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Abstract 

In this paper we discuss extensions to the conven- 
tional relatronal algebra to support transaction time 
We show that these extensions are applicable to hrs- 
torlcal algebras that support valid time, yleldmg a 
temporal algebrarc language Smce transaction time 
concerns the storage of mformatlon m the database, 
the notion of state IS central The extensions are for- 
mabsed usmg denotatlonal semantics The addltlons 
preserve the useful properties of the conventional re- 
lational algebra 

1 Introduction 

Codd’s relational algebra [Codd 19701 is truly time- 
less, m several senses Frrst, the relations rt op- 
erates on model the current reality as rs currently 
best known, the mformatron approxrmates an m- 
stantaneous snapshot Secondly, whrle the compu- 
tation of a relatronal algebrarc expression occurs m 
an mnermost-out fashion, there rs no sense of the 
computation requulng tune to complete Thud, 
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the drsposltlon of the derived relatron computed 
by the algebrarc expression rs ethereal, presumably 
this relation wrll be drsplayed or stored back m the 
database-the algebra will never tell 

In thus paper we propose extensions that address 
the first and thud aspects Time must be added to 
the underlymg data model before it can be added 
to the relational algebra In previous papers, we 
Identified three orthogonal kmds of time that a 
database management system (DBMS) needs to sup 
port vahd time, transactron trme, and user-defined 
tune [Snodgrass dc Ahn 1985, Snodgrass & Ahn 
19861 Valsd tame concerns modelmg trme-varying 
reahty The valid time of, say, an event rs the clock 
time that the event occurred 111 the real world, m- 
dependent of the recordmg of that event m some 
database Transactaon tame, on the other hand, con- 
cerns the storage of mformatlon m the database The 
transactron time of an event rs the transactron num- 
ber (an mteger) of the transactron that stored the 
mformatlon concernmg the event m the database 
User-defined trme rs an unmterpreted domam for 
whrch the DBMS supports the operations of input, 
output, and perhaps comparrson and mmlmal com- 
putation As its name rmphes, the semantics of user- 
defined trme rs provided by the user or apphcatron 
program These three types of time are orthogonal 
111 the support requved of the DBMS 

In these same papers, we defined four classes of 
relational databases dependmg on then support for 
valid time and transaction tune snapshot databases, 
rollback databases, hrstorrcal databases, and temp+ 
ral databases User-defined trme rs m fact already 
supported by the relational algebra, m that it rs 
simply another domam, such as integer or charac- 
ter strmg, provided by the DBMS [Bontempo 1983, 
Overmyer t Stonebraker 1982, Tandem 19831 Snap- 
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shot databases aupport neither vahd tnne nor trans- 
action time They represent a relation as a smgle 
snapshot state (1 e , the state of the enterprise bemg 
modeled at one particular pomt m trme) Snapshot 
databases are exactly those databases supported by 
the relational algebra Hence, for clarrty, we wail 
refer to the relational algebra hereafter as the snap 
shot algebra Rollback databases support transaction 
time but do not support vabd time They represent 
a relation as a sequence of snapshot states mdexed 
by transaction tune By recordmg the history of 
database actmrty, rollback databases allow relations 
to be rolled back to one of then past snapshot states 
for querymg Hastotrcal databases support vahd time 
but do not support transaction time They represent 
a relation as a single hlstorrcal state (1 e , the history 
as 1s best known of the enterprlae bemg modeled) 
By recordmg the history of the real world, hrstorl- 
cal databases provrde support for historical queries 
When an historical database rs changed, however, 
past hlstorrcal states are not retamed Temporal 
databases support both vahd time and transaction 
time They represent a relation as a sequence of 
historical states mdexed by transactron time By 
recordmg both the history of the enterprise bemg 
modeled and the history of database actlvltles, tem- 
poral databases provide support for both hlstorlcal 
queries and rollback operatrons 

In this paper we discuss extensrons to the snap- 
shot algebra to enable it to handle transaction time 
There have already been several proposals for addmg 
vahd time to the algebra [Ben-&r 1982, Chfford 
& Croker 1987, Gadla 1984, Gadra 1986, Jones et 
al 1979, McKenzie & Snodgrass 1987B, Navathe & 
Ahmed 1986, Tansel lQSS], so we will not consider 
extensions to support vahd time Fortunately, since 
the two types of time are orthogonal, they can be 
studied m lsolatlon We examme how transaction 
time can be added to the snapshot algebra and show 
how our approach applies wrthout modification to all 
historical algebras supporting valid time, yleldmg a 
temporal algebraic language that can accommodate 
all three kinds of time 

