
Extending the Relational Algebra to Support Transaction Time

Edwin McKenzie* and Richard Snodgrasst

Department of Computer Scrence
Umversrty of North Carolina

Chapel H~ii, NC 27514

Abstract

In this paper we discuss extensions to the conven-
tional relatronal algebra to support transaction time
We show that these extensions are applicable to hrs-
torlcal algebras that support valid time, yleldmg a
temporal algebrarc language Smce transaction time
concerns the storage of mformatlon m the database,
the notion of state IS central The extensions are for-
mabsed usmg denotatlonal semantics The addltlons
preserve the useful properties of the conventional re-
lational algebra

1 Introduction

Codd’s relational algebra [Codd 19701 is truly time-
less, m several senses Frrst, the relations rt op-
erates on model the current reality as rs currently
best known, the mformatron approxrmates an m-
stantaneous snapshot Secondly, whrle the compu-
tation of a relatronal algebrarc expression occurs m
an mnermost-out fashion, there rs no sense of the
computation requulng tune to complete Thud,

*Research by this author was supported m part by the
Umted States AW Force

tResearch by this author was supported m part by an IBM
Faculty Development Award

This research was also supported by NSF grant DCR-
a402339

Permlsslon to copy wlthout fee all or part of this material IS granted
provided that the copies are not made or dlstrlbuted for direct
commercial advantage, the ACM copyrlght notlce and the title of
the pubhcatlon and its date appear, and notlce IS given that copymg
IS by permlsslon of the Assoclatlon for Computmg Machmery To
copy otherwlse, or to repubhsh, reqmres a fee and/or specfic
permlsslon

the drsposltlon of the derived relatron computed
by the algebrarc expression rs ethereal, presumably
this relation wrll be drsplayed or stored back m the
database-the algebra will never tell

In thus paper we propose extensions that address
the first and thud aspects Time must be added to
the underlymg data model before it can be added
to the relational algebra In previous papers, we
Identified three orthogonal kmds of time that a
database management system (DBMS) needs to sup
port vahd time, transactron trme, and user-defined
tune [Snodgrass dc Ahn 1985, Snodgrass & Ahn
19861 Valsd tame concerns modelmg trme-varying
reahty The valid time of, say, an event rs the clock
time that the event occurred 111 the real world, m-
dependent of the recordmg of that event m some
database Transactaon tame, on the other hand, con-
cerns the storage of mformatlon m the database The
transactron time of an event rs the transactron num-
ber (an mteger) of the transactron that stored the
mformatlon concernmg the event m the database
User-defined trme rs an unmterpreted domam for
whrch the DBMS supports the operations of input,
output, and perhaps comparrson and mmlmal com-
putation As its name rmphes, the semantics of user-
defined trme rs provided by the user or apphcatron
program These three types of time are orthogonal
111 the support requved of the DBMS

In these same papers, we defined four classes of
relational databases dependmg on then support for
valid time and transaction tune snapshot databases,
rollback databases, hrstorrcal databases, and temp+
ral databases User-defined trme rs m fact already
supported by the relational algebra, m that it rs
simply another domam, such as integer or charac-
ter strmg, provided by the DBMS [Bontempo 1983,
Overmyer t Stonebraker 1982, Tandem 19831 Snap-

467

shot databases aupport neither vahd tnne nor trans-
action time They represent a relation as a smgle
snapshot state (1 e , the state of the enterprise bemg
modeled at one particular pomt m trme) Snapshot
databases are exactly those databases supported by
the relational algebra Hence, for clarrty, we wail
refer to the relational algebra hereafter as the snap
shot algebra Rollback databases support transaction
time but do not support vabd time They represent
a relation as a sequence of snapshot states mdexed
by transaction tune By recordmg the history of
database actmrty, rollback databases allow relations
to be rolled back to one of then past snapshot states
for querymg Hastotrcal databases support vahd time
but do not support transaction time They represent
a relation as a single hlstorrcal state (1 e , the history
as 1s best known of the enterprlae bemg modeled)
By recordmg the history of the real world, hrstorl-
cal databases provrde support for historical queries
When an historical database rs changed, however,
past hlstorrcal states are not retamed Temporal
databases support both vahd time and transaction
time They represent a relation as a sequence of
historical states mdexed by transactron time By
recordmg both the history of the enterprise bemg
modeled and the history of database actlvltles, tem-
poral databases provide support for both hlstorlcal
queries and rollback operatrons

In this paper we discuss extensrons to the snap-
shot algebra to enable it to handle transaction time
There have already been several proposals for addmg
vahd time to the algebra [Ben-&r 1982, Chfford
& Croker 1987, Gadla 1984, Gadra 1986, Jones et
al 1979, McKenzie & Snodgrass 1987B, Navathe &
Ahmed 1986, Tansel lQSS], so we will not consider
extensions to support vahd time Fortunately, since
the two types of time are orthogonal, they can be
studied m lsolatlon We examme how transaction
time can be added to the snapshot algebra and show
how our approach applies wrthout modification to all
historical algebras supporting valid time, yleldmg a
temporal algebraic language that can accommodate
all three kinds of time

