
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 7, NO. 4, AUGUST 1995 513

Temporal and Real-Time Databases: A Survey
Gultekin Ozsoyoilu and Richard T. Snodgrass

Abstract-A temporal database contains time-varying data. In a
real-time database transactions have deadlines or timing constraints.
In this paper we review the substantial research in these two previ-
ously separate areas. First we characterize the time domain; then
we investigate temporal and real-time data models. We evaluate
temporal and real-time query languages along several dimensions.
We examine temporal and real-time DBMS implementation. Fi-
nally, we summarize major research accomplishments to date and
list several unanswered research questions.

Index Terms-Object-oriented databases, relational databases,
query languages, temporal data models, time-constrained data-
bases, transaction time, user-defined time, valid time.

I. INTRODUCTION

ME is an important aspect of all real-world phenomena. T Events occur at specific points in time; objects and the
relationships among objects exist over time. The ability to
model this temporal dimension of the real world and to re-
spond within time constraints to changes in the real world as
well as to application-dependent operations is essential to
many computer applications, such as accounting, banking,
econometrics, geographical information systems, inventory
control, law, medical records, multimedia, process control,
reservation systems, and scientific data analysis.

Conventional databases represent the state of an enterprise at
a single moment of time. Although the contents of the database
change as new information is added, these changes are viewed as
modifications to the state, deleting the old, out-of-date data from
the database. The current contents of the database may be
viewed as a snapshot of the enterprise. Additionally, conven-
tional DBMSs execute queries and transactions in their order of
arrival and provide no guarantees of query or transaction com-
pletion times.

In this paper we survey two database research areas that
may benefit from cross infusion: temporal database research
for providing application-independent DBMS support for
time-varying information, and real-time database research for
completing database operations within time constraints. Our
view is that real-time database research may benefit directly
from utilizing temporal data models in real-time transaction
and query specification and management, thereby providing
better temporal data semantics and better querying capabilities.
Temporal database research may benefit indirectly from the
use and extension of temporal data models into another area-
namely, real-time databases. We attempt here to capture and

Manuscript received Mar. 29, 1995.
G. ozsoyoglu is with the Department of Computer Engineering and Sci-

ence, Case Westem Reserve University, Cleveland, OH 44106; e-mail:
tekin@alpha.ces.cwru.edu.

R.T. Snodgrass is with the Department of Computer Science, University of
Arizona, Tucson, AZ 85721; e-mail: rts@cs.arizona.edu.

IEEECS Log Number K95045.

summarize the major concepts, approaches, and implementa-
tion strategies generated by these two research areas. We use a
common terminology to emphasize concepts independently
generated. Wherever possible, we list research directions relat-
ing the two areas.

A temporal database is one that supports some aspect of
time [95]. We will shortly discuss more specific characteriza-
tions that concern the kind of time(s) supported. Most applica-
tions manage historical information, yet conventional DBMSs
provide little support.

In most of the literature, a real-time database is defined as a
database in which transactions have deadlines or timing con-
straints. Real-time databases are commonly used in real-time
computing applications that require timely access to data. And,
usually, the definition of timeliness is not quantified; for some
applications it is milliseconds, and for others it is minutes [203].
Therefore, real-time databases are perhaps better viewed as time-
constrained databases. In this survey we define a real-time data-
base as one that has timing constraints in every operational as-
pect, such as responding to queries; processing transactions;
processing database insertions, deletions, and updates; and
maintaining database integrity via integrity constraint enforce-
ment and view management. Although current literature on real-
time database research discusses temporal data and “temporal
consistency constraints,” it does not utilize temporal data models
and temporal query languages. Since real-time databases natu-
rally deal with time, researchers should use models and theories
developed in temporal databases.

A series of five bibliographies concerning temporal data-
bases [29], [142], [201], [197], [I141 lists some 600 papers
through October 1993. A bibliography on space and time in
databases [I21 lists 144 temporal database papers. An anno-
tated bibliography on schema evolution [1611 includes eight
temporal database papers.

A book edited by Tansel provides a still-current snapshot of
temporal database research [207]. Several chapters supplement
this survey, particularly the excellent surveys on temporal rea-
soning [1481 and on temporal deductive databases [181.

Other surveys include those on temporal data models [97],
[187], temporal query languages [38], [144], [189], and tem-
poral access methods [1681.

In the past eight years, about 150 papers on real-time data-
bases have been published. There are several surveys on this
topic [126], [159], [2131, [231].

Our emphasis is not on peripheral research areas that may be
useful to temporal and real-time databases, such as main-
memory databases, active databases, or multidimensional
(spatial) databases. Instead, we hope to provide a general under-
standing of the major issues of temporal and real-time databases;
space limitations preclude our delving into any topic in detail.

1041-4347/95%04.00 0 1995 IEEE

mailto:tekin@alpha.ces.cwru.edu
mailto:rts@cs.arizona.edu

514 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 7, NO. 4, AUGUST 1995

In the following sections we review the substantial research
on temporal and real-time databases. Section I1 examines the
time domain: its structure, dimensionality (interestingly, there
are several time dimensions), temporal indeterminacy, and the
types of time associated with real-time data. Section I11 exam-
ines the many temporal and real-time data models proposed in
the literature.

We consider languages for expressing temporal queries in
Section IV. We briefly discuss and compare some three dozen
temporal relational and object-oriented query languages. Real-
time data and query languages are discussed in Section V,
which presents the characteristics of real-time data and trans-
actions and new types of data and transaction consistency re-
quirements unique to real-time databases.

The topic of Section VI is real-time and temporal DBMS
implementation. We examine the impact on each DBMS com-
ponent of adding real-time and temporal support and discuss
query processing and transaction processing in some detail.

In Section VI1 we summarize the major accomplishments of
research into real-time and temporal databases and conclude
by pointing to future work.

11. THE TIME DOMAIN

In this section we focus on time itself. The next section will
combine time with facts to model time-varying information.

A, Structure

We initially assume that there is one dimension of time. The
distinctions we address here will apply to each of several di-
mensions we consider in the next section.

Early work on temporal logic centered around two structural
models of time, linear and branching [160], [218]. In the linear
model, time advances from past to future in a totally ordered
fashion. In the branching model, also termed the possiblefutures
model, time is linear from the past to “now,” where it then di-
vides into several time lines, each representing a potential se-
quence of events [225]. Along any future path, additional
branches may exist. The structure of branching time is a tree
rooted at now. The most general model of time in a temporal
logic represents time as a partially ordered set [62]. Additional
axioms can be introduced to specify other, more refined models
of time. For example, we can specify linear time by adding an
axiom imposing a total order on this set. Recurrent processes
may be associated with a cyclic model of time [39].

Axioms may also be added to temporal logics to character-
ize the density of the time line [218]. Combined with the linear
model, discrete models of time are isomorphic to the natural
numbers, implying that each point in time has a single succes-
sor [44]. Dense models of time are isomorphic to the rationals
or the reals: between any two moments of time another mo-
ment exists. Continuous models of time are isomorphic to the
reals; that is, they are dense and, unlike the rationals, contain
no “gaps.” In the continuous model, each real number corre-
sponds to a “point” in time; in the discrete model, each natural
number corresponds to a nondecomposable unit of time with
an arbitrary duration. Such a nondecomposable unit of time is

referred to as a chronon [95]. A chronon is the smallest dura-
tion of time that can be represented in this model. It is not a
point, but a line segment on the time line. Although time itself
is generally perceived to be continuous, most proposals for
adding a temporal dimension to the relational data model are
based on the discrete time model.

Axioms can also describe the boundedness of time. Time can
be bounded orthogonally in the past and in the future. Models of
time may include the concept of distance (most temporal logics
do not do so, however; exceptions include [1601). With distance
and boundedness, restrictions on range can be applied. The sci-
entific “Big Bang” cosmology posits that time began with the
Big Bang, 12 k 6 billion years ago. There is much debate on
when it will end, depending on whether the universe is open or
closed (Hawking provides a readable introduction to this contro-
versy [SO]). If the universe is closed, time will end when the
universe collapses back onto itself in what is called the “Big
Crunch.” If it is open, time will go on forever, with the finite
energy of the universe eventually dissipating.

Finally, one can differentiate relative time from absolute time
(more precise terms are unanchored and anchored). For exam-
ple, ‘9 A.M., January 1, 1992” is an absolute time, whereas “9
hours” is a relative time. This distinction, though, is not as crisp
as one would hope, because absolute time is absolute only with
respect to another time (in this example, midnight, January 1,
A.D. 1). Relative time differs from distance in that the former
has a direction; for example, one could envision a relative time
of -9 hours, whereas a distance is unsigned.

B. Dimensionality

In the context of databases, two time dimensions are of gen-
eral interest [18.51. Valid time denotes the time a fact was true
in reality. An event’s valid time is the time the event occurred
in the real world, independent of its recording in some data-
base. Valid time can also be in the future, if it is expected that
a fact will be true at a specified future time. Transaction time
is the time during which the fact was present in the database as
stored data. A fact’s transaction time (an interval) identifies
the transaction that inserted the fact into the database and the
transaction that removed the fact from the database.

These two dimensions are orthogonal. A data model sup-
porting neither is termed a snapshot, as it captures only a sin-
gle snapshot in time of both the database and the enterprise
modeled by the database. A data model supporting only valid
time is termed a valid-time model; one that supports only
transaction time is termed a transaction-time model; and one
that supports both valid and transaction time is termed bitem-
poral (temporal is a generic term implying some kind of time
support) [95]. Both linear and branching transaction time have
been employed in temporal databases.

While valid time may be bounded or unbounded (as we saw,
cosmologists feel that it is at least bounded in the past), transac-
tion time is bounded on both ends. Specifically, transaction time
starts when the database is created (before the creation time,
nothing was stored) and doesn’t extend past the present (no facts
are known to have been stored in the future). Changes to the
database state are required to be stamped with the current trans-

OZSOYOCLU AND SNODGRASS: TEMPORAL AND REAL-TIME DATABASES: A SURVEY 515

action time. Hence, transaction-time and bitemporal relations are
append-only, making them prime candidates for storage on
write-once optical disks. As the database state evolves, transac-
tion times grow monotonically. In contrast, successive transac-
tions may mention widely differing valid times.

The two time dimensions are not homogeneous; transaction
time has a different semantics than valid time. Valid and trans-
action time are orthogonal, though there are generally some
application-dependent correlations of the two times. As a
simple example, consider the situation where a fact is recorded
as soon as it becomes valid in reality. In such a specialized
bitemporal database, called degenerate [98], valid and trans-
action times are identical.

Multiple transaction times may also be stored in the same
relation, termed temporal generalization [98]. For example, a
fact may be stored in one relation, with one associated trans-
action time, and later copied to a summary relation, with a
different associated transaction time. By retaining the original
transaction time, the summary relation can support queries that
select information based on when that information resided in
the original relation.

These valid and transaction times may also be related to
each other, or to the valid time, in various specialized ways.

A third kind of time may be included in the time domain:
user-defined time. This term indicates that the semantics of
these values are known only to the user and are not interpreted
by the DBMS, in contrast to valid and transaction times,
whose semantics are supported by the DBMS.

Recently a separate kind of time, termed event time [36] or
decision time, has been defined (we’ll use the latter term, to
avoid confusion with the time of an event in an active or real-
time database). The decision time of a fact, such as the pro-
motion of a professor to a new rank, is the time that decision
occurred-i.e., the time the promotion was determined. This
time may be different from the valid time of the new position
and from the transaction time when the new position was re-
corded. Decision time is an instant; valid and transaction times
generally are intervals. Decision time may be recorded as a
valid time for a separate table (e.g., a promotion table, as dis-
tinct from a rank table). Whether the increased complexity of
including decision time in the data model is justified by the
increased expressive power is still an open issue [1121.

C. Indeterminacy

Information that is temporally indeterminate can be charac-
terized as “don’t know exactly when” information. This kind
of information is prevalent; it arises in various situations, in-
cluding finer system granularity, imperfect dating techniques,
uncertainty in planning, and unknown or imprecise event
times. There have been several proposals for adding temporal
indeterminacy to the time model [S I , [65], [117], as well as
more specific work on accommodating multiple time granu-
larities [122], [223], [221]. The possible chronons model [56]
unifies treatment of both aspects [57]. In this model, an event
is determinate if when (i.e., during which chronon) it occurred
is known. A determinate event cannot overlap two chronons. If
when an event occurred is unknown, but that it did occur is

known, the event is temporally indeterminate. The indetermi-
nacy refers to the time the event occurred, not whether the
event occurred. Temporal indeterminacy occurs only in valid
time. The granularity of a transaction time timestamp is the
smallest intertransaction time. Transaction times are always
determinate since the chronon during which a transaction takes
place is always known.

D. Time in Red-Time Databases

Current real-time database research does not explicitly distin-
guish between the various time dimensions and the related time
issues that we survey here. However, close inspection reveals
that real-time databases use valid time and transaction time [30],
[69], [126], [159], [190], [191], [213]. Valid time is used for
data items that have immediate counterparts (external objects) in
the real (physical) world. External events corresponding to value
changes for these external objects are closely monitored, and
write-only transactions record them to the database. For exam-
ple, programmable logic controllers use specialized sensors and
channels to detect events with their actual occurrence times. An
example event may be “to detect furnace temperature changes
when they are above a threshold x.”

Real-time databases use transaction time for transactions
that set parameters of a real-time system with the help of a
real-time database and specialized output devices. That is, the
event of setting the value of a real-world object is performed
by a transaction. An example may be a transaction “to increase
the coolant level of a furnace to level y when a computed data-
base value goes above the threshold x.” However, such an
event’s occurrence time can be any time between the transac-
tion-begin time and the transaction-commit time. (Usually,
these transactions are never aborted or rolled back.) Also,
transaction time is used when new values are derived for data
items on the basis of other data items’ values. Times associ-
ated with these derived values generally correspond to trans-
action-commit times.

Real-time database research usually does not refer to the
“future” and does not assume a linear, bounded (in the past
and until “now”) time model. However, we expect the use of
temporal models with a linear- or branching-time future for
real-time databases.

Presently, real-time database research does not deal with tem-
poral indeterminacy. However, temporally indeterminate infor-
mation is encountered frequently in real-time systems as un-
known or imprecise event times. For example, a furnace’s tem-
perature changes, but we are not sure exactly when; this change
and its time must be stored in the database and made available to
real-time operations such as queries and transactions. Clearly,
real-time transaction processing should be extended with data
models that allow temporal indeterminacy.

Transactions themselves have time constraints (deadlines)
that are specified in varying granularities as distances with
respect to a specified time. Such constraints relate valid and
transaction times in that the transaction-commit time must be
before the specified valid time.