Several benefits accrue from extending the snap 
shot algebra to support transactron time The ac- 
tion of update is available m the algebra, allowmg 
the algebra to be the executable form to whrch up 
date operations m a calculus-based language (e g , 
append, delete, replace m Quel [Held et aI 19751) 
can be mapped If these operations m the calcu- 
lus are formahzed, the mapping can be proven cor- 
rect Secondly, update optmnzatrons analogous to 
the retrieval optlmlzatlons that have been exten- 

sively studied [Smith & Chang 19751 can now be 
mvestigated m a rigorous fashion. A third benefit 
1s that the contents of the database, and its evolu- 
tion, are now placed on a formal basis In partrc- 
ular, the domam of database states and the change 
to each state effected by each operator are defined 
Of course, actual lmplementatlons will vary consld- 
erably m the physical structures used to encode the 
mformatron on secondary storage However, the ex- 
lstence of a formal definition of database state al- 
lows rrgorous statements to be made concernmg the 
correctness of those structures and the mformation 
content of the database 

Addltlonal benefits accrue from our approach for 
addmg transaction time to the snapshot algebra 
Frost, our approach is general, it can be apphed to 
any hlstorlcal algebra to yield a temporal algebrarc 
language Our approach for adding transaction time 
to the snapshot algebra depends on no specific tech- 
mque for addmg vahd time to the snapshot alge- 
bra Rather, it 1s compatible with any such tech- 
nique Secondly, our approach is consistent with the 
concepts of time-stamped concurrency control pre- 
sented elsewhere [Bernstein et al 1987, Reed 1983, 
Rosenkrantz et al 1978, Stearns et al 19761 

2 The Approach 

In addmg transaction time to the relational model, 
we discovered a fundamental problem, that of state 
An algebra by definition is side-effect-free, but the 
essentral aspect of a database transaction IS solely its 
side-effect of modlfymg the database One awkward 
but perhaps feas:ble solution IS to add the database 
as a parameter to every operator We adopt a dlf- 
ferent strategy, leavmg the basic structure of the al- 
gebra mtact, and mstead msertmg rt mto another 
structure of commands that provide the needed side- 
effects Hence, what we are proposmg m this paper 
1s not only an extended algebra, but a language with 
the (slightly extended) algebra as a sigmficant com- 
ponent In domg so, we preserve all the properties of 
the snapshot algebra (e g , commutatrvrty of select, 
dlstributlvlty of select over Jam), permittmg the full 
apphcatlon of previously developed algebraic optl- 
mrzations 

We employ denotational semantics to define the 
semantics of commands, due to its success m formal- 
lzmg operations mvolvmg side-effects, such as assign- 
ment, m programmmg languages [Gordon 1979, Stoy 
19771 The language thus defined 1s our proposal for 
addmg transaction time to the relational model m 

468 



order to support a rollback relation as a sequence 
of snapshot states indexed by transactlon time It ~4 
consistent with Maler’s definltlon of a snapshot state 
and the snapshot algebra [Maler 19831 

A second modlficatlon does mvolve an extension to 
the snapshot algebra When transaction time LS sup 
ported by a DBMS, a means of accessmg states other 
than the current one must be mcluded We define a 
new algebraic operator called rollback to make past 
states available m the algebra Fortunately, rollback 
1s side-effect-free, so It 1s easily mcorporated mto the 
algebra 

Vahd time LS supported by allowmg a relation to 
contam one or more hwtoracal states Each hlstor- 
lcal state models the history of changes m the real 
world An hastorrcal relation contams a smgle hlstor- 
lcal state, and models the history as ~8 currently best 
known A temporal relation contams a sequence of 
hlstorlcal states, each modehng the history as It was 
stored m the database at a particular point m tnne 
Our language ~4 consistent with defimtlons of hlstor- 
lcal state and hlstorlcal relational algebras proposed 
by others [Chfford & Croker 1987, Gadla 1984, Ga- 
dla 1986, Jones et al 1979, McKenzie & Snodgrass 
1987B, Navathe & Ahmed 1986, Tansel 19861 

In definmg the semantics of commands and alge- 
braic operators, we have favored snnpllclty of seman- 
tics at the expense of efficient direct nnplementatlon 
The language would be quite mefficlent, m terms of 
storage space and execution tnne, If mapped directly 
mto an lmplementatlon However, the semantics do 
not preclude more efficient lmplementatlons usmg 
optnnlzatlon strategies for both storage and retrieval 
of information 

Summarumg the changes, we add 

l commands formahzed usmg denotatlonal se- 
mantics to express addltlons to the state of the 
database, 

l a rollback operator to the algebra to access pre- 
VIOUS states, and 

l valid tnne, accommodated by permlttmg hlstor- 
lcal states to be stored m relations 