Several benefits accrue from extending the snap
shot algebra to support transactron time The ac-
tion of update is available m the algebra, allowmg
the algebra to be the executable form to whrch up
date operations m a calculus-based language (e g ,
append, delete, replace m Quel [Held et aI 19751)
can be mapped If these operations m the calcu-
lus are formahzed, the mapping can be proven cor-
rect Secondly, update optmnzatrons analogous to
the retrieval optlmlzatlons that have been exten-

sively studied [Smith & Chang 19751 can now be
mvestigated m a rigorous fashion. A third benefit
1s that the contents of the database, and its evolu-
tion, are now placed on a formal basis In partrc-
ular, the domam of database states and the change
to each state effected by each operator are defined
Of course, actual lmplementatlons will vary consld-
erably m the physical structures used to encode the
mformatron on secondary storage However, the ex-
lstence of a formal definition of database state al-
lows rrgorous statements to be made concernmg the
correctness of those structures and the mformation
content of the database

Addltlonal benefits accrue from our approach for
addmg transaction time to the snapshot algebra
Frost, our approach is general, it can be apphed to
any hlstorlcal algebra to yield a temporal algebrarc
language Our approach for adding transaction time
to the snapshot algebra depends on no specific tech-
mque for addmg vahd time to the snapshot alge-
bra Rather, it 1s compatible with any such tech-
nique Secondly, our approach is consistent with the
concepts of time-stamped concurrency control pre-
sented elsewhere [Bernstein et al 1987, Reed 1983,
Rosenkrantz et al 1978, Stearns et al 19761

2 The Approach

In addmg transaction time to the relational model,
we discovered a fundamental problem, that of state
An algebra by definition is side-effect-free, but the
essentral aspect of a database transaction IS solely its
side-effect of modlfymg the database One awkward
but perhaps feas:ble solution IS to add the database
as a parameter to every operator We adopt a dlf-
ferent strategy, leavmg the basic structure of the al-
gebra mtact, and mstead msertmg rt mto another
structure of commands that provide the needed side-
effects Hence, what we are proposmg m this paper
1s not only an extended algebra, but a language with
the (slightly extended) algebra as a sigmficant com-
ponent In domg so, we preserve all the properties of
the snapshot algebra (e g , commutatrvrty of select,
dlstributlvlty of select over Jam), permittmg the full
apphcatlon of previously developed algebraic optl-
mrzations

We employ denotational semantics to define the
semantics of commands, due to its success m formal-
lzmg operations mvolvmg side-effects, such as assign-
ment, m programmmg languages [Gordon 1979, Stoy
19771 The language thus defined 1s our proposal for
addmg transaction time to the relational model m

468

order to support a rollback relation as a sequence
of snapshot states indexed by transactlon time It ~4
consistent with Maler’s definltlon of a snapshot state
and the snapshot algebra [Maler 19831

A second modlficatlon does mvolve an extension to
the snapshot algebra When transaction time LS sup
ported by a DBMS, a means of accessmg states other
than the current one must be mcluded We define a
new algebraic operator called rollback to make past
states available m the algebra Fortunately, rollback
1s side-effect-free, so It 1s easily mcorporated mto the
algebra

Vahd time LS supported by allowmg a relation to
contam one or more hwtoracal states Each hlstor-
lcal state models the history of changes m the real
world An hastorrcal relation contams a smgle hlstor-
lcal state, and models the history as ~8 currently best
known A temporal relation contams a sequence of
hlstorlcal states, each modehng the history as It was
stored m the database at a particular point m tnne
Our language ~4 consistent with defimtlons of hlstor-
lcal state and hlstorlcal relational algebras proposed
by others [Chfford & Croker 1987, Gadla 1984, Ga-
dla 1986, Jones et al 1979, McKenzie & Snodgrass
1987B, Navathe & Ahmed 1986, Tansel 19861

In definmg the semantics of commands and alge-
braic operators, we have favored snnpllclty of seman-
tics at the expense of efficient direct nnplementatlon
The language would be quite mefficlent, m terms of
storage space and execution tnne, If mapped directly
mto an lmplementatlon However, the semantics do
not preclude more efficient lmplementatlons usmg
optnnlzatlon strategies for both storage and retrieval
of information

Summarumg the changes, we add

l commands formahzed usmg denotatlonal se-
mantics to express addltlons to the state of the
database,

l a rollback operator to the algebra to access pre-
VIOUS states, and

l valid tnne, accommodated by permlttmg hlstor-
lcal states to be stored m relations

The first two changes will be the topic of the next
sectlon Section 4 will address mcorporatmg vahd
time and section 5 will compare our approach with
those of others

3 Commands and the Roll-
back Operator

In denotatlonal semantics, a language 1s described
by asslgnmg to each language construct a denota-
tron - an abstract entity which models Its meanmg
We chose denotatlonal semantics as the methodol-
ogy for definmg our language because denotatlonal
semantics combmes a powerful descrlptlve notation
with rigorous mathematical theory to allow the pre-
cise definltlon of state First, we define the syntax of
our language Then we define the semantic domains
of the language and several auxllmry functions Fl-
nally, we define the semantic functions which map
the language constructs mto their denotations

3.1 Syntax

Our language has three basic types of language con-
structs sentences, commands, and expressions A
sentence in our language w a non-empty sequence of
commands Commands are analogous to statements
m Quel or SQL m that they specify some task that
either queries or changes the database (e g , define
a relation, modify the contents of a relation, display
the contents of a relation) Expressions occur wlthm
commands and always evaluate to a smgle snapshot
state We represent these three types of constructs
by the three syntactic domains

EXPRESSION Domam of expressions
COMMAND Domain of commands
SENT&NC& Domam of sentences