For some real-time systems, called hard real-time systems,
missing a deadline has serious implications and should not

516 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. I, NO. 4, AUGUST 1995

Oriented Data
Model
-
-

Bitemporal
Conceptual
Data Model
Time Rela-

tional Model
DATA
DM/T

Homogeneous
Relational

Model
Heterogeneous

Relational
Model

Historical Data
Model

Historical
Relational

happen. But the values of data items in the database, however
recent, may be incorrect because the reality being modeled
changed immediately after the value was recorded [213]. The
possibility of incorrect data, and thus incorrect computation,
has serious implications in hard real-time systems.

mogeneous model [63], which is a precursor to his heteroge-
neous model (Gadia-2). We also omit the data model used as
the basis for defining temporal relational completeness [431,
because it is a generic data model that does not force decisions
on most of the aspects to be discussed here.

~ 7 1 valid
~251 both
[99] both

[21] both

[1 131 transaction
[92] transaction
[64] valid

[66] valid

[45] valid

[42] valid

Clearly, not all real-time applications need timely behavior
for all database operations. However, one can find real-time
applications [loo] that need timeliness in some, if not all, da-
tabase operations. For example, stock market, air traffic con-
trol, and on-board airplane databases all require timely data-
base updates and transaction completions, while factory-floor
databases commonly require timely query and transaction
completions but not necessarily timely database updates.

Data Model
-
-

Temporal Re-

111. DATA MODELS

[IO11 valid
[1371 transaction
[1391 valid

We now turn to associating time with facts. Research in tem-
poral data models and real-time data models have proceeded
independently, with little cross-fertilization.

A. Temporal Data Models

Time has been added to many data models, including the
entity-relationship model [l l] , [51], [58], [115], [227], se-
mantic data models [73], [217], knowledge-based data models
[49], and deductive databases [18], [28]. However, by far the
majority of work in temporal databases is based on the rela-
tional and object-oriented data models. For this reason, we
focus on these two data models in this discussion.

Support for t i e in conventional database systems is entirely at
the level of user-defined time (i.e., attribute values drawn from a
temporal domain). The tuple calculus-based language SQL92 D a t e
has a granularity of a day; a Time has a granularity of a second, but
a range of only 100 hours; a Timestamp combines the range of a
Date with the granularity of a second (there are Timestamp vari-
ants with a granularity of fractions of a second) [1461.

Time support in conventional database system implementa-
tions are limited in scope and are, in general, unsystematic in
their design [48]. SQL-92 corrects some inconsistencies in the
time support provided by the commercial database system
DB2, but inherits its basic design limitations.

None of the other object-oriented database standards, in-
cluding OMG’s IDL data model supporting CORBA [1521 and
ODMG-93 [35], support valid or transaction time. In fact,
CORBA doesn’t even support user-defined time. ODMG’s
support of user-defined time is identical to that of SQL-92.

An effort to consolidate approaches to temporal data models
and calculus-based query languages has just been completed,
achieving a consensus extension to SQL-92 and an associated
data model upon which future research can be based. This ex-
tension is called the Temporal Structured Query Language, or
TSQL2 [1881. An analogous consensus object-oriented exten-
sion to SQL3 would be highly desirable, but thus far little pro-
gress has been made toward this goal.

Table I lists most of the temporal relational data models that
we are aware of in the literature.’ We omit Gadia’s multiho-

1. Many models are described in several papers; the one referenced is the
first journal paper that defined the model.

TABLE I
TEMF’ORAL RELATIONAL DATA MODELS

Dimension(s)

Data Model

both

lational Model I
- 1 11401 I valid

- valid
Temporal I [175] I valid

DataModel I

Databank
Model

Identifier I
ADM I

A?ei Ariav

Bassiouni

Ben-Zvi I
Gadia- 1 7
Gadia-2

HDM

HRDM

Jones
Lomet

Lorentzos

Lum
McKenzie
Navathe

Tansel
Wiederhold

Some models are defined only over valid time or transaction time;
others are defined over both. The last column gives a short iden-
tifier that denotes the model; the table is sorted on this column?

2. If a model has not been given a name, we use the name of its first designer
as an identifier; we also use this method for models with identical acronyms.

OZSOYOCLU AND SNODGRASS: TEMPORAL AND REAL-TIME DATABASES: A SURVEY 517

Single Interval
Chronon (pair of

chronons)
Timestamped ADM Bassiouni

Attribute Caruso Gadia 2
Values Lorentzos McKenzie

Tansel
Timestamped Sciore-2

Groups of
Attributes

Timestamped Ariav Ahn
Tuples HDM Ben-Zvi

Lum Jones
Sadeghi Navathe
Segev Sarda

Wiederhold Snodgrass
Y au

Timestamped TEDM OSAM*/T
Objects W A D

Table II classifies the extant object-oriented temporal data
models. We further discuss its fourth column in Section III.A.2.
Models with “arbitrary” in the third and fourth columns support
time with user- or system-provided classes; hence, anytlung is
possible. NIA denotes “not applicable.”

Only a few relational or object-oriented data models ex-
plicitly support user-defined time; where absent, such support
is not difficult to add.

TABLE I1
TEMPORAL OBJECT-ORIENTED DATA MODELS

Valid-time
Element (set
of chronons)

Bhargava
Gadia-1
HRDM

TOODM

BCDM

Oriented
Data

Model

A . I . Valid Time

We can compare temporal data models along the valid-time
dimension by asking three basic questions: How is valid time
represented? How are facts associated with valid time? How
are attribute values represented? Here we list some of the
many answers to these questions.

Valid time can be represented with single-chronon identifiers
(event timestamps), with intervals (as interval timestamps), or as
valid-time elements, which are finite sets of intervals [64]. Valid
time can be associated with individual attribute values, groups of
attributes, or an entire tuple or object. Another alternative, asso-
ciating valid time with sets of tuples (i.e., relations) or object
graphs, has not been incorporated into any of the proposed data
models, primarily because it lends itself to high data redundancy.
Table I11 categorizes most of the data models in terms of valid
time representation. We do not include the OODAPLEX,
Sciore-1, and TIGUKAT data models because valid time is arbi-
trarily specifiable in these models.

TABLE LII
REPRESENTATION OF VALID TIME

A.2. Transaction Time

The same general issues are involved in transaction time,
but there are about three times as many alternatives, partly
because transaction time is often used to support versioning,
which generally implies an object-oriented data model. Table
IV characterizes the choices made in the various data models.
OODAPLEX is not included, as it can support virtually any of
these options (that is also possible in TIGUKAT, but specific
support for versioning has been added to the data model and
language). More detail on the representation “Other” appears
in the fourth column of Table 11. Specifically, data models
supporting versions often allow arbitrary, user-supplied iden-
tifiers to be associated with versions. One model even allows
an entire version hierarchy to be associated with a version.

A.3. A Suite of Temporal Data Models

A temporal data model should simultaneously satisfy many
goals. It should clearly and concisely capture the semantics of
the application to be modeled. It should be a consistent, mini-
mal extension of an existing data model, such as the relational
model. The best temporal data model presents all the time-
varying behavior of a fact or object coherently. The data
model should be easy to implement, while attaining high per-
formance. The experience of the past 15 years and some 40
data models appearing in the literature demonstrate that de-
signing a temporal data model with all these characteristics is
elusive at best and probably not possible.

TSQL2 takes a different tack [99]. This language employs
the Bitemporal Conceptual Data Model as its underlying data
model, in which temporal databases are designed and queries
are expressed. This data model retains the simplicity and gen-
erality of the relational model, A separate, representational
data model of equivalent expressive power, employed for im-
plementation, ensures high performance. Other, presentational
data models may be used to render time-varying behavior to
the user or application. Thus, a coordinated suite of data mod-
els can achieve goals that no single data model can.

518 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 7, NO. 4. AUGUST 1995

Time-
stamped

bute
Values
Time-

stamped
Groups

butes
Time-

stamped
Tuples

Attri-

of Attri-

TABLE IV
REPRESENTATION OF TRANSACTION TIME

Element
nons) (set of

chro-

Caruso

Sciore-
2

Ariav
DATA
DM/T

stamped
Objects

Snod-
grass

Postgres

TIGU-
KAT

7- TOODM

I Lomet I Yau I
Time- I IRIS I I I

Time-
stamped
Sets of

Graph TISSE

Other

Sciore-
1

OVM

IRIS
Kim

MA-
TISSE

MA-
TISSE

B. Real-time Data Models

Until recently, real-time database research literature has not
specifically dealt with data modeling issues, much less tempo-
ral data modeling issues. Most of the literature, especially on
real-time transaction processing, assumes a database with data
items of varying granularity. This approach has limitations
since it does not utilize semantic knowledge (in general and of
time) that may be very useful to the system for meeting trans-
action deadlines.

The relational model is used as a data model for real-time
databases [190]; but researchers have not extended it with the
semantics of time. There are, however, two proposed real-time
query-processing approaches that modify the relational model:
1) the use of sets of approximate relations [184], [220], de-
fined for any relation in the relational model for timely
evaluation of queries, and revised iteratively for a better ap-
proximation and a better query response; and 2) the use of
fragmentation lattices of relations [84], [1551, also for query-
processing. Neither approach adds a temporal dimension to the
data model.

Recently, there has been some initial research into adapting
the object-oriented data model for real-time databases, both

because one can utilize its rich data semantics in real-time
transaction processing [54] and because complex real-time
applications may need its advantages [125], such as complex
objects, encapsulation, methods, and messages. Significant
research is needed to provide these features in real-time data-
bases requiring timeliness and meeting of time guarantees. For
example, the storage of complex objects and the implementa-
tion of complex-object algebra operators [1541 carry high time
costs that must be reduced for real-time databases. More im-
portantly, time cost formulas for such operators are highly
parameterized, making it difficult to provide guarantees for
expected complex-object algebra time costs with small vari-
ances. As another example, encapsulation of objects in object-
oriented databases brings a number of advantages [16]. How-
ever, encapsulation also forces users to access objects in re-
stricted ways, possibly delaying timely execution of transac-
tions. Clearly, the balance between providing new data-
modeling features and ensuring timeliness in database opera-
tions should be further investigated.

Di Pippo and Wolfe propose a real-time object-oriented
database that supports a rich variety of data semantics and
temporal consistency constraints and a range of transaction
correctness criteria that relax serializability [54]. This model
also permits bounded, temporary “imprecision” in data values
and transaction output by allowing concurrent, but not serializ-
able, executions of transactions. The idea is to let time-
constrained transactions compete with incorrect data as long as
the introduced error (i.e., the “imprecision”) is bounded. Lee
and Son propose a simple real-time object-oriented database
system with atomic objects and a class manager [125]. Both
approaches are being implemented but have not yet been ex-
perimentally evaluated.

Various temporal data models and temporal query lan-
guages may be more suitable for particular real-time databases.
The choice of temporal data model and query language will
have an as-yet-undefined effect on how to provide completion-
time guarantees for queries.

IV. TEMPORAL QUERY LANGUAGES

A data model consists of a set of objects with some struc-
ture, a set of constraints on those objects, and a set of opera-
tions on those objects [212]. In the two previous sections we
have investigated the structure of and constraints on the ob-
jects of temporal relational databases, the temporal relations.
In this section we complete the picture by discussing the op-
erations, specifically temporal query languages.

Table V lists the major temporal relational query language
proposals to date. The “Underlying Data Model” column re-
fers to Table I. The next column lists the conventional query
language on which the temporal proposal is based, from the
following: DEAL, an extension of the relational algebra incor-
porating functions, recursion, and deduction [52]; ZL,, an in-
tensional logic formulated in computational linguistics [1471;
QBE, Query-by-Example, a domain calculus-based query lan-
guage [232]; Quel, a tuple calculus-based query language,
originally defined for the Ingres relational DBMS [82]; rela-

OZSOYOCLU AND SNODGRASS: TEMPORAL AND REAL-TIME DATABASES: A SURVEY

Name

MA-

~

519

Cita- Underly- Based Imple- Under-
tion ing Data On ment- lying

Model ed Algebra
[4] MA- SQL 4

tional algebra, a procedural language with relations as objects
[46]; and SQL, a tuple calculus-based language, the lingua
franca of conventional relational databases [1461. Most of the
temporal relational query languages have a formal definition.
Some of the calculus-based query languages have an associ-
ated algebra that provides a means of evaluating queries.

QUERY

Post-
+

Legol

QUERY

[205] Postgres Quel d

TDM
Tempo-
ral Re-
lational
Algebra
Temp
SQL

Time-

Example
TOSQL
TQuel

TSQL
TSQL2

BY-

-

-

-
-

-
-
-

-

[14]
[186]

Ariav SQL no
Snod- Quel yes [145]

[145]

Table VI lists the object-oriented query languages that
support time. Note that many "nested" relational query lan-
guages and data models, such as HQuel, HRDM, HTQuel,
TempSQL, and TBE, have features that might be considered
object-oriented.

The data model and conventional query language on which
the temporal query language is based are identified in the third

McKen- rela- yes N/A
zie tional

algebra

and fourth columns. The fifth column indicates whether the
language has been implemented. A few proposals provide al-
gebras for their query languages. It is rare for an object-
oriented query language to have a formal semantics.

TABLE VI
TEMPORAL OBJECT-ORIENTED QUERY LANGUAGE

TISSE I I TISSE I
OODA- I [228] I OODA- I DA- I I [501

/OQL alge-

We do not consider the related topics of temporal reasoning
(also termed inferencing or rule-based search) [1051, [1271,
[148], [200] and temporal abstraction [181], [182], which uses
artificial intelligence techniques to perform more sophisticated
analyses of temporal relationships and intervals, generally with
much lower query-processing efficiency. Also not included are
knowledge representation languages, such as Telos [1491 or
TSOS [15], which, although supporting valid or transaction
time, or both, are not strictly object-oriented query languages.

We first examine user-defined time, as it is the most
straightforward aspect of time to support, in both the data
model and the query language.

A. User-Defined Time

User-defined time is supported by most commercial rela-
tional DBMSs as another domain that can be associated with
attributes. Hewlett-Packard's object-oriented query language
OSQL [141] and UniSQL [lo91 continue in the SQL tradition
by including Date, Time, and Timestamp types.

Overmyer and Stonebraker proposed making time an ab-

-

520 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 7, NO. 4. AUGUST 1995

stract data type, with its own set of operations [153]. Many of
the object-oriented query languages (e.g., Postgres [205] and
ZQL [27]) can support user-defined time in just this fashion.