The first two changes will be the topic of the next 
sectlon Section 4 will address mcorporatmg vahd 
time and section 5 will compare our approach with 
those of others 

3 Commands and the Roll- 
back Operator 

In denotatlonal semantics, a language 1s described 
by asslgnmg to each language construct a denota- 
tron - an abstract entity which models Its meanmg 
We chose denotatlonal semantics as the methodol- 
ogy for definmg our language because denotatlonal 
semantics combmes a powerful descrlptlve notation 
with rigorous mathematical theory to allow the pre- 
cise definltlon of state First, we define the syntax of 
our language Then we define the semantic domains 
of the language and several auxllmry functions Fl- 
nally, we define the semantic functions which map 
the language constructs mto their denotations 

3.1 Syntax 

Our language has three basic types of language con- 
structs sentences, commands, and expressions A 
sentence in our language w a non-empty sequence of 
commands Commands are analogous to statements 
m Quel or SQL m that they specify some task that 
either queries or changes the database (e g , define 
a relation, modify the contents of a relation, display 
the contents of a relation) Expressions occur wlthm 
commands and always evaluate to a smgle snapshot 
state We represent these three types of constructs 
by the three syntactic domains 

EXPRESSION Domam of expressions 
COMMAND Domain of commands 
SENT&NC& Domam of sentences 

We use Backus-Naur Form to specify here the syn- 
tax of expressions and commands m terms of their 
rmmedrate constatuenta (1 e , the highest-level con- 
structs which make up expressions and commands) 
The complete syntax of the language, mcludmg def- 
m&Ions of the lower-level constituents such aa Iden- 
tifiers, snapshot states, and boolean expressions, 1s 
given elsewhere [McKenzie & Snodgrass 1987413 If 
we let 

E, El, and & range over the domam 
EXPRESSION, 

C, Cl, and C, range over the domam 
COMMAND, 

P range over the domam SENZNCE, 

I range over the domam IDENTI3IlR of 



alphanumeric identifiers, 

N range over the domam NUM&RAL of decimal 
numerals and the special symbol 00, 

S range over the domain STRIN$ of strings 
m an alphabet, 

A range over the domam STAT& of alphanumeric 
representations of snapshot states (I e , 
constant relations), 

Y range over the domam TyPE of character 
strmgs denoting relation types (1 e , snapshot, 
rollback), 

X range over the domam P(IDENr1n&R), 
the power set of ID&NtI3I&R, and 

F range over the domam 3 of boolean 
expressions of elements from the domams 
IDfMI3I&R and STR IN& the relational 
operators, and the logical operators 

then the syntax for the language 18 

c = deflnezelatlon(l, Y) 

I modify-state (I, E) I Cl, Cz 

P = c 

An expression may be a snapshot state or an al- 
gebrac operator on either one or two other expres- 
sions The allowable operators mclude the five oper- 
ators that serve to define the snapshot algebra To 
these, we have added an addltlonal operator, a roll- 
back operator p The rollback operator takes two 
arguments, the name of a relation (an IDfNTI3I&R) 
and a transaction number (a MIMER Al), and re- 
trieves the snapshot state from the named relation 
current at the tune of the mdlcated transaction 

There are two commands m the language The 
def lne-relat ion command binds a relation type 
Y and an empty sequence of snapshot states to an 
unbound ldentlfier I The modify-state command 
changes a relation’s state but leaves the relation’s 
type unchanged The command evaluates an expres- 
sion E to produce a snapshot state which becomes 
the current state of relation I This new state may, 
but need not, contam tuples from the relation’s pre- 
vious state as well as tuples not found m the rela- 

tlon’s previous state Tuples from the relation’s pre- 
vlous state may appear unchanged or have different 
values for some attrlbutes m the new state Thus, 
the modify-state command effectively performs ap 
pend, delete, and replace operations (e g , Quel [Held 
et al 19751) on relations by addmg tuples to, delet- 
ing tuples from, or replacmg tuples m a relation’s 
previous state to produce a new current state for that 
relation. For sunphclty, we assume that there 1s no 
deletelelatlon command m the language A re- 
lation, once defined, cannot be deleted A relation’s 
state may be changed, but the relation itself exists 
permanently (We assume that the database admm- 
lstrator will have additional faclhtles to migrate roll- 
back relations to tape ) Elsewhere we mtroduce mto 
the language a deletezelatlon command, apphca- 
ble to both snapshot and rollback relations [McKen- 
zie 8z Snodgrass 1987A] 