We use Backus-Naur Form to specify here the syn-
tax of expressions and commands m terms of their
rmmedrate constatuenta (1 e , the highest-level con-
structs which make up expressions and commands)
The complete syntax of the language, mcludmg def-
m&Ions of the lower-level constituents such aa Iden-
tifiers, snapshot states, and boolean expressions, 1s
given elsewhere [McKenzie & Snodgrass 1987413 If
we let

E, El, and & range over the domam
EXPRESSION,

C, Cl, and C, range over the domam
COMMAND,

P range over the domam SENZNCE,

I range over the domam IDENTI3IlR of

alphanumeric identifiers,

N range over the domam NUM&RAL of decimal
numerals and the special symbol 00,

S range over the domain STRIN$ of strings
m an alphabet,

A range over the domam STAT& of alphanumeric
representations of snapshot states (I e ,
constant relations),

Y range over the domam TyPE of character
strmgs denoting relation types (1 e , snapshot,
rollback),

X range over the domam P(IDENr1n&R),
the power set of ID&NtI3I&R, and

F range over the domam 3 of boolean
expressions of elements from the domams
IDfMI3I&R and STR IN& the relational
operators, and the logical operators

then the syntax for the language 18

c = deflnezelatlon(l, Y)

I modify-state (I, E) I Cl, Cz

P = c

An expression may be a snapshot state or an al-
gebrac operator on either one or two other expres-
sions The allowable operators mclude the five oper-
ators that serve to define the snapshot algebra To
these, we have added an addltlonal operator, a roll-
back operator p The rollback operator takes two
arguments, the name of a relation (an IDfNTI3I&R)
and a transaction number (a MIMER Al), and re-
trieves the snapshot state from the named relation
current at the tune of the mdlcated transaction

There are two commands m the language The
def lne-relat ion command binds a relation type
Y and an empty sequence of snapshot states to an
unbound ldentlfier I The modify-state command
changes a relation’s state but leaves the relation’s
type unchanged The command evaluates an expres-
sion E to produce a snapshot state which becomes
the current state of relation I This new state may,
but need not, contam tuples from the relation’s pre-
vious state as well as tuples not found m the rela-

tlon’s previous state Tuples from the relation’s pre-
vlous state may appear unchanged or have different
values for some attrlbutes m the new state Thus,
the modify-state command effectively performs ap
pend, delete, and replace operations (e g , Quel [Held
et al 19751) on relations by addmg tuples to, delet-
ing tuples from, or replacmg tuples m a relation’s
previous state to produce a new current state for that
relation. For sunphclty, we assume that there 1s no
deletelelatlon command m the language A re-
lation, once defined, cannot be deleted A relation’s
state may be changed, but the relation itself exists
permanently (We assume that the database admm-
lstrator will have additional faclhtles to migrate roll-
back relations to tape) Elsewhere we mtroduce mto
the language a deletezelatlon command, apphca-
ble to both snapshot and rollback relations [McKen-
zie 8z Snodgrass 1987A]

How changes to a relation’s state are handled de-
pends on the relation’s type For snapshot relations,
a state change causes the most recent state m the re-
lation’s sequence of states to be replaced by the new
state For rollback relations, a state change causes
the new state to be concatenated at the end of the
relation’s sequence of states Thus, while only the
most recent state of snapshot relations 18 saved, all
past states of rollback relations are saved Note that
the sequence of states for a snapshot relation will
always be a smgle-element sequence

The rollback operator p retrieves the state of re-
lation I at the time of transactlon N The behavior
of this operator depends on whether or not the ar-
gument N 1 00 If N 1s 00, p retrieves the state
of a relation at the tune of the most recent trans-
action on the database In this case, the operator
p may be apphed to either a snapshot or a rollback
relation, retrlevmg the relation’s most recent state
If N 18 not 00, p may only be applied to a rollback
relation Thus, the rollback operator retrieves either
the current state of a snapshot or rollback relation
or a past state of a rollback relation The rollback
operator cannot retrieve a past state of a snapshot
relation

3.2 Semantic Domains

SENTENCE UJ the set of all syntactically vahd sen-
tences m our language Each sentence, which con-
slsts of a sequence of one or more mdlvvldual com-
mands, defines the database resultmg from the ex-
ecution of those commands, m order, on an empty
database As we will see later, the syntactic domam

470

of sentences 1s needed only to ensure thus restrlc-
tlon By definmg the database that results from an
arbitrary sentence, we specrfy the semantrcs of that
sentence, and hence the semantics of the language
In this sectron, we wrll formally define the domam
of database states, subsequent sections wrll provide
the connectron between the syntactic domam of sen-
tences and the semantic domain of database states

Assume that we sre given a set of domains D =
m, 92, , LJ,,,}, where each domam D,, 1 5 t 5
m, IS an arbrtrsry, non-empty, finite or countably m-
finite set Then, we can define the followmg semantic
domains for our language

TRANSACTION NUMB&R A (0, 1, }

A transactron number 1s a non-negative mteger
which 1s used to ldentrfy a transactron that modl-
6es the database The transaction number assigned
to a transaction can be viewed as that transactron’s
time-stamp We assume that database modlficatlons
occur sequentrally and that a transactron’s tlme-
stamp as represented by its transaction number 1s
the commrt time for the transactron (I e , the tnue
the database 1s actually changed as a result of the
transaction’s execution) We note m passmg that
implementations may use some other time, such as
the begrn transactron time for the transactron, for
greater efficiency (e g , POSTGRES [Stonebraker &
Rowe 19861) H owever, such lmplementatlons should
preserve the semantrcs of commit transaction time
as specified here Implementations may also permit
concurrent transactions, agam as long as the seman-
trcs of sequential update with a monotomcally m-
creasing transactron time rs preserved