Others have advocated that various notions of time (see
Section 11) be supported more directly, as either a regular or a
primitive class (i.e., a class with no attributes). The primary
benefit is that the object-oriented data model’s power (with
subtyping, inheritance, and polymorphic functions with late
binding) can be used to express the semantics of time appro-
priate to the application.

B. Valid Time
Valid-time support can have a much greater impact than user-

defined-time support. There are three general approaches to
adding valid-time support to a data model and query language.

The first approach utilizes the substantial expressive power of
the relational or object-oriented data model directly and thus
requires no changes to either the model or the query language to
support time-varying information. Lorentzos and Johnson’s tem-
poral relational algebra is the defining example in the relational
domain [1391. Among object-oriented query languages, 00-
DAPLEX and TQL utilize this approach. The OODAPLEX type
system, supporting the parameterized types of set, multiset, tu-
ple, and function, is sufficient for modeling temporal informa-
tion. The TIGUKAT type system is also sufficient. The advan-
tages are that the user can specify various valid-time semantics
(as is also true of user-defined time), and the schema specifica-
tion and query languages remain uncluttered by additional time-
specific clauses-assuming, of course, that the necessary fea-
tures, including functions and sets as first-class citizens, are
available. Users are required to “roll their own” time support
when specifying the schema and queries. This approach renders
query optimization much more difficult, as the language pro-
vides no hints that access methods or storage structures oriented
toward time-varying values should be employed.

A second approach is to include general extensions to the data
model and query language for other reasons and then show how
these extensions can support time-varying information. This
approach has been used only with object-oriented query lan-
guages. Sciore has advocated the use of annotations [202] to
support the various kinds of versioning, including histories, re-
visions, and alternatives [172]. The VISION system adopted a
similar approach. Query optimization is still difficult, since all
time manipulation is done by user-defined functions (which
themselves could perhaps be individually optimized).

In contrast to the previous approaches, most researchers
have proposed specific data modeling and query language
constructs to support information varying over valid time. This
is the approach adopted by the vast majority of temporal rela-
tional query languages. Most add numerous new constructs
and temporal operators, yet attempt to retain snapshot re-
ducibility [1861 to the nontemporal query language on which
they are based, ensuring that the user’s intuition about the base
language carries over to the temporal extension.

Turning to object-oriented query languages, TOODM, the
data model behind TOSQL and TOOSQL, encodes attribute
values as time sequences, which are sequences of value and

temporal element pairs [163], [164]. The OQLE query lan-
guage for the temporal object-oriented knowledge representa-
tion model OSAM*TT incorporates an optional when clause, as
well as a set of temporal functions and operators [206]. Sciore
has extended the EXTRA data model [32] to differentiate be-
tween versioned and unversioned attributes and has made sev-
eral changes to the EXCESS query language to support selec-
tion of times and default times, termed contexts [1731. TEDM
supports evolution, fusion, and fission of objects over time
[31]. The Illustra DBMS, a commercialization of Postgres,
includes a time series datablade that allows value and times-
tamp pair sequences as attribute values.

C. Transaction Time
Transaction time indicates when facts were logically present

in the database, as opposed to when facts were true in reality.
Transaction time support is necessary when one would like to
roll back the state of the database to a previous point in time.
Transaction time is also useful when storing versions, say, of
an engineering design. In such situations, transaction time is
often branching, in contrast to the linear time model underly-
ing valid time.

In considering transaction time support, an important distinc-
tion must be made: either the tuples, object instances, or attrib-
utes are themselves versioned (termed extension versioning), or
the definitions of those objects are versioned (termed schema
versioning). If extension versioning is adopted, then schema
versioning may or may not be supported. If extension versioning
is not supported, then schema versioning is not relevant, as only
the most recent version of the schema need be retained.

C. I . Extension Versioning

As with valid-time support, there are three general ap-
proaches to supporting extension versioning. The first is to use
the model directly, making no changes to the data model or
query language. OODAPLEX follows this approach. Since the
time semantics is arbitrary (the user can implement whatever is
desired), transaction time can be accommodated.

In the second approach, general data model and query lan-
guage extensions are exploited to support time-varying infor-
mation. Sciore’s annotations, discussed earlier, can be used to
support revisions and alternatives (i.e., branching transaction
time). Generic references are also capable of supporting trans-
action time [173], as are the metafunctions in VISION [34].

The third approach modifies the data model and language to
explicitly support transaction time. As with valid time, most
proposals are in this camp. TSQL2 is perhaps the most ambi-
tious, supporting both arbitrary expressions on the transaction-
time timestamp associated with tuples, and vacuuming, which
purges old data from the system to reduce secondary storage
requirements [96], [205].

Chou and Kim’s versioning model [40], [1081 has garnered
the widest acceptance in the object-oriented community. It has
been implemented in ORION [l l l] , in the IRIS object-
oriented DBMS [20], [224] (though it has not yet been incor-
porated in the commercial version and its query language
OSQL), and in OQL [1021. Objects are versioned with

OZSOYOCLU AND SNODGRASS: TEMPORAL AND REAL-TIME DATABASES: A SURVEY 521

branching transaction time, with the added feature of two ver-
sions merging to create a new version; hence, transaction time
is truly a graph, rather than a tree.

C.2. Schema Versioning

In schema evolution, the schema can change in response to
the application’s varying needs. In schema versioning, multi-
ple schemas are logically in effect. Schema versioning has
been examined in both relational databases [21], [143], [161],
[1621 and object-oriented databases. The Chou-Kim model
accommodates the most extensive form of schema versioning
of object-oriented data models. Schema versioning under the
Chou-Kim model has not yet been implemented, though Chou
and Kim have presented detailed data structures, storage repre-
sentations, and object-accessing algorithms [1 lo]. Multiple
schemas may also be defined via object-oriented views [23] or
semantic contexts [131 (which should be differentiated from
Sciore’s contexts [1731). An essential difference between these
approaches and schema versioning is that in the latter an object
created in a specific schema version is visible only in that
schema version, rather than in all views or contexts [24].

We now turn to data models and query languages support-
ing real-time applications.

v. REAL-TIME DATA AND TRANSACTION PROPERTIES

Real-time transactions must be timely-they must be
scheduled so as to complete within their time constraints
(deadlines) and satisfy transaction constraints. Timely execu-
tion of transactions requires good estimates of their worst-case
execution times, which are very difficult to obtain when 1)
transactions’ execution times depend on the values of data
items they access (e.g., the range of a looping construct in a
transaction is defined through the value of a data item), 2)
transactions block or abort due to data and resource conflicts,
and 3) U 0 scheduling or buffer management techniques affect
transaction execution times.

Hard transactions are those for which missing a deadline is
disastrous and must not happen. If completed transactions are
assigned values (to measure the benefits gained by completing
them), a hard transaction with a missed deadline is given a
large negative value. Soft transactions may miss their dead-
lines and still have some monotonically decreasing value as-
signments that drop to zero at some point P in time. For firm
transactions, P and the deadline are the same.

The following factors [120], [159], [213], [231] character-
ize real-time transactions and influence the transaction-
processing techniques used to schedule them [1201:

1) The implication of missing a specified transaction dead-
line: hard, soft, orfirm transactions.

2) Transaction arrival pattern: periodic, sporadic, or
aperiodic.

3) Data access type: Random (i.e., unknown) or predefined
with a) write-only (update) transactions that collect in-
formation about the state of the real world and write into
the database, or b) read-only transactions that read the

values of data items and modify the state of the real
world through specialized output devices.

4) Accessed-object properties: The real-world object whose
state is maintained by a data item in the database may be
continuous (i.e., its state always has a value and may
change at any time) or discrete.

5) Knowledge of items to be used: Whether the accessed
items are known a priori.

6) CPU and U 0 time knowledge: Whether the CPU and U 0
usage of transactions are known a priori.

For some real-time applications, it is desirable to have real-
time databases that provide a (preferably semantically rich)
data model, satisfy integrity constraints, and permit only seri-
alizable transaction executions [22]. Such databases are said to
be internally consistent [1321. Clearly, for these applications,
the database should maintain the traditionally accepted trans-
action correctness properties known as the ACID properties
(atomicity, consistency, isolation, and durability) [72].

For some real-time databases, an externally consistent data-
base may be more important than serializable transactions
[132]. A database is externally consistent if, whenever a real-
world object changes its value, its counterpart data item in the
database (if it exists) also changes. External consistency re-
quires that the data used by a transaction always reflect the
physical environment at the time. In comparison, internal con-
sistency requires that the data in the database satisfy prede-
fined constraints. In applications that need a timely response to
external state changes (e.g., autopilot systems, automated fac-
tories with robots), external consistency often takes prece-
dence over internal consistency. Thus, for some applications,
executing transactions that maintain external consistency takes
precedence over having serializable transactions or satisfying
the database’s integrity constraints all the time [1321.

Clearly, it is possible to have an externally consistent data-
base and serializable transactions that always use the most
recent values of data items: One can detect, at a cost, transac-
tions that use externally inconsistent data and abort them or
roll them back. But such an approach may be too wasteful. On
the other hand, it is not possible to have both external consis-
tency and integrity constraint satisfaction, as newly inserted
values of external objects may cause immediate integrity con-
straint violations. For example, an integrity constraint involv-
ing a factory furnace temperature and the furnace coolant level
may be violated by rising temperature levels. Also, external
consistency maintenance may lead to triggers. For example,
violation of the factory furnace constraint may trigger a trans-
action that informs an operator or requests an automated agent
to increase coolant levels. Transactions that need the most up-
to-date data item values of external objects may require abor-
tions. For example, a transaction that performs periodic com-
putations and initiates physical activities on objects produced
in the furnace may need to be aborted and restarted due to fur-
nace temperature changes. Finally, integrity constraint viola-
tions may need to be resolved by new transactions. The inter-
play between external and internal consistency is an unex-
plored research area.

The preceding discussion suggests that, at least for some

522 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. I. NO. 4, AUGUST 1995

real-time database applications, transactions interact and syn-
chronize with each other. That is, transactions in such envi-
ronments cooperate. In contrast, transactions in traditional
databases are isolated and compete with each other for com-
pletion. The concept of cooperating transactions has three
implications:

1) The traditional correctness notion, serializability, for
transaction execution must be extended or replaced by
new correctness notions. The next section discusses two
such correctness notions.

2) Transaction interaction in some real-time database envi-
ronments has similarities with those encountered in active
databases [67] in which various events and conditions
trigger actions of other transactions. An example is “if
transaction Furnace-Temp-Alarm writes object Alarm
between now and (now + 1 minute) then start and com-
plete transaction Notify-Automated-Agent in 1 second.”
A major difference between this example and active da-
tabases is that the transaction Notify-Automated-Agent is
given a completion deadline.

3) Transactions in these new real-time database environ-
ments now synchronize (i.e., cooperate) with each other
much like processes (tasks) of concurrent-computing
models. For example, the periodic transaction Objects-
Produced-in-Furnace, upon seeing an old furnace tem-
perature value, may “wait” for a “recent” value of data
item Furnace-Temperature to be added to the database
by transaction Modify-Furnace-Temperature and then
continue execution. Such waits can be specified and con-
trolled either by an independent agent such as a transac-
tion managerhcheduler that enforces rules or, directly, by
process communication techniques such as semaphore
waits and signals or message passing. A survey of exter-
nal and internal consistency definitions concluded that
“there may be a room for a theory of interactions of pro-
grams that are both cooperating” (as in concurrent proc-
esses) “and competitive” (as in transactions) [69]. Our
view is that real-time database researchers should inves-
tigate this theory of interaction among “programs,” re-
gardless of whether they are called programs or transac-
tions, since such programs interact directly with a data-
base. The survey also contains an insightful comparison
between a transaction and a process.

Another major difference between conventional and real-
time database transaction processing is their approach to re-
solving data and resource conflicts. conventional databases
attempt either to be fair in data and resource allocation or to
maximize resource utilization. In real-time databases, timely
transaction execution is more important, and both fairness and
maximum resource utilization become secondary goals. A re-
lated issue is measuring transaction-processing performance.
In contrast with conventional databases that use transaction
response time and throughput as performance measures, real-
time databases use the percentage of transactions that complete
within their deadlines or the total value of completed transac-
tions, using a function that assigns values to completed trans-
actions. Finally, real-time transactions are prioritized on the

basis of their deadlines and values, and the transaction man-
ager uses transaction priorities in transaction scheduling as
well as in transaction conflict resolution.

A. Real-Time Temporal Data and Transaction Consistency

For real-time databases in safety-critical real-time systems,
the data’s validity as well as its correct use by transactions
becomes very important. Real-time temporal data constraints
originate from the fact that the age of data in the database is
important for some real-time transactions and that, sometimes,
members of a set of data values stored in the database must
have similar age values [132], [135], [219].

We make a distinction between base (data) items, which cor-
respond to external objects and whose values are associated with
valid times recorded by specialized input devices of a real-time
system, and derived (data) items, whose values are associated
with absolute transaction times. Assume that each base item
value has an absolute valid time, indicating the real-world data
observation time, and a validity interval, the length of the time
following the absolute valid time during which the value is con-
sidered valid. Real-time temporal data constraints have two
components [136], the first of which is readily applicable to any
temporal database, not just a real-time database [98]:

1) Absolute data consistency states that the validity interval
of the most recent value of a base (or derived) item is al-
ways longer than the time interval between its absolute
valid (or absolute transaction) time and “now.” This indi-
cates that the data has absolute validity.

2) Relative data consistency. Frequently in real-time data-
bases, a set of data items must be observed within a small
time interval so that the items can be used to derive a new
value for a data item. Such a set forms a relatively consis-
tent set of items. For example, the temperature and the
pressure of a furnace together may be used to compute
the “safety level” of the furnace and thus must be meas-
ured close in time. These two data items, together with
the safety level item, form a relatively consistent set of
items. Note that each relatively consistent set is associ-
ated with a time interval, called the relative validity in-
terval. We can define the current relatively consistent set
of items as follows: Consider the most recent value v of a
base or derived item d and any relatively consistent set R
that contains d. Then d is the current relative set consis-
tent with respect to R if the time distance between the
time of v and the time of the most recent value of each
item in R is less than the relative validity interval of R .
We can also define the total relative set consistency of d
with respect to R as follows: For any value w of d, there
exists a set S of values, one for each item in R, such that
the time distance between w and any value in S is less
than the relative validity interval of R.

One open research problem on real-time temporal data
constraints involves enforcing relative consistency of data
items in a database when there are multiple and overlapping
relatively consistent sets and/or when new data items are being
added to and deleted from the database.