How changes to a relation’s state are handled de- 
pends on the relation’s type For snapshot relations, 
a state change causes the most recent state m the re- 
lation’s sequence of states to be replaced by the new 
state For rollback relations, a state change causes 
the new state to be concatenated at the end of the 
relation’s sequence of states Thus, while only the 
most recent state of snapshot relations 18 saved, all 
past states of rollback relations are saved Note that 
the sequence of states for a snapshot relation will 
always be a smgle-element sequence 

The rollback operator p retrieves the state of re- 
lation I at the time of transactlon N The behavior 
of this operator depends on whether or not the ar- 
gument N 1 00 If N 1s 00, p retrieves the state 
of a relation at the tune of the most recent trans- 
action on the database In this case, the operator 
p may be apphed to either a snapshot or a rollback 
relation, retrlevmg the relation’s most recent state 
If N 18 not 00, p may only be applied to a rollback 
relation Thus, the rollback operator retrieves either 
the current state of a snapshot or rollback relation 
or a past state of a rollback relation The rollback 
operator cannot retrieve a past state of a snapshot 
relation 

3.2 Semantic Domains 

SENTENCE UJ the set of all syntactically vahd sen- 
tences m our language Each sentence, which con- 
slsts of a sequence of one or more mdlvvldual com- 
mands, defines the database resultmg from the ex- 
ecution of those commands, m order, on an empty 
database As we will see later, the syntactic domam 
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of sentences 1s needed only to ensure thus restrlc- 
tlon By definmg the database that results from an 
arbitrary sentence, we specrfy the semantrcs of that 
sentence, and hence the semantics of the language 
In this sectron, we wrll formally define the domam 
of database states, subsequent sections wrll provide 
the connectron between the syntactic domam of sen- 
tences and the semantic domain of database states 

Assume that we sre given a set of domains D = 
m, 92, , LJ,,,}, where each domam D,, 1 5 t 5 
m, IS an arbrtrsry, non-empty, finite or countably m- 
finite set Then, we can define the followmg semantic 
domains for our language 

TRANSACTION NUMB&R A (0, 1, } 

A transactron number 1s a non-negative mteger 
which 1s used to ldentrfy a transactron that modl- 
6es the database The transaction number assigned 
to a transaction can be viewed as that transactron’s 
time-stamp We assume that database modlficatlons 
occur sequentrally and that a transactron’s tlme- 
stamp as represented by its transaction number 1s 
the commrt time for the transactron (I e , the tnue 
the database 1s actually changed as a result of the 
transaction’s execution) We note m passmg that 
implementations may use some other time, such as 
the begrn transactron time for the transactron, for 
greater efficiency (e g , POSTGRES [Stonebraker & 
Rowe 19861) H owever, such lmplementatlons should 
preserve the semantrcs of commit transaction time 
as specified here Implementations may also permit 
concurrent transactions, agam as long as the seman- 
trcs of sequential update with a monotomcally m- 
creasing transactron time rs preserved 

R&fYTIONQP& A{SNAPSHOT, ROLLBACK} 

SNAPS)(OT STAT& A Domam of all vahd snap 
shot states, as defined m the snapshot algebra 
[Mruer 19831, over elements of { D~u DZU UD,,,} 

A relation IS an ordered parr consrstmg of 

l a relatron type, and 

l a sequence of (snapshot state, transactron num- 
ber) pans 

A relation’s state rs dynamic When a transaction 
changes the state of a snapshot relation, the smgle 
element m the relation’s state sequence rs replaced by 
a new element conslstmg of a new snapshot state and 
associated transaction number When a transactron 
changes the state of a rollback relation, a new pair 
consrstmg of a new snapshot state and associated 
transactron number rs appended to the relation’s ex- 
lstmg state sequence Thus, rollback relations are 
append only relations defined m terms of snapshot 
states 

Note that the transactron number of each ele- 
ment m a relation’s state sequence can be viewed 
as a time-stamp mdrcatmg when its associated re- 
lation state was entered mto the database and be- 
came the relatron’s current state Smce we assume 
that database modrficatrons occur sequentrally, the 
transactron-number components of a state sequence, 
while not necessarily consecutive, will be neverthe- 
less strictly increasing (as a consequence of transac- 
tion time bemg associated with commit) Thus, we 
can mterpolate on the transactron-number compo- 
nent of elements m a given state sequence to deter- 
mme the state of a rollback relation at any trme 

DATABASt STA-t~ g 
ID&NTI3-l&R + [R&f ATION + {L}] 

A database state 1s a functron that maps identifiers 
either mto a relatron or mto the specral symbol I, 
which here mdlcates that the identifier 1s unbounded 
m that database state (1 e , ~9 assocrated with no re- 
lation) The notation ‘+” on domams means the 
drsjomt union of domams 