R&fYTIONQP& A{SNAPSHOT, ROLLBACK}

SNAPS)(OT STAT& A Domam of all vahd snap
shot states, as defined m the snapshot algebra
[Mruer 19831, over elements of { D~u DZU UD,,,}

A relation IS an ordered parr consrstmg of

l a relatron type, and

l a sequence of (snapshot state, transactron num-
ber) pans

A relation’s state rs dynamic When a transaction
changes the state of a snapshot relation, the smgle
element m the relation’s state sequence rs replaced by
a new element conslstmg of a new snapshot state and
associated transaction number When a transactron
changes the state of a rollback relation, a new pair
consrstmg of a new snapshot state and associated
transactron number rs appended to the relation’s ex-
lstmg state sequence Thus, rollback relations are
append only relations defined m terms of snapshot
states

Note that the transactron number of each ele-
ment m a relation’s state sequence can be viewed
as a time-stamp mdrcatmg when its associated re-
lation state was entered mto the database and be-
came the relatron’s current state Smce we assume
that database modrficatrons occur sequentrally, the
transactron-number components of a state sequence,
while not necessarily consecutive, will be neverthe-
less strictly increasing (as a consequence of transac-
tion time bemg associated with commit) Thus, we
can mterpolate on the transactron-number compo-
nent of elements m a given state sequence to deter-
mme the state of a rollback relation at any trme

DATABASt STA-t~ g
ID&NTI3-l&R + [R&f ATION + {L}]

A database state 1s a functron that maps identifiers
either mto a relatron or mto the specral symbol I,
which here mdlcates that the identifier 1s unbounded
m that database state (1 e , ~9 assocrated with no re-
lation) The notation ‘+” on domams means the
drsjomt union of domams

DATABASE A DATABASE STAT& x
TRANSACTION NUMBCR

A database 1s an ordered parr consrstmg of a
database state and a transactron number mdlcatmg
the most recent transaction that caused a change to
the database

3.3 Auxiliary Functions

To specrfy the meanmg of the expressions and com-
mands defined syntactrcally m Section 3 1, we wrll
define a function mapping each vahd expression mto
a snapshot state (I e , an element of the SNAPSWOT
STATl semantrc domam) and a functron mappmg
each vabd command mto a database (1 e , an ele-
ment of the DATABASl semantic domam) We use

471

several auxiliary functions m the defimtlons of these
semantic functions for expressions and commands
We present here an informal descnptlon of each of
these auxlhary functions A formal definition for
FINDSTATE ~4 presented elsewhere [McKensle &
Snodgrass 1987A] Formal defimtlons for the other
functions are either strrughtforward or notatlonally
cumbersome and hence are not presented

RTYPE maps a relation mto Its relation type

RSTATE maps a relation mto its sequence of (snap-
shot state, transactlon number) pairs

FINDSTATE maps a relation mto the snapshot-
state component of the element m the relation’s
state sequence havmg the largest transactlon-
number component less than or equal to a given
integer If the sequence LS empty or no such ele-
ment exists m the sequence, then FINDSTATE
returns the empty set

N 18 a semantic function which maps the syntac-
tic domam NUMCRAt of decunal numerals mto
the semantic domain TRANSACTION NUMB&R of
non-negative mteger numbers

Y IS a semantic function which maps each charac-
ter strmg m the syntactic domam VP& mto the
relation type which it denotes

S 19 a semantic function which maps each al-
phanumeric representation of a snapshot state
m the syntactic domain STATE mto its corre-
sponding snapshot state m the semantic domam
SNAPSUOT STATC

3.4 Expressions

We now define the semantic function E, which de-
fines the denotation of expressions m our language,
as follows

E EXPR&SSION 4
[DATABASE + [SNAPSUOT STATt])

The result of evaluating an expression on a specific
database 1s a snapshot state Note that evaluation of
an expression on a specific database does not change
that database

This defimtlon of the semantic function E does not
handle the posslbllty that an expression, when eval-
uated on a specific database, causes an error (e g ,
an attempt to prolect a non-existent attribute) We
hmlt our dlscusslon of expressions to vahd expres-

slons on a given database Thus, the semantic func-
tlon E, which defines the denotation of expressions m
our language, 19 a partial function on vahd expres-
slons only A dlscusslon of invalid expressions and
a mechanism for handlmg such expressions appears
elsewhere [McKenzie & Snodgrass 1987A]

We now formally define the semantic function E
for each kmd of expression allowed m the language
lf we let

n range over the domam TRANSACTION
NUMB&

r range over the domam R&lATION,
b range over the domam DATABASC STATE, and
d range over the domam DATABAS&,

then

We now define the semantic function E for the new
rollback operator p

El[pU, iV)]ld 4 If N=oo

then FINDSTATE (r, n)

else FINDSTATE (r, N[Nn)

where d = (b,n) and r = b(l) If N = 00, then
the result of evaluatmg the expression ~(1, N) 1s the
most recent snapshot state m the state sequence
of the relation correspondmg to the identifier I If
N # 00, then the result of evaluating the expres-
sion ~(1, N) B th e snapshot state associated with the
largest transaction number less than or equal to the
transaction number NUN1 m the state sequence of
the relation correspondmg to the identifier I Thus,
the operator p either retrieves the current state of
the relation Identified by I or rolls back the relation
to its state at the time the transactlon associated
with NUN] was processed This defimtlon assumes
If N = 00 that the relation IS either a snapshot or
rollback relation and If N # 00 that the relation 1s