The consistency of real-time transactions is related to the

OZSOYOCLU AND SNODGRASS: TEMPORAL AND REAL-TIME DATABASES: A SURVEY 523

temporal consistency requirements of data items. Real-time
systems commonly use real-time databases to store data about
physical devices and to set parameters of physical devices.
Therefore, transactions must read the “most recent” values of
data items as defined by the following two constraints [231]:

1) External transaction consistency. Ideally, most real-time
transactions would read and use the current values of ex-
ternal objects in their computations. However, this may
not be possible as the most recent values in the database
may differ from the current values of real-world objects.
External transaction consistency means that the differ-
ence between the time of a transaction operation on a
data value and the absolute valid time of the data value is
less than a given small threshold.

2) Temporal transaction consistency. Real-time transactions
may use a snapshot of the real world. Therefore, data val-
ues read by a transaction ideally would have the same valid
or transaction times. Again, this may not be possible. Let V
denote the values of a set of items that a given transaction
T reads. Then T is temporally consistent if the difference
between the valid or transaction times of any two base or
derived values in Vis less than a given small threshold.

The performance of a class of lock-based, multiversion con-
currency control algorithms in maintaining temporal transac-
tion consistency for periodic transactions has been empirically
evaluated under mixed workloads of read-only, write-only, and
read-write transactions [1961. Maintaining temporal transac-
tion consistency proved easier when conflicting transactions
were close in the lengths of their periods. Also, the transaction
conflict pattern had a more significant effect on temporal
transaction consistency than the transaction load level.

Assume that there are write-only transactions that periodically
record real-world changes in the database. Two real-time trans-
action consistency enforcement issues are the following: 1)
Given a set of transactions with consistency requirements, find
the period of each write-only transaction so that the consistency
requirements of other transactions are satisfied. 2) Given a set of
periodic write-only transactions, find the level of real-time trans-
action consistency that can be guaranteed [131].

Transaction consistency notions other than those we’ve de-
scribed may be useful. For example, referring to the temporal
transaction consistency constraint, there may be distinct
threshold values for different subsets of V. It is also possible to
define a range of transaction correctness criteria that relax se-
rializability to permit interleaved executions of transactions
that use incorrect item values (but are bounded in their abso-
lute differences with the correct item values) [54]. More re-
search is needed to find new, general-purpose consistency no-
tions for cooperating transactions in real-time databases.

B. Real-Time Query Languages

There is no reported research on real-time database query
languages or transaction specification languages that allow
users to specify time constraints, temporal constraints, tempo-
ral properties of data values, and semantic knowledge useful
for query/transaction processing. The reason for this is that,
until recently, specifying a query or a transaction involved

only specifying a time constraint and temporal transaction
constraints, which can be achieved by means of simple exten-
sions to conventional query languages or transaction specifi-
cation techniques. In the near future, research will be needed
in real-time query and transaction specification languages that
will allow users to specify semantic knowledge and interac-
tions of cooperating transactions, and that are based on various
temporal data models. These languages may also be based on
temporal and modal logics [59] or on models of concurrent
processes [1231.

VI. ARCHITECTURAL ISSUES

We now turn to the implementation of temporal and real-
time data models and query languages. For both temporal and
real-time databases, we focus on relational databases; there is
little experience with implementing temporal or real-time
object-oriented databases.

A. Temporal-Query Processing

We discuss two aspects here: query optimization and query
evaluation.

Temporal-query optimization is substantially more involved
than conventional-query optimization for several reasons.
Temporal-query optimization is more critical, and thus easier
to justify expending effort on, than conventional optimization.
The relations that temporal queries are defined over may be
larger and often grow monotonically, implying that unopti-
mized queries take longer and longer to execute. It is reason-
able to try harder to optimize queries on such data and to
spend more execution time to perform the optimization.

The predicates used in temporal queries are harder to opti-
mize [1281, [1291. In traditional database applications, queries
generally specify equality predicates (hence the prevalence of
equijoins and natural joins); if an inequality predicate is in-
volved, it is rarely in combination with other such predicates.
In contrast, in temporal queries, joins with a conjunction of
several inequality predicates appear more frequently. For ex-
ample, the TSQL2 OVERLAP operator is translated into two
less-than predicates on the underlying timestamps. Optimiza-
tion techniques in conventional databases focus on equality
predicates and often implement inequality joins as Cartesian
products, with their associated inefficiency.

On the other hand, there is greater opportunity for query
optimization when time is present [129]. Time advances in
one direction; the (transaction) time domain is continu-
ously expanding, and the most recent time point is the larg-
est value in the domain. This implies that a natural cluster-
ing on sort order will manifest itself, which can be ex-
ploited during query optimization and evaluation. Query
optimization can also consider time-oriented integrity con-
straints. The integrity constraint begin(t) I end(t) holds for
every time-interval tuple t . Also, for many relations, the
intervals associated with a key are contiguous in time, with
one interval starting exactly when the previous interval
ended [53], [175], [176]. An example is salary data, where
the intervals associated with the salaries for each employee
are contiguous. Semantic query optimization can exploit

524 IEEE “4SACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 7, NO. 4, AUGUST 1995

these integrity constraints, as well as additional ones that
can be inferred [61], [178], [183].

The importance of efficient query optimization and evaluation
for temporal databases was underscored by an initial study that
analyzed the performance of a brute-force approach to adding time
support to a conventional DBMS. In this study, the Ingres DBMS
was minimally extended to support TQuel [8]. The results were
very discouraging. Sequential scans, as well as access methods
such as hashing and ISAM, suffered from rapid performance deg-
radation due to ever-growing overflow chains. Because adding
time creates multiple tuple versions with the same key, reorganiza-
tion did not help to shorten overflow chains. The objective of work
in temporal query evaluation is to avoid looking at all the data,
because the alternative implies that queries will continue to slow
down as the database accumulates facts. We emphasize that these
results do not imply that converting a time-varying database im-
plemented on a conventional DBMS will be much less efficient on
a brute-force temporal DBMS. In fact, simulating a time-varying
database on a conventional DBMS, which is currently the only
alternative available to application programmers, will produce all
the problems just listed.

There have been four basic responses to this challenge. The
first was a proposal to separate the valid-time and transaction-
time data, which grows monotonically, from the current data,
whose size is fairly stable and whose access is more frequent
[1401. This separation, termed femporal partitioning, signifi-
cantly improved performance of some queries [9] and was later
generalized to allow multiple cached states, which further im-
prove performance [94]. The other three responses were the
design of new query optimization strategies, new join algo-
rithms, and new temporal indexes.

A . I . Query Optimization

A single query can be optimized by replacing the algebraic
expression with an equivalent one that is more efficient, by
changing an access method associated with a particular operator,
or by adopting a particular implementation of an operator. The
first alternative requires a definition of equivalence, in the form
of a set of tautologies. Tautologies have been identified for many
of the algebras listed in Table V. Some of these temporal alge-
bras support the tautologies defined in the standard relational
algebra, enabling existing query optimizers to be used.

Determining which access method is best for each algebraic
operator requires metadata-statistics on the stored temporal
data-and cost models-predictors of the execution cost for
each operator implementatiodaccess method combination.
Temporal data requires additional metadata, such as the time
interval over which the relation is defined (termed the lifespan
[42]), lifespans of the tuples, surrogate and tuple arrival distri-
butions, distributions of time-varying attributes, regularity and
granularity of temporal data, and frequency of the null values
sometimes introduced when attributes within a tuple are not
synchronized [174]. Such statistical data may be updated by
random sampling or by a scan through the entire relation.

There has been some work in developing cost models for
temporal operators. An extensive analytical model has been
developed and validated for TQuel queries [9], [lo], and se-

lectivity estimates on the size of the results of various temporal
joins have been derived [70], [1741.

In global query optimization, a collection of queries is simul-
taneously optimized, with the goal of producing a single query
evaluation plan that is more efficient than the collection of indi-
vidual plans [171], [177]. A state transition network appears to
be a good way to organize this complex task [94]. Materialized
views are expected to play an important role in achieving high
performance in the face of temporal databases of monotonically
increasing size. For an algebra to utilize this approach, incre-
mental forms of the operators are necessary (see [92]).

A.2. Temporal Joins

Researchers have considered a wide variety of binary joins,
including time-join and time-equijoin (TE-join) [42]; event-
join and TE-outerjoin [7 11; contain-join, contain-semijoin,
and intersect-join [1291; and temporal natural join [1991. The
various algorithms proposed for these joins have generally
been extensions to nested loop or merge joins that exploit sort
orders or local workspace, as well as hash joins. More work is
necessary to design a join strategy that is superior over most of
the parameter space.

A.3. Temporal Indexes

Conventional indexes have long been used to reduce the
need to scan an entire relation to access a subset of its tuples.
Indexes are even more important in temporal relations that
grow monotonically in size. There has been a great deal of
research in temporal indexing over the past five years. The
worst-case performance for most proposals has been evaluated
in terms of total space required, update per change, and several
important queries [1681. Average-case analysis is of course
much more difficult. While preliminary performance studies
have been carried out for each of these indexes in isolation,
there has been little effort to empirically compare them. An
empirical comparison would have to consider the differing
abilities of each (those supporting no nontemporal keys would
be useful for doing temporal Cartesian products but perhaps
less useful for temporal joins involving equality predicates on
nontemporal attributes). It would also have to consider various
underlying distributions of time and nontemporal keys (the
indexes presume various nonuniform distributions to achieve
their performance gains over conventional indexes, which gen-
erally assume a uniform key distribution).

B. Transaction Processing

Several researchers have investigated adapting existing con-
currency control and transaction management techniques to
support transaction time. The subtle issues involved in choos-
ing whether to timestamp at the beginning of a transaction
(which restricts the concurrency control method that can be
used) or at the end of the transaction (which may require data
written earlier by the transaction to be read again to record the
transaction) have been resolved in favor of the latter through
some implementation tricks that effectively eliminate the need
for additional reads [47], [138], [204]. (We revisit this issue in
the context of real-time databases in Section VI.B.2.) Times-

OZSOYOCLU AND SNODGRASS: TEMPORAL AND REAL-TIME DATABASES: A SURVEY 525

tamping in a distributed setting has also been considered, as
has integrating temporal indexes with concurrency control to
increase the available concurrency [1381. Finally, since a
transaction-time database contains all past versions of the da-
tabase, it can be used to recover from media failures that cause
a portion or all of the current version to be lost [1381.

In the remainder of this section, we discuss the issues re-
lated to processing real-time transactions. Evaluations of the
techniques discussed were made by means of either a testbed
system (e.g., [87]) or simulation (e.g., [3], [76], [215]). One
exception is the approximate analysis of real-time databases
[79], which used an analytical approach to approximate the
steady-state fraction of real-time transactions that complete
successfully.

B. I . Processing Transactions with Hard Deadlines

All transactions with hard deadlines must complete within
their deadlines. This means that they must be scheduled with
complete knowledge, which in turn means that the various
transaction factors listed in Section V must be known a priori.
For example, transaction arrival patterns must be known; that
is, transactions must be periodic. Also, transaction data access
types, items to be accessed, and CPU and I/O access times
must be known. With this knowledge, tight estimates of worst-
case transaction execution times can be obtained, and real-time
task-scheduling techniques can be used to guarantee timely
transaction execution.

B.2. Processing Transactions with Soft Deadlines

Transaction Priority Assignment Policies. Priorities and
values for real-time transactions are used for conflict resolu-
tion and CPU scheduling. The literature contains various
transaction priority or value assignment algorithms [26], [75],
[76], [86], [91], [134] and their evaluations [3], [l] , [86].
Some of these policies are earliest-deadline-first, highest-
value-first, least-slack-time-first (where slack time is the
maximum amount of time a transaction can spend without exe-
cuting and still complete within its deadline), fixed-priority-
with-a-priority-ceiling, and weighted-priorities. One interest-
ing approach is a dynamic priority assignment policy, in which
a continuous workload evaluation method evaluates the prior-
ity of a transaction several times during its execution [83].
Priority assignment algorithms are important since they di-
rectly influence the performance of the transaction-scheduling
algorithms.

Concurrency Control Techniques with Serializability. Con-
currency control techniques for real-time databases that use
serializability as the correctness criteria include lock-based
protocols such as two-phase locking and its variants [3], [l] ,
[71, [60], [861, [88], [179], [180], [193], [214], [216], optimis-
tic concurrency control protocols [74], [78], [88], [121], and
timestamp-ordering protocols [1331, [1951, [215]. These
techniques detect conflicts between two real-time transactions
or between one real-time transaction and a set of real-time
transactions.

For lock-based protocols, transaction conflicts are resolved
by either transaction blocking or transaction abort. When a

data item held by a transaction is requested by another trans-
action with a conflicting lock request such as a write-lock, the
alternatives for resolving such a conflict are to block or abort
the lock-requesting transaction or to abort the lock-holding
transaction. When a higher-priority transaction is blocked by a
lower-priority transaction during conflict resolution, priority
inversion results. One way to avoid this unfortunate situation is
to use priority inheritance [1791, in which the lower-priority
transaction that is blocking other transactions inherits the high-
est priority of the transactions it blocks, until it releases the
lock. Note that even with an inherited priority, a transaction
may later block other higher-priority transactions, thereby in-
creasing its priority even further.

The priority abort approach [3], in contrast, grants the lock to
the higher-priority transaction. If the lock-requesting transaction
has higher priority, it is granted the lock after the lock-holding
transaction aborts. Otherwise, the lock-requesting transaction is
blocked. The performances of priority inheritance and priority
abort and their variations have been compared in several studies
[I], PI , [771, P91, [2 W .

Other lock-based protocols for real-time databases include
ordered sharing [5], [6], [7] that eliminates blocking, and dy-
namic adjustment of the serialization order [133] of transac-
tions in order to execute high-priority transactions before low-
priority transactions.

Timestamp-ordering protocols [1941, [215], [216] assign
timestamps to transactions when they start, for resolving con-
flicts during transaction execution. Compared with the opti-
mistic concurrency control that resolves transaction conflicts at
the end of transaction execution and during transaction valida-
tion, the timestamp-ordering protocols’ early conflict resolu-
tion is an advantage. On the negative side, timestamp-ordering
protocols suffer from priority inversion in the sense that a
higher-priority transaction is aborted when it attempts to ac-
cess a data item modified by a lower-priority transaction with a
higher timestamp value. Different priority-based timestamp-
ordering protocols are proposed and evaluated in the literature
[195]. One interesting approach is to assign timestamps to
transactions dynamically whenever actual conflicts occur [191.
A similar approach is to assign timestamp intervals, instead of
a single value, to transactions, and to adjust (reduce) the inter-
vals when conflicts arise to guarantee serializable transactions
[191, WO].