DATABASE A DATABASE STAT& x 
TRANSACTION NUMBCR 

A database 1s an ordered parr consrstmg of a 
database state and a transactron number mdlcatmg 
the most recent transaction that caused a change to 
the database 

3.3 Auxiliary Functions 

To specrfy the meanmg of the expressions and com- 
mands defined syntactrcally m Section 3 1, we wrll 
define a function mapping each vahd expression mto 
a snapshot state (I e , an element of the SNAPSWOT 
STATl semantrc domam) and a functron mappmg 
each vabd command mto a database (1 e , an ele- 
ment of the DATABASl semantic domam) We use 
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several auxiliary functions m the defimtlons of these 
semantic functions for expressions and commands 
We present here an informal descnptlon of each of 
these auxlhary functions A formal definition for 
FINDSTATE ~4 presented elsewhere [McKensle & 
Snodgrass 1987A] Formal defimtlons for the other 
functions are either strrughtforward or notatlonally 
cumbersome and hence are not presented 

RTYPE maps a relation mto Its relation type 

RSTATE maps a relation mto its sequence of (snap- 
shot state, transactlon number) pairs 

FINDSTATE maps a relation mto the snapshot- 
state component of the element m the relation’s 
state sequence havmg the largest transactlon- 
number component less than or equal to a given 
integer If the sequence LS empty or no such ele- 
ment exists m the sequence, then FINDSTATE 
returns the empty set 

N 18 a semantic function which maps the syntac- 
tic domam NUMCRAt of decunal numerals mto 
the semantic domain TRANSACTION NUMB&R of 
non-negative mteger numbers 

Y IS a semantic function which maps each charac- 
ter strmg m the syntactic domam VP& mto the 
relation type which it denotes 

S 19 a semantic function which maps each al- 
phanumeric representation of a snapshot state 
m the syntactic domain STATE mto its corre- 
sponding snapshot state m the semantic domam 
SNAPSUOT STATC 

3.4 Expressions 

We now define the semantic function E, which de- 
fines the denotation of expressions m our language, 
as follows 

E EXPR&SSION 4 
[DATABASE + [SNAPSUOT STATt]) 

The result of evaluating an expression on a specific 
database 1s a snapshot state Note that evaluation of 
an expression on a specific database does not change 
that database 

This defimtlon of the semantic function E does not 
handle the posslbllty that an expression, when eval- 
uated on a specific database, causes an error (e g , 
an attempt to prolect a non-existent attribute) We 
hmlt our dlscusslon of expressions to vahd expres- 

slons on a given database Thus, the semantic func- 
tlon E, which defines the denotation of expressions m 
our language, 19 a partial function on vahd expres- 
slons only A dlscusslon of invalid expressions and 
a mechanism for handlmg such expressions appears 
elsewhere [McKenzie & Snodgrass 1987A] 

We now formally define the semantic function E 
for each kmd of expression allowed m the language 
lf we let 

n range over the domam TRANSACTION 
NUMB& 

r range over the domam R&lATION, 
b range over the domam DATABASC STATE, and 
d range over the domam DATABAS&, 

then 

We now define the semantic function E for the new 
rollback operator p 

El[pU, iV)]ld 4 If N=oo 

then FINDSTATE (r, n) 

else FINDSTATE (r, N[Nn) 

where d = (b,n) and r = b(l) If N = 00, then 
the result of evaluatmg the expression ~(1, N) 1s the 
most recent snapshot state m the state sequence 
of the relation correspondmg to the identifier I If 
N # 00, then the result of evaluating the expres- 
sion ~(1, N) B th e snapshot state associated with the 
largest transaction number less than or equal to the 
transaction number NUN1 m the state sequence of 
the relation correspondmg to the identifier I Thus, 
the operator p either retrieves the current state of 
the relation Identified by I or rolls back the relation 
to its state at the time the transactlon associated 
with NUN] was processed This defimtlon assumes 
If N = 00 that the relation IS either a snapshot or 
rollback relation and If N # 00 that the relation 1s 
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a rollback relation, otherwise, the rollback operation 
would be illegal 

3.5 Commands 

Commands are the only language constructs that 
change the database Execution of a command er- 
ther produces a new database or leaves the database 
unchanged 

We define formally the semantrcs of commands us- 
mg the same approach we used to define the seman- 
tics of expressrons We define the semantrc function 
C for each kmd of command allowed m the language 