472

a rollback relation, otherwise, the rollback operation
would be illegal

3.5 Commands

Commands are the only language constructs that
change the database Execution of a command er-
ther produces a new database or leaves the database
unchanged

We define formally the semantrcs of commands us-
mg the same approach we used to define the seman-
tics of expressrons We define the semantrc function
C for each kmd of command allowed m the language

The command deflnezelatlon defines a new,
actrve relation m the database

C[deflne~elatlon(l, Y)]d A

lf b(I) = I

then (b 1 WI Yll, ())/I I, n + 1)
else d

where d = (b,n) If the database’s database-
state component maps the identifier I mto I, then
the command defmerelatlon(1, Y) changes the
database so that the database’s database-state com-
ponent maps the rdentrfier I mto an empty sequence
of relation states of relatron type Y([Yl The trans-
action number for the database rs also mcremented
If the database’s database-state component does not
currently map the rdentrfier I mto I, then the rden-
trfier already denotes a defined relation and the com-
mand leaves the database unchanged

The command modify-state erther replaces the
single element m the state sequence of a defined
snapshot relation or adds a new element to the state
sequence of a defined rollback relatron

C[modlfy-atate(I, E)]d A

lf r # I A RTYPE (r) = SNAPSHOT

then (b[(RTYPE(r),

((EUEII 4 n + 1) > I/G n + 1)
else If r # I A RTYPE (r) = ROLLBACK

then (b[(RTYPE(r),

RSTATE(r) II @[En 4 n + 1))/11,
n+ 1)

else d

where d = (b,n), r = b(I), and ‘11” 18 the con-
catenatron operator on sequences If the database’s
database-state component maps the rdentrfier I mto
a defined snapshot relatron, then the modify-state
command replaces the relation with a new rela-
tion conslstmg of its type (RTYPE(r)) and a new
state sequence Thus state sequence rs a smgle
element sequence consistmg of the new (snapshot
state, transaction number) pau (E[E] d, n + 1) If
the database’s database-state component maps the
rdentrfier I mto a defined rollback relation, then the
modify-state command replaces the relatron with a
new relatron consrstmg of its type and its state se-
quence to which 1s concatenated at the end a new
(snapshot state, transaction number) pan Hence,
the smgle state m snapshot relations ls replaced wrth
the state resultmg from the evaluation of E, whereas,
a new state w appended m rollback relations In er-
ther case, the new (snapshot state, transaction num-
ber) pair 1 the snapshot state E[El d and the trans-
action number of the most recent transactlon on the
database plus one The modify-state command
supports all update operations Append ls accom-
modated by an expressron E that evaluates to a
snapshot state contammg all of the tuples m a re-
latron’s most recent state plus one or more tuples
not m the relatron’s most recent state Delete rs ac-
commodated by an expression E that evaluates to
a snapshot state contammg only a proper subset of
the tuples m a relation’s most recent state Finally,
replace rs accommodated by an expressron E that
evaluates to a snapshot state that differs from a re-
latron’s most recent state only m the attnbute values
of one or more tuples

If two commands appear m sequence, command
Cr rs executed first Then, command C’s rs executed
using the database resultmg from the executron of
command Cl

cucls c2nd 2 cuc,n (cuc,n d)

3.6 Sentences

Sentences are the highest-level construct m our lan-
guage A sentence defines the database state result-
mg from the executron of a sequence of one or more
commands, startmg with the empty database Our
language reqmres that the evaluation of a sentence m
the language always start with an empty database
Thus requirement 18 both necessary and sufficient,
given the above defimtlons of the commands de-
finerelation and modlfystate, to ensure that
transaction-number components of the state se-

473

quence of each rollback relation m the database will
be strictly mcreasmg. The content of a database
1s the cumulative result of all the transactions that
have been performed on It smce it was created

P StNT&NC& -+ [DATABASt]

P[Cl 4 C[C](EMPTY, 0)

where EMPTY ID&NTIYI&R --, {I} The
database-state component of the database LS defined
to be the function which maps all ldentlfiers to I
(1 e , no ldentlfier 1s associated with a relation) and
the transactlon-count component of the database ls
set to 0

4 Supporting Both Valid
Time and Transaction Time

The previous section showed how the snapshot al-
gebra can be extended to handle transactlon time
by definmg a rollback operator and several com-
mands that modify the database Smce valid time
and transaction time are orthogonal concepts, It 18
possible to extend an hlstorlcal algebra m much the
same way to obtam a temporal algebraic language
We now show how to extend an hLstorlca1 algebra to
support transaction time For llustratlon, we will
use one particular hlstorlcal algebra (defined else-
where [McKenzie & Snodgrass 1987B]), but the ap-
proach applies to any hLstorlca1 algebra

The key aspect of an hlstorlcal algebra IS Its def-
mltlon of hlstorlcal state, which models reality over
a period of tnne By stormg an hlstorlcal state, this
model can be captured for further analysis An hu+
torlcal relation will consist of exactly one hlstorlcal
state A temporal relation will contam a sequence of
hlstorlcal states, indexed by transactlon time, a new
rollback operator p will be used to access a particular
hlstoncal state