Optimistic concurrency control protocols validate (certify)
transactions for commitment after they complete execution
[74], [77], [78], [87]. Conflicts among transactions are solved
with aborts and restarts. The advantage of the optimistic con-
currency control technique is that it is nonblocking and dead-
lock-free, making it attractive for real-time databases. On the
other hand, transaction aborts and restarts waste resources that
may be critical for real-time databases.

Optimistic protocols can use backward validation, in which the
validating transaction is checked against committed transactions
and is either aborted due to conflicts or committed. An alternative
is forward validation, in which the validating transaction is
checked against the currently running, active transactions, and, in
the case of conflict, the validating transaction or other conflicting

526 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 7, NO. 4, AUGUST 1995

transactions are aborted. The literature contains various real-time
optimistic protocol variants based on forward validation, and their
experimental evaluations [74], [87]. Instead of using knowledge of
the dynamic read sets of active transactions, these variants use
transaction priorities [74], [88], force the validating transaction
into a wait state until the conflicts are resolved [74], or dynami-
cally adjust the serialization order [1241.

Other concurrency control techniques for real-time data-
bases include using multiple copies of data [119], [213] and
hybrid protocols that combine lock-based, timestamp-
ordering-based, and optimistic concurrency control techniques
[1951. Comparative evaluations of most of these techniques are
not yet available.

The discussion in this section so far has assumed the use of
flat transactions. When a transaction consists of subtransac-
tions, each to be executed in a distributed database environ-
ment, deadlines can be assigned to each subtransaction indi-
vidually to reflect its importance and urgency [159]. Several
heuristics to this subtask deadline assignment problem have
been proposed and evaluated [1071, both for subtransactions
that execute serially and for subtransactions that execute in
parallel. However, these proposals accommodate only one-
level nested transactions. The problem has not been investi-
gated for nested transactions with arbitrary depth. In fact, very
little research has considered using nested transactions in a
real-time database environment.

Concurrency Control Techniques that Relax Serializability.
For real-time databases in which transaction serializability is
not absolutely necessary, performance may be improved by
allowing nonserializable or temporarily nonserializable trans-
action execution. One such approach is epsilon serializability
[106], [158], [192], [226], which allows bounded inconsis-
tency during conflict resolution. Conflicting accesses for read-
only transactions due to read-write conflicts are permitted us-
ing a divergence control algorithm, as long as inconsistencies
are within a prespecified limit. Another approach is to use
application semantics and data similarities to obtain higher
levels of concurrency among transactions [1 161, [1 181. Im-
precise data values and partial computations are utilized for
the same purpose in [1301.

C. Stored Data Manager

Many storage structures have been proposed, including re-
verse chaining (all history versions for a key are linked in re-
verse order) [21], [47], [140], accession lists (a block of time
values and associated tuple ID’S between the current store and
the history store), clustering (storing history versions together
on a set of blocks), stacking (storing a fixed number of history
versions), and cellular chaining (linking blocks of clustered
history versions, with analytical performance modeling to
compare their space and time efficiency) [9]. Page layout for
temporal relations is more complicated than for conventional
relations if the nonfirst normal form (i.e., nonatomic attribute
values) is adopted, as is proposed in many of the temporal data
models listed in Section 111. Often such attributes are stored as
linked lists-for example, representing a valid-time element
(set of valid-time chronons) as a linked list of intervals. Hsu

and Snodgrass have developed an analytical model to deter-
mine the optimal block size for such linked lists [85].

D. Buffer Management for Real-Time Transaction
Scheduling

In conventional databases, buffer contention among trans-
actions can impact performance significantly. Prioritized ver-
sions of two buffer management algorithms, priorify-least-
recently-used (priority-LR U) and priority-DBMIN, have been
investigated [33]. Priority-LRU groups buffer elements into
priority levels, each level holding the pages of transactions
with the same priority. Pages are replaced from the LRU page
of the lowest-priority group. Priority-DBMIN allocates a set of
buffer elements (“locality set”) for each file, to be accessed by
each transaction before the transaction is admitted, and uses an
optimum replacement policy for each locality set. An easier-to-
implement version of priority-DBMIN exhibits even better
performance [90].

Another approach assumes that write requests are delayed to
the end of transaction execution and uses different queues to
buffer read and write requests [2]. The idea is to have a mini-
mum free buffer space in the write buffer for write requests
and always to process read requests first, as long as the write
requests can be placed in the write buffer without reducing the
free space to a size less than the specified minimum. A variant
of this approach creates deadlines for writing the contents of a
buffer element into the disk and uses these deadlines to service
write requests [2].

E. Scheduling Disk U 0 for Real-Time Transaction
Processing

Because disk U0 constitutes a significant part of transaction
execution time, it is natural to revise disk U0 scheduling algo-
rithms to ensure timely transaction execution. Conventional disk-
scheduling algorithms, called SCAN algorithms, sort U 0 re-
quests and service them by scanning disk cylinders. Several
variants of a SCAN algorithm have been proposed for real-time
databases [2], [33] and empirically evaluated. An algorithm
called FD-SCAN (feasible deadline SCAN), which decides the
scanning direction by locating the U0 request with the earliest
feasible deadline, has shown superior performance.

In another study [11, transactions are assumed to perform all
write requests when they commit, and write requests have the
lowest priority as they are related to transactions that have
completed execution. Read requests are then assigned priori-
ties on the basis of their deadlines. Priority inheritance can be
added to this scheme for write requests that block other high-
priority transactions (due to write locks) [119].

SCAN algorithms can also be revised with the knowledge of
prioritized groups of disk requests [33]. Another approach
tries to balance time constraints of disk requests and the
overall U0 performance in terms of the average seek time [37].

VII. CONCLUSIONS AND FUTURE WORK

Temporal database research has been active for about 20
years. Initially the focus was on temporal relational databases.

OZSOYOCLU AND SNODGRASS: TEMPORAL AND REAL-TIME DATABASES: A SURVEY 521

A decade ago research on temporal object-oriented data mod- 0 We should determine whether increased efficiency and
els was launched under the guise of versions in an engineering ease of use justifies the added complexity of explicit
database [1571. Real-time database research is somewhat temporal constructs in the object-oriented temporal data
newer, with the first papers appearing in 1986. model and query language. Resolving this issue is a pre-

requisite for the design of a consensus temporal object-
the two fields: oriented query language.

There have been many significant accomplishments within

The semantics of the time domain, including its structure,
dimensionality, indeterminacy, and real-time aspects, is
well understood.
Much research has focused on temporal data models, in-
cluding both relational and object-oriented models, ad-
dressing this extraordinarily complex and subtle design
problem. Satisfying all desirable objectives within a sin-
gle model is probably unattainable. Instead, a coordi-
nated suite of data models, each tailored to a particular
aspect, is a more appropriate approach.
Many temporal query languages have been proposed.
The numerous types of temporal queries are fairly well
understood. Half the proposed temporal query languages
have a strong formal basis.
Several commercial temporal object-oriented DBMSs are
now on the market.
The real-time and temporal database communities are
starting to interact. A first step is the adoption of com-
mon terminology and a delineation of shared concepts
originating in the two areas.
The interaction of transaction time support and concur-
rency control and transaction management has been
studied to some depth. Most of the research in real-time
databases has focused on modifying and adapting the
traditional transaction-processing techniques of conven-
tional databases and the task-scheduling techniques of
real-time svstems.

The following research areas need to be addressed:

Real-time data models, supporting timely database op-
erations, should be temporal, to capture semantic knowl-
edge needed for timely execution of database operations.
Temporal and real-time database design is still in its in-
fancy, hindered by the plethora of temporal data models
and the absence of real-time data models. With the emer-
gence of the temporal relational query language TSQL2,
we can now investigate the task of database modeling
within the context of this consensus language.
In some real-time databases, transactions cooperate, rather
than compete [1321. Such transaction interactions should
be investigated. A theory of cooperating transactions
should be developed for real-time databases, perhaps
similar to cooperating transaction hierarchies [151], or co-
operative software-engineering environment transactions
[81]. Such a theory may involve flat transactions and trans-
action execution rules, or nested transactions in which
subtransactions have execution rules. Also, this theory
should be developed both with and without serializability
because applications may or may not need serializable
transactions. The notion of a linear transaction time model
must be modified to accommodate nonserial transactions.

Users need real-time query languages to specify the se-
mantic knowledge captured in real-time data models and
to use it in various ways. Also, users need transaction
execution specification languages to specify the interac-
tions of cooperating transactions.

0 Integrity constraints-particularly time-constrained ac-
cess, manipulation, and enforcement of (possibly tempo-
ral) integrity constraints-must be investigated in depth.

0 Achieving adequate performance in a temporal or real-
time DBMS remains a challenge. In temporal databases,
we need empirical studies comparing temporal join al-
gorithms and temporal indexing. In real-time databases,
we need more research on techniques that satisfy integ-
rity constraints and temporal data and transaction con-
straints and that provide timely enforcement of database
view consistency when the underlying database changes.

This development of new models and theories may provide a
sound basis for real-time and temporal databases. We feel that
closer interaction of the previously isolated research communi-
ties will yield database technology supporting all applications
involving data with a time component.

ACKNOWLEDGMENTS

Gultekin Ozsoyo~lu was supported in part by National Sci-
ence Foundation grant ISI-9224660. Richard T. Snodgrass was
supported in part by NSF grant IRI-9302244 and an AT&T
Foundation grant. James Clifford was helpful to our under-
standing of the structural aspects of time models. Comments
on previous drafts by Aziz Ait-Braham, Jost Blakeley, Curtis
Dyreson, Christian S. Jensen, Wolfgang Kafer, Won Kim,
Nick Kline, Ellen Rose, Arie Segev, Michael Soo, Stanley Su,
and the reviewers, as well as comments from Dan Fishman,
Shashi Gadia, Edward Sciore, and Michael Stonebraker,
helped improve the presentation and identify inaccuracies.

REFERENCES

[l]

[2]

[3]

R. Abbott and H. Garcia-Molina, “Scheduling real-time transactions with
disk resident data,” Proc. Int’l Conf Very Large Databases, Aug. 1989.
R. Abbott and H. Garcia-Molina, “Scheduling VO q u e s t s with deadlines:
A performance evaluation,” l l t h Real-Time System Symp., 1990.
R. Abbott and H. Garcia-Molina, “Scheduling real-time transactions: A
performance study,” ACM Trans. Database System, vol. 17, no. 3. pp.
513-560, Sept. 1992.

[4] ADB, “Matisse Technology Overview,” technical report, ADB/
Intellitic, 1992.

[5] D. Agrawal and A.E. Abbadi, “Locks with constrained sharing,” Proc.
ACM PODS Conf, pp. 85-93,1990.

[6] D. Agrawal, A.E. Abbadi, and A.E. Lang, “Performance characteristics
of protocols with ordered shared locks,” Proc. Int’l Conf Dara Ens.,
pp. 592401,1991.
D. Agrawal, A.E. Abbadi, and R. Jeffers, “Using delayed commitment
in locking protocols for real-time databases,’’ Proc. ACM Int’l Conf.
Management of Data, pp. 104-1 13, 1992.

[7]

528 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 7. NO. 4, AUGUST 1995

[8] I. Ahn and R.T. Snodgrass, “Performance evaluation of a temporal
database management system,” C. Zaniolo, ed., Proc. ACM Int’l Con$
on Management of Data, pp. 96-107, May 1986.

[9] I. Ahn and R.T. Snodgrass, “Partitioned storage for temporal databases,”
Information Systems, vol. 13, no. 4, pp. 369-391, 1988.

[lo] I. Ahn and R.T. Snodgrass,“Performance analysis of temporal queries,”
Information Sciences, vol. 49, pp. 103-146.1989.

[11] A. Ait-Braham, B. Theodoulidis, and G. Karvelis, “Conceptual model-
ing and manipulation of temporal databases,” Proc. Entity-Relationship
Cont. 1994.

[12] K.K. Al-Taha, R.T. Snodgrass, and M.D. Soo, “Bibliography on spatio-
temporal databasesm,” Inf’l J . Geographical Information Systems, vol.
8, pp. 195-203, Jan.-Feb. 1994.

[13] J. Andany, M. Leonard, and C. Palisser, “Management of schema evo-
lution in databases,” Proc. ConJ Very Large Databases, Barcelona,
Spain, pp. 161-170, Sept. 1991.

[I41 G. Ariav, “A temporally oriented data model,” ACM Trans. Database
Systems, vol. 11, no. 4, pp. 499-527, Dec. 1986.

[IS] F. Barbic and B. Pemici, “Time modeling in office information sys-
tems,” S. Navathe, ed., Proc. ACM Int’l Con$ Management Data, Aus-
tin, Texas, pp. 51-62, May 1985.

[161 F. Bancilhon, “Object-oriented database systems,” Proc. ACM
SIGACTNGMOD PODS Conf., Austin, Texas, pp. 152-162, 1988.

[17] M.A. Bassiouni and M.J. Llewellyn, “A relational-calculus query lan-
guage for historical databases,” J. Computer Languages, vol. 17, no. 3,
pp. 185-197.1992.

[18] M. Baudinet, J. Chomicki, and P. Wolper, Temporal Deductive Data-
bases, BenjamidCummings, chap. 13, pp. 294-320, 1993.

[19] R. Bayer, K. Elhardt, J. Heigert, and A. Reiser, “Dynamic timestamp
allocation for transactions in database systems,” Proc. Int ’ I Symp. Dis-
tributed Databases, pp. 9-20, 1982.

[20] D. Beech and B. Mahbod, “Generalized version control in an object-
oriented database,” Proc. Int’l Con$ Very Large Databases, pp. 14-22,
Feb. 1988.

[21] J. Ben-Zvi, “The Time Relational Model,” PhD thesis, Computer Sci-
ence Dept., UCLA, 1982.

[22] P.A. Bemstein, V. Hadzilacos, and N. Goodman, Concurrency Control
and Recovery in Database Systems, Addison-Wesley, 1987.

1231 E. Bertino, “A view mechanism for object-oriented databases,” Proc. Int’l
Con$ Extending Database Technology, Vienna, Austria, Mar. 1992.

[24] E. Bertino and L. Martino, Object-Oriented Database Systems. Int’l
Computer Science Series. Addison-Wesley, 1993.

1251 G. Bhargava and S.K. Gadia, “Relational database systems with zero
information loss,” IEEE Trans. Knowledge and Data Eng., vol. 5, no. 7,
pp. 76-87, Feb. 1993.

1261 S. Biyabani, J.A. Stankovic, and K. Ramamritham, “The integration of
deadline and criticalness in hard real-time scheduling,” Proc. Ninth
Real-Time Systems Symp., pp. 152-160, 1988.