The command deflnezelatlon defines a new, 
actrve relation m the database 

C[deflne~elatlon(l, Y)]d A 

lf b(I) = I 

then (b 1 WI Yll, ( ) )/I I, n + 1) 
else d 

where d = (b,n) If the database’s database- 
state component maps the identifier I mto I, then 
the command defmerelatlon(1, Y) changes the 
database so that the database’s database-state com- 
ponent maps the rdentrfier I mto an empty sequence 
of relation states of relatron type Y([ Yl The trans- 
action number for the database rs also mcremented 
If the database’s database-state component does not 
currently map the rdentrfier I mto I, then the rden- 
trfier already denotes a defined relation and the com- 
mand leaves the database unchanged 

The command modify-state erther replaces the 
single element m the state sequence of a defined 
snapshot relation or adds a new element to the state 
sequence of a defined rollback relatron 

C[modlfy-atate(I, E)]d A 

lf r # I A RTYPE (r) = SNAPSHOT 

then (b[(RTYPE(r), 

( (EUEII 4 n + 1) > I/G n + 1) 
else If r # I A RTYPE (r) = ROLLBACK 

then (b[(RTYPE(r), 

RSTATE(r) II @[En 4 n + 1))/11, 
n+ 1) 

else d 

where d = (b,n), r = b(I), and ‘11” 18 the con- 
catenatron operator on sequences If the database’s 
database-state component maps the rdentrfier I mto 
a defined snapshot relatron, then the modify-state 
command replaces the relation with a new rela- 
tion conslstmg of its type (RTYPE(r)) and a new 
state sequence Thus state sequence rs a smgle 
element sequence consistmg of the new (snapshot 
state, transaction number) pau (E[E] d, n + 1) If 
the database’s database-state component maps the 
rdentrfier I mto a defined rollback relation, then the 
modify-state command replaces the relatron with a 
new relatron consrstmg of its type and its state se- 
quence to which 1s concatenated at the end a new 
(snapshot state, transaction number) pan Hence, 
the smgle state m snapshot relations ls replaced wrth 
the state resultmg from the evaluation of E, whereas, 
a new state w appended m rollback relations In er- 
ther case, the new (snapshot state, transaction num- 
ber) pair 1 the snapshot state E[El d and the trans- 
action number of the most recent transactlon on the 
database plus one The modify-state command 
supports all update operations Append ls accom- 
modated by an expressron E that evaluates to a 
snapshot state contammg all of the tuples m a re- 
latron’s most recent state plus one or more tuples 
not m the relatron’s most recent state Delete rs ac- 
commodated by an expression E that evaluates to 
a snapshot state contammg only a proper subset of 
the tuples m a relation’s most recent state Finally, 
replace rs accommodated by an expressron E that 
evaluates to a snapshot state that differs from a re- 
latron’s most recent state only m the attnbute values 
of one or more tuples 

If two commands appear m sequence, command 
Cr rs executed first Then, command C’s rs executed 
using the database resultmg from the executron of 
command Cl 

cucls c2nd 2 cuc,n (cuc,n d) 

3.6 Sentences 

Sentences are the highest-level construct m our lan- 
guage A sentence defines the database state result- 
mg from the executron of a sequence of one or more 
commands, startmg with the empty database Our 
language reqmres that the evaluation of a sentence m 
the language always start with an empty database 
Thus requirement 18 both necessary and sufficient, 
given the above defimtlons of the commands de- 
finerelation and modlfystate, to ensure that 
transaction-number components of the state se- 
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quence of each rollback relation m the database will 
be strictly mcreasmg. The content of a database 
1s the cumulative result of all the transactions that 
have been performed on It smce it was created 

P StNT&NC& -+ [DATABASt] 

P[Cl 4 C[C](EMPTY, 0) 

where EMPTY ID&NTIYI&R --, {I} The 
database-state component of the database LS defined 
to be the function which maps all ldentlfiers to I 
(1 e , no ldentlfier 1s associated with a relation) and 
the transactlon-count component of the database ls 
set to 0 

4 Supporting Both Valid 
Time and Transaction Time 

The previous section showed how the snapshot al- 
gebra can be extended to handle transactlon time 
by definmg a rollback operator and several com- 
mands that modify the database Smce valid time 
and transaction time are orthogonal concepts, It 18 
possible to extend an hlstorlcal algebra m much the 
same way to obtam a temporal algebraic language 
We now show how to extend an hLstorlca1 algebra to 
support transaction time For llustratlon, we will 
use one particular hlstorlcal algebra (defined else- 
where [McKenzie & Snodgrass 1987B]), but the ap- 
proach applies to any hLstorlca1 algebra 