We first define the syntax of the hlstorlcal algebra
by redefinmg two syntactic domams and mtroducmg
two addItIona syntactic domains If we let

A range over the domam STAT& of alphanumeric
representations of snapshot and historical
states,

Y range over the domam fyPE of character
strmgs denoting relation types (1 e , snapshot,
rollback, historical, temporal),

V range over the domam V of temporal
expressions, and

G range over the domam $ of boolean
expressions of elements from the domam V,
the relatlonal operators, and the logical
operators

then the syntax for the language may be extended
with

The constant may now be a snapshot or hlstorlcal
state and LS extended to specify the relation type
The first five operators are hlstorlcal counterparts
to conventional algebraic operators Each 1s repre-
sented as C+I to dLstmgulsh It from Its snapshot al-
gebra counterpart op The srxth operator &,v 1s
a new hlstorlcal operator which performs functions,
slmdar to those of the selectlon and proJection op-
erators m the snapshot algebra, on the valid&me
components of hlstorlcal tuples The seventh opera-
tor ls an hlstorlcal counterpart of the rollback oper-
ator defined on temporal relations All evaluate to
h&,orlcal states

Next we extend the set of relation types, define the
domain of hlstorlcal states, and augment the defim-
tlon of the RELATION domain

RCf3lTION 7ljPl ~{SNAPSHOT, ROLLBACK,
HISTORICAL, TEMPORAL}

USTORICAfY STATE 2 Domain of all vahd hs-
torlcal relations as defined m the hlstorlcal al-
gebra

RCIYTION b REUTIQN TyP& x
[[SNAPSUOT STATE x

TRANSACTION NUMB&R]* +
[HISTORICAL STATE x
TRANSACTION NUMBtR]*]

We also need one more semantic function, H,
which maps an alphanumerlc representation of an
hlstorlcal state m the syntactic domam STATE mto
its correspondmg hlstorlcal state m the semantic do-
mam UISTQRICAL STATE

Defimtlons of the semantic function E for ex-
pressions mvolvmg hlstorlcal operators are specl-
fied next The denotations for this class of expres-

474

srons are analogous to those for expressrons mvolvmg
snapshot operators

E([J(I,iV)jjd 2 d N= 00

then FINDSTATE (r, n)
else FINDSTATE (r, NnlV))

where d = (b, n) and r = a(l)

Fmally, the modify-state command must be ex-
tended shghtly to handle the hrstorlcal and temporal
relation types

Cumodlfy-state(1, E)lJ d g

lf r#lA

then

(FINDTYPE (~,~)=SNAPSHOTV

FINDTYPE (r,n) = HISTORICAL)

(bl(R'JJYPE(rl,

else 5
((EUElj 4 * + 1) >)/II, * + 1)

r#lA

then

(FINDTYPE (~,*)=ROLLBACKV

FINDTYPE (r,n)=TEMPORAL)

(bNRTYPE(r),

RSTATE(r) II (EUED 4 * + 1))/11,

else
n+l)

d

where d = (b,n) and r =
lcal relations are handled

b(1) Notice that histor-
s~m&rly to snapshot re-

lations, the only drfference rs that E evaluates to a
historical state rather than a snapshot state The
same relatlonshlp holds between rollback and tem-
poral relations By embeddmg the algebra m the

structure of commands, we have emphasrzed the or-
thogonahty of transactron and vahd trme Vahd time
1s handled through new hlstorlcal algebraic operators
and a definition of historical state, transaction trme
rs handled through the modify-state command and
the rollback operator(s) In a sense, our semantics
provides addltlonal assurance that the two kmds of
time are m fact orthogonal

5 Related Work and Sum-

mary
There are two contrrbutlons of this paper The first
rs that the database state rs modeled as a sequence
of snapshot (or hlstorlcal) states indexed by trans-
action time This approach 1s slmrlar to that pro-
posed in the context of trme-stamp concurrency con-
trol algonthms [Bernstem et al 1987, Reed 1983,
Rosenkrantz et al 1978, Stearns et al 19761 and
dynanuc constramts [Vmnu 19831. In a related ef-
fort, Ablteboul and Vlanu have defined a transac-
tion language TL conslstmg of parameterlzed expres-
sions contammg tuple msertrons and deletlona and
a loopmg construct [Ablteboul & Vmnu 19871 In
TL, the database state 1s modeled ‘procedurally”
by provrdmg the transactron that compute that
state, transactron time rs imphcrt The focus of
thus and prevrous research [Ablteboul AZ Vranu 1985,
Ablteboul & Vmnu 1986, Vlanu 19831 rs developmg a
characteraatlon of the possrble database states com-
putable by constramed transactrons, with the goal
of usmg such transactrons as a speclficatlon tool for
statmg dynamrc constramts The goal of our lan-
guage rs drfferent, we hope to model the evolution
of the database m terms of transactions specrfied by
the user m a calculus-based update language that rs
translated by the DBMS mto algebrarc expressrons