[27] J.A. Blakeley,, “ZQL[C++]: Extending a persistent C++ language with a
query capability,” Technical Report ITB-9 1-10-0 1, Computer Science
Laboratory, Texas Instruments, Dallas, Oct. 1991,

[28] M. Bohlen and R. Marti, “Handling temporal knowledge in a deductive
database system,” Datenbanksysteme in Buro, Technik und Wisen-
schaft, Springer-Verlag. 1993.

[29] A. Bolour, T.L. Anderson, L.J. Dekeyser, and H.K.T. Wong, “The role
of time in information processing: A survey,” SigArt Newsletter, vol.
80, pp. 28-48, Apr. 1982.

[30] A.P. Buchmann, D.R. McCarthy, M. Hsu, and U. Dayal, “Time-critical
database scheduling: A framework for integrating real-time scheduling
and concurrency control,” Proc. IEEE Int’l Con$ Data Eng., pp. 470-
480, Jan. 1989.

[31] A. Cardenas, I. Ieong, R. Taira, R. Barker, and C. Breant, “The knowl-
edge-based object-oriented PICQUERY+ language,” IEEE Trans.
Knowledge and Data Eng., vol. 5 , no. 4, pp. 644-657, Aug. 1993.

[32] M.J. Carey, D.J. DeWitt, and S.L. Vandenburg, “A data model and
query language for EXODUS,” Proc. ACM Int’l Conj Management
Data, Chicago, pp. 413423, June 1988.

1331 M.J. Carey, R. Jauhari, and M. Livny, “Priority in DBMS resource
scheduling,” Proc. Int’l Con$ Very Large Databases, 1989.

[34] M. Caruso and E. Sciore, “Meta-functions and contexts in an object-
oriented database language,” Proc. ACM Int ’1 Con$ Management Data,
Chicago, pp. 56-65, June 1988.

[35] The Object Database Standard: ODMG-93, R.G. Cattell, ed., Morgan
Kaufmann, 1994.

1361 S. Chakravarthy and S.-K. Kim, “Resolution of time concepts in tempo-
ral databases,” Information Sciences, vol. 80, nos. 1-2, pp. 91-125,
Sept. 1994.

[37] S. Chen, J.A. Stankovic, J. Kurose, and D. Townley, “Performance
evaluation of two new disk scheduling algorithms for real-time sys-
tems,” J. Real-Time Systems, vol. 3, pp. 307-337, 1991.

[38] J. Chomicki, “Temporal query languages: A survey,’’ H.J. Ohlbach and
D.M. Gabbay, eds., Proc. First Int’l Con$ Temporal Logic. Lecture Notes
in Artificial Intelligence 827, Springer-Verlag, pp. 506-534, July 1994.

[39] J. Chomicki and T. Imelinski, “Relational specifications of infinite
query answers,” Proc. ACM Int’l Con$ Management Data, pp. 174-
183, May 1989.

[40] H.T. Chou and W. Kim, “A unifying framework for version control in a
CAD environment,’’ Proc. Int’l ConJ Very Large Databases, pp. 336-
344, 1986.

1411 W.W. Chu, I.T. Ieong, R.K. Taira, and C.M. Breant, “A temporal evolu-
tionary object-oriented data model and its query language for medical
image management,” Proc. Very Large Database Con$, Aug.1992.

[42] J. Clifford and A. Croker, “The historical relational data model (hrdm)
and algebra based on lifespans,” Proc. Int’l ConJ Data Eng., pp. 528-
537, Los Angeles, Feb. 1987.

[43] J. Clifford, A. Croker, and A. Tuzhilin, “On completeness of historical
relational query languages,” ACM Trans. Database Systems, vol. 19, no.
1, pp. 64-116, Mar. 1994.

[44] J. Clifford and A.U. Tansel, “On an algebra for historical relational
databases: Two views,” S. Navathe, ed., Proc. ACM Int’l Con$ Man-
agement Data, pp. 247-265, Austin, Texas, May 1985.

[45] J. Clifford and D.S. Warren, “Formal semantics for time databases,”
ACM Trans. Database Systems, vol. 8, no. 2, pp. 214-254, June 1983.

[46] E.F. Codd, Relational Completeness of Data Base Sublanguuges, vol. 6
of Courant Computer Symposia Series, pp. 65-98, Prentice Hall,
Englewood Cliffs, N.J., 1972.

[47] P. Dadam, V. Lum, and H.-D. Werner, “Integration of time versions
into a relational database system,” U. Dayal, G. Schlageter, and L.H.
Seng, eds., Proc. Conf. Very Large Databases, pp. 509-522, Singa-
pore, Aug. 1984.

[48] C.J. Date, “A proposal for adding date and time support to SQL,” ACM
SIGMOD Record, vol. 17, no. 2. pp. 53-76, June 1988.

[49] U. Dayal and J.M. Smith, PROBE: A Knowledge-Oriented Database
Management System, Springer-Verlag. 1986.

[SO] U. Dayal and G.T.J. Wuu, “A uniform approach to processing temporal
queries,” Proc. Con$ Very Large Databases, Vancouver, Canada,
Aug.1992.

[Sl] V. DeAntonellis, A. Degli, G. Mauri, and B. Zonta, “Extending the
entity-relationship approach to take into account historical aspects of
systems,” P. Chen, ed., Proc. Int’l Con$ E-R Approach to Systems
Analysis and Design. North Holland, 1979.

[52] S.M. Deen, “Deal: A relational language with deductions, functions and
recursions,” Data and Knowledge Eng., vol. 1, 1985.

[53] W. Dreyer, A.K. Dittrich, and D. Schmidt, “An object-oriented data
model for a time series management system,” Proc. Int’l Working Con$
Scientific and Statistical Database Management, J.C. French and H.
Hinterberger, eds. Charlottesville, Va., pp. 185-95, Sept. 1994.

[54] L.B.C. Di Pippo and V.F. Wolfe, “Object-based semantic real-time
concurrency control,” Proc. 14th IEEE Real-Time Systems Symp.,
Dec. 1993.

[55] S. Dutta, “Generalized events temporal databases,” Proc. Int ’1 Con$
Data Eng., pp. 118-126, Los Angeles, Feb. 1989.

[56] C.E. Dyreson and R.T. Snodgrass, “Valid-time indeterminacy,” Proc.
Int’l Con$ Data Eng., pp. 335-343, Vienna, Austria, Apr. 1993.

[57] C.E. Dyreson and R.T. Snodgrass, “Temporal granularity and indeter-
minacy: Two sides of the same coin,” Technical Report TR 94-06,
Computer Science Dept., Univ. of Arizona, Tucson, Feb. 1994.

OZSOYOCLU AND SNODGRASS: TEMPORAL AND REAL-TIME DATABASES: A SURVEY 529

[58] R. Elmasri and G.T.J. Wuu, “A temporal model and query language for
ER databases,” Proc. Int’l Con$ Data Eng., pp. 76-83, Feb. 1990.

[59] E.A. Emerson, “Temporal and modal logic,” J. van Leeuwen, ed.,
Handbook of Theoretical Computer Science, pp. 997-1.067, Elsevier
Science Publishers, B.V., 1990.

[60] K.P. Eswaran, J.N. Gray, R.A. Lorie, and I.L. Traiger, “The notions of
consistency and predicate locks in a database system,” Comm. ACM,
vol. 19, no. 11, pp. 624-633, 1976.

[61] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, “Fast subse-
quence matching in time-series databases,’’ Proc. ACM SIGMOD Int ’ I
Con$ Management of Data, R.T. Snodgrass and M. Winslett, eds., pp.
419-429, Minneapolis, May 1994.

[62] A.U. Frank, “Qualitative temporal reasoning in CIS-ordered time
scales,” Technical Report, Dept. of Geo-Information, Technische Univ.,
Vienna, 1994.

[63] S.K. Gdia, ‘Toward a multihomogeneous model for a temporal database,’’
Proc. Int’l Con$ Data Eng., pp. 39CL397, Los Angeles, Feb. 1986.

[64] S.K. Gadia, “A homogeneous relational model and query languages for
temporal databases,” ACM Trans. Database Systems, vol. 13, no. 4, pp.
418-448, Dec. 1988.

[65] S.K. Gadia, S. Nair, and Y.-C. Poon, “Incomplete information in rela-
tional temporal databases,’’ Proc. Con$ Very Large Databases, Van-
couver, Canada, Aug.1992.

[66] S.K. Gadia, and C.S. Yeung, “A generalized model for a relational tem-
poral database,” Proc. ACM Int’l Con$ Management of Data, pp. 251-
259, Chicago, June 1988.

[67] N.H. Gehani, H.V. Jagadish, and 0. Shumeli, “Event specification in an
active object-oriented database,” Proc. ACM SIGMOD Con$, pp. 81-
90, San Diego, Calif., June 1992.

[68] I. Goralwalla and M.T. Ozsu, “Temporal extensions to a uniform behav-
ioral object model,” Proc. Int’l Con$ Entity-Relationship Approach,
Dallas, June 1993.

[69] M. H. Graham, “Issues in real-time data management,’’ J. Real-Time
Systems, vol. 4, pp. 185-202, 1992.

[70] H. Gunadhi and A. Segev, “A framework for query optimization in tempo-
ral databases,’’ Proc. Int’l Conj Statistical and Scientific Database Man-
agement System, vol. 420, pp. 131-147, Springer Verlag, Apr. 1990.

[71] H. Gunadhi and A. Segev, “Query processing algorithms for temporal
intersection joins,” Proc. Int’l Con$ Data Eng., Kobe, Japan, 1991.

[72] T. Haerder and A. Reuter, “Principles of transaction-oriented database
recovery,” ACM Computing Surveys, vol. 15, no. 4, pp. 287-317,1983,

[73] M. Hammer and D. McLeod, “Database description with SDM: A se-
mantic database model,” ACM Trans. Database Systems, vol. 6, no. 3,
pp. 351-386, Sept. 1981.

[74] J.R. Haritsa, M.J. Carey, and M. Livny, “Dynamic real-time optimistic
concurrency control,” Proc. 1 l th Real-Time Systems Symp., 1990.

[75] J.R. Haritsa, M. Livny, and M.J. Carey, “Earliest deadline scheduling for
real-time database systems,” Proc. 12th Real-Time System Symp., 1991.

[76] J.R. Haritsa, M.J. Carey, and M. Livny, “Value-based scheduling in
real-time database systems,’’ VLDB J. , vol. 2, no. 2, 1993.

[77] J.R. Haritsa, M.J. Carey, and M. Livny, “Data access scheduling in !inn d.
time database systems,” J. Real-Time System, vol. 4, pp, 203-241, 1992.

[78] J.R. Haritsa, M.J. Carey, and M. Livny, “On being optimistic about real-
time constraints,” Proc. ACM PODS Con$, pp.331-343, 1990.

[79] J.R. Haritsa, Approximate Analysis of Real-Time Database Systems,
IEEE, 1994.

[80] S. Hawking, A Brief History ofTime. Bantam Books, New York, 1988.
[81] S. Heiler, S. Haradhvala, S. Zdonik, B. Blaustein, and A. Rosenthal, “A

flexible framework for transaction management in engineering envi-
ronments,” Database Transaction Models for Advanced Applications,
A.K. Elmagarmid, ed., Morgan Kauffman, 1993.

[82] G.D. Held, M. Stonebraker, and E. Wong, “Ingres-A relational data
base management system,” Proc. Nat’l Computer Conj , vol. 44, pp.
409-416, Anaheim, Calif., May 1975.

[83] D. Hong, T. Johnson, and S. Chakravarthy, “Real-time transaction
scheduling: A cost conscious approach,” Proc. ACM Int’l Conj Man-
agement Data, 1993.

[84] W-C. Hou and G. Ozsoyoglu, “Processing real-time aggregate queries in
CASE-DB,” ACM Trans. Database System, pp. 226261, June 1993.

[85] A. Hsu and R.T. Snodgrass, “Optimal block size for set-valued amibutes,”
Information Processing Letters, vol. 45, no. 3, pp. 153-158, Mar. 1993.

[86] J. Huang, J. Stankovic, D. Towsley, and K. Ramamritham,
“Experimental evaluation of real-time transaction processing,” Proc.
Real-Time Sys tem Symp., Dec. 1989.

[87] J. Huang, J. Stankovic, K. Ramamritham, and D. Towsley,
“Experimental evaluation of real-time optimistic concurrency control
schemes,’’ Proc. Int’l Conj Very Large Databases, pp. 35-46, 1991.

[88] J. Huang, J. Stankovic, K. Ramamritham, and D. Towsley,, “On using
priority inheritance in real-time databases,” Proc. 12th Real-Time Sys-
temSymp. , pp. 210-221, 1991.

[89] J. Huang, J. Stankovic, K. Ramamritham, D. Towsley, and B. Punmetla,
“Priority inheritance in soft real-time databases,” J. Real-Time Systems,
vol. 4, pp. 243-268, 1992.

[90] R. Jauhari, M.J. Carey, and M. Livny, “Priority-hints: An algorithm for
priority-based buffer management,” Proc. Int ’1 Conj Very Large Data-
bases, pp. 708-721.1990.

[91] E.D. Jensen, C. Douglas, C.D. Locke, and H. Tokuda, “A time-driven
scheduler for real-time operating systems,” Proc. IEEE Real-Time Sys-
tem Symp., Dec. 1986.

[92] C.S. Jensen, L. Mark, and N. Roussopoulos, “Incremental implementa-
tion model for relational databases with transaction time,” IEEE Trans.
Knowledge and Data Eng., vol. 3, no. 4, pp. 461-473, Dec. 1991.

[93] C.S. Jensen and L. Mark,. “Queries on change in an extended relational
model,” IEEE Trans. Knowledge and Data Eng.. vol. 4, no. 2, pp. 192-
200, Apr. 1992.

[94] C.S. Jensen, L. Mark, and N. Roussopoulos, and T. Sellis, “Using dif-
ferential techniques to efficiently support transaction time,” VLDB J . ,
vol. 2, no. I , pp. 75-1 11, Jan. 1993.

[95] “A consensus glossary of temporal database concepts.” C.S. Jensen, J.
Clifford, R. E h ” , S.K. Gadia, P. Hayes, and S. Jajodia, eds., Techni-
cal Report R 93-2035, Dept. of Mathematics and Computer Science,
Inst. for Electronic Systems, Denmark, Nov. 1993.

[96] C.S. Jensen,“Vacuuming in TSQL2,” TSQL2 Commentay, Sept. 1994.
[97] C.S. Jensen and R.T. Snodgrass, “The TSQL2 data model,” TSQL2

Commentary, Sept. 1994.
[98] C.S. Jensen and R.T. Snodgrass, “Temporal specialization and generali-

zation,” IEEE Trans. Knowledge and Data Eng., vol. 6, no. 6, pp. 954-
974, Dec. 1994.