The key aspect of an hlstorlcal algebra IS Its def- 
mltlon of hlstorlcal state, which models reality over 
a period of tnne By stormg an hlstorlcal state, this 
model can be captured for further analysis An hu+ 
torlcal relation will consist of exactly one hlstorlcal 
state A temporal relation will contam a sequence of 
hlstorlcal states, indexed by transactlon time, a new 
rollback operator p will be used to access a particular 
hlstoncal state 

We first define the syntax of the hlstorlcal algebra 
by redefinmg two syntactic domams and mtroducmg 
two addItIona syntactic domains If we let 

A range over the domam STAT& of alphanumeric 
representations of snapshot and historical 
states, 

Y range over the domam fyPE of character 
strmgs denoting relation types (1 e , snapshot, 
rollback, historical, temporal), 

V range over the domam V of temporal 
expressions, and 

G range over the domam $ of boolean 
expressions of elements from the domam V, 
the relatlonal operators, and the logical 
operators 

then the syntax for the language may be extended 
with 

The constant may now be a snapshot or hlstorlcal 
state and LS extended to specify the relation type 
The first five operators are hlstorlcal counterparts 
to conventional algebraic operators Each 1s repre- 
sented as C+I to dLstmgulsh It from Its snapshot al- 
gebra counterpart op The srxth operator &,v 1s 
a new hlstorlcal operator which performs functions, 
slmdar to those of the selectlon and proJection op- 
erators m the snapshot algebra, on the valid&me 
components of hlstorlcal tuples The seventh opera- 
tor ls an hlstorlcal counterpart of the rollback oper- 
ator defined on temporal relations All evaluate to 
h&,orlcal states 

Next we extend the set of relation types, define the 
domain of hlstorlcal states, and augment the defim- 
tlon of the RELATION domain 

RCf3lTION 7ljPl ~{SNAPSHOT, ROLLBACK, 
HISTORICAL, TEMPORAL} 

USTORICAfY STATE 2 Domain of all vahd hs- 
torlcal relations as defined m the hlstorlcal al- 
gebra 

RCIYTION b REUTIQN TyP& x 
[ [ SNAPSUOT STATE x 

TRANSACTION NUMB&R]* + 
[ HISTORICAL STATE x 
TRANSACTION NUMBtR]*] 

We also need one more semantic function, H, 
which maps an alphanumerlc representation of an 
hlstorlcal state m the syntactic domam STATE mto 
its correspondmg hlstorlcal state m the semantic do- 
mam UISTQRICAL STATE 

Defimtlons of the semantic function E for ex- 
pressions mvolvmg hlstorlcal operators are specl- 
fied next The denotations for this class of expres- 
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srons are analogous to those for expressrons mvolvmg 
snapshot operators 

E([J(I,iV)jjd 2 d N= 00 

then FINDSTATE (r, n) 
else FINDSTATE (r, NnlV)) 

where d = (b, n) and r = a(l) 

Fmally, the modify-state command must be ex- 
tended shghtly to handle the hrstorlcal and temporal 
relation types 

Cumodlfy-state(1, E)lJ d g 

lf r#lA 

then 

(FINDTYPE (~,~)=SNAPSHOTV 

FINDTYPE (r,n) = HISTORICAL) 

( bl(R'JJYPE(rl, 

else 5 
( (EUElj 4 * + 1) > )/II, * + 1) 

r#lA 

then 

(FINDTYPE (~,*)=ROLLBACKV 

FINDTYPE (r,n)=TEMPORAL) 

( bNRTYPE(r), 

RSTATE(r) II (EUED 4 * + 1))/11, 

else 
n+l) 

d 

where d = (b,n) and r = 
lcal relations are handled 

b(1) Notice that histor- 
s~m&rly to snapshot re- 

lations, the only drfference rs that E evaluates to a 
historical state rather than a snapshot state The 
same relatlonshlp holds between rollback and tem- 
poral relations By embeddmg the algebra m the 

structure of commands, we have emphasrzed the or- 
thogonahty of transactron and vahd trme Vahd time 
1s handled through new hlstorlcal algebraic operators 
and a definition of historical state, transaction trme 
rs handled through the modify-state command and 
the rollback operator(s) In a sense, our semantics 
provides addltlonal assurance that the two kmds of 
time are m fact orthogonal 

