp. 390–411.

[3] D. Bovet, and M. Cesati, “Understanding the Linux
Kernel, Third Edition,” O’Reilly, 2003.

[4] B. F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears, “Benchmarking
Cloud Serving Systems with YCSB,” in Proceedings of
the ACM Symposium on Cloud Computing, New York,
June 2010, pp. 143–154.

[5] R. F. Forman, J. M. Pechacek, and W. H. Schwane,
“Apparatus and Method for Measure Transaction
Time in a Computer System,” IBM Patent, 2001.

[6] A. Ganapathi, H. A. Kuno, U. Dayal, J. L. Wiener,
A. Fox, M. I. Jordan, and D. A. Patterson, “Predicting
multiple performance metrics for queries: Better
decisions enabled by machine learning,” in ICDE’09.

[7] L. Gikoumakis and C. Galindo-Legaria, “Testing SQL
Server’s Query Optimizer: Challenges, Techniques and
Experiences, IEEE Data Eng. Bull. 31(1): 36-43
(2008).

[8] H.-Y. Hwang and Y.-T. Yu, “An Analytical Method
for Estimating and Interpreting Query Time,” in
VLDB’78.

[9] Working Group 2 of the Joint Committee for Guides
in Metrology (JCGM/WG 2), International
Vocabulary of Metrology—Basic and General

Concepts and Associated Terms, 2008.

[10] K. Kant, Introduction to Computer System

Performance Evaluation, McGraw-Hill, 1992.

[11] M. Stillger, G. M. Lohman, V. Markl, and M. Kaqndil,
“LEO - DB2’s Learning Optimizer,” in VLDB’01.

[12] TPC, “Transaction Processing Performance
Council—TPC-C,”
http://www.tpc.org/tpcc/. (accessed August 29,
2010)

[13] TPC, “TPC Transaction Processing Performance
Council—TPC-H,”
http://www.tpc.org/tpch/. (accessed August 29,
2010)

[14] Valgrind Developers, “Callgrind: A Call-Graph
Generating Cache and Branch Prediction Profiler,”
http://valgrind.org/docs/manual/cl-manual.html.
(accessed October 27, 2010)

[15] S. W. Thomas, and R. T. Snodgrass and R. Zhang,
”τBench: Extending XBench with Time,”
TimeCenter TR-92, 2010.

[16] B. B. Yao, M. T. Özsu, and N. Khandelwal, N.,
“XBench benchmark and performance testing of XML
DBMSs,” in ICDE’04.

[17] P. Yu, M.-S. Chen, H.-U. Heiss, and S. Lee, “On
workload characterization of relational database
environments,” IEEE Transactions on Software
Engineering, 18:347–355, 1992.

[18] N. Zhang, J. Tatemura, J. M. Patel, and
H. Hacõgumus, “Towards Cost-Effective Storage
Provisioning for DBMSs,” PVLDB, Vol. 5, No. 4,
pp. 274-285 (2011)

[19] R. Zhang, R. T. Snodgrass and S. Debray,
”Micro-Specialization in DBMSes,” in ICDE,
pp. 690–701, April 2012.