[99] C.S. Jensen, M.D. Soo, and R.T. Snodgrass, “Unifying temporal models
via a conceptual model,” Infomution System, vol. 19, no. 7, pp. 513-
547, Dec. 1994.

[IOOIL. Jerome, “Real-time systems moving to Unix and Sun,” Sun Observer
J . , Dec. 1989.

[lo l lS . Jones, P. Mason, and R. Stamper, “Legol 2.0: A relational specifica-
tion language for complex rules,” Information Systems, vol. 4, no. 4, pp.
293-305, Nov. 1979.

[IO21 W. Kafer, “History and version management of complex objects” in Ger-
man, PhD thesis, Fachbereich Informatik, Univ. Kaiserslautem, 1992.

[103]W. Kafer and H. Schoning, “Mapping a version model to a complex-
object data model,’’ Proc. Int’l Con$ Data Eng.. pp. 348-357, 1992.

[104]W. Kafer and H. Schoning,“Realizing a temporal complex-object data
model,” Proc. ACM Int’l Con$ Management Data, pp. 266-275, 1992.

[1051 K. Kahn and G.A. G o y , “Mechanizing temporal knowledge,” Artificial
Intelligence, pp. 87-108, 1977.

[106]M. Kamath and K. Ramamritham, “Performance characteristics of epsi-
lon serializability with hierarchical inconsistency bounds,” Proc. IEEE
Int’l Con$ Data Eng., pp. 587-594, 1993.

[107]B. Kao and H. Garcia-Molina, “Deadline assignment in a distributed
soft real-time system,’’ Proc. 13th Int’l Con$ Distributed Computing
Systems, pp. 428-437, 1993.

[1081 W. Kim, Introduction to Object-Oriented Databases. MIT Press, Cam-
bridge, Mass., 1990.

[1091 W. Kim, “On object-oriented database technology,” Technical report,
UniSQL, Austin, Texas, 1993.

[llO]W. Kim and H.T. Chou, “Versions of shema OODB,” Proc. Int’l Con$
Very Large Databases, pp. 148-159, Long Beach, Calif., 1988.

530 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. I, NO. 4, AUGUST 1995

[11 1]W. Kim, J.F. Garza, N. Ballou, and D. Woelk, “Architecture of the orion
next-generation database system,” IEEE Trans. Knowledge and Data
Eng., vol. 2, no. 1, pp. 109-124, Mar. 1990.

[112]S.-K. Kim and S. Chakravarthy, “Temporal databases with two-
dimensional time: Modeling and implementation of multihistory,” In-
formation Sciences, vol. 80, nos. 1-2, pp. 43-89, Sept. 1994.

[113]K.A. Kimball, “The DATA system,” master’s thesis, Univ. of Pennsyl-
vania, 1978.

[114lN. Kline, “An update of the temporal database bibliography,” ACM
SIGMOD Record, vol. 22, no. 4, pp. 66-80, Dec. 1993.

[I 15lM.R. Klopprogge, “TERM: An approach to include the time dimension
in the entity-relationship model,” Proc. Int ’ I Con5 Entity Relationship
Approach, pp. 477-512, Washington, D.C., Oct. 1981.

[116]H. F. Korth, N. Soparkar, and A. Silberschatz, “Triggered real-time
databases with consistency constraints,” Proc. Int’l Con5 Very Large
Databases, 1990.

[117lM. Koubarakis, “Representation and querying temporal databases: The
power of temporal constraints,” Proc. Int’l ConJ Data Eng., pp. 327-
334. Vienna, Apr. 1993.

[11 8lT.W. Kuo and A. K. Mok, “Application semantics and concurrency
control of real-time data-intensive applications,” Proc. Real-Time Sys-
tems Symp., pp. 35-45, 1992.

[119]W. Kim and J. Srivastava, “Enhancing real-time DBMS performance
with multiversion data and priority based disk scheduling,” Proc. 12th
Real-Time Systems Symp., pp. 222-231, 1991.

[120]Y-K. Kim and S.H. Son, “An approach towards predictable real-time
transaction processing,” Proc. Fifrh Euromicro Workshop Real-Time
Systems, Oulu, Finland, 1993.

[121lH.T. Kung and J.T. Robinson, “On optimistic concurrency control,”
ACM Trans. Database Systems, vol. 6, no. 2, pp. 213-226, 1981.

[122]P. Ladkin, “The logic of time representation,” PhD thesis, Univ. of
California, Berkeley, Nov. 1987.

[123]L. Lamport and N. Lynch, “Distributed computing: Models and meth-
ods,” J. van Leeuwen, ed., Handbook of Theoretical Computer Science,
pp. 1,159-1.196, Elsevier Science Publishers, B.V., 1990.

[124]J. Lee and S.H. Son, “Using dynamic adjustment of serialization order
for real-time database systems,’’ Proc. 14th IEEE Real-Time Systems
Symp., Raleigh-Durham, N.C., Dec. 1993.

[125lJ. Lee and S.H. Son, ‘‘Issues in developing object-oriented database
systems for real-time applications,” Proc. IEEE Workshop Real-Time
Applications, Washington, D.C., 1994.

[126]J. Lee and S.H. Son, “Performance of concurrency control algorithms
for real-time database systems,” Performunce of Concurrency Control
Mechanism Centralized Database Systems, V. Kumar, ed., Prentice
Hall, to appear in1995.

[127]R.M. Lee, H. Coelho, and J.C. Cotta, “Temporal inferencing on ad-
ministrative databases,” Information Systems, vol. 10, no. 2, pp. 197-
206, 1985.

[128]T.Y. Leung and R. Muntz, “Query processing for temporal databases,”
Proc. Int’l Con$ Data Eng., Los Angeles, Feb. 1990.

[1291T.Y.C. h u n g and R.R. Muntz, “Stream processing: temporal query
processing and optimization,” chap. 14, Temporal Databases: The-
ory, Design, and Implementation, A. Tansel, J. Clifford, S. Gadia, S.
Jajodia, A. Segev, and R. Snodgrass, eds., Database Systems and
Applications Series, BenjamidCummings, Redwood City, Calif., pp,
329-355, 1993.

[130]K.J. Lin, S. Natarajan, and W.S. Liu, “Imprecise results: utilizing partial
computations in real-time systems,’’ Proc. Real-Time Systems Symp.,

[I3 11K.J. Lin, “Designing databases in real-time embedded systems,’’ Proc.
IEEE Symp. Computer-Aided Control System Design, pp, 285-292,
Mar. 1992.

[132]K.J. Kin, “Consistency issues in real-time database systems,” Proc.
22nd Hawaii Int’l ConJ System Sciences, Honolulu, Jan. 1989.

[133]Y. Lin and S.H. Son, “Concurrent control in real-time databases by
dynamic adjustment of serialization order,” Proc. I Ith IEEE Real-Time
Systems Symp., Orlando, Ha., Dec. 1990.

pp. 210-217, 1987.

[134]C.L. Liu and J.W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard real time environment,” J. ACM, vol. 20, no. 1, pp. 46-
61, 1973.

[135]J. Liu, K. Lin, W. Shih, A. Yu, J. Chung, and W. Zhao, “Algorithms for
scheduling imprecise computation,” Computer, vol. 24, no. 5, May 1991.

[136]J. Liu, K. Lin, and X. Song, “A position paper on scheduling hard real-
time transactions” Proc. I988 Workshop Real-Time Operating Systems
andSofhoare, pp. 12-13, May 1988.

[137]D. Lomet and B. Salzberg, “Access methods for multiversion data,”
Proc. ACM Int’l Con$ Management Data, pp. 315-324, June 1989.

[138]D. Lomet and B. Salzberg, ‘Transaction-time databases,” chap. 16,
Temporal Databases: Theory, Design, and Implementation, A. Tansel,
J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass, eds., Data-
base Systems and Applications Series, BenjamidCummings, Redwood
City, Calif., pp. 388-417, 1993.

[139]N.A. Lorentzos and R.G. Johnson, “Extending relational algebra to
manipulate temporal data,” Informution Systems, vol. 13, no. 3, pp.

[14O]V. Lum, P. Dadam, R. Erbe, I. Guenauer, P. Pistor, G. Walch, H.
Wemer, and J. Woodfill, “Designing DBMS support for the temporal
dimension,” B. Yormark, ed., Proc. ACM Int’l Con5 Management
Data, pp. 115-130, Boston, June 1984.

[141]P. Lyngbaek, “OSQL: A language for object databases,” Technical Re-
port HPLDTD-91-4, Hewlett-Packard Laboratories, Palo Alto, Calif.,
Jan. 1991.

[142]M. McKenzie, “Bibliography: Temporal databases,” ACM SIGMOD
Record, vol. 15, no. 4, pp. 40-52, Dec. 1986.

[143lE. McKenzie and R.T. Snodgrass, “Schema evolution and the relational
algebra,” Information Systems, vol. 15, no. 2, pp. 207-232, June 1990.

[144]E. McKenzie and R.T. Snodgrass,“An evaluation of relational algebras
incorporating the time dimension databases,” ACM Computing Surveys,
vol. 23, no. 4, pp. 501-543, Dec. 1991.

[145]E. McKenzie and R.T. Snodgrass, “Supporting valid time in an histori-
cal relational algebra: Proofs and extensions,” Technical Report TR-91-
15, Dept. of Computer Science, Univ.of Arizona, Tucson, Aug. 1991.

[146]J. Melton and A.R. Simon, Understanding the New SQL: A Complete
Guide. Morgan Kaufmann Publishers, San Mateo, Calif., 1993.

[1471R. Montague, The Proper Treatment of Quantification in Ordinary
English. D. Reidel Publishing, Dordrecht, Holland, 1973.

[148]A. Montanari and B. Pemici, “Temporal Reasoning,” chap. 21, pp. 534-
562., Temporal Databases: Theory, Design, and Implementation, A.
Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass,
eds., Database Systems and Applications Series. BenjamidCummings,
Redwood City, Calif., 1994.

[149]J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis, “Telos: Rep-
resenting knowledge about information systems,” ACM Trans. Office
Information Systems. vol. 8, no. 4, pp. 325-362, Oct. 1990.

[150]S.B. Navathe and R. Ahmed, “A temporal relational model and a query
language;’ Information Sciences, vol. 49, pp. 147-175, 1989.

[151]M.H. Nodine, S. Ramaswamy, and S.B. Zdonik, “A cooperative
transaction model for design databases,” Database Transaction
Models for Advanced Applications, A.K. Elmagarmid, ed., Morgan
Kauffman, 1993.

[152]OMG and Xopen, The Common Object Request Broker: Architecture
and Specification, Object Management Group and WOpen, Framing-
ham, Mass., and Reading Berkshire, U.K., 1992.

[153]R Overmyer and M. Stonebraker, “Implementation of a time expert in a
database system,’’ ACM SIGMOD Record, vol. 12, no. 3, pp. 51-59,
Apr. 1982.

[154]G. Ozsoyoglu and A. Hafez, “Near-optimum storage models for nested
relations based on workload information,” IEEE Trans. Knowledge and
Data Eng., vol. 5, no. 6, pp. 1.018-1,038, Dec. 1993.

[155]G. Ozsoyoglu, S. Guruswamy, K. Du, and W-C. Hou, “Time-constrained
query processing in CASE-DB,” IEEE Trans. Knowledge and Data
Eng., to appear in 1995.

[156]M.T. Ozsu, R. Peters, D. Szafron, B. Irani, A. Lipka, and Mufioz,
“TIGUKAT A uniform behavioral objectbase management system,”
VLDB J . , to appear in 1995.

289-296, 1988.

OZSOYOCLU AND SNODGRASS: TEMPORAL AND REAL-TIME DATABASES: A SURVEY 53 1

[157]W. Plouffe, W. Kim, R. Lone, and D. McNabb, “Versions in an engi-
neering database system,” IBM Research Report RJ4085, San Jose,
Calif., Oct. 1983.

[158]C. Pu and A. Leff, “Replica control in distributed systems: An asyn-
chronous approach,” Proc. ACM Int’l Con$ Management Data, pp.

[159lK. Ramamritham, “Real-time databases,” Int ’ I J. Distributed and Paral-

[160]N.C. Rescher and A. Urquhart, Temporal Logic, Springer-Verlag, 1971.
t161lJ.F. Roddick, “Schema evolution in database systems-An annotated

bibliography,” ACM SIGMOD Record, vol. 21, no. 4, pp. 35-40,
Dec. 1992.

[162lJ.F. Roddick and R.T. Snodgrass, “Schema versioning support in
TSQL2,” TSQL2 Commentary, Sept. 1994.

[163]E. Rose and A. Segev, “TOODM-A temporal object-oriented data
model with temporal constraints,” Proc. Int ’ I Con$ Entity Relationship
Approach, Oct. 1991.

[164]E. Rose and A. Segev, “TOOA A temporal object-oriented algebra,”
Proc. European Con$ Object-Oriented Programming, July 1993.

[165]E. Rose and A. Segev, “TOOSQL-A temporal object-oriented query
language,” Proc. Int’l Conf: Entity-Relationship Approach, Dallas, 1993.

[166]R. Sadeghi, “A Database Query Language for Operations on Historical
Data,” PhD thesis, Dundee College of Technology, Dundee, Scotland,
Dec. 1987.

[167]R. Sadeghi, W.B. Samson, and S.M. Deen, “HQL-A historical query
language,” Technical report, Dundee College of Technology, Dundee,
Scotland, Sept. 1987.

[168]B. Slazberg and V.J. Tsotras, “A comparison of access methods for time
evolving data,” Technical Report CA’IT-TR-94-81, Polytechnic Univ., 1994.

[169]N. Sarda, “Algebra and query language for a historical data model,” The
Computer J. , vol. 33, no. I, pp. 11-18, Feb. 1990.

[170lN. Sarda, “Extensions to SQL for historical databases,” IEEE Trans.
Knowledge and Data Eng., vol. 2, no. 2, pp. 22G230, lune 1990.

[171]K. Satoh, M. Tsuchida, F. Nakamura, and K. Oomachi, “Local and
global query optimization mechanisms for relational databases,” A. Pi-
rotte and Y. Vassiliou, eds., Proc. Int’l Con$ Very Lorge Databases,
pp. 405417, Stockholm, Sweden, Aug. 1985.

[1721E. Sciore, “Using annotations to support multiple kinds of versioning in
an object-oriented database system,” ACM Trans. Database Systems,
vol. 16, no. 3, pp. 417-438, Sept. 1991.