5 Related Work and Sum- 

mary 
There are two contrrbutlons of this paper The first 
rs that the database state rs modeled as a sequence 
of snapshot (or hlstorlcal) states indexed by trans- 
action time This approach 1s slmrlar to that pro- 
posed in the context of trme-stamp concurrency con- 
trol algonthms [Bernstem et al 1987, Reed 1983, 
Rosenkrantz et al 1978, Stearns et al 19761 and 
dynanuc constramts [Vmnu 19831. In a related ef- 
fort, Ablteboul and Vlanu have defined a transac- 
tion language TL conslstmg of parameterlzed expres- 
sions contammg tuple msertrons and deletlona and 
a loopmg construct [Ablteboul & Vmnu 19871 In 
TL, the database state 1s modeled ‘procedurally” 
by provrdmg the transactron that compute that 
state, transactron time rs imphcrt The focus of 
thus and prevrous research [Ablteboul AZ Vranu 1985, 
Ablteboul & Vmnu 1986, Vlanu 19831 rs developmg a 
characteraatlon of the possrble database states com- 
putable by constramed transactrons, with the goal 
of usmg such transactrons as a speclficatlon tool for 
statmg dynamrc constramts The goal of our lan- 
guage rs drfferent, we hope to model the evolution 
of the database m terms of transactions specrfied by 
the user m a calculus-based update language that rs 
translated by the DBMS mto algebrarc expressrons 

There has been one other attempt to incorporate 
both vahd time and transaction time m an algebra 
[Ben-Zvr 1982) Vahd time and transactron time were 
supported through the addltlon of lmphcrt trme at- 
trrbutes to each tuple in a relation The algebra 
was extended with the Tame- Vaew algebrarc oper- 
ator which takes a relation and two times as argu- 
ments and produces the subset of tuples m the rela- 
tron valid at the first time (the valid time) as of the 
second time (the transaction time) The Time-View 
operator thus rolls back a relatron to a transactron 
time but returns only a subset of the tuples m the 
relation at that transactron time (1 e , those tuples 
vahd at some specrfied time) This restrrcted defim- 
tlon of the Time-View operator rz tied mextrlcably 
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to his particular handhng of vahd time Our ap 
preach 1s compatible with any hlstorlcal algebra 

The second contrlbutlon LS the formahzatlon of 
the evolving state through the definltlon of the mod- 
ify-state command This aspect has been mvestl- 
gated at the conceptual level by several researchers 
m the context of dynamic constramts on updates of 
database instances (Brodle 1981, Cerl et al 1981, 
Hammer & McLeod 19811 At the logical level, only 
Ben-Zvl has attempted such a formahzatlon His 
approach 1s to provide procedures for various ma- 
nlpulatlon commands (e g , insert, delete, termmate) 
and prove that these procedures mamtam various de- 
slrable propertles The effect of these procedures 
are locahzed to a specific tuple that changes dur- 
mg the transaction Our modify-state command 
simply replaces or appends a new entire snapshot 
or hlstorlcal state, allowmg many tuples to change 
durmg a transaction Of course, actual Implements 
tlons would be based on more complex representa- 
tlons that exhlblt greater space and time efficiency 
Verlfymg the correctness of such unplementatlons 
would involve demonstratmg the equivalence of thev 
semantics with the simple semantics presented here 

An aspect concerning transaction tnne that I 
not addressed m this paper 18 scheme euolutron 
The scheme 18 associated solely with transaction 
time, smce it defines how reahty 18 modeled by the 
database For example, a person’s marital status Y 
a (time-varymg) aspect of reality, but the declslon as 
to whether to record marital status, encoded m the 
scheme, 1 a (tnne-varymg) aspect of the database 
Hence, as the scheme describes how data are stored 
m the database, changes to the scheme are properly 
the provmce of transaction time Elsewhere we pro- 
vide extensions to the language presented here to 
accommodate scheme evolution [McKenzie & Snod- 
grass 1987A] We mclude a deleterelation com- 
mand as part of those extensions 

Another aspect that requires further work IS that 
of completeness One approach 18 to define a lan- 
guage and propose it as a standard, Codd proposed 
his snapshot algebra as the yardstick for snapshot 
completeness (1 e , supportmg neither transaction 
nor vahd time) Several others have proposed no- 
tions of query completeness based on computablhty 
[Ablteboul 6c Vlanu 1987, Chandra & Hare1 19801, 
which, unfortunately, are mcomparable We feel that 
this latter approach ~4 preferable and swat a con- 
sensus to form agamst which we could measure our 
language for rollback completeness (1 e , supportmg 
transactlon tnne) &m&r statements apply to his- 
torlcal and temporal completeness, supportmg vahd 

and both kmds of time respectively [Snodgrass 19871 

In summary, this paper has defined an algebraic 
language that has a snnple semantics and handles 
vahd, transaction, and user-defined tnne Only two 
addltlonal operators, p and a, were necessary The 
additions required for transactlon tune did not com- 
promlse any of the useful properties of the snapshot 
algebra 
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