There has been one other attempt to incorporate
both vahd time and transaction time m an algebra
[Ben-Zvr 1982) Vahd time and transactron time were
supported through the addltlon of lmphcrt trme at-
trrbutes to each tuple in a relation The algebra
was extended with the Tame- Vaew algebrarc oper-
ator which takes a relation and two times as argu-
ments and produces the subset of tuples m the rela-
tron valid at the first time (the valid time) as of the
second time (the transaction time) The Time-View
operator thus rolls back a relatron to a transactron
time but returns only a subset of the tuples m the
relation at that transactron time (1 e , those tuples
vahd at some specrfied time) This restrrcted defim-
tlon of the Time-View operator rz tied mextrlcably

475

to his particular handhng of vahd time Our ap
preach 1s compatible with any hlstorlcal algebra

The second contrlbutlon LS the formahzatlon of
the evolving state through the definltlon of the mod-
ify-state command This aspect has been mvestl-
gated at the conceptual level by several researchers
m the context of dynamic constramts on updates of
database instances (Brodle 1981, Cerl et al 1981,
Hammer & McLeod 19811 At the logical level, only
Ben-Zvl has attempted such a formahzatlon His
approach 1s to provide procedures for various ma-
nlpulatlon commands (e g , insert, delete, termmate)
and prove that these procedures mamtam various de-
slrable propertles The effect of these procedures
are locahzed to a specific tuple that changes dur-
mg the transaction Our modify-state command
simply replaces or appends a new entire snapshot
or hlstorlcal state, allowmg many tuples to change
durmg a transaction Of course, actual Implements
tlons would be based on more complex representa-
tlons that exhlblt greater space and time efficiency
Verlfymg the correctness of such unplementatlons
would involve demonstratmg the equivalence of thev
semantics with the simple semantics presented here

An aspect concerning transaction tnne that I
not addressed m this paper 18 scheme euolutron
The scheme 18 associated solely with transaction
time, smce it defines how reahty 18 modeled by the
database For example, a person’s marital status Y
a (time-varymg) aspect of reality, but the declslon as
to whether to record marital status, encoded m the
scheme, 1 a (tnne-varymg) aspect of the database
Hence, as the scheme describes how data are stored
m the database, changes to the scheme are properly
the provmce of transaction time Elsewhere we pro-
vide extensions to the language presented here to
accommodate scheme evolution [McKenzie & Snod-
grass 1987A] We mclude a deleterelation com-
mand as part of those extensions

Another aspect that requires further work IS that
of completeness One approach 18 to define a lan-
guage and propose it as a standard, Codd proposed
his snapshot algebra as the yardstick for snapshot
completeness (1 e , supportmg neither transaction
nor vahd time) Several others have proposed no-
tions of query completeness based on computablhty
[Ablteboul 6c Vlanu 1987, Chandra & Hare1 19801,
which, unfortunately, are mcomparable We feel that
this latter approach ~4 preferable and swat a con-
sensus to form agamst which we could measure our
language for rollback completeness (1 e , supportmg
transactlon tnne) &m&r statements apply to his-
torlcal and temporal completeness, supportmg vahd

and both kmds of time respectively [Snodgrass 19871

In summary, this paper has defined an algebraic
language that has a snnple semantics and handles
vahd, transaction, and user-defined tnne Only two
addltlonal operators, p and a, were necessary The
additions required for transactlon tune did not com-
promlse any of the useful properties of the snapshot
algebra

6 Bibliography

[Ablteboul & Vlanu 19851 Ablteboul, S and V
Vlanu Transactaons and Integrrty Consttarnts,
m Proceedrngs of the ACMSymposaum on Prm-
crples of Database Systems, 1985, pp 193-204

[Ablteboul & Vlanu 19861 Ablteboul, S and V
Vlanll Decadrng Propertres of Transactronal
Schemas, m Proceedangs of the ACMSymposaum
on Prancaples of Database Systems, 1986, pp
235-239

[Ablteboul 8c Vlanu 19871 Ablteboul, S and V
Vlanu A Transactaon Language Complete for
Database Update and Specajicataon, m Proceed-
angs of the ACM Symposaum on Ptancaples of
Database Systems, San Diego, CA Mar 1987

[Ben-Zvl 19821 Ben-Zvl, J The Tame Relataonal
Model PhD Doss UCLA, 1982

[Bernstem et al 19871 Bernstem, PA, V Hadzla-
cos and N Goodman Concurrency Control and
Recovery an Database Systems Addlson-Wesley
Series m Computer Science Addison-Wesley,
1987

[Bontempo 19831 Bontempo, C J Feature Analysas
of Query-By-&le, m Relational Database
Systems New York Springer-Verlag, 1983 pp
404433

[Brodle 19811 Brodle, M On Modellang Behauaoral
Semantacs of Databases, UI Proceedangs of the
Conference on Very Large Databases, Cannes,
France Sep 1981, pp 32-42

[Cen et al 19811 Cerl, S , G Pelagattl and G
Bracchl Structured Methodology for Desagnang
Statac and Dynamac Aspects of Data Base Appla-
cataons Informataon Systems, 6, No 1 (1981),

476

pp 31-45

[Chandra & Hare1 19801 Chandra, A K and D
Hare1 Computable Queraes for Relatronal Data
Bases Journal of Computer and Systems Scr-
ence, 21, No 2, Ott 1980, pp 156178

[Chfford k Croker 19871 Chfford, J and A Croker
The Hastoracal Data Model (HRDM) and Alge-
bra Based on Lajespans, m Proceedangs of the
Internataonal Conference on Data Enganeerang,
IEEE Computer Society Los Angeles, CA Feb
1987