[173lE. Sciore, “Versioning and configuration management in an object-
oriented data model,” VLDB J. , to appear in 1995.

[174]A. Segev, G. Himawan, R. Chandra, and J. Shanthikumar, “Selectivity
estimation of temporal data manipulations,” Information Sciences, vol.
74, nos. 1-2, Oct. 1993.

[175]A. Segev and A. Shoshani, “Logical modeling of temporal data,” U.
Dayal and I. Traiger, eds., Proc. ACM SIGMOD Int’l Con$ Manage-
ment Data, pp. 454-466, San Francisco, May 1987.

[176]A. Segev and R. Chandra, “A data model for time-series analysis,”
Advanced Database Systems, N.R. Adam and B.K. Bhargava, eds.,
Springer-Verlag. pp. 191-212, 1993.

[177]T.K. Sellis, “Global query optimization,” C. Zaniolo, ed., Proc. ACM Int’l
Con$ Management Data, pp. 191-205, Washington, DC, May 1986.

[178]P. Seshadri, M. Livny, and R. Ramakrishnan, “Sequence query
processing,” Proc. ACM SIGMOD Int’l Conf. Management Data,
R.T. Snodgrass and M. Winslett, eds., pp. 430-441, Minneapolis,
May 1994.

[179]L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance protocols:
an approach to real-time synchronization,” IEEE Trans. Computers, vol.

[18O]L. Sha, R. Rajkumar, S.H. Son, and C. Chang, ”A real-time locking
protocol,” IEEE Trans. Computers, vol. 40, 7, pp. 782-800, July 1991.

[181]Y. Shahar, S.W. Tu, and M.A. Musen, “Knowledge acquisition for
temporal-abstraction mechanisms,” Knowedge Acquisition, vol. 4, no.
2, pp. 217-236, June 1992.

[182lY. Shahar and M.A. Musen, “RESUME: A temporal-abstraction system
for patient monitoring,” Computers and Biomedical Research, vol. 26,
no. 3, pp. 255-273, June 1993.

377-386,1991.

lel Databases, vol. I, no. 2, pp. 199-206, 1993.

39, pp. 1,175-1,185, 1990.

[183]S. Shenoy and G. Ozsoyoglu, Z., “Design and implementation of a se-
mantic query optimizer,” IEEE Trans. Data and Knowledge Eng. vol. 1,
no. 3, pp. 344-361, Sept. 1989.

t184lK.P. Smith and J.W.S. Liu, “Monotonically improving approximate
answers to relational algebra queries,” Proc. COMPSAC 89 Con$, Or-
lando, Fla., Sept. 1989.

[185]R.T. Snodgrass and I. Ahn, ’Temporal databases,” Computer. vol. 19,
no. 9, pp. 3 5 4 2 , Sept. 1986.

[186]R.T. Snodgrass, “The temporal query language TQuel,” ACM Trans.
Database Systems, vol. 12, no. 2, pp. 247-298, June 1987.

[187lR.T. Snodgrass, ‘“Temporal Databases,” Theories and Methods of Spa-
tio-Temporal Reasoning in Geographic Space, A. U. Frank, I. Campari,
and U. Formentini, eds., Springer-Verlag Lecture Notes Computer Sci-
ence 639, pp. 22-64, Sept.1992.

t188lR.T. Snodgrass, I. Ahn, G. Ariav, D.S. Batory, J. Clifford, C.E.
Dyreson, R. Elmasri, F. Grandi, C.S. Jensen, W. Kafer, N. Kline, K.
Kulkanri, C.Y.T. Leung, N. Lorentzos, J.F. Roddick, A. Segev, M.D.
Soo, and S.M. Sripada, ‘TSQL2 language specification,” ACM
SIGMOD Record, vol. 23, no. 1, pp. 65-86, Mar. 1994.

[189lR.T. Snodgrass, “Temporal object-oriented databases: A critical com-
parison,” chap. 19, Modern Database Systems: The Object Model, In-
teroperability and Beyond, W. Kim, ed., Addison-WesleytACM Press,
pp. 386408,1995.

[190]“Real-time database systems: Issues and approaches,” S.H. Son, ed.,
ACM SIGMOD Record, vol. 17, no. 1, special issue on real-time data-
base systems, Mar. 1988.

[191]S.H. Son, J. Lee, and H. Kang, “Approaches to design of real-time data-
base systems,” Proc. Symp. Database Systems for Advanced Applica-
tions, Korea, pp. 274-281, Apr. 1989.

[192]S.H Son and S. Kouloumbis, “Replication control for distributed real-
time database systems,’’ Proc. 12th Distributed Computing System
Conf.., 1992.

t193lS.H. Son, S. Park, and Y. Lin, “An integrated real-time locking proto-
col,” Proc. Int’l Con$ Data Eng., pp. 527-534, 1992.

[194]S.H. Son and J. Lee, “Scheduling real-time transactions in distrib-
uted database systems,” Proc. Seventh IEEE Workshop Real-Time
Operating Systems and Software, Charlottesville,Va., pp. 39-43,
May 1990.

[195lS.H. Son, J. Lee, and Y. Lin, “Hybrid protocols using dynamic adjust-
ment of serialization order for real-time concurrency control,” Real-
Time Systems J . , pp. 269-276, Sept. 1992.

[196]X. Song and J. Liu, “How well can data temporal consistency be main-
tained?” Proc. IEEE Symp. Computer-Aided Control System Design,
pp. 276-284, Mar. 1992.

[197lM.D. Soo, “Bibliography on temporal databases,” ACM SIGMOD Rec-
ord, vol. 20, no. I , pp. 14-23, Mar. 1991.

t198lM.D. Soo, C.S. Jensen, and R.T. Snodgrass, “An algebra for TSQL2,”
TSQU Commentary, Sept. 1994.

[199] M.D. Soo, R.T. Snodgrass, and C.S. Jensen, ‘Efficient evaluation of the valid-
time nahual join,” Proc. Int’l Con$ Data Eng., pp. 282-292, Feb. 1994.

[200] S. Sripada, “A logical framework for temporal deductive databases,” Proc.
Int’l Con$ Very Large Databases, pp. 171-182, Los Angeles, 1988.

[201lR. Stam and R.T. Snodgrass, “A bibliography on temporal databases,”
IEEE Database Eng., vol. 7, no. 4, pp. 231-239, Dec. 1988.

[202]M. Stefik, D. Bobrow, and K. Kahn, “Integrating access-oriented pro-
gramming into a multiparadigm environment,” IEEE Sofhvare, vol. 3,
no. 1, pp. 10-18, Jan. 1986.

[203] J. Stankovic, “Misconceptions about real-time computing,” Computer,
vol. 21, no. 10, pp. 10-19, Oct. 1988.

[204]M. Stonebraker, “The design of the Postgres storage system,” P. Ham-
mersley, ed., Proc. Int’l Con$ Very Large Databases, pp. 289-300,
Brighton, England, Sept. 1987.

[205]M. Stonebraker, L. Rowe, and M. Hirohama, ‘The implementation of
Postgres,” IEEE Trans. Knowledge and Data Eng., vol. 2, no. 1, pp.

[206]S.Y.W. Su and H.M. Chen, “A temporal knowledge representation
model OSAM*iT and its query language OQbT,” Proc. Int’l Conf:
Very Large Databases, 199 1.

[207]Temporal Databases: Theory, Design, and Implementation, A. Tansel,

125-142, MU. 1990.

532 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. I, NO. 4, AUGUST 1995

J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R.T. Snodgrass, eds.,
Database Systems and Applications Series. BenjamidCummings, Red-
wood City, Calif., 1994.

[208]A.U. Tansel, “Adding time dimension to relational model and extending
relational algebra,” Information System, vol. 11, no. 4, pp. 343-355.1986.

[209]A.U. Tansel, M.E. Arkun, and G. Ozsolyoglu, “Time-by-example query
language for historical databases,” IEEE Trans. Software Eng., vol 15,
no. 4, pp. 464-478, Apr. 1989.

[210]A.U. Tansel, “A historical query language,” Information Sciences, vol.

[211]P.A. Thompson, “A temporal data model based on accounting princi-
ples,” PhD thesis, Dept. of Computer Science, Univ. of Calgary, Cal-
gary, Alta., Canada, Mar. 1991.

[212]D.C. Tsichritzis and F.H. Lochovsky, Data Models, Software Series.
Prentice Hall, 1982.

[213]0. Ulusoy, “Research issues in real-time database systems,’’ Tech. Re-
port BU-CEIS-9432, Bilkent UNv., Ankara, Turkey, 1994.

[214]0. Ulusoy, “A study of two transaction processing architectures for
distributed real-time database systems,” J. Systems and Software, to ap-
pear in 1995.

[215]0. Ulusoy and G.G. Belford, “Real-time transaction scheduling in data-
base systems,” Information Systems J., vol. 18, no. 8, 1993.

[216]0. Ulusoy and G.G. Belford, “Real-time lock based concurrency control
in a distributed database system,” Proc. 12th Int’l Con$ Distributed
Computing Systems, pp. 136-143, 1992.

[217] S.D. Urban and L.M.L. Delcambre, “An analysis of the structural, dynamic,
and temporal aspects of semantic data models,” Proc. Int’l Conj Data Eng.,
IEEE CS. Order No. 655, pp. 382-389, Los Angeles, Feb. 1986.

[218]J.F.K.A. Van Benthem, The Logic of Time: A Model-Theoretic Investi-
gation into the Varieties of Temporal Ontology and Temporal Dis-
course. Reidel, Hingham, Mass., 1982.

[219]S. Vrbsky and K.J. Lin, “Recovering imprecise transaction with real-
time constraints,” Proc. Seventh Symp. Reliable Distributed Systems,
pp. 185-193, Oct. 1988.

[22O]S.V. Vrbsky, J.W.S. Liu, and K.P. Smith, “An object-oriented query
processor that produces monotonically improving approximate an-
swers,” Proc. IEEE Con$ Data Eng., Kobe, Japan, 1991.

[221]X. Wang, S. Jajodia, and V. Subrahamanian, “Temporal modules: An
approach toward temporal databases,” Proc. ACM SIGMOD Int’l Con$
Management of Data, R.T. Snodgrass and M. Winslett, eds., Minnea-
polis, pp. 227-236, May 1994.

[222]G. Wiederhold, J.F. Fries, and S. Weyl, “Structured organization of
clinical data bases,” Proc. Nat’l Computing Conf., pp. 479-485, 1975.

[223]G. Wiederhold, S. Jajodia, and W. Litwin, “Dealing with granularity of
time in temporal databases,” Proc. Third Nordic Con$ Advanced In-
formation Systems Eng., Trondheim, Norway, May 1991.

[224]K. Wilkinson, P. Lyngbaek, and W. Hasan, “The IRIS architecture and
implementation,” IEEE Trans. Knowledge and Data Eng., vol. 2, no. 1,
pp. 63-75, Mar. 1990.

[225]M.F. Worboys, “Reasoning about GIS using temporal and dynamic
logics,” Temporal GIs Workshop. Univ. of Maine, Oct. 1990.

[226]K.L. Wu, P.S. Yu, and C. Pu,, “Divergence control for epsilon seri-
alizability,” Proc. Int’l Con$ Data Eng., pp. 2-1 1, 1992.

[227lG.T.J. Wuu, “SERQL An ER query language supporting temporal data
retrieval,’’ Proc. 10th Int’l Phoenix Conj Computers and Comm., pp.
272-279, Mar. 1991.

I228lG.T.J. Wuu and U. Dayal, “A uniform model for temporal object-
oriented databases,” Proc. Int’l Con$ Data Eng., pp. 584-593, Tempe,
Ariz., Feb. 1992.

[229]C. Yau and G.S.W. Chat, “TempSQLA language interface to a tempo-
ral relational model,’’ Information Science and Technology, pp. 44-60,
Oct. 1991.

[230]P.S. Yu, H.-U. Heiss, and D.M. Dias, “Modeling and analysis of a time-
stamp history based certification protocol for concurrency control,”
IEEE Trans. Knowledge Eng., vol. 3, no. 4, pp. 525-537, Dec. 1991.

[231]P.S. Yu, K-L. Wu, K-J. Lin, and S.H. Son, “On real-time databases:
concurrency control and scheduling,” Proc. IEEE, vol. 82, no. 1, 1994.

[232]M. Zloof, “Query by example,” Proc. Nat’l Computer Conf.., vol.
44, 1975.

53, pp. 101-133, 1991.

Gultekin G. Ozsoyoglu received a BA degree in
electncal engineenng and an MS degree in computer
science from the Middle East Technical University,
Ankara, Turkey, in 1972 and 1974, respectively He
received a PhD degree in computing science from
the University of Alberta, Canada, in 1980 He IS a
professor in the Department of Computer Engineer-
ing and Science at Case Western Reserve University
in Cleveland, Ohlo

Dr Ozsoyoglu’s research interests include real-
time databases, multimedia databases, scientific and

statistical databases, and graphical user interfaces He IS the author of 60
papers for database conferences and joumals such as ACM Transactions on
Database System, IEEE Transactions on Software Engineering, IEEE
Transactions on Knowledge and Data Engineering, and the Joumal of Com-
puter and System Sciences

He has served on program cornnuttees and panels of major database con-
ferences He was an ACM national lecturer, program chair of the Third Sta-
tisncal and Scientific Database Conference, workshop general chair at the
CIKM’94 Conference, and research prototypes chair of ACM SIGMOD’94
He is an associate editor of the Journal of Database Administration and has
served on National Science Foundation, National Reserach Council, and Ford
Foundation panels

m

Richard T. Snodgrass received a BA degree in
physics from Carleton College in 1977 and a PhD
degree in computer science from Camegie Mellon
University in 1982 In 1989, he joined the faculty of
the University of Anzona in Tucson, where he is
now an associate professor in the Department of
Computer Science

His research interests include temporal data-
bases, database query languages, data models, and
computer-aided software engineenng environments
and databases. He has written or coedited three

books, including Temporal Databases Theory, Design and Implementation,
and approximately 40 joumal and conference papers. He is an associate editor
of ACM Transactions on Database Systems and is on the editonal board of
the Intemational Joumal of Computer and Software Engineering

Dr. Snodgrass chaired the program committees for the 1994 SIGMOD
Conference and the Intemational Workshop on an Infrastructure for Temporal
Databases. In addition, he has served as a vice chair or member of many
program committees-seven in the past three years-as well as several Na-
tional Science Foundation panels. He chaired the TSQL2 Language Design
Committee and is now working closely with the ANSI and IS0 SQL3 com-
mittees to add temporal support to that language