[Codd 19701 Codd, E F A Relataonal Model of Data
for Large Shared Data Bank Communacataons
of the Assocaataon of Computang Machanery, 13,
No 6, June 1970, pp 377-387

[Gadla 1984) G d a la, S K A Homogeneous Rela-
taonal Model and Query Languages for Temporal
Databases 1984 (Submltted for pubhcatlon)

[Gadla 19861 Gadla, S K Toward a Multahomo-
geneous Model for a Temporal Database, 111
Proceedangs of the Internataonal Conference on
Data Enganeerang, IEEE Computer Society Los
Angeles, CA IEEE Computer Society Press,
Feb 1986, pp 390-397

[Gordon 19791 Gordon, Michael J C The Denota-
taonal Descraptaon of Programmang Languages
New York-Heidelberg-Berhn Sprmger-Verlag,
1979

[Hammer & McLeod 19811 Hammer, M and D
McLeod Databaae Descraptaon wath SDM A
Semantac Database Model ACM Tkanaactaons
on Database Systems, 6, No 3, Sep 1981, pp
351-386

[Held et al 19751 Held, G D , M Stonebraker and
E Wong INGRES-A Relataonal Data Base
Management System Proceedanga of the AFIPS
1975 Nataonal Computer Conference, 44, May
1975, pp 409416

[Jones et al 19791 Jones, S , P Mason and R Stam-
per LEGOL 8 0 A Relataonal Specajicataon
Language for Complez Rules Injormataon Sys-
tems, 4, No 4, Nov 1979, pp 293-305

[Maler 1983) Maler, D The Theory of Relataonal

Databasea Rockvllle, MD Computer Science
Press, 1983

[McKenzie & Snodgrass 1987A] McKenzie, E and
R Snodgrass Scheme Euolutaon and the Re-
lataonal Algebra Technical Report TR87-003
Computer Science Department, Umverslty of
North Carolma at Chapel Hill Mar 1987

[McKenzie & Snodgrass 1987B] McKenzie, E and R
Snodgrass Supportang Valad Tame An Hastor-
acal Algebra and Eualuataon Techmcal Report
TR87-008 Computer Science Department, Um-
verslty of North Carohna at Chapel Hill Apr
1987

[Navathe & Ahmed 19861 Navathe, S B and R
Ahmed A Temporal Relataonal Model and a
Query Language UF-CIS Technical Report
TR-85-16 Computer and Information Sclences
Department, Unlverslty of Florlda Apr 1986

[Overmyer & Stonebraker 1982) Overmyer, R and
M Stonebraker Implementataon of a Tame Ez-
pert an a Database System ACM SIGMOD
Record, 12, No 3, Apr 1982, pp 51-59

[Reed 19831 Reed, D P Implementang Atomac Ac-
taons on Decentralazed Data ACM Transactaons
on Computer Systems, 1, No 1, Feb 1983, pp
3-23

[Rosenkrantz et al 19781 Rosenkrantz, D J , R E
Stearns and P M Lewis System Level Concur-
rency Control for Dastrabuted Database Systems
ACM Tranaactaona on Database Systems, 3, No
2, June 1978, pp 178-198

[Smith dc Chang 1975) Smith, J M and P Y-J
Chang Optamazang the Performance of a Rela-
taonal Algebra Database Interface Communaca-
taons of the Assocaataon of Computang Machan-
ery, 18, No 10, Ott 1975, pp 568-579

[Snodgrass & Ahn 19851 Snodgrass, R and I Ahn A
Taxonomy of Tame an Databases, m Proceedangs
of ACM SIGMOD Internataonal Conference on
Management of Data, Ed S Navathe Asso-
ciation for Computmg Machmery Austm, TX
May 1985, pp 236-246

[Snodgrass & Ahn 19861 Snodgrass, R and I Ahn
Temporal Databases IEEE Computer, 19, No
9, Sep 1986, pp 35-42

477

(Snodgrass 19871 Snodgrass, R The Temporal
Query Language TQuel ACM Transackona on
Database Systems (to appear), 12, No 2, June
1987

[Stearns et al 19761 Stearns, R E , PM Lewis
and D J Rose&rants Concurrency Control for
Database Systems, m Proceedsngs of the 17th
Symposrum on Foundatrons of Computer So-
ence, IEEE 1976, pp 19-32

[Stonebraker 8~ Rowe 1986] Stonebraker, M and
L A Rowe The Deargn of POSTGRES, 111 Pro-
ceedmgs of ACM SIGMOD Internafonal Con-
ference on Management of Data, Ed C Zan-
1010 Assoclatlon for Computmg Machinery
Washmgton, DC May 1986, pp 340-355

[Stoy 19771 Stoy, Joseph E Denotatronal Semantwe
The Scott-Strachey Approach to Programmang
Language Theory The MIT Series m Computer
Science The MIT Press, 1977

[Tandem 1983) T an d em Computers, Inc ENFORM
Reference Manual Cupertmo, CA, 1983

[Tansel 19861 T ansel, A U Addang Tame Damen-
sron to Relattonal Model and Eztendang Rela-
taonal Algebra Informataon Systems, 11, No 4
(1986), pp 343-355

[Vlanu 19831 Vlanu, V Dynamac Constraanta and
Database Evolutaon, 111 Proceedang of the ACM
SIGAct-SIGMod Symposaum on Prancaples of
Database Systems, Assoclatlon for Computmg
Machmery Atlanta, GA Mar. 1983, pp 384
399

478

